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ON THE PERIODIC ZETA-FUNCTION

M. Stoncelis, D. Siaucitinas (Siauliai, Lithuania)

Abstract

We present an universality theorem for the periodic zeta-function which
is defined by a Dirichlet series with periodic coeflicients satisfying a certain
dependence condition. This simplifies the problem and allows to elucidate the
universality of the periodic zeta-function.

Keywords: analytic function, Dirichlet series, periodic zeta-function, uni-
versality.

O HEPI/IO,Z[I/IIIECKOIU/I JNS3ETA-OYHKIINN
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AnHOTaUs

B crarbe mokaszaHa TeopeMa yHHUBEPCAJBHOCTH JJIS [TEPUOINIECKON I136Ta
PYHKINNI, KOTOpas OIpelesieTcss psjaoM Iupuxie ¢ mepuogmdecKuMu Kodd-
durmenTaMu, yI0BIETBOPAIONIIMA HEKOTOPOMY YCJIOBUIO 3aBUCHMOCTH. JTO
VIPOIIAET 3aJiady W paspelraer OCBETUTb YHUBEPCAIILHOCTH IIEPUOLHMICCKOMN
a3eTa PyHKIUN.

Karouesvie caosa: anasmrudeckas GyHKIMS, IEPUOJINIEcKas j13eTa (DYHK-
nus, psan Jupuxie, yHUBepCaabHOCTb.
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1. Introduction

Let s = o + it be a complex variable, and a = {a,, : m € N} be a periodic
sequence of complex numbers with minimal period ¢ € N. The periodic zeta-function
((s;a) is defined, for o > 1, by the series

C(s;a) =) %m
m=1

In view of the periodicity of the sequence a, we have that, for o > 1,

q

Cloa) = = > g (s.4). (1)

=1

where ((s;a) is the classical Hurwitz zeta-function with parameter o, 0 < a < 1,
which is defined, for ¢ > 1, by the series

- 1
S, Q0) = T N
¢(s, ) mE_jO T ay
and is continued analytically to the whole complex plane, except for a simple pole
at the point s = 1 with residue 1. Therefore, equality (1) gives a meromorphic
continuation for {(s;a) to the whole complex plane. If

1 q
adéf—Zal =0,
193

then the function ((s;a) is entire one. Otherwise, ((s;a) has a simple pole at the
point s = 1 with residue a.

Let x be a Dirichlet character modulo ¢, and L(s, x) denote the corresponding
Dirichlet L-function. It is well known, that for (b,q) = 1,

S

C(s8) === > XO)LE),

@(q) x=x(modq)

where summing runs over all ¢(gq) Dirichlet characters modulo ¢, and ¢(q) is the
Euler function. Therefore, denoting by (I,q) the greatest common divisor of the
numbers [ and ¢, we find from (1) that

1< b
. _ (X))
C(S7 Cl) - pE § Cl[C (57 (l"i!q))
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LS

= Y X Xag) e (2)

I=1 X:x(modﬁ)

In [9] J. Steuding, assuming that ¢ > 2, a,, is not a multiple of Dirichlet character
modulo ¢, and that a,, = 0 for (m, q) > 1, obtained the universality of the function
((s;a). Let D = {s eC: % <o< 1}, KC be the class of compact subsets of the strip
D with connected complements, and H(K) and Hy(K), K € K, be the classes
of continuous functions on K and of continuous non-vanishing functions on K,
respectively, which are analytic in the interior of K. Then J. Steuding proved the
following statement, Theorem 11.8 of [9].

TEOPEMA 1. Suppose that g and a are as above. Let K € K and f(s) € H(K).
Then, for every e > 0,

1
lim inf neas {7’ €[0,7] :sup |C(s +it;a) — f(s)] < 8} > 0.

T—o00 seK

Here and in the sequel, measA denotes the Lebesgue measure of a measurable
set A C R.

If a,, = ¢, m € N, with ¢ € C\ {0}, then the sequence a is periodic with ¢ = 1.
In this case, we have that

((s;a) = c((s). (3)
If a,, is a multiple of a Dirichlet character y modulo ¢, i.e., a,, = ex(m), m € N,
with a certain constant ¢ € C\ {0}, then, clearly,

((s7a) = cL(s, x)- (4)

Since the functions ((s) and L(s, x) are universal in the Voronin sense [1, 5, 9, 11],
we have that, in the cases (3) and (4), the function ((s;a) is also universal.

