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Abstract

A self-contained, combinatoric exposition is given for the Braun—-Kemer—Razmyslov Theorem
over an arbitrary commutative Noetherian ring.At one time, the community did not believe in
the validity of this result, and contrary to public opinion, the corresponding question was posed
by V.N. Latyshev in his doctoral dissertation.

One of the major theorems in the theory of PI algebras is the Braun-Kemer-Razmyslov
Theorem. We preface its statement with some basic definitions.

1. An algebra A is affine over a commutative ring C' if A is generated as an algebra over C'
by a finite number of elements aq, ..., ag; in this case we write A = C{ay,...,as}.

We say the algebra A is finite if A is spanned as a C-module by finitely many elements.

2. Algebras over a field are called PI algebras if they satisfy (nontrivial) polynomial
identities.

3. The Capelli polynomial Cap; of degree 2k is defined as

Capy, (1, -, Tk Y1, - Yk) = Z Sen(T) T (1)1 T (k) Yk
TESK

4. Jac(A) denotes the Jacobson radical of the algebra A which, for Pl-algebras is the
intersection of the maximal ideals of A, in view of Kaplansky’s theorem.

The aim of this article is to present a readable combinatoric proof of the theorem: The

Braun-Kemer-Razmyslov Theorem The Jacobson radical Jac(A) of any affine PI algebra
A over a field is nilpotent.
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1. The BKR Theorem

1.1. Introduction

One of the major theorems in the theory of PI algebras is the Braun-Kemer-Razmyslov Theorem
(Theorem 1.1 below). We preface its statement with some basic definitions.

DEFINITION 1. 1. An algebra A is affine over a commutative ring C if A is generated

as an algebra over C' by a finite number of elements ai,...,ap; in this case we wrile
A=C{ay,...,ap}.

2. We say the algebra A is finite if A is spanned as a C-module by finitely many elements.
3. Algebras over a field are called PI algebras if they satisfy (nontrivial) polynomial identities.

4. The Capelli polynomial Cap, of degree 2k is defined as

Capk(xlv sy Ty YLy .- 7yk) = Z Sgn(ﬂ-)xﬂ'(l)yl (k) Yk
TES)

5. Jac(A) denotes the Jacobson radical of the algebra A which, for Pl-algebras is the intersection
of the mazimal ideals of A, in view of Kaplansky’s theorem.

THEOREM 1.1 (The Braun-Kemer-Razmyslov Theorem). The Jacobson radical Jac(A) of any affine
PT algebra A over a field is nilpotent.

The aim of this article is to present a readable combinatoric proof (essentially self-contained in
characteristic 0).

Let us put the BKR Theorem into its broader context in PI theory. We say a ring is Jacobson if
the Jacobson radical of every prime homomorphic image is 0. For PI-rings, this means every prime
ideal is the intersection of maximal ideals. Obviously any field is Jacobson, since its only prime
ideal 0 is maximal. Furthermore, any commutative affine algebra over a field is Noetherian by the
Hilbert Basis Theorem and is Jacobson, in view of [28, Proposition 6.37], often called the “weak
Nullstellensatz,” implying the following two results:

e (cf. Proposition 1.11) If a commutative algebra A is affine over a field, then Jac(A) is nilpotent.

e (Special case of Theorem 2) If A is a finite algebra over an affine central subalgebra Z over
a field, then Jac(A) is nilpotent. (Sketch of proof: Passing to homomorphic images modulo
prime ideals, we may assume that A is prime PI, and Z is an affine domain over which A is
torsion-free. The maximal ideals of Z lift up to maximal ideals of A, in view of Nakayama’s
lemma, implying Z NJac(A) C Jac(Z) = 0. If 0 # a € Jac(A), then writing a as integral over
Z, we have the nonzero constant term in Z N Jac(A) = 0, a contradiction.)

Since either of these hypotheses implies that A is a Pl-algebra, it is natural to try to find an
umbrella result for affine Pl-algebras, which is precisely the Braun-Kemer-Razmyslov Theorem. This
theorem was proved in several stages. Amitsur |1, Theorem 5|, generalizing the weak Nullstellensatz,
proved that if A is affine over a commutative Jacobson ring, then Jac(A) is nil. In particular, A
is a Jacobson ring. (Later, Amitsur and Procesi [3, Corollary 1.3] proved that Jac(A) is locally
nilpotent.) Thus, it remained to prove that every nil ideal of A is nilpotent.

It was soon proved that this does hold for an affine algebra which can be embedded into a
matrix algebra, see Theorem 1 below. However, examples of Small [33] showed the existence of
affine PI algebras which can not be embedded into any matrix algebra. Thus, the following theorem
by Razmyslov [22] was a major breakthrough in this area.



92 Kanens-Besios A. 4., Poysn Jlync Xamam

THEOREM 1.2 (Razmyslov). If an affine algebra A over a field satisfies a Capelli identity, then its
Jacobson radical Jac(A) is nilpotent.

Although Razmyslov’s theorem was given originally in characteristic zero, he later found a proof
that works in any characteristic. As we shall see, the same ideas yield the parallel result:

THEOREM 1.3. Let A be an affine algebra over a commutative Noetherian ring C'. If A satisfies a
Capelli identity, then any nil ideal of A is nilpotent.

Following Razmyslov’s theorem, Kemer [15] then proved

THEOREM 1.4. [15] In characteristic zero, any affine PI algebra satisfies some Capelli identity (see
Theorem 3.3).

Thus, Kemer completed the proof of the following theorem:

THEOREM 1.5 (Kemer-Razmyslov). If A is an affine Pl-algebra over a field F' of characteristic zero,
then its Jacobson radical Jac(A) is nilpotent.

Then, using different methods relying on the structure of Azumaya algebras, Braun proved the
following result, which together with the Amitsur-Procesi Theorem immediately yields Theorem 1.1:

THEOREM 1.6. Any nil ideal of an affine Pl-algebra over an arbitrary commutative Noetherian ring
is nilpotent.

Note that to prove directly that Jac(A) is nilpotent it is enough to prove Theorem 1.6 and show
that Jac(A) is nil, which is the case case when A is Jacobson, and is called the “weak Nullstellensatz.”
But the weak Nullstellensatz requires some assumption on the base ring C. It can be proved without
undue difficulty that A is Jacobson when C' is Jacobson, cf. [26, Theorem 4.4.5]. Thus, in this case
the proper general formulation of the nilpotence of Jac(A) is:

THEOREM 1.7 (Braun). If A is an affine Pl-algebra over a Jacobson Noetherian base ring, then
Jac(A) is nilpotent.

Small has pointed out that Theorems 1.6 and 1.7 actually are equivalent, in view of a trick of [25].
Indeed, as just pointed out, Theorem 1.6 implies Theorem 1.7. Conversely, assuming Theorem 1.7,
one needs to show that Jac(A) is nil. Modding out the nilradical, and then passing to prime images,
one may assume that A is prime. Then one embeds A into the polynomial algebra A[\| over the
Noetherian ring C[A], and localizes at the monic polynomials over C[)\], yielding a Jacobson base
ring by [25, Theorem 2.8].

Braun’s qualitative proof was also presented in [27, Theorem 6.3.39], and a detailed exposition,
by L’vov [19], is available in Russian. A sketch of Braun’s proof is also given in |5, Theorem 3.1.1].

Meanwhile, Kemer [17]| proved:

THEOREM 1.8. [17] If A is a PI algebra (not necessarily affine) over a field F' of characteristic
p > 0, then A satisfies some Capelli identity.

Together with a characteristic-free proof of Razmyslov’s theorem 1.2 due to Zubrilin [34],
Kemer’s Theorems 1.4 and 1.8 yield another proof of the Braun-Kemer-Razmyslov Theorem 1.1.
The paper [34] is given in rather general circumstances, with some non-standard terminology.
Zubrilin’s method was given in [7], although |7, Remark 2.50| glosses over a key point (given
here as Lemma 2.13), so a complete combinatoric proof had not yet appeared in print with all the
details. Furthermore, full combinatoric details were provided in [7] only in characteristic 0 because
the conclusion of the proof required Kemer’s difficult Theorem 1.8. We need the special case, which
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we call “Kemer’s Capelli Theorem,” that every affine Pl-algebra A over an arbitrary field satisfies
some Capelli identity. This can be proved in two steps: First, that A satisfies a “sparse” identity, and
then a formal argument that every sparse identity implies a Capelli identity. The version given here
(Theorem 4.4) uses the representation theory of the symmetric group Sy, and provides a reasonable
quartic bound ((p — 1)p(“;1), where u = M) for the degree of the sparse identity of A in
terms of the degree d of the given PI of A.

It should be noted that every proof that we have cited of the Braun-Kemer-Razmyslov Theorem
ultimately utilizes an idea of Razmyslov defining a module structure on generalized polynomials
with coefficients in the base ring, but we cannot locate full details of its implementation anywhere
in the literature. One of the objectives of this paper is to provide these details, in §2.5 and §2.6.1.
Although the proof is rather intricate for a general expository paper, we feel that the community

deserves the opportunity to see the complete argument in print.

We emphasize the combinatoric approach here. Aside from the intrinsic interest in having such a
proof available of this important theorem (and characteristic-free), these methods generalize easily
to nonassociative algebras, and we plan to use this approach as a framework for the nonassociative
PI-theory, as initiated by Zubrilin. (The proofs are nearly the same, but the statements are
somewhat more complicated. See [6] for a clarification of Zubrilin’s work in the nonassociative
case.) To keep this exposition as readable as we can, we emphasize the case where the base ring
C is a field and prove Theorem 1.1 directly by an induction argument without subdividing it into
Theorem 1.6 and the weak Nullstellensatz, although we also treat these general cases.

§2 follows Zubrilin’s short paper [34], and gives full details of Zubrilin’s proof of Razmy-lov’s
theorem 1.2. This self-contained proof is characteristic free.

To complete the proof of the BKR Theorem, it remains to prove Kemer’s Capelli Theorem.
In §3 we provide the proof in characteristic 0, by means of Young diagrams, and §4 contains the
characteristic p analog (for affine algebras). An alternative proof could be had by taking the second
author’s “pumping procedure” which he developed to answer Specht’s question in characteristic p,
and applying it to the “identity of algebraicity” [7, Proposition 1.59]. We chose the representation-
theoretic approach since it might be more familiar to a wider audience. The proof of Theorem 1.6,
over arbitrary commutative Noetherian rings, is given in §5.

