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Аннотация

В настоящей заметке мы доказываем теорему редукции для подгрупп полной линейной
группы GL(𝑛, 𝑇 ) над телом 𝑇 , порожденных парой микровесовых торов одного и того же
типа. Оказывается, что любая пара торов вычета𝑚 сопряжена такой же паре в GL(3𝑚,𝑇 ).
При этом пары, которые не могут быть вложены далее в GL(3𝑚 − 1, 𝑇 ), образуют един-
ственную GL(3𝑚,𝑇 )-орбиту. В случае 𝑚 = 1 нам остаётся проанализировать GL(2, 𝑇 ), что
было сделано два десятилетия назад вторым автором, Коэном, Кюйперсом и Стерком. Для
следующего значения 𝑚 = 2 это означает, что единственными случаями, которые должны
быть рассмотрены, являются группы GL(4, 𝑇 ) и GL(5, 𝑇 ). В этих случаях задача может
быть полностью решена (прямыми, но достаточно длинными) матричными вычислениями,
которые осуществлены в готовящейся статье авторов.
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Abstract

In the present note we prove a reduction theorem for subgroups of the general linear group
GL(𝑛, 𝑇 ) over a skew-field 𝑇 , generated by a pair of microweight tori of the same type. It turns
out, that any pair of tori of residue 𝑚 is conjugate to such a pair in GL(3𝑚,𝑇 ), and the pairs
that cannot be further reduced to GL(3𝑚 − 1, 𝑇 ) form a single GL(3𝑚,𝑇 )-orbit. For the case
𝑚 = 1 this leaves us with the analysis of GL(2, 𝑇 ), that was carried through some two decades
ago by the second author, Cohen, Cuypers and Sterk. For the next case 𝑚 = 2 this means
that the only cases to be considered are GL(4, 𝑇 ) and GL(5, 𝑇 ). In these cases the problem can
be fully resolved by (direct but rather lengthy) matrix calculations, which are relegated to a
forthcoming paper by the authors.

Keywords: General linear group, unipotent root subgroups, semisimple root subgroups, 𝑚-
tori, diagonal subgroup.
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Introduction

The present paper opens a major cycle of joint papers by the authors dedicated to the geometry
of microweight tori and long root tori in Chevalley groups that was announced in [9]. In the present
paper we make one of the first steps towards description of orbits and spans for pairs of microweight
tori in the simplest case of the group GL(𝑛,𝐾). Namely we prove a reduction theorem for subgroups
generated by a pair of such tori. However, in this case such a reduction can be established by
elementary linear algebra (rather than representation theory of algebraic groups), and can be stated
in a more general setting. Thus, we decided to publish this case separately.

Recall that as of today, the geometry of microweight tori is fully understood only for the simplest
possible case (A𝑙, 𝜛1). From the elementary viewpoint these are 1-tori also called reflection tori in
GL(𝑛,𝐾), 𝑛 = 𝑙 + 1, in other words, the one-parameter groups of pseudo-reflections. The second
author, Cohen, Cuypers and Sterk [7, 2] completely described orbits of GL(𝑛,𝐾) on pairs of such
tori, and the corresponding spans. One important corollary of these results is that for |𝐾| > 7 the
span ⟨𝑋,𝑌 ⟩ of two non-commuting 1-tori 𝑋 and 𝑌 contains a unipotent root subgroup.

In our forthcoming papers [16, 17] we do the same for the next case of (A𝑙, 𝜛2), in other words, for
the 2-tori also called bireflection tori in GL(𝑛,𝐾) which are one-parameter subgroups of dilations
diag(𝜀, 𝜀, 1, . . . , 1) of residue 2. This case naturally occurs in the analysis of the microweight cases
(D𝑙, 𝜛1), (E6, 𝜛1) and (E7, 𝜛7), and that of the semi-simple root elements for all simply-laced types,
including the immensely interesting exceptional cases (E6, 𝜛2), (E7, 𝜛1) and (E8, 𝜛8).

For 𝑚 > 3 the 𝑚-tori in GL(𝑛, 𝑇 ), could be fun in themselves, but they play no such special role
in the investigation of other cases. Also, explicit description of orbits and spans, or even extraction
of unipotents, become progressively harder for larger values of 𝑚. However, the parametrisation of
the 𝑚-tori themselves, and reduction theorems for such tori the case 𝑚 = 2 are not any easier than
for the general case. In the present paper we introduce the obvious geometric invariants for pairs
𝑋 and 𝑌 of 𝑚-tori, and bound their span ⟨𝑋,𝑌 ⟩.