TEOPEMA 2. Suppose that a,, = ¢ # 0 or a,, is a multiple of Dirichlet character
modulo q. Let K € K and f(s) € Hy(K). Then, for every e > 0,

1
lim inf pineas {7’ €[0,T] :sup |C(s +it;a) — f(s)] < 5} > 0.

T—o00 scK

We observe that the approximated function f(s) in Theorem 2 is different from
that in Theorem 1: in Theorem 1, f(s) is not necessarily non-vanishing.
The aim of this note is to consider an example of the function ((s;a) with prime

q, where
K
g = —— Z a. (5)

This example elucidates the situation.
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We say that ((s; a) is universal if the inequality of universality

1
lim inf —meas {7’ €[0,7] :sup |¢(s +it;a) — f(s)] < 5} >0
T—o0 T seK

with every € > 0 is satisfied for all K € K and f(s) € Hy(K). If this inequality is
satisfied for all K € K and f(s) € H(K), we say that ((s;a) is strongly universal.

Let, for brevity,
qg—1
blg,x) =Y arx(),  x = x(modg).
1=1
We suppose that a,, Z 0, m € N. Then the following statement is true.

TEOPEMA 3. Suppose that q is a prime number, and that the periodic sequence
a = {a,, : m € N} with minimal period q satisfies equality (5).
1° If the sequence a satisfies at least one of hypotheses
i) am =c, meN;
it) am s a multiple of a Dirichlet character modulo q;
iii) ¢ = 2;
iv) only one number b(q, x) # 0,
then the function ((s;a) is universal.
2° If at least two numbers b(q, x) # 0, then the function ((s;a) is strongly universal.

The proof of assertion 2° of Theorem 3 is based on the Voronin theorem on joint
universality of Dirichlet L-functions.

2. Voronin theorem

We remind that two Dirichlet characters are equivalent if they are generated by
the same primitive characters.

TEOPEMA 4. Suppose that x1,...,X, are pairwise non-equivalent Dirichlet
characters and L(s,x1),...,L(s,x,) are the corresponding Dirichlet L-functions.
Forj=1,...,r, let K; € K, and f;(s) € H(K;). Then, for every e > 0,

Too 1<j<r s€K;

1
lim inf meas {7‘ € [0,T]: sup sup |L(s+i;x;) — fi(s)] < 5} > 0.

Theorem 4, for circles in place of the sets K;, was obtained by S.M. Voronin and
applied for the functional independence of Dirichlet L-functions in [10]. A full proof
of this case is given in [4]. The Voronin theorem in the form of Theorem 4 can be
found in [9] and [6]. Modifications of Theorem 3 also were obtained by S.M. Gonek
[3] and B. Bagchi [1, 2].

A very good survey on universality of zeta and L-functions is given in [7].
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3. Mergelyan theorem

Approximation theory of analytic functions is one of the most important fields
of mathematics, and has a long and rich history. In universality of zeta-functions, a
very useful is the Mergelyan theorem on the approximation of analytic functions by
polynomials. This theorem is a generalization of results of many authors, and is a
final point in the field.

We state the Mergelyan theorem in a convenient for us form.

TEOPEMA 5. Suppose that K C C is a compact subset with connected comple-
ment, and that F(s) is a function continuous on K and analytic in the interior of
K. Then, for every e > 0, there exists a polynomial p(s) such that

sup | £(s) = p(s)] < e.
seK

Proof of Theorem 5 is given in [8], see also [12].
4. Proof of Theorem 3

The cases i) and ii) of assertion 1° are contained in Theorem 2.
Since ¢ is prime, we have that (I,q) =1 for [ =1,...,9g — 1, and (I,q) = ¢ for
| = q. Therefore, we deduce from (2) that

% Y S —1 S a Y S
((s;a) = gmﬁ)dl)x(lﬂ( ,X) + EnpS IX:%dq)X(DL( . X)
g 1 qila — 5
= ¥C(8)+—¢(q) l I X(DL(s, x) (6)

It is well known that if yq is the principal character modulo g, and p denotes a prime

number, then
Lisxo) = ¢ T (1= %) = ¢ (1= %)

plg

in our case. This and (6) show that

RN B (R B~ VA DO OR
((s;a) = qs<z opS z)<<>+ !