REMARK 1.9. An early version of Theorem 3.16 was written by Amitai Regev, to whom we are
indebted for suggesting this project and providing helpful suggestions all along the way. Belov
belongs lemma 3.8

1.2. Structure of the proof

We assume that A is an affine C-algebra and satisfies the n + 1 Capelli identity Cap,,,; (but
not necessarily the n Capelli identity Cap,,), and we induct on n: if such A satisfies Cap,, then we
assume that Jac(A) is nilpotent, and we prove this for Cap,, ;. For the purposes of this sketch, in
Steps 1 through 3 and Step 7 we assume that C is a field F'.

The same argument shows that any nil ideal N of an affine algebra A over a Noetherian ring
is nilpotent, yielding Theorem 1.3. For this result we would replace Jac(A) by N throughout our
sketch.

We write C{z,y,t} for the free (associative) algebra over the base ring C, with inde-
terminates x;,y;, tx, 2, containing one extra indeterminate z for further use. This is a free module
over C, whose basis is the set of words, i.e., formal strings of the letters x;,y;,tx, 2. The x and
y indeterminates play a special role and need to be treated separately. We write C{t} for the free
subalgebra generated by the t; and z, omitting the x and y indeterminates.

1. The induction starts with n = 1. Then n + 1 = 2, and any algebra satisfying Cap, is
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commutative. We therefore need to show that if A is commutative affine over a field F', then Jac(A)
is nilpotent. This classical case is reviewed in §1.3.1.

2. Next is the finite case: If A is affine over a field F' and a finite module over an affine central
subalgebra, then Jac(A) is nilpotent. This case was known well before Razmyslov’s Theorem, and
is reviewed in §1.3.2. Theorem 1.3 follows whenever A is a subring of a finite dimensional algebra
over a field.

3. Let CAP,, = T(Cap,,) be the T-ideal generated by Cap,,, and let CAP,(A) C A be the
ideal generated in A by the evaluations of Cap,, on A, so A/CAP,(A) satisfies Cap,,. Therefore, by
induction on n, Jac(A/CAP,(A)) is nilpotent. Hence there exists g such that

Jac(A)? C CAPL(A), so Jac(A)*? C (CAP,(A))>

4. In §2.2.4 we work over an arbitrary base ring C' (which need not even be Noetherian), and
for any algebra A introduce the ideal I, 4 C A[,, 4], for commuting indeterminates &, 4, which

provides “generic” integrality relations for elements of A. Let C@t} = C{z,y,t}/CAP 41, the
relatively free algebra of Cap,, ;. Taking the “doubly alternating” polynomial

f=t1Cap,(x1,...,2,)t2a Cap,,(y1, .-, Yn)ts,

we construct, in Section 2.2.1, the key C'{¢t}-module Mc C{x,y,t}, which contains the polynomial

f. A combinatoric argument given in Proposition 2.17 applied to C{x,y,t} (together with

substitutions) shows that In,c{/x,y\,t} M =0.

5. We introduce the obstruction to integrality Obst,(A) = AN, 4 C A and show that
A/Obst,(A) can be embedded into a finite algebra over an affine central F-subalgebra; hence
Jac(A/Obst,(A)) is nilpotent. This implies that there exists m such that

Jac(A)™ C Obst,(A).

The proof of this step applies Shirshov’s Height Theorem [32], |7, Theorem 2.3].

6. We prove that Obst,(A) - (CAP,(A))? = 0 over an arbitrary ring C. This is obtained from
Step 4 via a sophisticated specialization argument involving free products.

7. We put the pieces together. When C' is a field, Step 3 shows that Jac(A)? C CAP,(A) for
some ¢, and Step 5 shows that Jac(A)™ C Obst,(A) for some m. Hence

Jac(A)%+™ C Obst,(A) - (CAP,(A))? =0,

which completes the proof of Theorem 1.2. When C is Noetherian, any nil ideal NV of C' is nilpotent,
so the analogous argument shows that N™ C Obst,,(A) for some m. Hence

N20t™ C Obst, (A) - (CAP,(A))? =0,

proving Theorem 1.3.

1.3. Special cases

We need some classical special cases.
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1.3.1. The commutative case

Our main objective is to prove that the Jacobson radical Jac(A) of an affine Pl-algebra A (over
a field) is nilpotent. We start with the classical case for which A is commutative.

REMARK 1.10. Any commutative affine algebra A over a Noetherian base ring C' is Noetherian,
by Hilbert’s Basis Theorem, and hence the intersection of its prime ideals is nilpotent, cf. |29,
Theorem 16.24].

But for any ideal I < A, the algebra A/I is also Noetherian, so the intersection of the prime
ideals of A containing [ is nilpotent modulo 1.

PropOSITION 1.11. If H is a commutative affine algebra over a field, then Jac(H) is nilpotent.

PrOOF. The “weak Nullstellensatz” |28, Proposition 6.37] says that H is Jacobson, and thus
the Jacobson radical Jac(H) is contained in the intersection of the prime ideals of H. But any
commutative affine algebra is Noetherian, so we conclude with Remark 1.10. O

1.3.2. The finite case
To extend this to noncommutative algebras, we start with some other classical results:

1. [29, Theorem 15.23] (Wedderburn) Any nil subring of an n X n matrix algebra over a field is
nilpotent, of nilpotence index < n (in view of |29, Lemma 15.22]).

2. |29, Theorem 15.18] (Jacobson) The Jacobson radical of an n-dimensional algebra over a field
is nilpotent, and thus has nilpotence index < n, by (1).

3. Any algebra finite over a Noetherian central subring C, is Noetherian (This follows at once
from induction applied to |28, Proposition 7.5].

THEOREM 1. Suppose A = C{ay,...,ap} is an affine algebra over a commutative Noetherian
ring C, with A C M, (K) for a suitable commutative C-algebra K. Then

1. Any nil subalgebra N of A is nilpotent, of bounded nilpotence index < mn, where m is given
in the proof. When K is reduced, i.e., without nonzero nilpotent elements, then m = 1, so
N™=0.

2. If C is a field, then Jac(A) is nilpotent.

ProoOF. For each 1 < k < £, write each a; as an n x n matrix (a(]-c)), for agf) € K, and let H be

ij
the commutative C-subalgebra of K generated by these finitely many al(f); then H is C-affine. We

can view each ay in M, (H), so A C M,(H).
(1) Let N C A be a nil subalgebra. Now A C M, (H),so N C M,(H) and is nil. Let P C H be
prime. The homomorphism H — H/P extends to
My (H) — My, (H/P) (= My, (H)/Mn(P)).

Let N be the image of N, so N = (N + M,(P))/M,(P) so N C M,(H)/M,(P) = M,(H/P) C
M, (L) where L is the field of fractions of the domain H/P. By Wedderburn’s theorem N" = 0
which implies that N™ C M, (P) (since P = 0in H/P and in L). Hence, letting U denote the prime
radical of H, we have N™ C M, (U). But, in view of Remark 1.10, we have U™ = 0 for some m. (If
K is reduced then U = 0, implying m = 1.) We conclude that

N = (N™)™ € (Mo (U))™ = M, (U™) = 0.
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(2) We need here the well-known fact [29, Exercise 15.28] that when J<A, with J nilpotent, then
Jac(A/J) = Jac(A)/J. It follows at once that if Jac(A/J) is nilpotent, then Jac(A) is nilpotent.

By hypothesis H is affine over the field C, so Jac(H) is nilpotent, and thus M, (Jac(H)) =
Jac(M,,(H)) is nilpotent. Let A= A/(AN M,(Jac(H))) and H = H/ Jac(H). Then

A C My (H/ Jac(H)) = M (H),

and Jac(H) = 0. Thus we may assume that Jac(H) = 0, and we shall prove that J” = 0, where
J = Jac(A).

For any maximal ideal P of H, we see that H/P is an affine field extension of C, and thus is
finite dimensional over C, by |28, Theorem 5.11|. But then the image of A in M, (H/P) is finite
dimensional over C, so the image J of J is nilpotent, implying J” = 0. Hence J" is contained in
NM,(P) = M,(NP) = 0, where P runs over the maximal ideals of H. O

THEOREM 2. Suppose A is an algebra that is finite over C, itself an affine algebra over a field.
Then Jac(A) is nilpotent.

PROOF. Since A is Noetherian, its nilradical N is nilpotent by [29, Remark 16.30(ii)|, so modding
out N we may assume that A is semiprime, and thus the subdirect product of prime algebras
{A; = A/P; : i € I} finite over their centers. If Jac(A)"™ C P, for each i € I, then Jac(A)" C NP; = 0.

So we may assume that A is prime. But localizing over the center, we may assume that C' is a
field. Let n = dim ¢ A. Then A is embedded via the regular representation into n X n matrices over
a field, and we are done by Theorem 1. O

Since not every affine PI-algebra might satisfy the hypotheses of Theorem 1, cf. [33] and [18],
we must proceed further.

2. Proof of Razmyslov’s Theorem

In this section we give full details for Zubrilin’s proof of Theorem 1.2.

2.1. Zubrilin’s approach

(z,n)

2.1.1. The operator J,

Let us fix notation for the next few sections. C' is an arbitrary commutative ring. We start with
a polynomial f := f(x1,...,zn) € C{z,y,t} in & = {x1,..., 25} (which we always notate), as
well as possibly % = {y1,...,yn} (which we sometimes notate), and £ = {ty,...}, all of which are
noncommutative indeterminates.

DEFINITION 2.1. Let f(Z,#7,1) be multilinear in the z; (and perhaps involving additional
indeterminates ¢ and f} Take 0 < k£ < n, and expand

fr=f((z+ Dy, (24 Dy, 7.8),

where z is a new noncommutative indeterminate. Then we write

5 (f) = 6 ()@, wn, 2)



Teopema PazmbiciioBa — Kemepa — Bpayna ... 97

for the homogeneous component of f* of degree k in the noncommutative indeterminate z. (We
have suppressed 7, ¢ in the notation, as indicated above.)
For example let n = 2 and f = x1x9. Then

(z+ D)z1(z + 1)xg = zx1229 + 22122 + T12T2 + T122.

(2,2)

Hence 507Z (x122) = T129, 5(®2)

1,z

(CC,Q)(

(x122) = 22122 + 12292, and dy T1T2) = ZT12X3.