Observe that our main results are closely related to the classification of subgroups generated by
semisimple elements of a given type. Originally, one would mostly consider finite such groups. Of
course, classically one would think of finite groups generated by reflections and pseudo-reflections,
which over fields of characteristic 0 were classified by Coxeter, and Shephard—Todd, and which
arise in many contexts, such as Chevalley theorem. Subsequently, Wagner, Zalessky, Serezhkin and
others generalised these results to fields of positive characteristic.



154 В. В. Нестеров, Н. А. Вавилов

However, further geometric applications required classification of finite groups generated by
semisimple elements with two non-trivial eigenvalues. After initial successes, mostly due to
Huffmann and Wales, the subject lay dormant for couple decades, but recently there is a surge
of activity, in the works of Lange, Mikhailova, Blum-Smith, and others, see [5, 4, 1], and references
there.

The present paper is a part of a major project whose goal is, in particular, to obtain similar
results in much more general contexts, removing the condition that char(𝐾) = 0 and relaxing the
assumption of finiteness in such similar results. In the bibliography we list some of our previous
papers that provide background or premises for this and/or establish parallel results in other related
contexts, see [14, 15, 6, 7, 8, 10, 11, 12, 13].

1. Notation

Let 𝑇 be a skew-field, in deeper results and actual applications it will be commutative, in which
case it is denoted by 𝐾. Further, let 𝑉 = 𝑇𝑛 be the right vector space of columns of height 𝑛 over
𝑇 , and let 𝑒1, . . . , 𝑒𝑛 be the standard base of 𝑇𝑛. Here 𝑒𝑖 is the column, whose 𝑖-th component
equals 1, whereas all other components are equal to 0.

The dual vector space 𝑉 * = 𝑛𝑇 is a left vector space over 𝑇 . It can be interpreted as the space
of rows of length 𝑛 with components in 𝑇 . By 𝑓1, . . . , 𝑓𝑛 we denote the standard base of 𝑛𝑇 . It is
dual to 𝑒1, . . . , 𝑒𝑛 with respect to the standard pairing, 𝑉 * × 𝑉 −→ 𝑇 , (𝑢, 𝑣) −→ 𝑢𝑣.

For a subspace 𝑈 6 𝑇𝑛 we denote by

⊥𝑈 =
{︀
𝑥 ∈ 𝑇𝑛 | ∀𝑢 ∈ 𝑈, 𝑥𝑢 = 0

}︀
.

Dually, for a subspace 𝑊 6 𝑛𝑇 we denote by

𝑊⊥ =
{︀
𝑦 ∈ 𝑛𝑇 | ∀𝑣 ∈𝑊, 𝑣𝑦 = 0

}︀
.

As usual, 𝑀(𝑚,𝑛, 𝑇 ) denotes the left/right vector space of matrices of size 𝑚× 𝑛 over 𝑇 , and
𝑀(𝑛, 𝑇 ) =𝑀(𝑛, 𝑛, 𝑇 ) is the full matrix ring of degree 𝑛 over 𝑇 . Further, 𝐺 = GL(𝑛, 𝑇 ) =𝑀(𝑛, 𝑇 )*

is the general linear group of degree 𝑛 over 𝑇 . Sometimes we identify a matrix 𝑔 ∈ 𝐺 with the
corresponding linear map 𝑇𝑛 −→ 𝑇𝑛, 𝑣 −→ 𝑔𝑣. Here 𝑔 acts on the left . Similarly, transformations
of left vector spaces are written on the right. To stress that we are using this geometric viewpoint,
in such cases we call elements of 𝐺 transformations.

