ЧЕБЫШЕВСКИЙ СБОРНИК

Том 22. Выпуск 1.

УДК 512.772

 $DOI \ 10.22405/2226\text{--}8383\text{--}2021\text{--}22\text{--}1\text{--}76\text{--}91$

Построение некоторых взаимных расположений M-кубики и M-квинтики 1

И. М. Борисов

Иван Михайлович Борисов — Национальный исследовательский университет «Высшая школа экономики» (г. Москва). *e-mail: i.m.borisov@mail.ru*

Аннотация

В работе рассматривается задача построения распадающихся кривых степени 8 с сомножителями степеней 3 и 5. Для этого применяется модификация метода кусочного конструирования Виро, предложенная Штурмфельсом. Построены 29 попарно различных кривых.

Ключевые слова: Вещественные алгебраические кривые, распадающиеся алгебраические кривые, метод кусочного конструирования.

Библиография: 14 названий.

Для цитирования:

И. М. Борисов. Построение некоторых взаимных расположений M-кубики и M-квинтики // Чебышевский сборник, 2021, т. 22, вып. 1, с. 76–91.

CHEBYSHEVSKII SBORNIK

Vol. 22. No. 1.

UDC 512.772

DOI 10.22405/2226-8383-2021-22-1-76-91

Construction of some mutual arrangements of M-cubic and M-quintic

I. M. Borisov

Ivan Mikhailovich Borisov — National Research University Higher School of Economics (Moscow).

e-mail: i.m.borisov@mail.ru

Abstract

The construction of decomposable curves of degree 8 with multipliers of degrees 3 and 5 is considered in this paper. Sturmfels's modification of Viro's patchworking method for constructing decomposable curves is used. 29 pairwise different curves were constructed.

Keywords: Real algebraic curves, real decomposable algebraic curves, patchworking Bibliography: 14 titles.

For citation:

I. M. Borisov, 2021, "Construction of some mutual arrangements of M-cubic and M-quintic", Chebyshevskii sbornik, vol. 22, no. 1, pp. 76–91.

¹Работа выполнена при поддержке Лаборатории топологических методов в динамике НИУ ВШЭ, грант Министерства науки и высшего образования РФ соглашение № 075-15-2019-1931

1. Введение

Классификация вещественных алгебраических кривых, распадающихся в произведение двух неособых кривых-сомножителей, входит в круг задач, которые относятся к первой части 16-й проблемы Гильберта (например, см. [1]). Для случая распадающихся кривых степени 6 эта задача была сформулирована Д.А. Гудковым в [2] и решена Г.М. Полотовским в [3]. Затем началось решение аналогичной задачи для распадающихся кривых степени 7, которое сейчас близко к завершению.

Классификация распадающихся кривых степени 8 только начинается, в [4] и [5] рассматривался случай, когда сомножителями являются кривые степеней 2 и 6. В данной работе рассматривается построение взаимных расположений кривой степени 3 – кубики и кривой степени 5 – квинтики при некоторых условиях максимальности и общего положения кривых сомножителей.

Напомним некоторые понятия и факты из теории вещественных алгебраических кривых.

Определение 1. Плоской вещественной проективной алгебраической кривой C_m степени m называется однородный многочлен $C_m(x_0,x_1,x_2)$ степени m с вещественными коэффициентами от трёх переменных x_0,x_1,x_2 , рассматриваемый с точностью до ненулевого постоянного множителя.

Определение 2. Кривая C_m называется неособой, если первые частные производные многочлена $C_m(x_0, x_1, x_2)$ по переменным x_0, x_1, x_2 не обращаются одновременно в нуль (в комплексной проективной плоскости $\mathbb{C}P^2$).

ТЕОРЕМА 1 (Харнак [6]). Пусть N — число компонент связности (ветвей) множества вещественных точек плоской вещественной проективной кривой степени m. Тогда $N \leqslant (m-1)(m-2)/2+1$, причём эта оценка точна для любого m.

Кривые с максимально возможным по теореме Харнака числом ветвей называются M- $\kappa puвыми$.

Каждая компонента связности неособой кривой в вещественной проективной плоскости $\mathbb{R}P^2$ гомеоморфна окружности. Если степень кривой чётна, то компоненты называются овалами, они вложены в $\mathbb{R}P^2$ двусторонне. Если степень нечётна, то имеется одна односторонняя компонента, называемая нечётной ветвью.

M-квинтика состоит из шести овалов, лежащих вне друг друга, и нечётной ветви. M-кубика состоит из одного овала и нечётной ветви.

В данной работе строятся расположения квинтики и кубики, которые удовлетворяют следующим условиям:

- квинтика и кубика являются М-кривыми;
- квинтика и кубика пересекаются без касаний в максимальном по теореме Безу количестве общих точек в $\mathbb{R}P^2$;
- все 15 точек пересечения лежат на нечётной ветви квинтики и нечётной ветки кубики.

