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AnHOTanMs

B nacrogreit 3aMeTKe MBI JOKA3bIBAEM TEOPEMY DEAYKIIMH I TTOATPYII TIOJTHOM JTUHEHHOM
rpyunst GL(n, T) nazg tesom T, HOPOKIEHHBIX HAPOii MUKPOBECOBBIX TOPOB OJHOIO U TOTO YK
runa. Oka3biBaercs, 4To J106as napa TOpoB BblueTa m conpsizkena takoii xke nape 8 GL(3m, T).
IIpu sroM napsl, KOTOpbie HE MOryT ObITh BiOKeHbl gasee B GL(3m — 1,T), obpa3sytor exun-
creennyio GL(3m, T')-opbury. B ciyuae m = 1 nam ocraéres upoananusuposarb GL(2,T), uro
OBLIO CIEJIAHO IBA JECATUIETUs Ha3a,1 BTopbiM aBTopoM, Kosrom, Kroiinepcom u Creprom. s
CITIETYIONIErO 3HAYEHUS M = 2 3TO O3HAYAET, UTO €IMHCTBEHHBIMA CJYyYasIMU, KOTOPBIE JTOZKHBI
ObITh paccMorpenbl, aBiaiorcs rpynnbl GL(4,T) u GL(5,T). B stux ciyuadax 3azada MOXKeET
ObITh [IOJHOCTBIO PelieHa (IPAMBIME, HO JOCTATOYHO JIJMHHBIMEI ) MATPUYHBIME BbIYUCAEHUAMHU,
KOTOPBIE OCYIIECTBJIEHBL B TOTOBSIIEHCS CTAThe aBTOPOB.

Kmouesnie caosa: Ilomnasa nuneiinast Tpymmna, YHATIOTEHTHbIE KOPHEBBIE TOATDYIIBI, TTOJIY-
IIPOCTbIe KOPHEBbIE MMOATPYIIbI, JUarOHaJbHasA HNOATPYIIIIA.
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Abstract

In the present note we prove a reduction theorem for subgroups of the general linear group
GL(n,T) over a skew-field T, generated by a pair of microweight tori of the same type. It turns
out, that any pair of tori of residue m is conjugate to such a pair in GL(3m,T'), and the pairs
that cannot be further reduced to GL(3m — 1,T) form a single GL(3m, T)-orbit. For the case
m = 1 this leaves us with the analysis of GL(2,T), that was carried through some two decades
ago by the second author, Cohen, Cuypers and Sterk. For the next case m = 2 this means
that the only cases to be considered are GL(4,T) and GL(5,T'). In these cases the problem can
be fully resolved by (direct but rather lengthy) matrix calculations, which are relegated to a
forthcoming paper by the authors.

Keywords: General linear group, unipotent root subgroups, semisimple root subgroups, m-
tori, diagonal subgroup.
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Introduction

The present paper opens a major cycle of joint papers by the authors dedicated to the geometry
of microweight tori and long root tori in Chevalley groups that was announced in [9]. In the present
paper we make one of the first steps towards description of orbits and spans for pairs of microweight
tori in the simplest case of the group GL(n, K). Namely we prove a reduction theorem for subgroups
generated by a pair of such tori. However, in this case such a reduction can be established by
elementary linear algebra (rather than representation theory of algebraic groups), and can be stated
in a more general setting. Thus, we decided to publish this case separately.

Recall that as of today, the geometry of microweight tori is fully understood only for the simplest
possible case (A;, ;). From the elementary viewpoint these are 1-tori also called reflection tori in
GL(n,K), n =1+ 1, in other words, the one-parameter groups of pseudo-reflections. The second
author, Cohen, Cuypers and Sterk |7, 2] completely described orbits of GL(n, K) on pairs of such
tori, and the corresponding spans. One important corollary of these results is that for |K| > 7 the
span (X,Y) of two non-commuting 1-tori X and Y contains a unipotent root subgroup.

In our forthcoming papers |16, 17] we do the same for the next case of (A;, @w2), in other words, for
the 2-tori also called bireflection tori in GL(n, K) which are one-parameter subgroups of dilations
diag(e,e, 1,...,1) of residue 2. This case naturally occurs in the analysis of the microweight cases
(Dy, 1), (Eg, 1) and (E7, w7), and that of the semi-simple root elements for all simply-laced types,
including the immensely interesting exceptional cases (Eg, w2), (E7, 1) and (Eg, ws).