More generally, for any h € C{t} we write 5limhn)(f) = 5,(€:fl;n)(f)(:v1,...,xn,h), i.e., the
specialization of 5](;;71)( f) under z — h.
REMARK 1.
(z,n)

1. In calculating 6,2 (f), the substitution x; — (2+1)x; is applied to the first n positions in f but
not to the other positions. For example, the last (i.e. n+ 1 st) variable in f(x1,...,Tpn-1,Tnt+1,Zn)

i8 Ty, not x,11. Hence, to calculate 5,(fz’n)(f(x1, ey D1y Tptl, Tn)) we apply z; — (z+ 1)a; to all
x;’s except x,,.

2. We can also write

5zgf$n)(f(x1, T, 1) = Z F(w1,.. o, 1) o1y 2o, =

1<t << <n

= Z f(xl,...,zmil,...zzz:ik,...,xn,f}.
1< < <ip<n
3. In case f = f(x1,...,Zn,Y1,...,Yn) also involves indeterminates yi,...,yn, we still have
5]53?71”)(1?) = Z f |CCZ‘j Hzxija
1<i1 <--<ig<n
indicating that the other indeterminates yi,...,yn remain fized. Analogously,

(5](52771)(.]0) = Z f ‘yij —2Yij

1<i1 < <ig<n

and the indeterminates x1,...,x, are fized.
DEFINITION 2.2. A polynomial f(x1,...,z,,t ) is alternating in z1,...,, if f is multilinear in
the x; and

f(xl,...,xi,...,xj,...,xn,f) +f(ac1,...,xj,...,xi,...,xn,f) =0 for all ¢ < j. (1)

A stronger definition, which would suffice for our purposes, is to require that

—

flrer, o @iy Xy ey Xy, ) = 0; (2)

i.e., we get 0 when specializing x; to z; for any 1 <14 < j < n. We get (2.2) by linearizing (2), and
can recover (2) from (2.2) in characteristic # 2.)

LEMMA 2.3. Let f(z1,...,2,,t ) be multilinear and alternating in zi,...,,. Then for each
0<k<n, 5limz’n)(f(x1, ..y Zp, 1)) is also alternating in x1, ..., z,.
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PROOF. Let v = 1+ ez where ¢ is a central indeterminate. Obviously f(vzy,... ,vxn,f) is also
alternating in z1,...,z,. Since

f(vx1, - ,U.In,{) = Z (5](6?;”)(f(x1, .. .,xn,f)> gk

n

k=0
is alternating in x1,...,x,, it follows that each 6li$z’n)(f(x1, ... Zn, 1) is alternating in x1, ..., z,.
O
REMARK 2.4.
1. Since CAP,, is generated as a T-ideal by polynomials alternating in x1,...,x,, we have

0, (CAPL) CCAP,  and 617 (CAP41) C CAP .

2. The results proved for the indeterminate z specialize to an arbitrary polynomial h, and thus
can be formulated for h.

LEMMA 2.5. The 5,(€w’n)(f)—operator is functorial, in the sense that if @ = (a1,...,a;) € A and

V4

h(@) = W'(@), then 8" (£)(@) = 607 (f)(@)-

PrROOF. We get the same result in Definition 2.1 by specializing z to h and then to @, as we get
by specializing z to i/, and then to @. O
This observation is needed in our later specialization arguments.

The following observation, which is rather well known, motivates Proposition 2.10 below. Let
V=Cxr1® - ®Cx,andlet z:V — V be a linear transformation from V to V. Let

n

det(M = 2) = cp(2)AF

k=0

be the characteristic (“Cayley-Hamilton") polynomial of z. Then we have the following formula
from |26, Theorem 1.4.12]:

(5](5;1)(Capn(:c1,...,a:n;gj)) = Z Cap,, (1, ..., 2Tiy, .- 2Ty, - -, T3 ) =

1<ii << <n

= Ck(Z) . Capn(xlv ey Ty 37)7
and the coefficients cg(z) are independent of the particular indeterminates z1,...,z,. Proposi-
tion 2.10 below displays a similar phenomenon.

2.2. Zubrilin’s Proposition

Our goal in this section is Proposition 2.17. Let us define the terms used there.
Let C{x,y,t} denote the relatively free algebra C{z,y,t}/CAP,+1. We denote the image of

f € Cla,y,t} in Oy, 1} by f.
REMARK 2.6. If A satisfies Cap,, ,;, then any algebra homomorphism ¢ : C{z,y,t} — A naturally
induces an algebra homomorphism ¢ : C{z,y,t} — A given by

3(f) = e(f),

since CAPp+1 C ker .
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REMARK 2. Let f(x1,...,Znt1) be multilinear in x1,...,Tn1 and alternating in x1,...,T,.
Construct
~ _ n+1
F=Flan o an) =) (D F @1, ety Thgts - T, ). (3)
k=1

(All other variables occurring in f are left untouched.)
Then f is (n+ 1)-alternating in x1,...,Tpe1-

PROPOSITION 2.7. Let f(x1,..., 2, xpy1) be multilinear in x1,...,2,, n+1 and alternating in
Z1,...,Zy (so f of Equation (3) is (n + 1)-alternating). Then

n

S (16 (F(@1, B0y I 2041)) =0 modulo CAP 1.
j=0

PRrROOF. Throughout we work modulo CAP, . Since f is (n + 1)-alternating, we have

0= f: f(CL'Q,fL'g ce. ,l‘n+1,$1) - f(xla:ES .. ~a$n+17$2) +-+ (*1)nf($lax27 “e ,l‘n,l'n+1).

Thus, modulo CAP,,+1 the last summand (—1)"f(x1,22,...,Zn, Tnt1) can be replaced by minus
the sum of the other summands:

n

(—l)nf(.’ljl,m'g, coo s Iy xn+1) = Z(—l)kf(l'l, oy T—15 Th41y - - - ,$n,$n+1,xk),
k=1

Given 0 < j < n, substitute x,, 41 — 2" jxnﬂ, S0

n
(=D)"f(x1, 22, ... X, 2" T 2pg1) = Z(—l)kf(acl, e Ty Tty e Ty 2 T L1, Th)-
k=1

(z,n)

Applying § b and summing with sign, we get

n
"Z ]596” xl,...,xn,z"_jxnﬂ)z
7=0
n n )
=S 1S DEE (Flans o whe Bty T, 2 T, 1)) =
§=0 k=1
n n ) ]
= (_1)k Z(_l)]5§§n) (f(xla vy Th—1y Th+41y -+ -5 Tny, Zn_anJrl; 'ka))
k=1 §=0
Denote gjr = f(@1,..., Th—1, Thp1, - - - yTn, 2" Ty, 1), and
n
Q= > (=178, (g5). (4)
§=0

It suffices to show that Q4 = 0 for each k. Note that in calculating 552’") (gjk) = 5§.i’”)(f(m1, ey
The1y Thtly- -y Ty 2" I Tpt1,Tk)), T is unchanged (since it is the last indeterminate), while for all
other z;’s (in particular — for x,,4+1) we substitute x; — (z + 1)x;, ¢f. Remark 1.1. Therefore

0 (gik) = 851 (910) + 05 (97)
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where

(9j,x) is the sum of the monomials of (5](-?") (9j,x) having z-degree j, where x,41 was
replaced Ly 2Tn41;

and
(z,n)
] Z [k//

(9j,x) is the sum of the monomials of 5§‘Z’n) (9j,x) having z-degree j, where x,41 was
unchangeél

It is not difficult to see that for 7 > 0,

(z,n) n—j —
o, [k/]f(ﬂh, ey Ty Tl e ey Ty 21 I 1, Tg) =
(z,n) n—j+1
(5] 1Z[ku]f(xlv-'-7xk—171'k+17-~7xn72 J ﬂfn+1,l’k),

namely

5§i?[1’] (g_] k) 5j(x ’T)Z K (gjfl,k)-

It also follows from the definitions that 5&’%{3,} (gok) = 52]0;“[)14/] (gn) = 0. Hence

n n

S0 (gik) = (=165 (g58) =

7=0 7j=1
n—1

—Z I8 o (g-1k) = = D (=176 (g58),
j=0
and
n n—1
j= J=

Summing in (4) we get

Qu =" (195" (g50) = 3 (=107 (58 0k + 07 ygix) =0

j=0 7=0

d

2.2.1. The module M over the relatively free algebra of Cap,,

We need a special sort of alternating polynomials.

DEFINITION 2.8. A polynomial f(z1,...,Zn;y1,---, yn;ﬂ, where ¢ denotes other possible indeter-
minates, is doubly alternating if f is linear and alternating in z1,...,x, and y1,...,yn.

Our main example is the double Capelli polynomial
DCap,, = t1 Cap,,(z1, ..., 2n;t)t2 Cap, (Y1, . - - Yn; t7)t3. (5)

Here  and ¢ are arbitrary sets of extra indeterminates. We suppress the indeterminates ¢, ¢ ,
and tq,to, t3 from the notation, since we do not alter them.
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DEFINITION 2.9. Let M denote the C-submodule of C{z,y,t} consisting of all doubly alternating
polynomials (inzy...,zy, and in yy,. .. ,yn)

M denotes the i image of M in C{:c y,t}, i.e., the C-submodule of C{a: y,t} consisting of the
images of all doubly alternating polynomials (in 1 ..., x,, and in y1,...,Yn)-

REMARK 3. M is a C{t} submodule of C’{x y,t}, namely C{t}/\/l C M. Indeed, let h e C{t}

and f € M. If either h or f is in CAPpi1 then hf € CAPni1; hence the product hf = hf is well
defined. Moreover, if f = f(T1,.. ., TnsY1,-- - Yn,t ) is doubly alternating in the x’s and in the y’s,
and h € C{t'}, then hf is doubly alternating in the x’s and in the y’s.

2.2.2. The Zubrilin action

The theory hinges on the following amazing result, which we prove in Section 2.7 below. (This
is also proved in |7, Theorem 4.82|, but more details are given here.)

PropOSITION 2.10. Let f(z1,...,Zn;Y1,-..,Yn) be doubly alternating in zj,...,x, and in
Y1, - -, Yn (perhaps involving additional indeterminates). Then for any polynomial h,
5](;3’?)(]") = 5,2%”)(]”) modulo CAPp41; (6)
namely,
Z f ‘fij%h%'jz Z f |yz‘j—>hyij modulo CAPn+1.
1<i << <n 1<i1 << <n

Before proving Proposition 2.10 we deduce some of its consequences.

REMARK 2.11. It follows from Proposition 2.10 that (5(96 n)(f) — 5,(€y;Ln)(f) € CAP, 41 whenever

fe /\/l, so working modulo CAP,11 we can suppress x in the notation, writing Slgn,z(f) for Sl(fhn)(f)

2.2.3. Commutativity of the operators 6,&",% modulo CAP,+1

We use M instead of M because of the following lemma.

