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Аннотация

Для произвольного поля F мы рассматриваем коммутативную неассоциативную че-
тырёхмерную алгебру M камня, ножниц и бумаги с единичным элементом над полем F
и доказываем, что образ произвольного неассоциативного мультилинейного полинома над
M является линейным пространством. Тот же вопрос мы рассматриваем и для двух подал-
гебр: алгебры камня, ножниц и бумаги без единицы, а также, алгебры элементов нулевого
следа и нулевой скалярной части. Кроме того, в работе поставлены задачи и рассмотрены
вопросы о возможных образах однородных полиномов на этих алгебрах.
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Abstract

Let F be an arbitrary field. We consider a commutative, non-associative, 4-dimensional
algebra M of the rock, the paper and the scissors with unit over F and we prove that the image
over M of every non-associative multilinear polynomial over F is a vector space. The same
question we consider for two subalgebras: an algebra of the rock, the paper and the scissors
without unit, and an algebra of trace zero elements with zero scalar part. Moreover in this
paper we consider the questions of possible eveluations of homogeneous polynomials on these
algebras.
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1. Introduction

The study of images of polynomials evaluated on algebras is one of the most important branches
of modern algebra. Similar questions for word maps in groups were considered in [6, 8]. Waring type
problems for groups were investigated by Shalev [11, 12, 13]. Similar questions for matrix rings were
investigated by Brešar ([6]). A good survey describing these and other references can be found in [5].

One of the central conjectures regarding possible evaluations of multilinear polynomials on
matrix algebras was attributed to Kaplansky and formulated by L’vov in [7]:

Conjecture 1 (L’vov-Kaplansky). Let 𝑝 be a non-commutative multilinear polynomial. Then
the set of values of 𝑝 on the matrix algebra 𝑀𝑛(𝐾) over an infinite field 𝐾 is a vector space.

It is well-known ([1, 2, 3, 4, 5, 9, 10]) that this conjecture can be reformulated as follows:
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Conjecture 2. If 𝑝 is a multilinear polynomial evaluated on the matrix ring 𝑀𝑛(𝐾), then
Im 𝑝 is either {0},𝐾, sl𝑛(𝐾), or 𝑀𝑛(𝐾). Here 𝐾 indicates the set of scalar matrices and sl𝑛(𝐾) is
the set of matrices with trace equal to zero.

When 𝑛 = 2, for the case of 𝐾 being quadratically closed it was proved in [1], and in [9] it was
proved for the case of 𝐾 = R, and an interesting result was obtained for arbitrary fields.

For 𝑛 > 2 this question was considered in [2, 3, 5] and partial results were obtained. In [10] the
same question was considered for the algebra of quaternions with the Hamilton multiplication and
it was shown that any evaluation of a multilinear polynomial is a vector space. In the same paper
it was said that this question is interesting only for simple algebras, since for non-simple algebras
it may be answered negatively. Indeed, this conjecture fails for the Grassmann algebra.

Nevertheless, there is an interest in the investigation of this question for non-simple algebras:
for some of them the Kaplansky question can be answered positively. For example, if we consider
the 8-dimensional algebra 𝑀2(𝐾) ⊕𝑀2(𝐾) (which is not simple) then it is easy to see that the
evaluation of any multilinear polynomial is a pair of its evaluations on 𝑀2(𝐾) and thus, the only
possible multilinear evaluations are vector spaces:

{0},𝐾 ⊕𝐾, sl2(𝐾)⊕ sl2(𝐾), or 𝑀2(𝐾)⊕𝑀2(𝐾).

In this paper we consider a non-simple algebra, defined in Section 2. Unlike the previous results
regarding this area, this algebra is non-associative and commutative and, although we consider
non-associative commutative evaluations, the answer to the L’vov-Kaplansky conjecture for this
algebra is positive.

Previously, non-associative algebras (in particular the algebra of Cayley numbers) were
considered in [14]. The question of possible multilinear non-associative evaluations was considered
in [4] where the Kaplansky conjecture was considered for Lie polynomials.