For a matrix 𝑔 ∈ GL(𝑛, 𝑇 ) we denote by 𝑔𝑖𝑗 its entry in the position (𝑖, 𝑗), so that 𝑔 = (𝑔𝑖𝑗),
1 6 𝑖, 𝑗 6 𝑛. As usual, 𝑔−1 = (𝑔′𝑖𝑗) denotes the inverse of 𝑔, 𝑒 denotes the identity matrix and 𝑒𝑖𝑗 is
a standard matrix unit, i.e. the matrix whose entry in the position (𝑖, 𝑗) is 1 and all the remaining
entries are zeroes. Thus 𝑔 =

∑︀
𝑔𝑖𝑗𝑒𝑖𝑗 . By 𝑔𝑡 we denote the formal transpose of 𝑔, whose entry in

the position (𝑖, 𝑗) equals 𝑔𝑗𝑖 considered as an element of 𝑇 . (In the correct definition of a transpose
𝑔𝑗𝑖 should be considered an element of the opposite skew-field 𝑇 0).

Let 𝐷 = 𝐷(𝑛, 𝑇 ) be the group of diagonal matrices, and 𝑁 = 𝑁(𝑛, 𝑇 ) be the group of monomial
matrices. The quotient group 𝑁/𝐷 is isomorphic to S𝑛, the symmetric group on 𝑛 letters. Denote
by 𝑊 =𝑊𝑛 the group of permutation matrices in 𝐺. We identify S𝑛 and W𝑛 via the isomorphism
𝜋 ↦→ 𝑤𝜋, where 𝑤𝜋 is the matrix whose entry in the position (𝑖, 𝑗) is 𝛿𝑖,𝜋𝑗 .

By 𝑡𝑖𝑗(𝜉) = 𝑒 + 𝜉𝑒𝑖𝑗 for 𝜉 ∈ 𝑇 and 1 6 𝑖 ̸= 𝑗 6 𝑛 we denote an elementary transvection. For
given 𝑖 ̸= 𝑗 we consider the corresponding unipotent root subgroup 𝑋𝑖𝑗 = {𝑡𝑖𝑗(𝜉), 𝜉 ∈ 𝑇}. The
subgroup 𝐸(𝑛, 𝑇 ) of 𝐺, generated by all 𝑋𝑖𝑗 , 1 6 𝑖 ̸= 𝑗 6 𝑛, is called the elementary subgroup
of 𝐺. When 𝑇 = 𝐾 is commutative, it coincides with the special linear group SL(𝑛,𝐾). Similarly,
by 𝑑𝑖(𝜀) = 𝑒+ (𝜀− 1)𝑒𝑖𝑖 we denote an elementary pseudo-reflection. For a given 𝑖 we consider the
corresponding 1-torus 𝑄𝑖 = {𝑑𝑖(𝜀), 𝜀 ∈ 𝑇 *}. Clearly, GL(𝑛, 𝑇 ) is generated by 𝐸(𝑛, 𝑇 ) and 𝑄1.
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2. One-dimensional transformations

Recall that a transformation 𝑔 ∈ 𝐺 is called 𝑚-dimensional , if rk(𝑔 − 𝑒) = 𝑚. An alternative
terminology is to call res(𝑔) = rk(𝑔−𝑒) the residue of 𝑔, and speak of𝑚-dimensional transformations
as transformations of residue 𝑚. The largest subspace 𝑊 6 𝑉 such that 𝑔|𝑊 = id is called the axis
of 𝑔. Similarly, the subspace 𝑈 = {𝑔𝑣−𝑣 | 𝑣 ∈ 𝑇𝑛} is called the residual space of 𝑔 or, alternatively,
the centre of 𝑔. Clearly, dim𝑈 = 𝑚 and dim𝑊 = 𝑛 −𝑚. Many useful properties of residues and
residual spaces can be found in [3].

The most important individual elements of GL(𝑛, 𝑇 ) are the 1-dimensional tranformations, also
called elementary transformations of the first/second kind. The general form of an 1-dimensional
transformation is 𝑥𝑣𝑢(𝜉) = 𝑒 + 𝑣𝜉𝑢, where 𝑣 ∈ 𝑇𝑛, 𝑢 ∈ 𝑛𝑇 , and 𝜉 ∈ 𝑇 . In this case the centre of
𝑥𝑣𝑢(𝜉) is the space generated by 𝑣, whereas its axis is the hyperplane orthogonal to 𝑢. Let 𝑢𝑣 = 𝛿.
If 𝛿 = 0, the tranformation 𝑥𝑣𝑢(𝜉) is a transvection for all 𝜉 ∈ 𝑇 . If 𝛿 ̸= 0, then replacing 𝜉, if
necessary, we an assume that 𝛿 = 1. In this case 𝑥𝑣𝑢(𝜉) is a pseudo-reflection for all 𝜉 ∈ 𝐾 ∖ {−1}.