—

LEMMA 2.12. (i) 5,(!2 induces a well-defined map 3,(:2 ‘M= M given by Sl(gn}z(f) = 5,(f;Ln)(f).
(ii) 5,&”,3 produces the same result using the indeterminates = or y.

Proor. (i) If f(z1,...,2n,y1,...,Yn) and g(z1,...,Zn,Y1,...,Yn) are doubly alternating poly-
nomials, with f = g, then f — g € CAP, 11, so by Remark 2.4(1), 6,2"2(]" —g) € CAPp41 and hence

—

6,53",2(]" — g) = 0. Therefore we have

0= 004 = 9) = 00A(N) = 63(9) = 65 = 3(9).
proving that 5,(:2 is well-defined.
(i) The assertion follows from Remark 2.11, which shows that (519,1”)( f) = 5](§y]’1n)( f). O

LEMMA 2.13. Let f = f(x1,...,Zn;Y1,--.,Yn) be doubly alternating in x1,...,2, and in y1,...,y,
(and perhaps involving other indeterminates). Let 1 < k, ¢ < n. Then for any hi, hy € C{t},

o (). (7)
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PrROOF. Equation (7) claims that modulo CAP, 1,
(i)
i S (F) = 85850 () and
(i)
S 54 (1) = 35 050 (1) and
(iii)
S St (1) = 65 Sm ().
The middle equivalence (ii) is an obvious equality. The first and third equivalences are similar, and

we prove the first. By Proposition 2.10, by (ii), and again by Proposition 2.10, modulo CAP,+1 we
can write

oS () = o (1) = s o (F) = o e (f).

Note that in the last step, Lemma 2.3 was applied (to 5,iwh?)(f)) O

2.2.4. The ideal I, 4 C A[§, 4] and the annihilator of M

DEFINITION 2.14. For each a € A let &1 4,...,&n,4 be n corresponding new commuting variables,
and construct A[, 4]l = Al1a,---.6na | @ € A]. Let I, 4 C A&, 4] be the ideal generated in
A&, 4] by the elements

a” + gl,aan_l + -+ gn,aa ac A,

namely
Ina=(a"+&a0"" + +&nala€A).

REMARK 2.15. In view of Proposition 2.10, the map Sén) : M — M of Lemma 2.12 yields an action
of the C-algebra C/'{t\}[gn 5{?}] on M\, given by & nf = 6,(6”}2(]”)

Working with the relatively free algebra, our next goal is to prove that In e -M = 0. For that
we shall need the next result.

PROPOSITION 2.16. (Zubrilin) Assume that a multilinear polynomial g(x1,...,zy) is alternating
in z1,...,2,. Then, modulo CAP,, 1,

n

ST =Dk R (g) =0

k=0
for any h € C{t}. In particular, if g is doubly alternating, then (again modulo CAP, 1)

n

> (=D () = 0.

k=0
PROOF. First we take h to be an indeterminate z. Let f(z1,...,Zp41) = Tpy19(21,...,2y,). By
Proposition 2.7, C{x,y,t} satisfies the identity

(~1)98" (f (21, 20 2" T 041)) = 0.
7=0
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Note that in computing 5§Z)(f(a:1,...,xn,z”*jxnﬂ)), the last indeterminate is x,y1 and is
unchanged, cf. Remark 1.1, so

(n) (

5;2)(]”(361, e T, 2 1)) = z"*jxn+15j,z g(w1,...,Tn).

Using Proposition 2.7, we have that

n

S (1Y 2160 (g, . 20)) € CAP .

=0

The proof now follows by substituting z,4+1 — 1 and z — h € C{t}.
g

As a consequence we can now prove the key result:

—

PROPOSITION 2.17. Let M be the module given by Definition 2.9. Then, e M =0.

Proor. We prove that [ M = 0, by showing for any doubly alternating polynomial

c7{t}
flx1, Ty Y1,y Yn) € M and h € C{t}, that

(W"+&ph" o+ &p)f =0 (mod CAPs1).

It follows from the action &g pf = 5,53”2(]") and from Proposition 2.16 that modulo CAP, 1,

(W + &ph" &) f = Z Yenn ks () = 0.

d

2.3. The ideal Obst,(A) C A

In order to utilize these results about integrality, we need another concept. We define
Obsty, (A) = AN I, 4, viewing A C A&, a].

REMARK 4.
1. Let
A= A[‘Sn,A]/In,Av (8)
with f : Al 4] — A the natural homomorphism, and f, : A — A be the restriction of f to
A. Then

ker(f,) = AN I, 4 = Obst,(A).

2. Note that for every a € A, f(a) is n-integral (i.e., integral of degree n) over Cl[&i 4, and thus
over the center of A. Indeed, apply the homomorphism f to the element

a"+ €100+ g (€ Ina)

to get

C_Ln+€1,aan_1+

ot = (@ + €00+ Ena) + Tna = 0.
LEMMA 2.18. ker(f,) also is the intersection of all kernels ker(g) of the following maps g:

g: A — B, where B is a C-algebra, and g : A — B is a homomorphism such that for any a € A,
g(a) is n-integral over the center of B.
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PrOOF. Denote the above intersection Ngker(g) as Obst,,(A). Then Obst;,(A) C Obst,(A) since
ker(fy) is among these ker(g). To show the opposite inclusion we prove

Claim: For such g : A — B, ker(g) 2 AN I, 4 = Obst,(A).

Extend g to g* : A[&, 4] — B as follows: g*(a) = a if a € A, while g*(£;4) = Bia. We claim that
g*(I.4) = 0. Indeed, let
r=a" + fLaan*l 4+t En,a

be one of the generators of I, 4.
By assumption there exist 51,4, ..., 3, in the center of B satisfying

9(@)" + Brag(a)"" + - + o0 = 0. (9)
Hence,
g"(r) = 9(a)" + Brag(@)" ™" + -+ Bra = 0.
This shows that as claimed, ¢*(/,,4) = 0.

Finally, if a € ANI, 4 then g(a) = g*(a) = 0. Hence a € ker(g), so ker(g) D ANI, 4 = Obst,(A).
O

COROLLARY 2.19. If every a € A is n-integral (over the base field), then Obst,(A) = 0.

PRrROOF. The assumption implies that in the above, the identity map id = g : A — A satisfies the
condition of Lemma 2.18. Hence 0 = ker(g) D Obst,(A), and the proof follows. O

This corollary explains the notation Obst,(A): it is the obstruction for each a € A to be
n-integral. The next result technically is not needed, but helps to show how Obst behaves.

LEMMA 2.20. Obsty_1(A) D Obst,(A).

PrROOF. Represent
Obsty—1(A) = Ny ker(h) and Obsty, (A) = Ngker(g),

with the respective conditions of n — 1 integrality and of n integrality. Take a € Aand h: A - B
with A(a) being n — 1 integral over the center of B. Then h(a) is also n integral over the center of
B. Hence every ker(h) in Obst,_1(A) also appears in the intersection Obst,(A) = Ngker(g), and
the assertion follows. O

2.4. Reduction to finite modules

The reduction to finite modules is done using Shirshov’s theorem.

PROPOSITION 2.21. Let A = C{ay,...,as} have PI degree d over the base ring C. Then the affine
algebra A/ Obst,,(A) can be embedded in an algebra which is finite over a central affine subalgebra.

PROOF.
Let B C A be the subset of the words in the alphabet aq,...,a, of length < d. By Shirshov’s
Height Theorem there exists an integer h such that the set

W= {tf1... b | b€ B, any k; >0}

spans A over the base ring C.
Similarly to A[¢, al, construct A[§, ] C A[&,, 4]

Al&B) = A&y, - 6np | b€ B,
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and let I,, g be the ideal
Lig =" +&pb" 4+ &y | b€ B) < A6y 5]
Denote
A= Al B]/In. (10)

We show that A’ is finite over an affine central subalgebra and thus is Noetherian.

Given a € A, denote o’ = a+ I, p € A, and similarly &, = & + I, g. Then for every b € B,
b’ is n-integral over C[&, |, where

Clén Bl =Cl&1 4,65 | b€ B] C center(A").
Hence the finite subset
W= {5V b eB, ki<n—1} (CA4) (11)

spans A’ over C[¢], ]. Thus A’ is finite over the affine central subalgebra C[¢], 5] C center(A’) and
thus is Noetherian.

Restricting the natural map g : A, g] = A" = A&, B]/In B to A, we have

g A=A (a—d=a+1I,p) (12)
which satisfies
ker(g,) = AN I, p C ANI, s = Obst,(A). (13)
Let
A = A/ Obst,(A), (14)

and for @ € A denote a = a + Obst,(A) € A. We then have the corresponding subset
B ={b|be B} CA, as well as the set of commutative variables { 5 and the ideal I 3.

Let A* = A[Sn,é]/fn,é'

Replacing A by A and &i,B by &, g, we clearly have the natural homomorphism

g: A, 5 = AlE, 5/, 5 = A,

with restriction
§|A:§7A—>A*

Note that each @ € A is n-integral over the center of A, implying, by Corollary 2.19, that

Obsty,(A) = 0. Then, as in (13), we deduce that

ker(g,) C Obst,(A) (=0).

Hence §, embeds A = A/ Obst, (A) into A*. Note that A* is a finite algebra over the affine central
subalgebra Q C A* generated by the finitely many central elements §, 5 + I 5

Denote b* = b+ I 5. Then, as in (11), the finite subset
W* = {b" bk b e B, ki <n—1} (C 4%

spans A* over Q. O
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2.5. Proving that Obst,(A) - (CAP,(A))* =0

In this section we show how Proposition 2.17 implies that Obst,,(A) - (CAP,(A))? = 0, thereby
completing the proof of Razmyslov’s Theorem. For this, we need to specialize down to given
algebra A, requiring a new construction, the relatively free product, which enables us to handle
A together with polynomials. Since, to our knowledge, this crucial step, which is needed one way or
another in every published proof of the BKR theorem, has not yet appeared in print in full detail,
we present two proofs, one faster but more ad hoc (since we intersect with A and bypass certain
difficulties), and the second more structural.

Both approaches are taken in the context of varieties in universal algebra, by taking the free
product of A with the free associative algebra, and then modding out the identities defining its
variety.

2.5.1. The relatively free product

DEFINITION 2.22. The free product A xc B of C-algebras A and B is their coproduct in the
category of algebras.