In [1, 2, 3, 4, 5, 9, 10] the question of possible semi-homogeneous evaluations was investigated,
and here we consider such a question as well. Unfortunately, we have not succeeded to answer it.
However, in Section 7 we formulate interesting conjectures and discuss them.

2. Preliminaries

Let (𝑋, ·) be a finite monad i.e 𝑋 is a finite set together with a binary operation · for which
there is a unit element with respect to ·. Let F be an arbitrary field and denote by 𝑀F(𝑋) the free
vector space over F with basis set 𝑋. By extending multiplication from 𝑋 to 𝑀F(𝑋) bilinearly, we
obtain a non-associative algebra with unit. We call 𝑀F(𝑋) the monad algebra of 𝑋 over F.

We now consider the monad 𝑋 = {1, 𝑅, 𝑃, 𝑆} with multiplication defined as follows:
multiplication is commutative, 1 serves as the unit element, all elements of 𝑋 are idempotent
and 𝑅 · 𝑃 = 𝑃 , 𝑃 · 𝑆 = 𝑆 and 𝑆 · 𝑅 = 𝑅. This monad is the well known rock- paper- scissors
magma, where each element is idempotent and the product is the winner in one of the most well-
known games.
In what follows, we shall write M :=𝑀F(𝑋). It follows that M is a commutative, non-associative,
4-dimensional algebra with unit over F.
When evaluating polynomials on non-associative algebras, we must consider non-associative
polynomials. A non-associative polynomial over a field F is, intuitively, a polynomial over F in
which the placing of brackets in each monomial matters. For instance, the polynomials:

𝑝1(𝑥1, 𝑥2, 𝑥3, 𝑥4) = 𝑥1(𝑥2(𝑥3𝑥4)), 𝑝2(𝑥1, 𝑥2, 𝑥3, 𝑥4) = (𝑥1𝑥2)(𝑥3𝑥4)

are considered to be different non-associative polynomials.
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Let 𝒜 be a non-associative algebra over a field F and let 𝑝(𝑥1, 𝑥2, . . . , 𝑥𝑚) be a non-associative
polynomial over F.
The associated polynomial function is denoted by 𝑝.
The image of 𝑝 over 𝒜, Im𝒜(𝑝), is the evaluation of the associated polynomial function 𝑝 on the
algebra 𝒜. Usually the choice of the algebra is evident, and we write simply Im 𝑝.

A non-associative polynomial over a field F is called multilinear if it is linear with respect to
each of the variables. This means in particular, that each variable appears exactly once in each
monomial.

For 𝑥 = 𝑥01+𝑎𝑃 + 𝑏𝑅+ 𝑐𝑆 ∈ M, we define the scalar part of 𝑥 to be Sc(𝑥) := 𝑥0 and the trace
of 𝑥 to be tr(𝑥) := 𝑥0 + 𝑎+ 𝑏+ 𝑐.
It is obvious that Sc: M → F and tr : M → F are linear functions on the vector space M. Moreover,
they also respect multiplication on M i.e for 𝑥, 𝑦 ∈ M:

Sc(𝑥 · 𝑦) = Sc(𝑥) Sc(𝑦)

tr(𝑥 · 𝑦) = tr(𝑥) tr(𝑦)

Therefore, both functions Sc(*) and tr(*) are homomorphisms from M to F.
We denote by M0 the set of elements of M with zero trace and zero scalar part.

It follows thatM0 is a two dimensional subspace ofM, and moreover, it is an ideal and a subalgebra
of M.

3. Main Theorem

Theorem 1. Let F be an arbitrary field. If 𝑝(𝑥1, 𝑥2, . . . , 𝑥𝑚) is a multilinear commutative non-
associative polynomial with coefficients in F, then the evaluation of 𝑝 over M is either:

1. {0};

2.
⟨︀
𝑃 +𝑅𝜔 + 𝑆𝜔2

⟩︀
;

3.
⟨︀
𝑃 +𝑅𝜔2 + 𝑆𝜔

⟩︀
;

4. M0;

5. M.

By 𝜔 we denote 1 if CharF = 3, and a primitive cube root of 1 otherwise (if such an element
exists in F). If such element 𝜔 does not exist in F, options (2) and (3) are impossible. As well-known,
this element (𝜔) satisfies 𝜔2 + 𝜔 + 1 = 0. In particular, such an element exists in C, although it
does not exist in R. We will use the following basic fact from linear algebra:

Lemma 1 ([9], Lemma 3). Let 𝐿 be a vector space over a field F and suppose that
𝑓 : 𝐿 × · · · × 𝐿 → 𝐿 is a multilnear map. Assume that Im(𝑓) contains two vectors which are not
proportional. Then Im(𝑓) contains a two dimensional subspace. In particular, if Im(𝑓) is contained
in a two dimensional subspace 𝑀 , then Im(𝑓) =𝑀 .

Remark 1. As a consequence, one can immediately conclude from Lemma 1, that the image
set of any multilinear map (in particular of a multilinear polynomial) is either a vector space or at
least a 3-dimensional set. By the dimension of an image set, we mean the dimension of its Zariski
closure. Note that a polynomial image is not necessarily Zariski closed.

Let us first prove the following Lemma:
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Lemma 2. Let F be an arbitrary field. If 𝑝(𝑥1, 𝑥2, . . . , 𝑥𝑚) is a multilinear commutative non-
associative polynomial with coefficients in F, then the evaluation of 𝑝 over M is either:

1. {0};

2. some one-dimensional vector space;

3. M0;

4. M.

Proof. Since 𝑝(𝑥1, . . . , 𝑥𝑚) is multilinear, it is a linear combination of monomials such that, in
each monomial, every variable 𝑥𝑖 appears exactly once. Let the coefficients of the monomials of

𝑝 be 𝑐1, . . . , 𝑐𝑑. Suppose that 𝑐 :=
𝑑∑︀
𝑖=1

𝑐𝑖 ̸= 0. let 𝑎 ∈ M. Then 𝑎 = 𝑝(𝑐−1 · 𝑎, 1, . . . , 1) and thus

Im(𝑝) = M.
Thus, suppose that 𝑐 = 0. If 𝑎 ∈ Im(𝑝), then there exist elements 𝑎1, . . . , 𝑎𝑚 ∈ M such that
𝑎 = 𝑝(𝑎1, . . . , 𝑎𝑚). Since F is commutative and associative with respect to multiplication and tr
and Sc are linear and respect multiplication, it follows that

tr(𝑎) = tr(𝑎1) · · · tr(𝑎𝑚) ·
𝑑∑︁
𝑖=1

𝑐𝑖 = 0

and similarly Sc(𝑎) = 0. Hence, Im(𝑝) is contained in M0. Note that dim M0 = 2. Thus, according
to Remark 1, Im 𝑝 is a vector space: either 2-dimensional (and thus coincides with M0), or of
dimension 1 or 0. In the last case 𝑝 is a PI. 2

We now give the proof of Theorem 1: Proof. In view of Lemma 2, we have to classify 1-
dimensional images. Consider the linear map 𝜙 : M → M defined as follows:

1 ↦→ 1, 𝑃 ↦→ 𝑅,𝑅 ↦→ 𝑆, 𝑆 ↦→ 𝑃.

It is not difficult to see that this map respects multiplication and thus is an automorphism of M.
Therefore, if 𝑝(𝑥1, . . . , 𝑥𝑚) is a multilinear polynomial evaluated on M, then for any values of 𝑥𝑖
we have

𝜙(𝑝(𝑥1, . . . , 𝑥𝑚)) = 𝑝(𝜙(𝑥1), . . . , 𝜙(𝑥𝑚)).

Hence, if Im 𝑝 is a 1-dimensional vector space spanned by an element 𝑥 = 𝑎𝑃 + 𝑏𝑅+ 𝑐𝑆 ∈ M0, 𝜙(𝑥)
should be proportional to 𝑥 i.e it should span the vector space. Note that 𝜙(𝑎𝑃 + 𝑏𝑅+ 𝑐𝑆) = 𝑐𝑃+
+𝑎𝑅+ 𝑏𝑆. Thus, 𝑐𝑎 = 𝑎

𝑏 = 𝑏
𝑐 and it is not difficult to see that this ratio can be only a cube root of