For ensuing reference, let us reproduce one of the principal results of our paper [7], Theorem 1.
The geometric invariants occuring here are explained in a more general context in the next section.

Lemma 1. Assume that |𝑇 | > 7. Then for any 𝑛 > 3 there are the following orbits of GL(𝑛, 𝑇 )
acting by simultaneous conjugation on pairs (𝑋,𝑌 ) of 1-tori. These orbits can be distinguished by
the values of 𝑙, 𝑚, 𝑝, 𝑞 and 𝑐. The values of these invariants on orbits and the corresponding spans
are identified in the following table.

𝑁𝑁. 𝑙 𝑚 𝑝 𝑞 𝑐 ⟨𝑋,𝑌 ⟩

1. 1 1 1 1 1 𝑄1

2. 1 2 1 1 1 𝑄1𝑋12

3. 2 1 1 1 1 𝑄1𝑋21

4. 2 2 0 0 − 𝑄1𝑄2

5. 2 2 0 1 − 𝑄1𝑄2𝑋12

6. 2 2 1 0 − 𝑄1𝑄2𝑋12

7. 2 2 1 1 1 𝑄2𝑋12𝑋13𝑋23

8 * . 2 2 1 1 ̸= 1 GL(2, 𝑇 )

Our immediate goal is to obtain a similar result for the next case of 2-tori, which is crucial
for the analysis of the exceptional microweight cases. However, already in this case the lists are
conspicuously longer, and the identification of spans is significantly more involved. Nevertheless,
the initial warm-up fragments of the proof, namely the reduction to GL(3, 𝑇 ) and the analysis of
those orbits in GL(3, 𝑇 ) that do not occur in GL(2, 𝑇 ) (roughly corresponding to §§ 2 and 3 of [7]),
readily generalise to 𝑚-tori over skew-fields. Predictably, in this case GL(3, 𝑇 ) should be replaced
by GL(3𝑚,𝑇 ). This is precisely what we carry out in this note.

3. 𝑚-dimensional transformations

Our goal is to study orbits of GL(𝑛, 𝑇 ) for the conjugation action on the pairs of 𝑚-tori

(𝑋,𝑌 ) ↦→ (𝑔𝑋𝑔−1, 𝑔𝑌 𝑔−1), 𝑔 ∈ 𝐺,

and to identify the corresponding spans. In the present section we introduce the obvious invariants
of such pairs, and prove a reduction theorem that for the case of 𝑚 = 2 reduces analysis to the
three cases, of degrees 4,5 and 6, respectively.
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Observe that any𝑚-torus is conjugate to the elementary torus 𝑄, consisting of diagonal matrices
whose first 𝑚 entries at the principal diagonal are 𝜀 ∈ 𝑇 *, whereas all other diagonal entries are 1:

𝑄 = {diag(𝜀, . . . , 𝜀, 1, . . . , 1), 𝜀 ∈ 𝑇 *}.

The elementary torus 𝑄 = 𝑄𝑈0,𝑊0 corresponds to the subspaces 𝑈0 = ⟨𝑒1, . . . , 𝑒𝑚⟩ and
𝑊0 = ⟨𝑓1, . . . , 𝑓𝑚⟩ generated by the first 𝑚 base vectors. In other words, the elements of 𝑄 are

𝑑0(𝜀) = 𝑒+ 𝑒1(𝜀− 1)𝑓1 + . . .+ 𝑒𝑚(𝜀− 1)𝑓𝑚, 𝜀 ∈ 𝑇 *,

Then the elements of an arbitrary 𝑚-torus can be expressed as

𝑑(𝜀) = 𝑒+ 𝑢1(𝜀− 1)𝑣1 + . . .+ 𝑢𝑚(𝜀− 1)𝑣𝑚, 𝜀 ∈ 𝑇 *,

where 𝑢𝑖 = 𝑔𝑒𝑖, 𝑣𝑖 = 𝑓𝑖𝑔
−1, 1 6 𝑖 6 𝑚, for some matrix 𝑔 ∈ GL(𝑛, 𝑇 ). At that, 𝑈 = ⟨𝑢1, . . . , 𝑢𝑚⟩

and 𝑊 = ⟨𝑣1, . . . , 𝑣𝑚⟩.
The subspace 𝑈 is precisely the centre of 𝑄𝑈𝑊 , in the sense of being the centre of every

𝑑(𝜀) ∈ 𝑄𝑈𝑊 , 𝜀 ̸= 1. Similarly, the subspace 𝑊⊥ orthogonal to 𝑊 6 𝑛𝑇 with respect to the
canonical pairing 𝑛𝑇 × 𝑇𝑛 −→ 𝑇 , is precisely the axis of 𝑄𝑈𝑊 , in the above sense. Oftentimes we
loosely refer to 𝑊 itself as the axis of 𝑄𝑈𝑊 . The following two observations are obvious.