For m > 3 the m~tori in GL(n,T), could be fun in themselves, but they play no such special role
in the investigation of other cases. Also, explicit description of orbits and spans, or even extraction
of unipotents, become progressively harder for larger values of m. However, the parametrisation of
the m-tori themselves, and reduction theorems for such tori the case m = 2 are not any easier than
for the general case. In the present paper we introduce the obvious geometric invariants for pairs
X and Y of m-tori, and bound their span (X,Y).

Observe that our main results are closely related to the classification of subgroups generated by
semisimple elements of a given type. Originally, one would mostly consider finite such groups. Of
course, classically one would think of finite groups generated by reflections and pseudo-reflections,
which over fields of characteristic 0 were classified by Coxeter, and Shephard—Todd, and which
arise in many contexts, such as Chevalley theorem. Subsequently, Wagner, Zalessky, Serezhkin and
others generalised these results to fields of positive characteristic.
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However, further geometric applications required classification of finite groups generated by
semisimple elements with #fwo non-trivial eigenvalues. After initial successes, mostly due to
Huffmann and Wales, the subject lay dormant for couple decades, but recently there is a surge
of activity, in the works of Lange, Mikhailova, Blum-Smith, and others, see |5, 4, 1], and references
there.

The present paper is a part of a major project whose goal is, in particular, to obtain similar
results in much more general contexts, removing the condition that char(K) = 0 and relaxing the
assumption of finiteness in such similar results. In the bibliography we list some of our previous
papers that provide background or premises for this and/or establish parallel results in other related
contexts, see [14, 15, 6, 7, 8, 10, 11, 12, 13].

1. Notation

Let T be a skew-field, in deeper results and actual applications it will be commutative, in which
case it is denoted by K. Further, let V =T™ be the right vector space of columns of height n over
T, and let ey,...,e, be the standard base of T™. Here e; is the column, whose i-th component
equals 1, whereas all other components are equal to 0.

The dual vector space V* = "T is a left vector space over T. It can be interpreted as the space
of rows of length n with components in T. By fi,..., f, we denote the standard base of "T". It is
dual to ey, ..., e, with respect to the standard pairing, V* x V — T, (u,v) — uwv.

For a subspace U < T™ we denote by

J‘U:{:CGT”\VuEU, zu=0}.
Dually, for a subspace W < "T we denote by
WL:{yG”T]VUEVV, vy =0}.

As usual, M(m,n,T) denotes the left /right vector space of matrices of size m x n over T, and
M(n,T) = M(n,n,T) is the full matrix ring of degree n over T'. Further, G = GL(n,T) = M (n,T)*
is the general linear group of degree n over T. Sometimes we identify a matrix g € G with the
corresponding linear map T™ — T", v — gv. Here g acts on the left. Similarly, transformations
of left vector spaces are written on the right. To stress that we are using this geometric viewpoint,
in such cases we call elements of G transformations.

For a matrix g € GL(n,T) we denote by g;; its entry in the position (4, j), so that g = (gs;),
1<4,j<n. Asusual, g~ = (ggj) denotes the inverse of g, e denotes the identity matrix and e;; is
a standard matrix unit, i.e. the matrix whose entry in the position (4, 7) is 1 and all the remaining
entries are zeroes. Thus g = ) g;je;;. By g' we denote the formal transpose of g, whose entry in
the position (i, j) equals gj; considered as an element of T'. (In the correct definition of a transpose
gji should be considered an element of the opposite skew-field T' 9.

Let D = D(n,T) be the group of diagonal matrices, and N = N(n,T) be the group of monomial
matrices. The quotient group N/D is isomorphic to S, the symmetric group on n letters. Denote
by W = W,, the group of permutation matrices in G. We identify S,, and W,, via the isomorphism
T +— Wy, where wy is the matrix whose entry in the position (i, j) is J; ;.

By tij(§) = e+ &eyj for £ € T and 1 < i # j < n we denote an elementary transvection. For
given i # j we consider the corresponding unipotent root subgroup X;; = {t;;(§),¢ € T}. The
subgroup F(n,T) of G, generated by all X;;, 1 < i # j < n, is called the elementary subgroup
of G. When T' = K is commutative, it coincides with the special linear group SL(n, K). Similarly,
by di(e) = e + (¢ — 1)e;; we denote an elementary pseudo-reflection. For a given i we consider the
corresponding 1-torus Q; = {d;(¢), € € T*}. Clearly, GL(n,T) is generated by E(n,T) and Q1.
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2. One-dimensional transformations

Recall that a transformation g € G is called m-dimensional, if tk(g — e) = m. An alternative
terminology is to call res(g) = rk(g—e) the residue of g, and speak of m-dimensional transformations
as transformations of residue m. The largest subspace W < V such that g|yw = id is called the azis
of g. Similarly, the subspace U = {gv—wv | v € T™} is called the residual space of g or, alternatively,
the centre of g. Clearly, dimU = m and dim W = n — m. Many useful properties of residues and
residual spaces can be found in [3].