Для построения кривых указанного класса используется метод кусочного конструирования О.Я. Виро². Здесь будет описан алгоритм комбинаторного метода кусочного конструирования, с подробным описанием и применением метода можно ознакомиться в [7] – [13].

 $^{^2}$ В оригинале у О.Я. Виро используется термин patchworking.

1.1. Многоугольник Ньютона

Рассмотрим многочлен $C_m(x,y)$ степени m от двух действительных переменных x и y:

$$C_m(x,y) = \sum_{i+j \leqslant m} a_{i,j} x^i y^j.$$

Если $a_{i_0,j_0}>0$, то говорят, что одночлен $a_{i_0,j_0}x^{i_0}y^{j_0}$ входит в многочлен $C_m(x,y)$.

Если одночлен $a_{i_0,j_0}x^{i_0}y^{j_0}$ входит в многочлен $C_m(x,y)$, то отметим точку (i_0,j_0) на координатной плоскости. Таким образом, многочлену ставится в соответствие множество точек с целочисленными координатами. Выпуклая оболочка этого множества точек называется многоугольником Ньютона многочлена $C_m(x,y)$.

2. Метод Виро

Опишем кратко идею и алгоритм реализации комбинаторного метода кусочного конструирования, используя терминологию и некоторые обозначения из [7], [8] и [11].

2.1. Кусочное конструирование неособых кривых

Рассмотрим на координатной плоскости \mathbb{R}^2 треугольник T_m с вершинами (0,m), (0,0), (m,0).

Определение 3. Триангуляция τ_m треугольника T_m называется примитивной триангуляцией, если вершины треугольников триангуляции имеют целочисленные координаты и площадь каждого треугольника равна $\frac{1}{2}$.

Точки с целочисленными координатами будем называть целыми точками.

Зададим функцию $\sigma: T_m \to \{+1, -1\}$, которую определим в целых точках треугольника $T_m, \sigma: (i,j) \mapsto \sigma_{i,j}$, то есть каждой вершине триангуляции поставим в соответствие знак плюс или минус.

Наложим на триангуляцию условие выпуклости, то есть будем считать, что существует выпуклая кусочно-линейная функция $V:T_m\to R$, которая линейна на каждом треугольнике триангуляции τ_m и нелинейна на объединении любых двух треугольников.

Определение 4. Набор (m, τ_m, V, σ) , где τ_m – примитивная триангуляция, называется начальными данными.

Рассмотрим отображение $S_{\varepsilon,\delta}: \mathbb{R}^2 \to \mathbb{R}^2$ такое, что $(x,y) \mapsto (\varepsilon x,\delta y)$, где $\varepsilon,\delta \in \{+1,-1\}$. Обозначим $T_*(m) = T_m \cup S_{-1,1}(T_m) \cup S_{-1,-1}(T_m) \cup S_{1,-1}(T_m)$ квадрат, представляющий собой объединение исходного треугольника и его образов при отображении $S_{\varepsilon,\delta}$. Обозначим через $\tau_*(m)$ триангуляцию квадрата $T_*(m)$, полученную при симметриях $S_{\varepsilon,\delta}$ триангуляции треугольника T_m .

Функцию σ доопределим в квадрате $T_*(m)$ по формуле:

$$\sigma_{i,j} = \begin{cases} (-1)^{|i|} \sigma_{-i,j}, & i < 0, j \ge 0, \\ (-1)^{|j|} \sigma_{i,-j}, & i \ge 0, j < 0, \\ (-1)^{|i|+|j|} \sigma_{-i,-j}, & i < 0, j < 0. \end{cases}$$

Если треугольник триангуляции $\tau_*(m)$ имеет вершины разных знаков, проведём в нём среднюю линию, разделяющую вершины с разными знаками, и обозначим объединение средних линий треугольников триангуляции квадрата $T_*(m)$ через L.

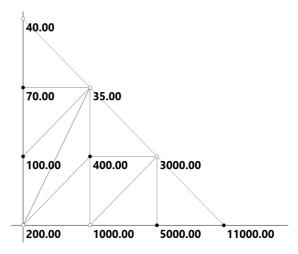


Рис. 1: Примитивная триангуляция треугольника T_3 с примером значений выпуклой функции V и функции σ в вершинах триангуляции. На этом и последующих рисунках значения +1 функции σ обозначаются белыми точками, -1 – чёрными.

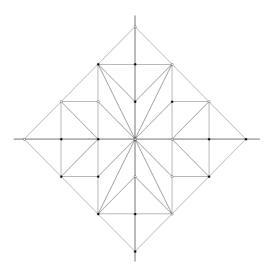


Рис. 2: Квадрат $T_*(3)$, соответствующий треугольнику T_3 на рис. 1

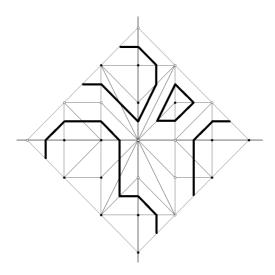


Рис. 3: Кусочно-линейная схема неособой кривой степени 3.