(For C-algebras with 1, there are canonical C-module maps
A—A®1C A®c B, B—-1®BCA®c B,

viewed naturally as C-modules, so A x¢ B can be identified with the tensor algebra of A ®¢c B, as
reviewed in |29, Example 18.38].)

Although the results through Theorem 2.32 hold over any commutative base ring C, it is easier
to visualize the situation for algebras over a field F', in which case we have an explicit description
of Al a] * F{x;y;t}:

Fix a base By = {1} U By of A over F, and let B be the monomials in the {{,, : a € A}
with coefficients in B4. (For algebras without 1, we take B = By.) Thus B is an F-base of A[¢, a],
and A[&, a] * F{z;y;t} is the vector space having base comprised of all elements of the form
boh1b1habs - - - hyyby, where m > 0, bg, by, € B, by,...,b;—1 € B\ {1}, and the h; are nontrivial
words in the indeterminates x;, y;, t. The free product A[&, ] * F{x;y;t} becomes an algebra via
juxtaposition of terms. In other words, given

9j = bjohjabjiihjebz - hjm;bjm,
for j = 1,2, we write by m, b2 = a1 + >, by, for oy, € F' and by, ranging over B\ {1}, and define

9192 =a1b1oh1,1b1,1h12012 - - (h1,mi h2,1)b2,1h22b22 - - - ho s

+ Z arbioh1,1b1,1h1 2012 - - By biho, 1021022022 - - - ha sy - (15)
k

For example, if b1by = 1 + b3 + by, then

(bah1,1b1)(b2ho,1b2) = ba(h1,1h2,1)ba + bahi 163k 1b2 + bahi 1b4ho 1b2.

2.5.2. The relatively free product of A and C{z;y;t} modulo a T-ideal

Even for algebras over an arbitrary base ring C, we can describe the free product of a C-algebra
with C{z;y;t} by going over the same construction and mimicking the tensor product. Namely we
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form the free C-module M having base comprised of all elements of the form aghiaihsas - - - hpam,
hlalhgag e hmam, a0h1a1h2a2 te hm, and h1a1h2a2 te hm where m 2 0, ag,...,am € A, and the
h; are nontrivial words in the indeterminates z;,y;, t.

The free product A « C{x;y;t} is M/N, where N is the submodule generated by all

aphiathg -+ a; -+ - b + aghiaihe - - - a; - - hyam — aghrarhs - -+ (a; + aj) -+ - hyam,
(Chl) — Ch1,
caghiaihs - --a; — aghiaths - -+ (CCLZ‘) <o R G, a; € A, ce C

A x C{x;y;t} becomes an algebra via juxtaposition of terms, i.e., given
9j = ajohj1a;1hj2a;o - hjm;ajm;
for j = 1,2, we define
9192 = caiphi1a1,1h12a12 - (him, ho1)az1ho2a2.2 - - ham, (16)

when ay y,,a20 =ce€ C, or

9192 = a1a10h11a1,1h12012 - - - b, (@1,m,a2.0)ho 1021022022 -+ - ho my (17)

when aj a2 ¢ C.

We write A(z;y;t) for the free product A « C{x;y;t}.

We have the natural embedding C{z;y;t} — A(z;y;t). For g € C{x;y;t}, we write g for its
natural image in A x C'{x;y;t}.

DEFINITION 2.23. Suppose Z is a T-ideal of C{z;y;t}, for which Z C id(A). The relatively free
product A(x;y;t)z of A and C{x;y;t} modulo T is defined as (A x¢ C{x;y;t})/Z, where 7 is
the two-sided ideal Z(A ¢ C{x;y;t}) consisting of all evaluations on A x C{x;y;t} of polynomials
from 7.

We can consider A(x;y;t)z as the ring of (noncommutative) polynomials but with coefficients
from A interspersed throughout, taken modulo the relations in Z.

This construction is universal in the following sense: Any homomorphic image of A(x;y;t)
satisfying these identities (from Z) is naturally a homomorphic image of A(x;y;t)z. Thus, we have:

LemMMmA 2.24. (i) For any ¢1,...,9k,h1,...,hg in A(x;y;t), there is a natural endomorphism
Alz;y;t)y — A(x;y;t) which fixes A and all ¢; and sends z; — ¢4, y; — h;.
(ii) For any ¢1,..., 9k, h1, ..., hg in A(zx;y;t)z, there is a natural endomorphism

Alz;y;t)r — Az y; )z,
which fixes A and all ¢; and sends x; — g;, y; — h.

Although difficult to describe explicitly, the relatively free product is needed implicitly in all
known proofs of the Braun-Kemer-Razmyslov Theorem in the literature. From now on, we assume
that T contains CAP,11, so that we can work with M.

Let M4 denote the image of M under substitutions to A, i.e., the C-submodule of C’@t}
consisting of the images of all doubly alternating polynomials (in x1...,2,, and in y1,...,Yns)-
In view of Lemma 2.13, the natural action of Obst,(A) on /T/I\A respects multiplication by the
5,in2—operators.

3

PROPOSITION 2.25. Obstn(A)/T/l\A =0.
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Proor. If a € Obst,(A), then aM € Z, in view of Lemmas 2.5 and 2.12 and Proposition 2.17, so
is 0 modulo Z. O

COROLLARY 2.26. If b € A belongs to the T-ideal generated by doubly alternating polynomials,
then Obst,,(A4)b = 0.

Proor. The element b belongs to the linear combinations images of M 4 under specializations
T; — a;. O

By Step 7 of Section 1.2, this will complete the proof of the nilpotence of Jac(A) when C' is
a field, or more generally of any nil ideal when C' is Noetherian, once we complete the proof of
Proposition 2.10.

2.6. A more formal approach to Zubrilin’s argument

Rather than push immediately into A, one can perform these computations first at the level of
polynomials and then specialize. This requires a bit more machinery, since it requires adjoining the
commuting indeterminates &, 4 to the free product, but might be clearer conceptually.

Note that C{t}[&, o] = R @c C{t}.

LEMMA 2.27. M becomes an C/’{?}[fmc{t}]—module via the action given as follows:
Order the & as §5 = &, p; for 1 < j < oc.
For a letter &; = &; p,, define

and, inductively,

For a monomial h = f;lj &M of degree d = dy + - - - + dj, define

~

hf=EP(Er . ehf)

inductively on j.
Finally, define

D (eha)f =D ai(hif)
where ¢; € C and h; are distinct monomials.

PROOF.

The action is clearly well-defined, so we need to verify the associativity and commutativity of
the action. It is enough to show that (h;h;/)f = hi(h;/)f for any two monomials h; and k.. But this

follows inductively from induction on their length, plus the fact that &;(&; f) = &;+(§; f) for any &;
and . O
Let us continue to take Z = CAP,4 1.

REMARK 2.28. Clearly A[, 4] ¢ C{t} C A[&, 4] *¢ C{z;y;t} in the natural way, and then
Z(Afgn,al xc C{t}) = (Alén,a] xc C{t}) NZ(A[én,a] xc C{z;y3t})

since we are just restricting the indeterminates Z, 7, to the indeterminates .

It follows from Noether’s Isomorphism Theorem that

F 1= (Al&n,a] ¢ C{t})/Z(Alén,a] xc C{t}),
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can be viewed naturally in (A[§, a] *¢ C{x;y;t})/Z(A[én, a] ¢ C{x;y;t}).
Viewing M C C{z;y;t} C A&y, a] ¢ C{x;y;t}, we define

M’ = (Al a] x¢ C{tHM C Aléy 4] x¢ Clazy;t), (18)

and its image in (A[€, ] *¢ C{x;y;t})/Z(A[¢n.a] ¢ C{z;y;t}), which we call M (intuitively
consisting of terms ending with images of doubly alternating polynomials), which acts naturally by
right multiplication on F. To understand how M works, we look at the Capelli polynomial acting
on A xc C{x;y;t} for an arbitrary algebra A satisfying Cap,, .

There is a more subtle action that we need. M can be viewed as an R-module where
R=C[¢ Perro }] via the crucial Lemma 2.12. But as above, M is an A * C'{t}-module where the

algebra multiplication is induced from (15) (viewing M C C{z;y;t}), implying M is an A x C{t}-
module annihilated by CAP, 1, and M thereby becomes an A[¢
define

n,C{/x;y\;t}] « C'{t}-module, where we

&onf =8 F

for h € C{w;y;t} and f € M\, by means of the action given in Lemma 2.27, also cf. Remark 2.15.
Our main task is to identify these two actions when they are specialized to A.

2.6.1. The specialization argument

Having in hand the module M on which AlE C@t}]

Proposition 2.17 down to A once we succeed in matching the actions of A[§

acts, we can specialize the assertion of
{ }] and A[gn,A]

when specializing to A.
REMARK 2.29. CAPL(A[én, a]) = CAPR(A)[En, 4], since Capy, is multilinear.

We write DCAP,, for the C’{t} submodule of C{z;y;t} generated by DCap,, cf. (5), and

DCAP for its image in C{m y;t}. This is a set of doubly alternating polynomials in z1,...,z,
and yi, ..., Yy, with variables ¢; interspersed arbitrarily.

LEMMA 2.30. Any specialization ¢ : C{z;y;t} — A (together with its accompanying specialization
@ : C{x;y;t} — A) gives rise naturally to a map

O : A, 4] DCAP, — M

given by

Z ai&k,@(hh)ﬁ' > Z aiP(&ny, [i) = Z ai@(él(jﬁ?jfi)

where ﬁ € DfA\Pn.

PrROOF. We need to show that this is well-defined, which follows from the functoriality property
given in Lemma 2.5. Namely, if ¢(h;,) = ¢(h],), then §(h;,) = §(h; ) and

S oo, = 2 aipl0i) 00 = D ese051) f) = 3o ee 055 1)
O
The objective of this lemma was to enable us to replace A[¢, 4] by A in our considerations.

—

ker @ contains all 5,&”,3]“ - fhhf (cf. Remark 2.11) as well as (h" — ZZ;& ﬁkgk,h)f, where h ranges

over all words and f € D@n, so we see that the Zubrilin integrality relations are passed on.
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LeMMA 2.31. If £ is an infinite set of noncommuting indeterminates whose cardinality N is at least
that of A, then for any given evaluation w in DCAP,, (A xc C{x;y;t}), there is a map

puw : Cla;y; th = Axo Cla;y;th,
sending DCAP,, to DCAP, (A xc C{z;y;t}), such that w is in the image of .