Lemma 2. Every 𝑚-torus 𝑄 = 𝑄𝑈𝑊 is completely determined by the subspaces 𝑈 6 𝑇𝑛,
𝑊 6 𝑛𝑇 such that

dim(𝑈) = dim(𝑊 ) = 𝑚, 𝑇𝑛 = 𝑈 ⊕𝑊⊥.

Lemma 3. For any 𝑔 ∈ GL(𝑛, 𝑇 ) we have 𝑔𝑄𝑈𝑊 𝑔
−1 = 𝑄𝑔𝑈,𝑊𝑔−1 .

Lemma 4. For any subspace 𝑈 6 𝑇𝑛 and any 𝑔 ∈ GL(𝑛, 𝑇 ) one has ⊥(𝑔𝑈) = ⊥𝑈𝑔−1.

Dually, for any subspace 𝑊 6 𝑛𝑇 and any 𝑔 ∈ GL(𝑛, 𝑇 ) one has (𝑊𝑔)⊥ = 𝑔−1𝑊⊥.

Proof. To prove the first claim, recall that ⊥(𝑔𝑈) consists of all 𝑥 ∈ 𝑛𝑇 such that 𝑥(𝑔𝑢) = 0 for
all 𝑢 ∈ 𝑈 . This equality can be rewritten as (𝑥𝑔)𝑢 for all 𝑢 ∈ 𝑈 . Thus, 𝑥𝑔 ∈ ⊥𝑈 , or, what is the
same, 𝑥 ∈ ⊥𝑈𝑔−1, as claimed. The second claim can be established similarly (and, in fact, follows
by duality). 2

Now we are in a position to construct some obvious invariants of a pair of 𝑚-tori.

4. Obvious invariants

Now, let 𝑋 and 𝑌 be two 𝑚-tori with centres 𝑈1 and 𝑈2 and axes 𝑊1 and 𝑊2, respectively. We
introduce the following notation.

∙ 𝑟 = 𝑟(𝑋,𝑌 ) = dim(𝑈1 + 𝑈2),

∙ 𝑠 = 𝑠(𝑋,𝑌 ) = dim(𝑊1 +𝑊2).

Clearly, the parameters 𝑟 and 𝑠 take their values in the interval 𝑚 6 𝑟, 𝑠 6 2𝑚.

Further, we introduce the following notation

∙ 𝑝 = 𝑝(𝑋,𝑌 ) = dim(𝑈1 ∩𝑊⊥
2 ),

∙ 𝑞 = 𝑞(𝑋,𝑌 ) = dim(𝑈2 ∩𝑊⊥
1 ).

It is easy to see that the parameters 𝑝 and 𝑞 take their values in the interval 0 6 𝑝, 𝑞 6 𝑚.

Lemma 5. The above parameters 𝑟, 𝑠, 𝑝 and 𝑞 are not changed under simultaneous conjugation.
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Proof. For 𝑟 and 𝑠 this is obvious. To prove the invariance of 𝑝, recall that by Lemma 4 one has

𝑝(𝑔𝑋𝑔−1, 𝑔𝑌 𝑔−1) = dim(𝑔𝑈1 ∩ (𝑊2𝑔
−1)⊥) =

dim(𝑔𝑈1 ∩ 𝑔𝑊⊥
2 ) = dim(𝑈1 ∩𝑊⊥

2 ) = 𝑝(𝑋,𝑌 ),

the invariance of 𝑞 is verified similarly. 2

To classify orbits on pairs of 1-tori, in [7] we introduced yet another invariant of a pair of tori.
However, the span of such a pair was only influenced by whether that invariant was equal to 1 or
distinct from 1. Since we are interested in classifying possible spans much more than in classifying
orbits, here we limit ourselves to the discrete part of that invariant. Namely, we set

∙ 𝑡 = 𝑡(𝑋,𝑌 ) = max
(︁
dim

(︀
(𝑈1 + 𝑈2) ∩ (𝑊1 +𝑊2)

⊥)︀,dim (︀⊥(𝑈1 + 𝑈2) ∩ (𝑊1 +𝑊2)
)︀)︁

Clearly, the parameter 𝑡 takes values in the interval 0 6 𝑡 6 𝑚 and, by the same token as in Lemma
5, it is not changed under simultaneous conjugation.