Обозначим через $T^*(m)$ квадрат $T_*(m)$ с отождествлёнными диаметрально противоположными точками его границы. Множество $T^*(m)$ гомеоморфно вещественной проективной плоскости. Пусть \overline{L} – образ кусочно-линейной кривой L в $T^*(m)$ при описанном отождествлении, (m, τ_m, V, σ) – набор начальных данных.

Определим однопараметрическое семейство многочленов

$$b(x,y,t) = \sum_{\substack{0 \leqslant i+j \leqslant n \\ i \geqslant 0, \ j \geqslant 0}} \sigma_{i,j} t^{V_{i,j}} x^i y^j = b_t(x,y)$$

$$\tag{1}$$

и семейство однородных многочленов

$$B_t(x_0, x_1, x_2) = x_0^m b_t(x_1/x_0, x_2/x_0).$$

ТЕОРЕМА 2 (Виро [7]). Пусть (m, τ_m, V, σ) – набор начальных данных, $b_t(x, y)$ и $B_t(x_0, x_1, x_2)$ – неоднородные и однородные многочлены, полученные по этим начальным данным, L и \overline{L} – кусочно-линейные кривые в $T_*(m)$ и $T^*(m)$ соответственно.

Тогда существует $t_0 > 0$, такое, что для любого $t \in (0,t_0]$ уравнение $b_t(x,y) = 0$ определяет в плоскости \mathbb{R}^2 кривую c_t такую, что пара (\mathbb{R}^2,c_t) гомеоморфна паре $(T_*(m),L)$, а уравнение $B_t(x_0,x_1,x_2)=0$ определяет в вещественной проективной плоскости кривую C_t такую, что пара $(\mathbb{R}P^2,C_t)$ гомеоморфна паре $(T^*(m),\overline{L})$.

2.2. Кусочное конструирование распадающихся кривых

Рассмотрим два набора начальных данных $(m_1, \tau_{m_1}, V^1, \sigma^1)$ и $(m_2, \tau_{m_2}, V^2, \sigma^2)$ (индексы у функций V и σ расположены сверху для удобства дальнейшего обозначения их значений в целых точках). Пусть $m = m_1 + m_2$.

Примитивным смешанным разбиением μ_m треугольника T_m назовём его разбиение на параллелограммы площади 1 и треугольники площади $\frac{1}{2}$ с целыми вершинами. Определим на множестве целых точек треугольника T_m функцию V следующим образом:

$$V_{i,j} = \min_{\substack{i_1 + i_2 = i \\ j_1 + j_2 = j}} (V_{i_1,j_1}^1 + V_{i_2,j_2}^2). \tag{2}$$

Если есть несколько пар (i_1, j_1) , (i_2, j_2) , на которых достигается минимум, то нужно изменить значения функции V^1 или V^2 в начальных данных.

Значение функции σ в вершинах разбиения определим так:

$$\sigma_{i,j} = \sigma^1_{i_1,j_1} \cdot \sigma^2_{i_2,j_2}.$$

Также необходимо определить на треугольнике T_m выпуклую кусочно-линейную функцию V, принимающую в целых точках из T_m значения, определённые формулой (2). Для этого будем действовать по такому же алгоритму, как в [8].

Рассмотрим набор из четырёх вершин (i_k, j_k) , $k = \overline{1,4}$, с целыми координатами в треугольнике T_m , которые являются вершинами параллелограмма с площадью, равной единине.

Лежат ли точки $(i_k, j_k, V_{i_k, j_k}), k = \overline{1, 4}$, в одной плоскости?

 $\mathcal{A}a \to \mathbb{A}$ Пежат ли все точки, отличные от точек $(i_k, j_k, V_{i_k, j_k}), k = \overline{1, 4}$, по одну сторону от плоскости, проходящей через эти четыре точки?

- $\mathcal{A}a \to \text{Определим}$ функцию V на этом параллелограмме так, что её график совпадает с частью плоскости, проходящей через эти четыре вершины, а параллелограмм добавим в примитивное смешанное разбиение.
- $Hem
 ightarrow \Pi$ араллелограмм не входит в примитивное смешанное разбиение.
- $Hem o \Pi$ араллелограмм не входит в примитивное смешанное разбиение.

Повторим эти операции для всех четвёрок целых точек из треугольника T_m , которые образуют параллелограммы с площадью 1, не пересекающиеся с уже добавленными в разбиение параллелограммами.

Затем перейдём к области треугольника T_m , не заполненной параллелограммами.

Рассмотрим тройку целых вершин (i_k, j_k) , $k = \overline{1,3}$, которые являются вершинами треугольника с площадью $\frac{1}{2}$, не пересекающимся с параллелограммами, добавленными в примитивное смешанное разбиение ранее.