ProOF. Note that A x¢c C{z;y;t} has cardinality X. Setting aside indeterminates
{tg: 9 € Axc C{asyst},

we still have N indeterminates left over, to map onto our original set ¢ of N indeterminates. But any
evaluation w of DCAP,, on A xc C{x;y;t} can be written as

w = gCap,(1,...,Tnig1,- -, 9n)g Capp (Y1, ..., Yni b1, ... hn)g", (19)
for suitable g,¢’, 9", gi, hj € Axc C{x;y;t}. Defining ¢, by sending z; — z;, y; — y;, and sending
the appropriate t, + g, ty = g, tgn v g", tg, > gi, and ty; = hj, we have an element in ot (w).
O

Clearly ¢u(CAPp11) € CAPpi1(A*c C{x;y;t}), so, when Cap,, 1 € Z, ¢, induces a map

Ow : C{z;y;t} = (Axc Clz;y;t})7,

which sends M — M.

Although we do not see that CAP,;1 need be mapped onto CAP,i1(A xc C{z;y;t}),
Lemma 2.31 says that it is “pointwise” onto, according to any chosen point, and this is enough
for our purposes.

THEOREM 2.32. Obst,(A4) - (CAP,(A))? = 0, for any Pl-algebra A = C{ay, ..., as} satisfying the
Capelli identity Cap,, .

Proor.
We form the free algebra C{z;y;t} by taking a separate indeterminate t; for each element

of A[§n7A]Dmn. We work with A[ﬁmA]’Dmn, viewed in the relatively free product A :=

(Alén, a] *c C{z;y;t})z, where T = CAPp11(A[én 4] ¢ C{x;y;t}). In view of Lemma 2.30, the

relation e

L ooy M=0 (mod CAPny1 (Al a] x¢ Claiy;t}))

restricts to the relation I C@t}pﬁﬁn = 0 (mod CAP,11(A[&n a] *¢ C{z;y;t})). But the

various specializations of Lemma 2.31 cover all of DCAP,(A). Hence Lemma 2.5 applied to
Proposition 2.17 and Lemma 2.30 implies I, ADCAP,(A) = 0, and thus
Obst,,(A) - (CAP,(A))? C I, ADCAP,(A) = 0.

d

2.7. The proof of Proposition 2.10

Now we present the proof of the crucial Proposition 2.10, stating that for a doubly alternating
polynomial f = f(z1,...,Zn, Y1,- .., Yn, 1),

515;370};n)(f) = 5,2%/,’:)(]") modulo CAP 1.
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2.7.1. The connection to the group algebra of S,

We begin with the basic correspondence between multilinear identities and elements of the group
algebra over S,.
Vo = Va(x1, ..., xy,) denotes the C-module of multilinear polynomials in z1,...,x,, i.e.,
Vi = 8panc{ Ty (1) (2) " To(n) | 0 € Sn}.
DEFINITION 2.33. We identify V,, with the group algebra C[S,], by identifying a permutation
o € S, with its corresponding monomial (in x1,x2,...,Ty):

0 Mo(21,. ., T0) = To(1) T (n)-

Any polynomial ) asTy(1) - - T (n) corresponds to an element ) ayo € C[S,], and conversely,
> ay0o corresponds to the polynomial

(Z aaa> Tl Ty = Z AoTo(1) " " To(n)-

Here is a combinatorial identity of interest of its own.

Consider two disjoint sets XNY = (), each of cardinality n, and the symmetric group S2, = Sxuy
acting on X UY. For each subset Z C X we define an element P(Z) € C[S2,] as follows:

P(Z)= Z sgn(o) - 0.

o(Z)CY

In particular

P(0) = Z sgn(o) - o.

o€Son
PROPOSITION 2.34.

S (-)PPz)y= > sgn(o) o (20)

ZCX o(X)=X

PROOF. Let o € Sy, and let a, (resp. by) be the coefficient of o on the L.h.s. (resp. r.h.s.) of (20).
We show that a, = b,.

Let Z(o) = o~ 1(Y) be the largest subset Z C X such that o(Z) C Y. Note that o(X) = X if
and only if Z(o) = (. Therefore

b =sgn(o)if Z(o) =0 and b, =0if Z(o) # 0, (21)

since P(0) = > sgn(o) - . We claim that

a, = sgn(o) - Z (-4l

ZCZ(o)
To show this, recall that
l.h.s = Z (—1)l Z sgn(o) - 0.
ZCX o(Z)CY

In P(Z) the coefficient of o is sgn(o) if Z C Z(o) (since then o(Z) CY), and is zero if Z € Z(o)
(since if 0(Z) C Y then o(Z U Z(0)) C Y, contradicting the maximality of Z(o)). It follows that
as claimed,

as =sgn(o)- Y (-1

ZCZ(o)
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It is well known that Z:ZQZ(U)(—l)‘Z| =1 when Z(0) = () and = 0 otherwise. Therefore
ar =sgn(o) if Z(o)=0 and a, =0 if Z(o) #0. (22)

The proof now follows by comparing (21) with (22).
g

LEMMA 2.35. Let f(1,...,%n,Y1,--.,Yn,t ) be doubly alternating. Then

f(xl,...,xn,yl,...,yn,f)Ef(yl,...,yn,xl,...,xn,f) modulo CAP, 1.

Proor. Let X = {z1,...,z,} and Y = {y1,...,yn}. Then | X| = |Y| =

and we identify Sa, = Sxuy. Let M = {z;,...,z;,} € X, with 1 < i1 < -+ < 4 < n, and
N ={yj,,-., v} €Y, with 1 <ji < -+ < jp <n Thus, |[M| = |[N| =k < n. M will play
the role of Z in Proposition 2.34. We consider permutations o € Sy, with o(M) = N. Define the
permutation

nand X NY = 0,

TMN = (xl'pyjl) e (:Elk?y]k)

Since M NN = 0, T7n has order 2 in Sa,, and satisfies sgn(rasy) = (=1)*. If M = X then N =Y
and sgn(Tarn) = sgn(rtxy) = (—1)". Moreover Tayn (M) = N and 7y n(N) = M.

Next, we define

Tyun = Z sgn(m) - m € C[S,].
w(M)=N

Let p = N - 7, so that p(M) = M. Then 7 = 7y - p and

Tyun =sgn(Tyn) - TMN - Z sgn(p) - p

p(M)=M
But by Proposition 2.34,
Z (—)MIp(r) = Z sgno - o. (23)
MCX o(X)=X

If M C X, then P(M) is alternating on 2n — |M| > n + 1 indeterminates, and hence is 0 modulo
CAPp+1. Thus, modulo CAP, 11, the left hand side of (23) equals the unique summand with
M = X, which is

(=" Z sgn(o) - o = (—1)"sgn(rxy) - 7xv Z sgn(o)-o | =

o(X)=Y o(Y)=Y

=Txy - Z sgn(o) - o

o(Y)=Y

Since o(X) = X if and only if o(Y) =Y, it follows that

Z sgn(o) - o = Z sgn(o) -0 =T1xy - Z sgn(o)-o |, modulo CAP, 4.
o(Y)=Y o(X)=X o(Y)=Y
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Now we identify elements in C[S2,] with polynomials multilinear in z1,...,Zn,y1, ..., Yn. Taking a
monomial A(z1,...,Zn,Y1,... ,yn;f) multilinear in x1,...,Tn, Y1, - -, Yn, we define

F(Z1, o T YLy - ey Yns ) = Z sgn(o) o | h.
o(Y)=Y

Then

XY - Z sen(o)-o | h=f(yi, s Yns T15 - T3 1),
o(Y)=Y
Again, since 0(X) = X if and only if o(Y) = Y, it follows that f(x1,...,Zn,y1,...,Yn;1) is doubly
alternating, and we have proved that

f(xl,...,xn,yl,...,yn;f)Ef(yh...,yn,ml,...,xn;f) modulo CAP41,

as desired.

a

2.7.2. Proof of Proposition 2.10

We may assume that h is a new indeterminate z. Recall that
5]E;C7E2n)(f(xlv ey Ty Y, ee >?/m£)) -

= Z f($17~--7$nayl7---aymt)’ziu»—wxm; uzlv"'akv

1<i1 < <ig<n

and
5]%!1)(]8(3311 sy Tns Y1, - 7yn7t )) =

= Z f(:nl,...,mn,yl,...,yn,f)|yiquyiu; u=1,..., k.

1<ip <+ <ip<n

Let 2/ =1+ €z, € being a central indeterminant. Then clearly

n
f(zll'l,. : '7Z,xnvy17 s 7yn7{) = ng ' 6](;7;”)(.][('%'17 s Tns Yl - 7yn7{)) (24)
k=0
and
n
flx1, . @n, 2y, 2y, t) = Zsk . 5,?’/;n)(f(x1, e T YLy Ynst ). (25)
k=0

By Equations (24) and (25) it is enough to show that
f(Zzy,. . 2Ty, ynet ) = flon, . 2, ZY1s o, 2 Yn,t ) modulo CAP,y1.
Let
91($1,---;xn7y1a~--7yn7t) = f(z,$17-~~7zlxn7y1;---7yn7t)

and

—

gg(xl,...,xn,yl,...,yn,f) = f(x1,. . n, 2 Y1, o, 2 Yn, ).
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We have to show that
g1 =g2 modulo CAP, 1.

Denote 2} = 2'x;, y, = 2'y;; ¢ =1,...,n. Then
gl(xla"'awrhyla"'?yn?t):f(xllw"ax;wylv"'vynvt)E

Ef(yl,...,yn,xll,...jx'n,t_’) =
:92(?/17-~-,yn,xla---a$m£> =
=go(®1, - Tns Y1y Yn,T)  modulo CAP, 1.

The congruences follow from Lemma 2.35 since both f and g are doubly alternating.

3. Proof of Kemer’s “Capelli Theorem,”

To complete the proof of Theorem 1.1, it remains to present an exposition of Kemer’s “Capelli
Theorem,” that any affine PI algebra over a field F' satisfies a Capelli identity Cap,, for large enough
n. This is done by abstracting a key property of Cap,,, called spareseness.

DEFINITION 3.1. A multilinear polynomial g =} asZg(1) - - - T4 (q) i @ sparse identity of A if, for
any monomial f(z1,...,zq;1) we have

D o f (1) To(a); ) € id(A).