5. Degree reduction

In the next result we denote by 𝐻𝑚 the linear group of degree 3𝑚, generated by 𝑄1 and by all
𝑋𝑖𝑗 , 1 6 𝑖 6 2𝑚, 1 6 𝑗 6 3𝑚. In other words,

𝐻𝑚 =

{︂(︂
𝑥 𝑦
0 𝑒

)︂ ⃒⃒⃒
𝑥 ∈ GL(2𝑚,𝑇 ), 𝑦 ∈𝑀(2𝑚,𝑚, 𝑇 )

}︂
6 GL(3𝑚,𝑇 ).

By default, we identify linear groups of different degrees via the stability embedding. In other words,
for 𝑚 6 𝑛, we set

GL(𝑚,𝑇 ) −→ GL(𝑛, 𝑇 ), 𝑔 ↦→ 𝑔 ⊕ 𝑒 =

(︂
𝑔 0
0 𝑒

)︂
,

where 𝑒 is the identity matrix of degree 𝑛−𝑚. Let

𝐻(𝑛)𝑚 = 𝐻𝑚 ∩GL(𝑛, 𝑇 ),

By the very definition 𝐻(𝑛)𝑚 = 𝐻𝑚 for all 𝑛 > 3𝑚.
Now we are all set to start proving our basic reduction to degree 3𝑚.

Lemma 6. Let 𝑋 and 𝑌 be two 𝑚-tori in GL(𝑛, 𝑇 ), 𝑛 > 𝑚 + 1. Then there exists an
𝑔 ∈ GL(𝑛, 𝑇 ) such that 𝑔𝑋𝑔−1, 𝑔𝑌 𝑔−1 6 𝐻(𝑛)𝑚.

Proof. From the very beginning we can assume that 𝑋 = 𝑄𝑈0,𝑊0 , where 𝑈0 = ⟨𝑒1, . . . , 𝑒𝑚⟩,
𝑊0 = ⟨𝑓1, . . . , 𝑓𝑚⟩. Let 𝑌 = 𝑄𝑈1,𝑊1 .

Consider the factor-space 𝑉/𝑈0 and let dim(𝑈0 ∩ 𝑈1) = 𝑘, 0 6 𝑘 6 𝑚. We denote
𝑈1 = 𝑈1/(𝑈0 ∩ 𝑈1). Then there exists an element 𝑔1 ∈ GL(𝑛 − 𝑚 + 𝑘, 𝑇 ) such that 𝑔1𝑈1 is
contained in the subspace 𝑉1, spanned by the projections of the first 2𝑚−𝑘 vectors of the standard
base 𝑒1, . . . , 𝑒2𝑚−𝑘. Then the matrix 𝑔1 only differs from the identity matrix in the block 𝑔′ of size
𝑚− 𝑘, standing in the upper left corner.

Setting 𝑔1 = 𝑒𝑚 ⊕ 𝑔′ ⊕ 𝑒𝑛−2𝑚+𝑘 ∈ GL(𝑛, 𝑇 ) we get 𝑔1(𝑈0 + 𝑈1) ⊆ 𝑉1, 𝑊0𝑔
−1
1 = 𝑊0. Now, it

remains to repeat the same argument for 𝑊 ’s.
Set 𝑈 = 𝑈0+𝑈1, dim𝑈 = 2𝑚−𝑘, and consider the dual space 𝑉 */𝑈*. There exists an element