Лежат ли все остальные целые точки треугольника T_m по одну сторону от плоскости, проходящей через три выбранные точки?

- Δ а \rightarrow Функцию V на этом треугольнике определим так, что её график совпадает с частью плоскости, проходящей через эти три вершины. Треугольник добавим в примитивное смешанное разбиение.
- Нет \rightarrow Треугольник не входит в примитивное смешанное разбиение.

Переберём таким образом все допустимые тройки точек. Если в результате область треугольника T_m , не заполненная параллелограммами, окажется триангулированной, то смешанное разбиение и выпуклая кусочно-линейная функция V найдены, иначе требуется корректировка начальных данных и повторное применение алгоритма.

Пусть на треугольнике T_m определены функция σ , которая ставит в соответствие каждой целой точке из треугольника T_m знак + или -, кусочно-линейная выпуклая функция V и примитивное смешанное разбиение μ_m .

Аналогично случаю построения неособой кривой, с помощью симметрий получим разбиение $\mu_*(m)$ квадрата $T_*(m)$ и распространим на этот квадрат функцию σ .

В треугольниках разбиения, как и ранее, проведём средние линии, отделяя вершины разных знаков. В параллелограммах отделим вершины с разными знаками по правилам, указанным на рис. 4.

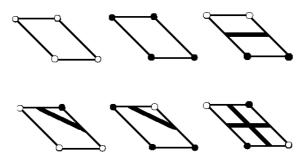


Рис. 4: Правила построения отрезков в параллелограммах.

Как и раньше, обозначим через L и \overline{L} объединение отрезков, проведённых в треугольниках и параллелограммах, в квадрате $T_*(m)$ и $T^*(m)$ соответственно.

ТЕОРЕМА 3 (Штурмфельс [11]). Пусть $(m_1, \tau_{m_1}, V^1, \sigma^1)$ и $(m_2, \tau_{m_2}, V^2, \sigma^2)$ – начальные данные, которые задают неоднородные и однородные многочлены b_t^1, b_t^2 и $B_t^1, B_t^2, m = m_1 + m_2,$ L и \overline{L} – кусочно-линейные кривые в $T_*(m)$ и $T^*(m)$ соответственно, полученные в процессе кусочного конструирования, описанного выше.

Тогда существует $t_0 > 0$ такое, что для любого $t \in (0, t_0]$

- 1. Уравнение $b_t = b_t^1 \cdot b_t^2 = 0$ определяет в плоскости \mathbb{R}^2 распадающуюся кривую $c_m(b_t) = c_{m_1}(b_t^1) \cdot c_{m_2}(b_t^2)$ такую, что пара $(\mathbb{R}^2, c_m(b_t))$ гомеоморфна паре $(T_*(m), L)$;
- 2. Уравнение $B_t = B_t^1 \cdot B_t^2 = 0$ определяет в вещественной проективной плоскости распадающуюся кривую $C_m(B_t) = C_{m_1}(B_t^1) \cdot C_{m_2}(B_t^2)$ такую, что пара $(\mathbb{R}P^2, C_m(B_t))$ гомеоморфна паре $(T^*(m), \overline{L})$.

3. Результаты построений

Как видно из алгоритма метода кусочного конструирования, описанного выше, некоторые шаги сопровождаются многократно повторяющимися и сложными при ручной работе вычислениями. Для автоматизации и ускорения этого процесса была написана компьютерная программа, которая позволяет по начальным данным получить примитивное смешанное разбиение и рисунок кусочно-линейной кривой, которая ему соответствует.

На рисунках 5 – 8 продемонстрированы начальные данные и результат применения к ним комбинаторного метода кусочного конструирования.

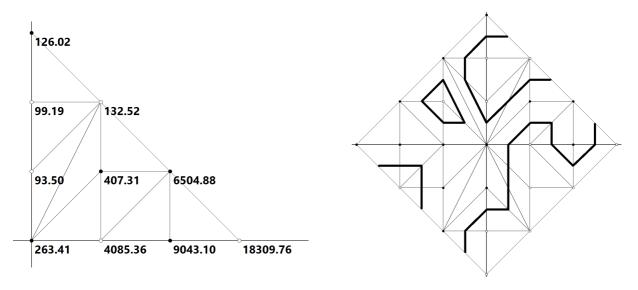


Рис. 5: М-кривая степени 3 и отвечающие ей начальные данные.

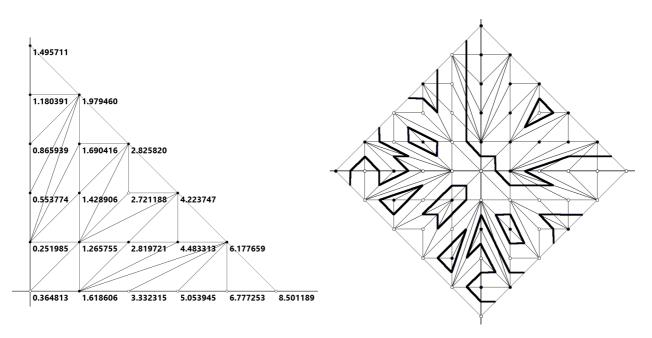


Рис. 6: M-кривая степени 5 и отвечающие ей начальные данные.