1. If CharF = 3, the only element in F satisfying this property is 1 and thus, Im 𝑝 = ⟨𝑃 +𝑅+ 𝑆⟩.
If CharF ̸= 3 and 𝜔 ∈ F, there are three elements satisfying this property: 1, 𝜔 and 𝜔2. However,
the option 𝑎 = 𝑏 = 𝑐 is impossible since tr(𝑃 +𝑅+ 𝑆) = 3 and this is not an element of M0. 2

4. Examples

The most important thing to understand is whether or not polynomials with such images exist.
Of course, it is very simple to construct an example of a polynomial whose image set is M: one can
take 𝑝(𝑥) = 𝑥, or any other multilinear polynomial with nonzero sum of coefficients.

It is not difficult to see that the set M0 can also be achieved, for instance, as the
image of the polynomial 𝑔(𝑥, 𝑦, 𝑧) = (𝑥𝑦)𝑧 − (𝑥𝑧)𝑦. Indeed, its image contains the element
𝑔(𝑃,𝑅, 𝑆) = (𝑃𝑅)𝑆 − 𝑃 (𝑅𝑆) = 𝑃𝑆 − 𝑃𝑅 = 𝑆 − 𝑃 and thus, by Theorem 1, Im 𝑔 = M0.
Unfortunately, we have not succeeded in constructing examples of multilinear polynomials with 1-
dimensional images. However, most likely they exist. Polynomial identities exist as well. Indeed, the
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computation shows that the polynomial 𝑓(𝑥, 𝑦, 𝑧, 𝑡) = (𝑥𝑦)(𝑧𝑡)−(𝑥𝑧)(𝑦𝑡) evaluated onM0 is a PI (in
Lemma 3, we prove this for the case CharF ̸= 3. However, this is true for arbitrary fields and can be
easily checked by basis element evaluations. For example, one can take the elements 𝑃−𝑅 and 𝑅−𝑆
as a basis for M0 and check all 16 evaluations). We can take four polynomials with image sets M0

and put them instead of 𝑥, 𝑦, 𝑧 and 𝑡 inside 𝑓 : 𝑥 = 𝑔(𝑥1, 𝑥2, 𝑥3), 𝑦 = 𝑔(𝑦1, 𝑦2, 𝑦3), 𝑧 = 𝑔(𝑧1, 𝑧2, 𝑧3)
and 𝑡 = 𝑔(𝑡1, 𝑡2, 𝑡3). As a result, we obtain a multilinear polynomial in 12 variables which is a
commutative non-associative polynomial identity of the algebraM. Of course, 12 is not the minimal
possible degree for polynomial identities of M.

5. PI algebras

Moreover, any finite dimensional commutative non-associative /non-commutative associative
/non-commutative non-associative algebra is a PI algebra with nontrivial multilinear PI (i.e.
PI of the same type as a type of an algebra). Indeed, let us compute the number of possible
multilinear monomials of degree 𝑚: the number of associative non-commutative monomials is 𝑚!,
the number of non-associative non-commutative monomials is 𝑚! · 𝐶𝑚−1, where 𝐶𝑚−1 = 1

𝑚

(︀
2𝑚−2
𝑚−1

)︀
is a Catalan number. In our case, we are interested in multilinear non-associative commutative
monomials. Each monomial has exactly 𝑚− 1 multiplications and for each of them we can change
places of the multipliers. Thus, there are exactly 2𝑚−1 different non-commutative non-associative
monomials, corresponding to each commutative non-associative monomial, and therefore, the
number of commutative non-associative monomials is 𝑚! · 𝐶𝑚−1 · 21−𝑚. If our algebra is finite
dimensional, let 𝑑 be its dimension, 𝐴 = ⟨𝐸1, . . . , 𝐸𝑑⟩. In this case, a nonzero multilinear polynomial
𝑝(𝑥1, . . . , 𝑥𝑚) is a PI if and only if its evaluations on all sets of basis elements 𝐸𝑖 is zero. We have
exactly 𝑑𝑚 such evaluations, each of them has 𝑑 coordinates, and therefore, we have a system of
𝑑𝑚+1 linear equations, where the unknowns are the coefficients of 𝑝. The number of unknowns is
the number of possible monomials. Hence, the existence of a PI follows from existence of a number
𝑚, such that the number of monomials is larger than 𝑑𝑚+1. Remember, that for each 𝑚, these
numbers (depending on the type of algebra) are 𝑚!, 𝑚! · 𝐶𝑚−1, and 𝑚! · 𝐶𝑚−12

𝑚−1. For large 𝑚,
these numbers exceed 𝑑𝑚+1 and thus, such an 𝑚 exists.