𝑔2 ∈ GL(𝑛− 2𝑚+ 𝑘, 𝑇 ) such that 𝑊1𝑔
−1
2 is contained in the subspace generated by the projections

of the dual standard base 𝑓2𝑚−𝑘+1, . . . , 𝑓3𝑚−𝑘. The matrix 𝑔2 only differs from the identity matrix
by its block 𝑔′′ of size 𝑚− 𝑘, standing in the upper left corner.
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As above, set 𝑔2 = 𝑒2𝑚−𝑘⊕𝑔′′⊕𝑒𝑛−3𝑚+𝑘 ∈ GL(𝑛, 𝑇 ). Then 𝑔 = 𝑔1𝑔2 is the required conjugating
matrix. 2

From now on, we can assume that we are inside GL(3𝑚,𝑇 ) — all orbits on pairs of tori have
representatives inside this group. Interchanging centres and axes in the above argument, we get a
similar reduction inside the transpose of 𝐻(𝑛)𝑡𝑚.

Lemma 7. Let 𝑋 and 𝑌 be two 𝑚-tori in GL(𝑛, 𝑇 ), 𝑛 > 𝑚 + 1. Then there exists an
𝑔 ∈ GL(𝑛, 𝑇 ) such that 𝑔𝑋𝑔−1, 𝑔𝑌 𝑔−1 6 𝐻(𝑛)𝑡𝑚.

Obviously, any pair of parabolic subgroups is simultaneously conjugate to a pair 𝑃1, 𝑤𝑃2𝑤
−1,

where 𝑃1 and 𝑃2 are standard parabolic subgroups and 𝑤 is an element of the Weyl group. Thus,
the previous lemma immediately implies the following result.

Theorem 1. Let 𝑋 and 𝑌 be two 𝑚-tori in GL(𝑛, 𝑇 ), 𝑛 > 𝑚 + 1. Then there exists an
𝑔 ∈ GL(𝑛,𝐾) such that

𝑔𝑋𝑔−1, 𝑔𝑌 𝑔−1 6 𝐻(𝑛)𝑚 ∩ 𝑤𝐻(𝑛)𝑡𝑚𝑤
−1

for some 𝑤 ∈𝑊𝑛.

In particular for 𝑚 = 2, only one of the three possibilities may occur for the intersection of two
maximal parabolic subgroups stabilising a 4-subspace and a 2-subspace in GL(6, 𝑇 ). Thus, any pair
of 2-tori is simultaneous conjugate to a pair contained in one of the following subgroups

⎛⎜⎜⎝
* * * *
* * * *
* * * *
* * * *

⎞⎟⎟⎠ or

⎛⎜⎜⎜⎜⎝
1 * * * *
0 * * * *
0 * * * *
0 * * * *
0 0 0 0 1

⎞⎟⎟⎟⎟⎠ or

⎛⎜⎜⎜⎜⎜⎜⎝

1 0 * * * *
0 1 * * * *
0 0 * * * *
0 0 * * * *
0 0 0 0 1 0
0 0 0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎠ ,

depending on whether 𝑡 = 0, 1, 2.

6. The highest degree orbit

As above, we consider a pair of 𝑚-tori 𝑋 and 𝑌 , by 𝑈1, 𝑈2 and by 𝑊1, 𝑊2 we denote their axes
and centres, respectively. We fix some bases in these subspaces

𝑈1 = ⟨𝑢1, . . . , 𝑢𝑚⟩, 𝑈2 = ⟨𝑢𝑚+1, . . . , 𝑢2𝑚⟩, 𝑊1 = ⟨𝑣1, . . . , 𝑣𝑚⟩, 𝑊2 = ⟨𝑣𝑚+1 . . . , 𝑣2𝑚⟩.

For the standard 𝑚-torus 𝑄 we have 𝑈 = ⟨𝑒1, . . . , 𝑒𝑚⟩, 𝑊 = ⟨𝑓1, . . . , 𝑓𝑚⟩.
In the present section we consider the simplest possible type of subgroups generated by two

𝑚-tori, viz. the direct sums of 𝑚 isomorphic linear groups generated by 1-tori.
With this end consider the representation

𝜑𝑚 : GL(𝑛, 𝑇 ) −→ GL(𝑚𝑛, 𝑇 ), 𝑔 ↦→ 𝑔 ⊕ . . .⊕ 𝑔 = diag(𝑔, . . . , 𝑔),

where the number of summands equals 𝑚.
Clearly, the image of an 1-torus under 𝜑𝑚 is an 𝑚-torus. Thus, applying this map to the

subgroups listed in [7], Theorem 1 (= Lemma 1 above), we get some subgroups generated by
𝑚-tori, which we call replications of subgroups generated by a pair of 1-tori.