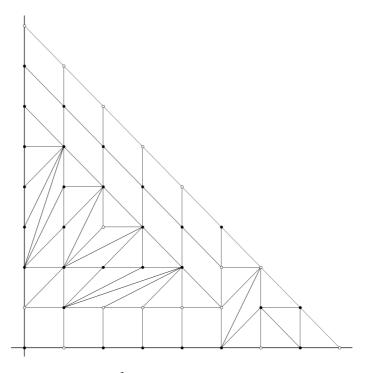


Рис. 7: Примитивное смешанное разбиение, построенное по начальным данным на рис. 5 и рис. 6.

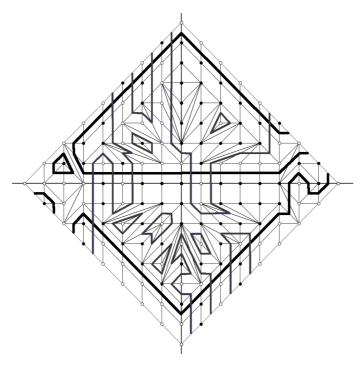


Рис. 8: Результат кусочного конструирования распадающейся кривой степени 8. Более жирными линиями выделены ветви кубики.

Аналогичным образом были получены распадающиеся кривые степени 8, кусочно-линейные модели которых изображены на рис. 12³ и рис. 13. Под каждым рисунком содержится информация о сомножителях распадающейся кривой, где ∐ обозначает объединение при описанных в п.1 условиях.

Исходные данные для квинтик и кубик представлены в таблицах 4 1, 2, 3 и 4. Знаки чисел в ячейках таблиц указывают на значения функции σ в целых точках, а модули этих чисел – значения функции V в соответствующих точках. Примитивные триангуляции изображены на рисунках 10 и 11. Под каждой триангуляцией указано к начальным данным каких кривых она относится. Триангуляция из начальных данных для кривой C_5^1 изображена на рисунке 6.

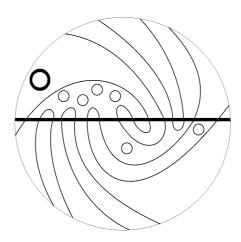


Рис. 9: Гладкая модель построенной распадающейся кривой.

 $^{^{3}}$ Построение первой модели было ранее рассмотрено подробно на рисунках 5 – 8.

⁴Исходные данные для квинтик взяты из [14] с некоторыми корректировками.

Кривая C_3^2 C_3^1 Координата -263.41 +280(0,0)+4085.36+150(1,0)+260(2,0)-9043.1 (3,0)+18309.76+1100

(0,1)

(1,1)

(1,2)

(0,2)

(2,1)

(0,3)

+93.5

-407.31

-6504.88

+99.19

+132.52

-126.02

+500

-300

+1600

 $+1650 \\ +2300$

+3600

Таблица 1: Исходные данные для кривых степени 3.

Кривая	C_5^1	C_5^2	C_5^3	C_5^4	C_5^5
Координата	0.5	0.5	0.5	0.5	0.5
(0,0)	+0.364813	+6.391368	+1.921742	+8.785822	+0.686618
(1,0)	-1.618606	+5.111845	-1.919990	-7.662989	-0.592536
(2,0)	+3.332315	+3.983147	+2.798394	-6.544328	-1.595525
(3,0)	+5.053945	+3.042329	-3.881727	+5.432353	+2.603180
(4,0)	+6.777253	+2.312552	+5.008655	-4.332050	-3.611449
(5,0)	+8.501189	-1.791285	-6.150657	+3.254743	+4.619918
(0,1)	-0.251985	-5.450648	-1.296484	+8.681416	+0.203111
(1,1)	-1.265755	+4.078444	-1.194708	+7.587507	-0.161764
(2,1)	-2.819721	-2.866636	-2.298640	+6.506753	+0.865123
(3,1)	-4.483313	-1.876611	-3.449699	-5.446304	-1.774683
(4,1)	-6.177659	-1.152135	-4.606489	-4.419194	+2.737483
(0,2)	-0.553774	+4.605481	+1.681392	-8.692071	-0.135469
(1,2)	-1.428906	-3.117422	-1.732884	+7.639722	-0.117809
(2,2)	+2.721188	+1.785613	+2.436382	-6.611600	-0.560877
(3,2)	-4.223747	+0.714585	-3.419363	+5.619089	-1.277099
(0,3)	-0.865939	-3.907379	-2.286298	-8.805151	+0.117472
(1,3)	-1.690416	-2.288366	-2.383016	-7.802076	-0.108539
(2,3)	-2.825820	-0.785504	-2.891397	-6.833842	+0.422970
(0,4)	-1.180391	-3.424126	+2.930230	-9.006650	-0.112592
(1,4)	-1.979460	-1.698243	-3.046047	-8.056156	-0.108083
(0,5)	-1.495711	-3.215007	-3.586784	-9.282828	-0.112980

Таблица 3: Исходные данные для кривых степени 5.