The most important individual elements of GL(n,T') are the 1-dimensional tranformations, also
called elementary transformations of the first/second kind. The general form of an 1-dimensional
transformation is x4y, (§) = e + v€u, where v € T, u € "T, and £ € T. In this case the centre of
Zyy(€) is the space generated by v, whereas its axis is the hyperplane orthogonal to u. Let uv = 4.
If 6 = 0, the tranformation x,,(&) is a transvection for all £ € T. If 6 # 0, then replacing &, if
necessary, we an assume that § = 1. In this case x,,(&) is a pseudo-reflection for all £ € K \ {—1}.

For ensuing reference, let us reproduce one of the principal results of our paper [7|, Theorem 1.
The geometric invariants occuring here are explained in a more general context in the next section.

LEMMA 1. Assume that |T| > 7. Then for any n > 3 there are the following orbits of GL(n,T)
acting by simultaneous conjugation on pairs (X,Y) of 1-tori. These orbits can be distinguished by
the values of 1, m, p, q and c. The values of these invariants on orbits and the corresponding spans
are identified in the following table.

NN. I m p q c (X,Y)

. 1 1 11 1 Q1
2.1 2 11 1 Q1X12
3. 21 11 1 Q1X21
4. 2 2 0 0 - Q1Q2
5.2 2 01 -— Q1Q2X12
6. 2 2 10 - 1Q2X12
7.2 2 11 1 QoX12X13Xo3
8%. 2 2 1 1 #£1  GL(2,7)

Our immediate goal is to obtain a similar result for the next case of 2-tori, which is crucial
for the analysis of the exceptional microweight cases. However, already in this case the lists are
conspicuously longer, and the identification of spans is significantly more involved. Nevertheless,
the initial warm-up fragments of the proof, namely the reduction to GL(3,7T) and the analysis of
those orbits in GL(3,T") that do not occur in GL(2,T) (roughly corresponding to §§ 2 and 3 of [7]),
readily generalise to m-tori over skew-fields. Predictably, in this case GL(3,T') should be replaced
by GL(3m,T). This is precisely what we carry out in this note.

3. m-dimensional transformations

Our goal is to study orbits of GL(n,T) for the conjugation action on the pairs of m-tori
(X,Y) = (9Xg 9Yg "), g€G,

and to identify the corresponding spans. In the present section we introduce the obvious invariants
of such pairs, and prove a reduction theorem that for the case of m = 2 reduces analysis to the
three cases, of degrees 4,5 and 6, respectively.
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Observe that any m-torus is conjugate to the elementary torus @, consisting of diagonal matrices
whose first m entries at the principal diagonal are € € T™, whereas all other diagonal entries are 1:

Q = {diag(e,...,&,1,...,1), e € T*}.

The elementary torus @ = Qu,w, corresponds to the subspaces Uy = (ei,...,en) and
Wo = (f1,..., fm) generated by the first m base vectors. In other words, the elements of @) are

do(e)=e+ei(e—=1)fi+...+enle—1)fm, eeT™,
Then the elements of an arbitrary m-torus can be expressed as
die) =e+ui(e —1)vy + ...+ up(e — vy, eeT™,

where u; = ge;, v; = fig~!, 1 < i < m, for some matrix g € GL(n,T). At that, U = (uq, ..., un)
and W = (v1,...,0m).

The subspace U is precisely the centre of Quw, in the sense of being the centre of every
d(e) € Quw, € # 1. Similarly, the subspace W+ orthogonal to W < ™I with respect to the
canonical pairing "T x T"™ — T, is precisely the azis of Quw, in the above sense. Oftentimes we
loosely refer to W itself as the axis of Quw . The following two observations are obvious.

mn

LEMMA 2. Ewery m-torus Q = Quw 1is completely determined by the subspaces U < T,
W <™ such that
dim(U) =dim(W)=m, Tr=Uao W=,

LEMMA 3. For any g € GL(n,T) we have gQuwg~! = Qquwg1-

LEMMA 4. For any subspace U < T" and any g € GL(n,T) one has +(gU) = +Ug™".
Dually, for any subspace W < "T and any g € GL(n,T) one has (Wg)*+ = g~ W+,

PrOOF. To prove the first claim, recall that +(gU) consists of all 2 € "T such that z(gu) = 0 for
all u € U. This equality can be rewritten as (zg)u for all w € U. Thus, g € ~U, or, what is the
same, r € “Ug™!, as claimed. The second claim can be established similarly (and, in fact, follows
by duality). O

Now we are in a position to construct some obvious invariants of a pair of m-tori.