See [7, §2.5.2| for more detail. The major example of a sparse identity is the Capelli identity. One
proves rather quickly that any sparse identity implies a Capelli identity, so it remains to show that
any affine PI algebra over a field satisfies a sparse identity. There are two possible approaches, both
using the classical representation theory of S,,. One proof relies on “the branching theorem,” which
requires characteristic 0, and the other relies more on the structure of the group algebra F'[S,,], also
with the technique of “pumping” polynomial identities, and works in arbitrary characteristic.

3.1. Affine algebras satisfying a sparse identity

Sparse identities work well with the left lexicographic order <. If by < --- < by, and 1 # o € S,
then (b1,...,0m) < (by(1)s---sbo(m))- Any sparse identity over a field yields a powerful sparse
reduction procedure. Namely, we may assume «(;) = 1; given ay,...,aq in A, we can replace
any term f(aq,...,aq) by

— Z Oégf(xg(l) e xa(d),$d+1, e ,xn).
o#1

(The analogous assertion also holds for ¢,.)

LEMMA 3.2. Let A = C{aj,az...} be a PI algebra, satisfying a sparse multilinear identity p =
> oes, BoTo() *+* To(a) of degree d, with d < n, and let M (21, ..., 2,;% ) be a monomial multilinear
in x1,...,2, and perhaps involving extra indeterminates 7. We consider A = M (v1,...,vn; %),
where vy, ..., v, are words in the generators ai,as,... and ¥ is an arbitrary specialization of 7 in
A. Assume that k of the v; satisfy |v;| > d (length as words in aj,as,...). If £ > d, then A is a
linear combination of monomials A’ = M (v}, ...,v);7) where at most £ — 1 of the words v} have

length > d.
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This clearly implies that A is spanned by monomials A" = M (v], v}, ...), with at most d — 1 of
the v} having length > d.
Proor.

Cram: If Ju,|,...,|vi,| = d, then A = M(vy,...,v,;y) is a linear combination of terms
A= M(vy,...,v.;7) satisfying

(Iv1ly- o lonl) < (Joal, - s o).

The above Claim implies the existence of descending sequences of monomials, under the left
lexicographic order. Such a descending sequence must stop. When it stops we have a corresponding
monomial having strictly fewer words v} for which [v]| > d. Therefore proving the above Claim will
prove the lemma. We now prove the Claim.

We rewrite A = M(vy,...,v;,;7), where iy < ig,--- < 44; then we may assume that
i1 =1,...,ig = d. We write v; = w;u; where |u;| = d — i, 1 <i < d. The sparse identity p implies
that A is a linear combination of terms Ay = M (w1tg(1), - - -, Whilg(q); § ) = M (v}, ..., v ) where

1# 0 €S, (A itself corresponds to o = 1.) To see this, we rewrite A = M (wyu1, ..., wqug; §) as

N(uy,...,uqg; W). The sparse identity p implies that N(ui,...,uq; W) is a linear combination of
elements of the form

N (Ug(1ys - - -3 Ug(ay; W) = M(W1tg(1), - - -, Walle(a): 7)), 17 0 € Sa.

Denote wiuq) = v;, 1 < < d. But then (Jvi],...,[vj]) < (Jvi],...,|vq]) for such o # 1. This
proves the Claim, and completes the proof of the lemma. O

Although we did not apply Shirshov’s Height Theorem, the main argument here is similar. Note
also that Lemma 3.2 applies to any PI algebra, not necessarily affine. In the next theorem, due to
Kemer, we do assume that A is affine.

THEOREM 3.3. Let A = C{ay,...,a,} be an affine PI algebra over a commutative ring C, satisfying
a sparse identity p of degree d, and let n > r? 4 d. Then A satisfies the Capelli identity Cap,,[z;y].

PrROOF. We may assume that r > 2, since otherwise A is commutative. Consider
Cap,,(v1,...,Vp; W1, ..., Wy)

where v;, w; € A. By Lemma 3.2 we may assume that at most d — 1 of the v; have length > d (as
words in the generators aj ..., a,). Hence at least n — (d — 1) of the v; have length < d — 1. The
number of distinct words of length ¢ is < r9. Hence the number of words of length < d — 1 is

d_1
Sl4r+r24 4l = Til <r? (since r > 2).
r—
But we have at least n — (d — 1) such words appearing in vi,...,v,, and n — (d — 1) > r?
(since by assumption n > rd 4+ d). Tt follows that there must be repetitions among vy, ..., v,

so Cap,,(v1, ..., Up; W1, ..., wy,) =0. O

3.2. Actions of the group algebra

It remains to prove the existence of sparse identities for affine Pl-algebras. For this, we turn to
the representation theory of S,,. After a brief review of actions of S;, on Young diagrams, we treat
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the characteristic 0 case, cf. Kemer [15]. The characteristic p > 0 proof, which requires some results
about modular representations but bypassing branching, is done in §3.2 and §4.

Given o,m € Sy, by convention we take om(i) = m(o(i)). The product om corresponding (by
Definition 2.33) to the monomial

Mor = Lor(1) " Lor(n)

can be interpreted in two ways, according to left and right actions of S,, on V,, described
respectively as follows:
Let o,m € Sy. Let y; = x5(;)- Then

(i) oMz(z1...,70) = Mor = Mz(Ts(1); - -+ To(n)) and

(i) Mo(@1...,20)7 = (Y1 Yn)T = Mor = Yr(1) " Yr(n)-
Thus, the effect of the right action of 7 on a monomial is to permute the places of the indeterminates
according to .

Extending by linearity, we obtain for any f = f(z1,...,2,) € V, that

(1) op(1, .. 2n) = P(Teq), -5 Ta(n));

(i) p(xi,...,xn)m = q(Y1,-..,Yn), Where q(yi1,...,yn) is obtained from p(x1,...,z,) by place-
permuting all the monomials of p according to the permutation 7.

For any finite group G and field F, there is a well-known correspondence between the
F[G]-modules and the representations of G. The simple modules correspond to the irreducible
representations.

REMARK 3.4. If p € Id(A), then op € Id(A) since the left action is just a change of variables.
Hence, for any Pl-algebra A, the spaces

1d(A) NV, CV,

are in fact left ideals of F[S,] (thereby affording certain S, representations), but need not be two-
sided ideals. However, we prove below the existence of a nonzero two-sided ideal in Id(A) NV}, a
fact which is of crucial importance in what follows.

REMARK 3.5. Let A be a partition. As explained in |7, p. 147]|, any tableau 7" of A gives rise to an
element
ar= Y sgn(q)gp € O[S,

q€Cr,, PERT,

where Cp, (resp. Rq, ) denotes the set of column (resp. row) permutations of the tableau 7).
a%p = ara; for some ar in the base field F. When ar # 0, which by [29, Lemma 19.59(i)] is
always the case when char(F') does not divide n, in particular, when char(F') = 0, we will call the
idempotent ep := a;laT the Young symmetrizer of the tableau T

Furthermore, by [29, Lemma 19.59(i)], if ar # 0 and then F[S,]ar = Far, implying F[S,]ar
(if nonzero) is a minimal left ideal, which we call Jy. Thus, if J) contains an element corresponding
to a nontrivial PI of A, ap itself must correspond to a PI of A.

s* := dim J) is given by the “hook"formula, see for example [30] or [14], where we recall that
each “hook"number h, for a box x is the number of boxes in “hook"formed by taking all boxes to
the right of 2 and beneath . (In the literature, one writes f* instead of s*, but here we have used
f throughout for polynomials.)

LEMMA 3.6. Suppose L is a minimal left ideal of a ring R. Then the minimal two-sided ideal of R
containing L is a sum of minimal left ideals of R isomorphic to L as modules.
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We let I denote the minimal two-sided ideal of F'[S,] containing Jy.
We define the codimension ¢, (A) = dim (MW) . The characteristic 0 version of the next

result is in [24].

LEMMA 3.7. Let A be an F-algebra, and let A be a partition of n. If dim Jy, > ¢,(A), then
I)\ - Id<A) N an~

ProOOF. By Lemma 3.6, Jy is a sum of minimal left ideals, with each such minimal left ideal J
isomorphic to Jy. Thus, dim J = dim J\ > ¢,(A). Since J is minimal, either J C Id(A) NV}, or
JN (1d(A)NV,) =0.If J N (Id(A) N'V,,) = 0 then it follows that

cn(A) = dim V,,/(1d(A) N V) > dim J > ¢, (A),

a contradiction. Therefore each J C Id(A) NV,. I\ C Id(A4) NV, since I equals the sum of these
minimal left ideals. O

3.3. The characteristic 0 case [15]

The characteristic 0 case is treated separately here, since it can be handled via the classical
representation theory of the symmetric group. By Maschke’s Theorem, the group algebra F'S,, now
is a finite direct product of matrix algebras over F'. We have the decomposition F'S,, = @,.,, Ix-

Thus, Lemma 3.7 yields at once:

LEMMA 3.8. [24] Let char(F) = 0, let A be an F algebra, and let A be a partition of n. If s* > ¢, (A),
then I CId(A)NV,.

(Here I is the sum of those F'[S,]er for which T is a standard tableau with partition A. These
I are minimal two sided ideals, each a sum of s* minimal left ideals isomorphic to .Jy.)

EXAMPLE 3. Consider the “rectangle” of uw rows and v columns. By [20, page 11], the hook
numbers of the partition u = (u") satisfy

th:uv(u+v)/2:nu+v.

2
TEN

Let us review the proof, for further reference. For any box x in the (1,7) position, the hook has
length u+v — j, so the sum of all hook numbers in the first row s

v

Z(u+v—j):uv+v(v2_1):v<u+v;1>.

=1

Summing this over all rows yields

1 -1 1 -1
Uu(u+ )—i-uvv = uv vt +v :uvu+v,
2 2 2 2 2

as desired.
3.3.1. Strong identities

DEFINITION 3.9. Let A be a PI algebra. The multilinear polynomial g € V,, is a strong identity of
A if for every m > n we have F'S,, - g- F'S,,, CId(A).
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Note that every strong identity is sparse. To obtain strong identities, we utilize the following
construction, due to Amitsur.