Координата Кривая	C_{5}^{6}	C_5^7	C_5^8	C_{5}^{9}	C_5^{10}
(0,0)	+1.921742	+5.063224	+5.063234	+5.351532	+8.785822
(1,0)	-1.919990	-3.935589	-3.935589	+4.470126	-7.662989
(2,0)	+2.798394	+2.893621	+2.893621	+3.811411	-6.544328
Продолжение таблицы на следующей странице					

Таблица 3

	C_5^6	C_5^7	C_5^8	C_{5}^{9}	C_5^{10}
(3,0)	-3.881727	-2.053709	-2.053709	+3.375242	-5.432353
(4,0)	+5.008655	-1.651401	-1.651401	-3.131985	-4.332050
(5,0)	-6.150657	-1.795841	+1.795841	+3.038671	-3.254743
(0,1)	+1.296484	-4.476115	+4.476115	-4.367345	-8.681416
(1,1)	+1.194708	-3.259702	+3.259702	+3.425546	+7.587507
(2,1)	+2.298640	-2.063989	+2.063989	-2.767121	-6.506753
(3,1)	+3.446999	-0.948590	+0.948590	-2.391774	-5.446304
(4,1)	+4.606489	-0.373552	+0.373552	-2.242184	+4.419194
(0,2)	+1.681392	+4.137727	+4.137727	+3.431179	-8.692071
(1,2)	-1.732884	-2.906948	-2.906948	+2.387864	-7.639722
(2,2)	+2.436382	+1.682166	+1.682166	+1.729965	-6.611600
(3,2)	-3.419363	-0.484267	-0.484267	-1.456732	-5.619089
(0,3)	+2.286298	-4.055736	+4.055736	-2.607163	+8.805151
(1,3)	+2.383016	+2.894808	-2.894808	+1.371303	-7.802076
(2,3)	+2.891397	-1.799620	-1.799620	-0.714611	-6.833842
(0,4)	+2.930230	-4.193171	-4.193171	+2.074613	-9.006650
(1,4)	-3.046047	-3.144232	-3.144232	+0.486331	-8.056156
(0,5)	+3.586784	-4.493751	-4.493751	-2.115173	-9.282828

Таблица 4: Исходные данные для кривых степени 5.

	C_5^{11}	C_5^{12}	C_5^{13}	C_5^{14}	C_5^{15}	C_5^{16}
(0,0)	+3.897520	+0.686618	+6.928716	+5.063224	+5.063224	+5.351532
(1,0)	+4.944820	-0.592536	+5.509098	+3.935589	+3.935589	-4.470126
(2,0)	+6.090824	+1.595525	+4.266741	-2.893621	+2.893621	+3.811411
(3,0)	+7.290039	-2.603180	+3.265917	-2.053709	+2.053709	-3.375242
(4,0)	+8.520121	-3.611449	+2.542920	-1.651401	-1.651401	-3.131985
(5,0)	-9.769379	+4.619918	-2.077390	-1.795841	-1.795841	+3.038671
(0,1)	+4.960769	-0.203111	-5.704748	+4.476115	-4.476115	-4.367345
(1,1)	-5.874163	+0.161764	+4.162723	+3.259702	+3.259702	-3.425546
(2,1)	-6.911405	-0.865123	-2.799377	+2.063989	-2.063989	-2.767121
(3,1)	+8.026747	+1.774683	+1.732737	+0.948590	+0.948590	+2.391774
(4,1)	-9.192268	-2.737483	-1.046562	+0.373352	-0.373552	+2.422184
(0,2)	+6.100987	-0.135469	+4.634037	-4.137727	-4.137727	+3.431179
(1,2)	-6.911577	-0.117809	+2.949034	-2.906948	-2.906948	-2.387864
(2,2)	+7.851436	-0.560877	+1.401275	+1.682166	+1.682166	+1.729965
(3,2)	+8.882884	-1.277099	+0.201262	-0.484267	+0.484267	-1.456732
(0,3)	-7.281919	-0.117472	-3.794708	+4.055736	-4.055736	+2.607163
(1,3)	+8.015331	+0.108539	-1.993701	-2.894808	-2.894808	-1.371303
(2,3)	+8.873963	-0.422970	-0.223389	-1.799620	-1.799620	-0.714611
(0,4)	-8.486366	-0.112592	-3.253832	-4.193171	-4.193171	-2.074613
(1,4)	-9.161148	-0.108083	-1.449983	-3.144232	-3.144232	-0.486331
(0,5)	-9.705439	-0.112980	-3.013054	-4.493751	-4.493751	-2.115173

Рис. 10: Примитивные триангуляции для кубик.