6. Subalgebras, good basis, automorphisms and PI-s

Let us consider the algebra M0 separately. Unlike M, this is a simple algebra, i.e it does not
contain any non-trivial ideals. In this section we assume that CharF ̸= 3 and 𝜔 ∈ F. The second
condition can be achieved if instead of the field F, we consider either its algebraic closure or its
extension F[𝜔]. In this case, M0 has the following basis (called "the good basis"):

𝑈 =
1 + 2𝜔

3

(︀
𝑃 +𝑅𝜔 + 𝑆𝜔2

)︀
,

𝑉 =
1 + 2𝜔2

3

(︀
𝑃 +𝑅𝜔2 + 𝑆𝜔

)︀
.

Note that the condition CharF ̸= 3 is important: if CharF = 3 these elements 𝑈 and 𝑉 are not
well defined. A simple computation shows that

𝑈2 = 𝑉, 𝑉 2 = 𝑈, and 𝑈𝑉 (= 𝑉 𝑈) = 0.

The automorphism 𝜙 of order 3 defined in the proof of Theorem 1, induces an automorphism of
M0: 𝜙(𝑈) = 𝜔2𝑈, 𝜙(𝑉 ) = 𝜔𝑉.
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Remark 2. There is another important automorphism 𝜓 of M0: 𝑈 ↦→ 𝑉, 𝑉 ↦→ 𝑈 . This
automorphism cannot be extended to M. Nevertheless, if F = 𝐾[𝜔] for some subfield 𝐾 which does
not contain 𝜔, this automorphism can be extended from M0(𝐾) to M(F) considered as an algebra
over 𝐾: 𝑈 ↦→ 𝑉, 𝑉 ↦→ 𝑈, 𝜔 ↦→ 𝜔2, 𝜔2 ↦→ 𝜔. The second two evaluations define the conjugation
automorphism of F preserving 𝐾. In the usual basis {1, 𝑃,𝑅, 𝑆} of M it leaves basic elements and
conjugates field coefficients only. The order of 𝜓 is 2.

Note that not every field F containing 𝜔 can be presented as 𝐾[𝜔]. For instance, the field F7 has
an element 𝜔 = 2 ∈ F7 but does not have any subfields at all.

Now we are ready to prove a lemma about polynomial identities of M0:

Lemma 3. The polynomial 𝑓(𝑥, 𝑦, 𝑧, 𝑡) = (𝑥𝑦)(𝑧𝑡)− (𝑥𝑧)(𝑦𝑡) is a PI of M0.

Proof. Consider the evaluations of 𝑓(𝑥, 𝑦, 𝑧, 𝑡) on the basis elements 𝑈 and 𝑉 : for such evaluations,
a product of two different elements equals zero, and a product of the type (𝑥𝑦)(𝑧𝑡) is not zero when
𝑥 = 𝑦, 𝑧 = 𝑡 and 𝑥𝑦 = 𝑧𝑡, which happens if and only if 𝑥 = 𝑦 = 𝑧 = 𝑡. However, in this case
(𝑥𝑦)(𝑧𝑡) = (𝑥𝑧)(𝑦𝑡) and therefore 𝑓 is PI. 2

Remark 3. Note that if a multilinear polynomial 𝑝(𝑥1, . . . , 𝑥𝑚) has a 1-dimensional image, i.e.
either < 𝑈 > or < 𝑉 >, it is PI of M0. Indeed, its evaluation on M0 must either coincide with
its evaluation on M or it must be {0}. However, it should be invariant under the automorphism 𝜓,
which is possible only in the case that 𝑝 is PI of M0. Nevertheless, this does not imply that such
a polynomial does not exist: even in the case F = 𝐾[𝜔], where 𝜓 can be extended to M, we need
to conjugate elements of F, and this will change the coefficients of the polynomial 𝑝. The problem
considering the existence of such polynomials remains being open.