=1
1 &

+ — ap Z Y(Z)L(&X)
1

#4) I= x=x(modq)
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1

q— —1
S 1 _
- <— aﬁ—Z S XL (7)
#(a) =1 90((] =1 x=x(modq)
XF#X0

in view of (5). In the set {x : x = x(modq)}, replace the principal character xo
modulo ¢ by the character x(mod1), and preserve the notation y = y(modg). Then
(7) we can rewrite in the form

((s:0) = " WL )= o 3 Laohan.  ®
x=x(modq)

Now we consider the case iii) of 1°, i.e., ¢ = 2. By (8), we find that, in this case,

((s;0) = ¢()b(2, X) = a1((s)-

Thus we obtain the case i).
We note that at least one number b(g, x) in (8) is non-zero. Suppose that only
one of the numbers b(q, x) is non-zero. Let b(q, x) # 0. Then, by (8),

Thus,
1

q
1
Gm=-=ag=—= )

elq) =

and we have again the case i).
Now let b(q, x) # 0 for some x = x(modg). Then (8) gives

((s;a) = (s,x Zalx

Hence,

for all [ € N, and

%) =+ = 0¥l = ) = — S ar(),

Thus, a; = a1x(l), [ € N, and we have the case ii).
It remains to prove 2°. Denote by H(D) the space of analytic functions on the
strip D equipped with the topology of uniform convergence on compacta. Preserving
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the above notation, i.e., in place of xo(modq) using x(mod1), we define the operator
F : H?@9(D) — H(D) by the formula

F(gx(S):x(modq))zﬁ > a($)b(g,X),
x=x(modq)

(9x(s) : x(modq)) € H?9(D).

First we will prove that, for every K € K and polynomial p = p(s), there exists
(9 (s) : x(modq)) € F~{p} such that g,(s) # 0 on K for all x(modg).
Suppose that

Since the set K is bounded, there exists a constant C' € C such that

p(s)+C#0  on K,

and 1
—C - 20 > blg,x) #0.
g x=x(modq)
XFX1,X2
We take

9x (3) = ()b~ (g, x1) (p(s) + C),

= oo b
9 (8) = 0()b g, x2) | —C g0(q)XZ)%H:Odq)b(q,X)

XFX1,X2

and g, (s) = 1 for x # x1, x2. Then we have that g, (s) # 0 on K for all x = x(modg),
and

F (gy(s) : x = x(modq)) = p(s).
Let, for brevity,

q—1
M = Z ’al‘a
=1
and let 7 € R satisfy the inequality

sup  sup |L(s +1i7,X) — 9x ()| < 577>
x=x(modgq) SGK‘ X( ’ 2M

where g, (s) has the above properties. Then, for such 7, by (8)

sup [((s +i7;a) — p(s)]
se K
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=sup|F (L(s+ir,x) : x = x(modq)) — F (g,(s) : x = x(modq))|

seK
M .
<sup ——= Z |L(s+ i1, x) — Qx(sﬂ
seK Sp(q) —
x=x(modq)
€
< supsup|L(s +imx) = gy(s)] < 5. (10)

x=x(modq) s€K

Since ¢ is prime, the characters y = x(modq), where ¥ is replaced by x, are pairwise
non-equivalent. Therefore, by Theorem 1, the set of 7 € R satisfying (9) has a
positive lower density. However, (9) implies (10). Thus

1
lim inf —meas {7’ €[0,7] : sup |¢(s +it;a) — p(s)| < E} >0 (11)
T—oo T seK 2
for every polynomial p(s).

It remains to replace the polynomial p(s) by f(s). By the Mergelyan theorem
(Theorem 5), we can find a polynomial p(s) such that

sup | £(5) ~ p(s)] < 5 (12)

If 7 € R satisfies

. £
sup [((s + 7, a) — p(s)] < 3
seK

I

then, in view of (12),

sup [((s +iT,a) — f(s)| < e.
seK

This shows that

{T € [0 7] sup ((s + i 0) = p(s)] < g}

C {7’ € [0,T] :sup|¢(s +iT,a) — f(s)] < E}

seK 2

Then, by (11),

1
lim inf ineas {T € [0,T] :sup|¢(s+ir;a) — f(s)] < 5} > 0.

T—00 se€K

The theorem is proved.
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