4. Obvious invariants

Now, let X and Y be two m-tori with centres U; and Us and axes W; and W, respectively. We
introduce the following notation.

or=r(X,Y)=dim(U; + Us),
o s =s(X,Y) =dim(W; + Ws).
Clearly, the parameters r and s take their values in the interval m < r,s < 2m.
Further, we introduce the following notation
o p=p(X,Y) = dim(U: N Wy),
e q=q(X,Y)=dim(UyNnWi").

It is easy to see that the parameters p and ¢ take their values in the interval 0 < p,q¢ < m.

LeMMA 5. The above parameters r, s, p and q are not changed under simultaneous conjugation.
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PRrROOF. For r and s this is obvious. To prove the invariance of p, recall that by Lemma 4 one has

plgXg~",gYg™") = dim(gUs N (Wag™ ")) =
dim(gU; N gWsh) = dim(Uy, N WiH) = p(X,Y),

the invariance of ¢ is verified similarly. O

To classify orbits on pairs of 1-tori, in [7] we introduced yet another invariant of a pair of tori.
However, the span of such a pair was only influenced by whether that invariant was equal to 1 or
distinct from 1. Since we are interested in classifying possible spans much more than in classifying
orbits, here we limit ourselves to the discrete part of that invariant. Namely, we set

ot = t(X7Y) = max (dim ((Ul + UQ) N (W1 + Wz)i)’dim (l(Ul + U2) N (Wl + WQ)))

Clearly, the parameter ¢ takes values in the interval 0 < ¢t < m and, by the same token as in Lemma
5, it is not changed under simultaneous conjugation.

5. Degree reduction

In the next result we denote by H,, the linear group of degree 3m, generated by ()1 and by all
Xij, 1 <i<2m, 1 <7 < 3m. In other words,

- {(g z) |2 € GLEM,T), y e M(2m, m,T)} < GL(3m,T).

By default, we identify linear groups of different degrees via the stability embedding. In other words,
for m < n, we set

GL(m,T) — GL(n,T), g gde= <g 2) ,

where e is the identity matrix of degree n — m. Let
H(n)m = Hn NGL(n,T),

By the very definition H(n),, = H,, for all n > 3m.
Now we are all set to start proving our basic reduction to degree 3m.

LEMMA 6. Let X and Y be two m-tori in GL(n,T), n = m + 1. Then there exists an
g € GL(n,T) such that gXg~ ', gY g™ < H(n)m.

PrROOF. From the very beginning we can assume that X = Qu, w,, where Uy = (e1,...,em),
Wo = (f1,-- -, fm)- Let Y = Quy,w; -

Consider the factor-space V/Up and let dim(Uy NUy) = k, 0 < k < m. We denote
Uy = Ui/(Uy N Uy). Then there exists an element g7 € GL(n — m + k,T) such that giU; is
contained in the subspace Vi, spanned by the projections of the first 2m — k vectors of the standard
base eq,...,ean_r. Then the matrix g7 only differs from the identity matrix in the block ¢’ of size
m — k, standing in the upper left corner.

Setting g1 = em @ ¢ ® en—omir € GL(n,T) we get g1(Uy + Uy) C V7, T/Vogl_1 = Wy. Now, it
remains to repeat the same argument for W’s.

Set U = Uy + Uy, dim U = 2m — k, and consider the dual space V*/U*. There exists an element
72 € GL(n —2m+k,T) such that nggl is contained in the subspace generated by the projections
of the dual standard base fo,—k+1,-- -, f3m—k- The matrix gz only differs from the identity matrix
by its block ¢” of size m — k, standing in the upper left corner.
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As above, set g2 = eopm 1k B9 Ben_smer € GL(n,T). Then g = g1g2 is the required conjugating
matrix. O

From now on, we can assume that we are inside GL(3m,T") — all orbits on pairs of tori have
representatives inside this group. Interchanging centres and axes in the above argument, we get a
similar reduction inside the transpose of H(n)t .

LEMMA 7. Let X and Y be two m-tori in GL(n,T), n > m + 1. Then there exists an
g € GL(n,T) such that gXg~1,gY g™ ! < H(n)t,.