The unique new orbit of GL(3𝑚,𝑇 ) on the pairs of𝑚-tori is the orbit obtained by the replication
of the unique new GL(3, 𝑇 )-orbit on the pairs of 1-tori.
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Theorem 2. There exists a unique orbit of GL(3𝑚,𝑇 ) on pairs of 𝑚-tori that are not contained
in GL(3𝑚 − 1, 𝑇 ). For this orbit the parameters introduced in S 4 take the following values:
𝑟 = 𝑠 = 2𝑚, 𝑝 = 𝑞 = 0, 𝑡 = 𝑚.

Proof. By hypothesis our orbit is not contained in GL(3𝑚−1, 𝑇 ), so that without loss of generality
we can assume that

𝑈1 + 𝑈2 6 ⟨𝑒1, . . . , 𝑒2𝑚⟩, 𝑊1 +𝑊2 6 ⟨𝑓𝑚+1, . . . , 𝑓3𝑚⟩,

we construct the series of conjugations to reduce such a pair to the canonical form.

∙ Conjugating by appropriate transvections from 𝑋𝑖𝑗 , where 1 6 𝑖 6 𝑚, 𝑚 + 1 6 𝑗 6 2𝑚, we
can assume that 𝑢𝑖 = 𝑒𝑚+𝑖, for all 1 6 𝑖 6 𝑚.

∙ Similarly, conjugating by appropriate transvections from 𝑋ℎ𝑘, 𝑚 + 1 6 ℎ 6 2𝑚,
2𝑚+ 1 6 𝑘 6 3𝑚, we can assume that, moreover, 𝑣𝑖 = 𝑓𝑖, for all 𝑚+ 1 6 𝑖 6 2𝑚.

Then the remaining axes and centres are of the form

(𝑢𝑚+1, . . . , 𝑢2𝑚) = (𝑒𝑚+1, . . . , 𝑒2𝑚) + (𝑒1, . . . , 𝑒𝑚)𝑔1,

and of the form ⎛⎜⎝ 𝑣1
...
𝑣𝑚

⎞⎟⎠ =

⎛⎜⎝𝑓𝑚+1
...

𝑓2𝑚

⎞⎟⎠+ 𝑔2

⎛⎜⎝𝑓2𝑚+1
...

𝑓3𝑚

⎞⎟⎠ ,

respectively. Since 𝑟 = 2𝑚, the matrix 𝑔1 is invertible, and since 𝑠 = 2𝑚, the matrix 𝑔2 is also
invertible.

∙ Conjugating by 𝑔−1
1 in the embedding of GL(𝑚,𝑇 ) −→ GL(2𝑚,𝑇 ) on the first 𝑚 positions

(the usual stability embedding), we can assume that 𝑢𝑚+𝑖 = 𝑒𝑖 + 𝑒𝑚+𝑖, for all 1 6 𝑖 6 𝑚.

∙ Conjugating by 𝑔2 in the embedding of GL(𝑚,𝑇 ) −→ GL(2𝑚,𝑇 ) on the last 𝑚 positions, we
can, moreover, assume that 𝑣𝑖 = 𝑓𝑚+𝑖 + 𝑓2𝑚+𝑖, for all 1 6 𝑖 6 𝑚.

Recall one more piece of notation from [7]. For 𝑢 ∈ 𝑇𝑛 and 𝑣 ∈ 𝑛𝑇 such that 𝑣𝑢 = 1, we set

𝑄𝑢𝑣 = {𝑒+ 𝑢(𝜀− 1)𝑣 | 𝜀 ∈ 𝑇 *} .

Then the above means precisely that any such pair of 𝑚-tori is conjugate to the image under 𝜑𝑚
of the following pair of 1-tori:

𝑄𝑒2,𝑓2+𝑓3 , 𝑄𝑒1+𝑒2,𝑓2 ∈ GL(3, 𝑇 ),

as claimed. 2

In the forthcoming papers we take it from here for the next simplest case 𝑚 = 2. In [16] the first
author considers the most difficult case of pairs of 2-tori in GL(4, 𝑅), and under some assumptions
on 𝑇 identifies their spans. In [17] we consider the remaining case of pairs of 2-tori in GL(5, 𝑇 ).
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