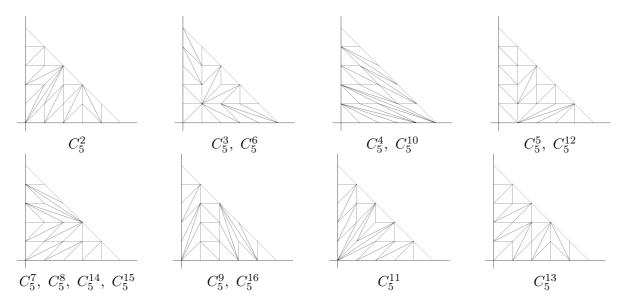


Рис. 11: Примитивные триангуляции для квинтик.

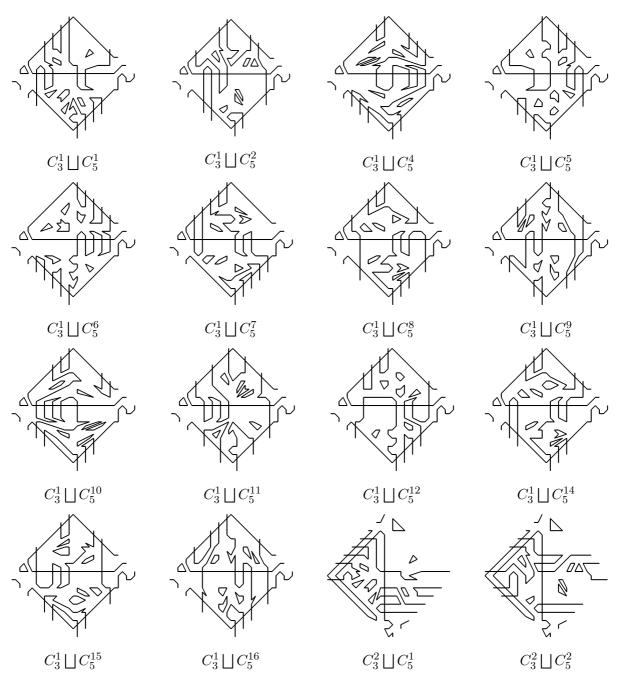
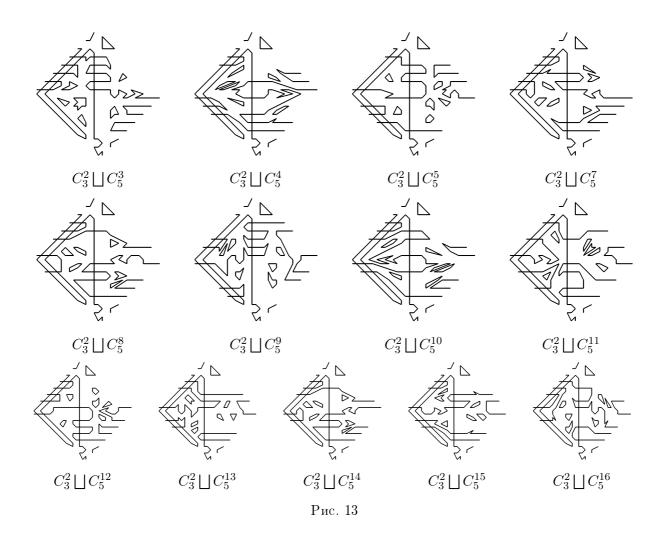


Рис. 12



4. Заключение

Модификация Штурмфельса метода кусочного конструирования Виро была применена для построения кривых, распадающихся в произведение M-кубики и M-квинтики, пересекающихся в 15 попарно различных точках, расположенных на их нечётных ветвях. В результате были построены 29 попарно различных кривых указанного класса.

Благодарю Г.М. Полотовского за обсуждение и полезные замечания.

СПИСОК ЦИТИРОВАННОЙ ЛИТЕРАТУРЫ

- 1. Проблемы Гильберта. Под ред. П.С. Александрова. Москва: Наука. 1969.
- 2. Гудков Д.А. Топология вещественных проективных алгебраических многообразий // УМН, 1974, Т.29, вып. 4(178). С. 3-79.
- 3. Полотовский Г. М. Каталог M-распадающихся кривых 6-го порядка // ДАН СССР, 1977, Том 236:3. С. 548-551.
- 4. Борисов И.М., Полотовский Г.М. О топологии плоских вещественных распадающихся кривых степени 8, Итоги науки и техн. Сер. Соврем. мат. и её прил. Темат. обз., 2020, т. 176. С. 3-18.