The possible multilinear evaluations on M0 are described in

Theorem 2. Let F satisfy CharF ̸= 3. If 𝑝(𝑥1, 𝑥2, . . . , 𝑥𝑚) is a multilinear commutative non-
associative polynomial with coefficients in F, then the evaluation of 𝑝 over M0 is either:

1. {0};

2. M0;

Proof. Indeed, there are no 1-dimensional multilinear evaluations since, if Im 𝑝 =< 𝑎𝑈 + 𝑏𝑉 >,
𝑎𝑈 + 𝑏𝑉 must be proportional to 𝜙(𝑎𝑈 + 𝑏𝑉 ) = 𝑎𝜔2𝑈 + 𝑏𝜔𝑉 which is possible only if one of
the coefficients 𝑎 or 𝑏 equals zero. However, this is also impossible, since in this case, Im 𝑝 is not
invariant under 𝜓. 2

Another important subalgebra of M is the subalgebra M̃: the rock-paper-scissors without unit,
i.e. the kernel of the homomorphism Sc. Here we take the three element basis 𝑈, 𝑉 (which were
already defined) and 𝑊 = 1

3(𝑃 +𝑅+ 𝑆). In this case,

𝑊 2 =𝑊, 𝑊𝑈 =
1 + 2𝜔

3
𝑈, and 𝑊𝑉 =

1 + 2𝜔2

3
𝑉.

The problem as to whether a multilinear evaluation on M̃ must be a vector space, remains being
open. However, we can prove the following:

Lemma 4. Let F satisfy CharF ̸= 3. If 𝑝(𝑥1, 𝑥2, . . . , 𝑥𝑚) is a multilinear commutative non-
associative polynomial with coefficients in F, then the evaluation of 𝑝 over M̃ is either:

1. {0};

2. ⟨𝑈⟩;
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3. ⟨𝑉 ⟩;

4. ⟨𝑊 ⟩;

5. M0 = ⟨𝑈, 𝑉 ⟩;

6. ⟨𝑈,𝑊 ⟩;

7. ⟨𝑉,𝑊 ⟩;

8. Zariski dense in M̃.

Proof. According to Lemma 1, Im 𝑝 must be either a vector space or at least 3-dimensional.
If the dimension of Im 𝑝 is no more than 2, it is a vector space. If dim Im 𝑝 = 0, then 𝑝 is PI and we

have the case (1). If dim Im 𝑝 = 1, Im 𝑝 is a line which is invariant under the automorphism 𝜙, and we
have one of the cases (2)-(4). If dim Im 𝑝 = 2, we have a two-dimensional subspace invariant under
𝜙. Consider some evaluation of 𝑝: 𝑞 = 𝑎𝑈+𝑏𝑉 +𝑐𝑊 with at least two nonzero coefficients 𝑎, 𝑏, 𝑐 ∈ F.
Note that 𝜙(𝑈) = 𝜔2𝑈,𝜙(𝑉 ) = 𝜔𝑉, 𝜙(𝑊 ) =𝑊. Thus, the elements 𝜙(𝑞) = 𝑎𝜔2𝑈 + 𝑏𝜔𝑉 + 𝑐𝑊 and
𝜙2(𝑞) = 𝑎𝜔𝑈 + 𝑏𝜔2𝑉 + 𝑐𝑊 belong to the image of 𝑝. The linear span of these three elements is the
linear span of the basis elements {𝑈, 𝑉,𝑊}.In particular, we obtain that one of the coefficients of
𝑞 must zero, and the (2-dimensional) image of 𝑝 contains a plane spanned by two basis elements
(and thus coincides with it). Therefore, we have one of the cases (5)-(7). Finally, if dim Im 𝑝 = 3,
the image is a Zariski dense subset, and we have the case (8). 2

Note that not all these options are possible:

Theorem 3. Let F satisfy CharF ̸= 3. If 𝑝(𝑥1, 𝑥2, . . . , 𝑥𝑚) is a multilinear commutative non-
associative polynomial with coefficients in F, then the evaluation of 𝑝 over M̃ is either:

1. {0};

2. ⟨𝑈⟩;

3. ⟨𝑉 ⟩;

4. M0 = ⟨𝑈, 𝑉 ⟩;

5. Zariski dense in M̃.

Proof. Options (4), (6) and (7) in Lemma 4 are impossible since if the sum of coefficients of 𝑝 is
𝑐 ̸= 0, the element 𝑝(𝐼, 𝐼, 𝐼, . . . , 𝐼) = 𝑐𝐼 belongs to the image of 𝑝, for 𝐼 being arbitrary idempotent
of 𝑀̃ . In particular, 𝑃,𝑅 and 𝑆 are idempotents. In this case the linear span of Im 𝑝 must be equal
to 𝑀̃ , which does not hold for these three cases. 2

Unfortunately, the question of possibility of cases (2) and (3) remains being open. The other
problem is, whether or not the polynomial in the last case must be surjective.

7. Semi-homogeneous polynomials

In this section, we have more questions than answers. Nevertheless, we can definitely claim
the following: the evaluation of any such polynomial should be invariant with respect to the
automorphism 𝜙. We have a conjecture:

Conjecture 3. Any homogeneous polynomial in one variable with nonzero sum of coefficients,
has a Zariski dense image set.
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This is an interesting question to study. Indeed, considering monomials depending on one
variable, there are different monomials of the same degree. For instance, the monomial (𝑥2)2 is not
the same as 𝑥(𝑥(𝑥2)). Not only as monomials are they different: they also have different evaluations.
For example, if 𝑥 = 𝑃 + 𝑅 − 2𝑆 then (𝑥2)2 = 9(𝑅 − 𝑃 ) and 𝑥(𝑥(𝑥2)) = 9(𝑃 − 𝑅). Of course, if
CharF = 2, this is the same. The case CharF = 2 can be considered separately. In particular, for
F = F2 being the field of two elements, the evaluations of (𝑥2)2 and 𝑥(𝑥(𝑥2)) coincide for every 𝑥.
Moreover, evaluations of any two monomials in one variable of equal degree coincide, which makes
the monomial function 𝑥𝑑 being well defined.

If Conjecture 3 holds, we can conclude the following:

Conjecture 4. Let 𝑝(𝑥1, . . . , 𝑥𝑚) be any semi-homogeneous polynomial evaluated on M of
degree 𝑑, and suppose that the field F is closed under 𝑑-roots. Then the image set of 𝑝 satisfies one
of the following conditions:

1. Im 𝑝 = {0};

2. Im 𝑝=
⟨︀
𝑃 +𝑅𝜔 + 𝑆𝜔2

⟩︀
;

3. Im 𝑝=
⟨︀
𝑃 +𝑅𝜔2 + 𝑆𝜔

⟩︀
;

4. Im 𝑝 is Zariski dense in M0;

5. Im 𝑝 is Zariski dense in M.

This conjecture follows from the previous one: if the sum of the coefficients is not zero, we can
consider the polynomial 𝑞(𝑥) = 𝑝(𝑥, 𝑥, . . . , 𝑥), which according to Conjecture 3, has a Zariski dense
image set in M, and its image is a subset of the image of 𝑝. If the sum of the coefficients is zero,
then, as we know,both Sc(𝑝) and tr(𝑝) vanish on each evaluation and hence Im 𝑝 ⊆ M0. The image
of any semi-homogeneous polynomial is a cone, and therefore, there are three options:The image
is 2-dimensional and its Zariski closure is M0; The image is 1-dimensional and its image is one of
the two possible lines; The image is 0-dimensional, and in this case, 𝑝 should be a PI. Note that if
conjecture 3 does not hold, then there is one more possible option for the 1-dimensional image: the
line ⟨𝑃 +𝑅+ 𝑆⟩.

8. Conclusion

Questions related to the evaluations of multilinear and homogeneous polynomials are actual and
applicable. This work continues series of works [1, 2, 3, 4, 5, 9, 10]
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