Obviously, any pair of parabolic subgroups is simultaneously conjugate to a pair Py, wPyw ™!,
where P} and P» are standard parabolic subgroups and w is an element of the Weyl group. Thus,
the previous lemma immediately implies the following result.

THEOREM 1. Let X and Y be two m-tori in GL(n,T), n > m + 1. Then there exists an
g € GL(n, K) such that
9Xg~ ' gY g™t < H(n)m NwH (n)pw™

for some w € W,.

In particular for m = 2, only one of the three possibilities may occur for the intersection of two
maximal parabolic subgroups stabilising a 4-subspace and a 2-subspace in GL(6,7"). Thus, any pair
of 2-tori is simultaneous conjugate to a pair contained in one of the following subgroups

1 0 % % *
1 % % * *
% % ok % 0 1 % *x % x
0 *x * *
¥k ok % 0 0 % =x x x
or 0 * * *x x or ,
* ok ok ok 0 % % % x 0 0 * x * =%
* ok ok % 0000 1 00 0O0T1TP0
00 0 0 01

depending on whether ¢t = 0,1, 2.

6. The highest degree orbit

As above, we consider a pair of m-tori X and Y, by Uy, Uy and by W1, Ws we denote their axes
and centres, respectively. We fix some bases in these subspaces

U1 = <u1,...,um>, U2 = <um+1,...,u2m>, W1 = <U1,...,’Um>, WQ = <Um+1...,1}2m>.

For the standard m-torus @ we have U = (e1,...,em), W = (f1,..., fm)-

In the present section we consider the simplest possible type of subgroups generated by two
m-tori, viz. the direct sums of m isomorphic linear groups generated by 1-tori.

With this end consider the representation

¢m : GL(n,T) — GL(mn,T), g—g®...®g=diag(g,...,9),

where the number of summands equals m.

Clearly, the image of an 1-torus under ¢, is an m-torus. Thus, applying this map to the
subgroups listed in [7], Theorem 1 (= Lemma 1 above), we get some subgroups generated by
m-tori, which we call replications of subgroups generated by a pair of 1-tori.

The unique new orbit of GL(3m, T") on the pairs of m-tori is the orbit obtained by the replication
of the unique new GL(3,T)-orbit on the pairs of 1-tori.
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THEOREM 2. There exists a unique orbit of GL(3m,T') on pairs of m-tori that are not contained
in GL(3m — 1,T). For this orbit the parameters introduced in § 4 take the following values:
r:g:Qm}p:q:O,t:m.

PROOF. By hypothesis our orbit is not contained in GL(3m—1,T), so that without loss of generality
we can assume that

U+ Uz < (er,...,e2m), Wi+ Wa < (fogts-- -5 f3m),

we construct the series of conjugations to reduce such a pair to the canonical form.

e Conjugating by appropriate transvections from X;;, where 1 <i <m, m+1 < j < 2m, we
can assume that u; = ey, for all 1 < ¢ < m.

e Similarly, conjugating by appropriate transvections from Xpx, m +1 < h < 2m,
2m + 1 < k < 3m, we can assume that, moreover, v; = f;, for all m+ 1 < i < 2m.

Then the remaining axes and centres are of the form

(um+17 L) 7u2m) - (em—i-h cey 62m) + (61) ceey em)glv
and of the form
U1 fmt1 fomt1
N : + 92 : .
Um f2m f3m

respectively. Since r = 2m, the matrix g; is invertible, and since s = 2m, the matrix g is also
invertible.

e Conjugating by g; ' in the embedding of GL(m,T) — GL(2m,T) on the first m positions
(the usual stability embedding), we can assume that uy,+; = €; + €44, for all 1 < i < m.

e Conjugating by go in the embedding of GL(m,T) — GL(2m,T) on the last m positions, we
can, moreover, assume that v; = fi4i + fom+d, for all 1 <@ < m.

Recall one more piece of notation from [7]. For u € T™ and v € "T such that vu = 1, we set
Quv={et+ule—1)v|eeT"}.

Then the above means precisely that any such pair of m-tori is conjugate to the image under ¢,,
of the following pair of 1-tori:

Q62,f2+f37 Q61+62,f2 € GL(37T)7

as claimed. O

In the forthcoming papers we take it from here for the next simplest case m = 2. In [16] the first
author considers the most difficult case of pairs of 2-tori in GL(4, R), and under some assumptions
on T identifies their spans. In [17| we consider the remaining case of pairs of 2-tori in GL(5,T).
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