- 5. Борисов И.М., Горская В.А., Полотовский Г.М. О топологии вещественных распадающихся кривых степеней 7 и 8 // Алгебра, теория чисел и дискретная геометрия: современные проблемы, приложения и проблемы истории: Материалы XVIII Международной конференции, посвящённой столетию со дня рождения профессоров Б. М. Бредихина, В. И. Нечаева и С. Б. Стечкина, Тула: 2020. С. 423 427.
- 6. Harnack A. Über die Vieltheiligkeit der ebenen algebraishen Curven // Math. Ann., 1876, Bd.10. S.189-199.
- 7. Viro O. Ya. Patchworking real algebraic varieties // U.U.D.M. Report, Uppsala Univ., 1994, V.42.
- 8. Гущин М.А., Коробейников А.Н., Полотовский Г.М. Построение взаимных расположений кубики и квартики методом кусочного конструирования // Записки научных семинаров ПОМИ, 2000, Т. 267, С. 119 132.
- 9. Виро О.Я. Склеивание алгебраических гиперповерхностей и построения кривых // Тезисы Ленинградской Международной Топологической Конференции, Ленинград: 1982. С. 149-197.
- 10. Itenberg I., O. Viro Patchworking algebraic curves disproves the Ragsdale conjecture // Math. Intelligencer, 1996, no. P. 19-28.
- 11. Sturmfels B. Viro's theorem for complete intersection // Annali della Scuola Normale Superiore di Pisa, 1994, V. 21. P. 377 386.
- 12. Viro O.Ya. Gluing of plane real algebraic curves and constructions of curves of degrees 6 and 7, Lecture Notes in Math, 1984, 1060. P. 187-200.
- 13. Коробейников А.Н. Новые построения распадающихся кривых // Вестник ННГУ (Математическое моделирование и оптимальное управление), 2001, Т. 1(23), С. 17-27.
- 14. Гущин М.А. Построения некоторых расположений коники и *М*-квинтики с одной точкой на бесконечности // Вестник ННГУ, сер. мат., 2004, №1(2). С. 43 52.

REFERENCES

- 1. 1969, Problemy Gilberta [Hilbert's problems], edited by Alexandrov P.S., Nauka, Moscow.
- 2. Gudkov, D. A. 1974, "Topology of real projective algebraic manifolds", *UMN*, vol. 29, no. 4(178), pp. 3-79.
- 3. Polotovskiy G. M. 1977, "Catalog of M-decomposable curves of degree 6", $DAN\ USSR$, vol 236:3, pp. 548-551.
- 4. Borisov I.M., Polotovskiy G.M. 2020 "On the topology of plane real algebraic decomposable curves of degree 8", *Itogi nauki i tekhn. Ser. Sovrem. mat. i eyo pril. Temat. obz.*, vol. 176, pp. 3-18.
- 5. Borisov I.M., Gorskaya V.A., Polotovskiy G.M. "On the topology of real decomposable curves of degrees 7 and 8", Algebra, teoriya chisel i diskretnaya geometriya: sovremennye problemy, prilozheniya i problemy istorii: Materialy XVIII Mezhdunarodnoj konferencii, posvyashchyonnoj stoletiyu so dnya rozhdeniya professorov B. M. Bredihina, V. I. Nechaeva i S. B. Stechkina, Tula, 2020, pp. 397 401.

- 6. Harnack A. 1876, "Über die Vieltheiligkeit der ebenen algebraishen Curven", $Math.\ Ann.$, Bd.10. S.189-199.
- 7. Viro O. 1994 "Patchworking real algebraic varieties", U.U.D.M. Report, Uppsala Univ.,vol.42.
- 8. Guschin M.A, Korobeynikov A.N., Polotovkiy G.M. 2000, "Constructing of mutual arrangements of cubic and quartic by the method of piecewise construction", *Zapiski nauchnyh seminarov POMI*, vol. 267, pp. 119 132.
- 9. Viro O. Ya. "Gluing algebraic hypersurfaces and constructions of curves", *Tezisy Leningradskoj Mezhdunarodnoj Topologicheskoj Konferentsii* Leningrad, 1982, pp. 149-197.
- 10. Itenberg I., O. Viro 1996, "Patchworking algebraic curves disproves the Ragsdale conjecture", *Math. Intelligencer*, no. 4, pp. 19-28.
- 11. Sturmfels B. 1994 "Viro's theorem for complete intersection", Annali della Scuola Normale Superiore di Pisa, vol. 21, pp. 377 386.
- 12. Viro O. Ya. 1984, "Gluing of plane real algebraic curves and constructions of curves of degrees 6 and 7", Lecture Notes in Math, 1060, pp. 187-200.
- 13. Korobeinikov A.N. 2001, "New constructions of decomposable curves", Vestnik Nizhegorodskogo universiteta (Matematicheskoe modelirovanie i optimal'noe upravlenie), vol. 1(23), pp. 17-27.
- 14. Guschin M.A 2004, "Construction of some mutual arrangements of conic and M-quintic with a single point at infinity", Vestnik NNGU, ser. mat., no. 1(2), pp. 43 52.

Получено 25.12.2020 г.

Принято в печать 21.02.2021 г.