The natural embedding S,, C Sp41 (via o(n+ 1) = n+ 1 for o € S,) induces the embedding
Vo € Vpsa: f(zr, ..o xn) = f(z1,...,20) - Tpy1. More generally, for any n < m we have the
inclusion V,, C Vp,, via f(z1,...,2n) = f(21,...,Tn) - Tnt1 - T

For f(x) = f(x1,...,%0) = Y ses, QoTo(l) " To(n) € Va, we define

fr@, T g1, - Ton-1) = Z AoT (1) Tnt1Te(2)Tnt2 *** To(n—1)T2n—1Ta(n)  (26)
O'ESn

= (f(mla ceey 'rn)xn—‘rl e 'x2n—1)777

where n € So,_1 is the permutation

1 2 3 4 e 2n—1
7]—<1 n+l 2 n4+2 - n > (27)

Let L C {xp41,...,22,—1} and denote by f; the polynomial obtained from f* by substituting
xzj — 1 for all z; € L. Rename the indeterminates in {y41,...,22n—1} \ L as {Znt1,..., Tntq}
(where ¢ = n — 1 — |L|) and denote the resulting polynomial as f;. Then similarly to (26), there
exists a permutation p € Sy, 44 such that f; = (frni1- - Tnyq)p-

Note that if 1 € A and f* € Id(A), then also f; € Id(A) for any such L, and in particular
f € 1d(A). The converse is not true: it is possible that f € Id(A) but f* ¢ Id(A).

LeMMA 3.10. Let A be a PI algebra, let I C V,, be a two—sided ideal in V,,, and assume for any
f eI that f* € Id(A) (and thus f € Id(A)). Then for any m > n,

(FSm)I(FS,,) CId(A).
PROOF. Since (F'Sp,)I C Id(A), it suffices to prove:
Cramv: If f € I and w € Sy, then fim = (f(z1,...,2n)Tps1 - )7 € Id(A).

If f= desn g0 (X1 Ty - Tpy), then fim = ZUESn g0 (m(x1 - Xy -+ - Ty)).

Consider the positions of z1,...,z, in the monomial 7(xy---xy,): There exists 7 € S, such
that

(L1 T+ Tm) = G0Tr(1)91T7(2)92 * ** In—1Tr(n)In = T(90T1917292 * ** Gn—1TnGn),
where each g; is = 1 or is a monomial in some of the indeterminates x,1,...,2m,. It follows

that fim = (f7)(gox1912292 - - Gn—1Zngn). Since f € V,, and 7 € S,, fr only permutes the
indeterminates x1, ..., zy, and hence (see (26))

Jim = (f7)(902191%292 - - - gn—1Tngn) = go((fT) [®1, ..., Tn; 91, - Gn—-1])In-

Since I is two-sided, f7 € I, hence by assumption (f7)* € Id(A), which by the last equality implies
that fr € 1d(A4). O
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3.3.2. Existence of nonzero two-sided ideals I, C F'S,, of identities

Let ¢,(A) < " for all n. The next lemma yields rectangles © = (u”) = n such that o™ < st.

LEMMA 3.11. Let 0 < u,v be integers and let u be the u x v rectangle p = (u”) - u-v. Let n = uv.

Then RN

(u n v) . <€> < st (where e =2.718281828...).
In particular, if o < 75 - % then o < st.
Proor.

Since the geometric mean is bounded by the arithmetic mean,

1/n
1 U+ v

TEN TEN

(o) <1
u-+v \HIE/,Lhm‘

Together with the classical inequality (n/e)™ < n!, this implies that
wo \" 2\" n\" 2 \" n!
. - = (—) . < = = Su.
T e e T [L.c u hy

REMARK 3.12. To apply this, we need Regev’s estimate [23] of codimensions,

in view of Example 3, and hence

O

em(A) < (d—1)*",
as explained in |7, Theorem 5.38].

PRrROPOSITION 3.13. [4] Let A be a PI algebra satisfying an identity of degree d. Choose natural
numbers v and v such that

2
wo.z > (d—1)%. For example, choose u=v>e-(d—1)*
u+v e

Let n = wv and let p = (u) be the u x v rectangle. Let n < m < 2n and let A F m be any partition
of m which contains p: (u¥) C A. Then the elements of the corresponding two-sided ideal I C F'Sy,
are identities of A: Iy CId(A)NV,,.

PROOF. Since m < 2n, (d—1)>™ < (d—1)*", and by assumption (d—1)* < -2 -2 By Lemma 3.11,

utv e’

n
(uiv . %) < s* and since u C A, we know that s# < s*. Thus, by Remark 3.12,

2 n
cm(A)g(d—1)2m<(d—1)4”<< u ) < st < s,
u+v e

and the assertion now follows from Lemma 3.8. O

COROLLARY 3.14. Hypotheses as in Proposition 3.13, for n < m < 2n,

P 1, c14(A4).

AFm
nCA

Consequently, if f € I, then f* € Id(A) N Va,—1 (see (26)). Also, for any subset L C
{n+1,...,2n -1}, ff € 1d(A), and in particular f € Id(A).
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PrROOF. By “branching,” the two-sided ideal generated in V;,, by I, is

Vil Vi = (FSm) I, (FSp) = € .

AFm
HCX

Hence, (FSy,)I1,(FSy) C Id(A) for any n < m < 2n — 1, and in particular, if f € I, and p € Sy,
then fp € Id(A). (26) concludes the proof. O
By Proposition 3.13 and Lemma 3.10 we have just proved

PRrROPOSITION 3.15. Every PI algebra in characteristic 0 satisfies non-trivial strong identities.
Explicitly, let char(F) = 0 and let A satisfy an identity of degree d. Let u,v be natural numbers
such that ;2% - 2 > (d—1)* and let p = (u’) be the u x v rectangle. Then every g € I, is a
strong identity of A. The degree of such a strong identity ¢ is uwv. We can choose for example
u=v=[e-(d—1)*], so deg(g) = [e- (d—1)*]? = e2(d — 1)3.

We summarize:

THEOREM 3.16. Every affine PI algebra over a field of characteristic 0 satisfies some Capelli identity.
Explicitly, we have the following:

(a) Suppose the F-algebra A satisfies an identity of degree d. Then A satisfies a strong identity
of degree
d =[e(d—1)4? =e*(d - 1)%.

(b) Suppose A = F{ay,...,a,}, and A satisfies an identity of degree d and take d’ as in (a).
Let n = r? +d ~ r°@=1° Then A satisfies the Capelli identity Cap,,.

PROOF. (a) is by Proposition 3.15, and then (b) follows from Theorem 3.3, since every strong
identity is sparse. O

3.4. Actions of the group algebra on sparse identities

Although the method of §3.2 is the one customarily used in the literature, it does rely on
branching and thus only is effective in characteristic 0. A slight modification enables us to avoid
branching. The main idea is that any sparse identity follows from an identity of the form

[ = Z Aoly(1)Tn+1 " Lo(n)L2ns
O’ESn

since we could then specialize Z,41,...,%2, to whatever we want. Thus, letting V,! denote the
subspace of Vs, generated by the words T4 (1)Zn+1 -+ * T (n)T2n, We can identify the sparse identities
with F[S,]-subbimodules of V, inside Va,. But there is an as F[S,]-bimodule isomorphism
o+ Vo — Vg, given by To(1)  Ton) = To(1)Tntl: " Ton)T2n- In particular V;; has the same
simple F'[Sy]-subbimodules structure as V;, and can be studied with the same Young representation
theory, although now we only utilize the left action of permutations.

Thus, for any Pl-algebra A, the spaces

ANV, Ccv.

are F[S,]-subbimodules of V..
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REMARK 3.17. Again, any tableau T" of 2n boxes gives rise to an element

ar = ¢ > sen(g)gp | € F[Sal,
(IGCTA’ PERTA

where Cr, (resp. Rr, ) denotes the set of column (resp. row) permutations of the tableau T}.
Thus, F[Sy]ar (if nonzero) is an F[S,]-submodule, which we call Jy. If Jy contains an element
corresponding to a nontrivial PI of A, ap itself must correspond to a PI of A.

We let I) denote the minimal F[S),]-bisubmodule of F'[Sy,] containing Jy.

LEMMA 3.18. Let A be an F-algebra, and let A be a partition of n. If dim Jy > ¢2,,(A4) and J), is a
simple F[S,]-module, then I, CId(A) N V.

PROOF. Same as Lemma 3.7, noting that I is a sum of F[S,]-submodules Jya each isomorphic to
Jx. Thus, taking such J, one has
cn(A) = dim (VT;) > dim J > ¢ (A)
" ANV, )~ e
a contradiction. Therefore each J C Id(A) NV, implying I, CId(A)NV,. O
Note that when char(F) = p > 0, the lemma might fail unless Jy is simple. James and Mathas
[13, Main Theorem| determined when Jy is simple for p = 2.
One such example is when A is the staircase, which we define to be the Young tableau T, whose
u rows have length u,u —1,...,1. This gave rise to the James-Mathas conjecture [21] of conditions
on A characterizing when J) is simple in characteristic p > 2, which was solved by Fayers [9].

4. Kemer’s Capelli Theorem for all characteristics

In this section we give a proof of Kemer’s “Capelli Theorem” over a field of any characteristic.
In fact in characteristic p Kemer proved a stronger result, even for non-affine algebras.

THEOREM 4.1. [17] Any PI algebra over a field F' of characteristic p > 0 satisfies a Capelli identity
Cap,, for large enough n.

This fails in characteristic 0, since the Grassmann algebra does not satisfy a Capelli identity. The
proof of Theorem 4.1 given in [17] is quite complicated; an elementary proof using the “identity of
algebraicity” is given in [7, §2.5.1|, but still requires some computations. In the spirit of providing a
full exposition which is as direct as possible, we treat only the affine case via representation theory,
in which case characteristic p > 0 works analogously to characteristic 0. This produces a much
better estimate of the degree of the sparse identity, which we obtain in Theorem 4.4.

In view of Theorem 3.3, it suffices to show that any affine PI algebra satisfies a sparse identity.
Although we cannot achieve this through branching, the ideas of the previous section still apply,
using [9].

4.1. Simple Specht modules in characteristic p > 0

In order to obtain a p-version of Proposition 3.13 in characteristic p > 2, first we need to find
a class of partitions satisfying Fayer’s criterion.

For a positive integer m, define v, to be the p-adic valuation, i.e., v,(m) is the largest power
of p dividing m. Also, temporarily write h(;;) for h, where z is the box in the 7, j position. The
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James-Mathas conjecture for p # 2, proved in [9], is that Jy is simple if and only if there do not
exist i, j,4', j for which vy (h;;)) > 0 with vy(hj)), vp(har)), vp(hyyn) all distinct. Of course this
is automatic when each hook number is prime to p, since then every v, (h(;;)) = 0.

ExXaAMPLE 4. A wide staircase is a Young tableau T, whose u rows have all have lengths
different multiples of p — 1, the first row of length (p — 1)u, the second of length (p — 1)(u— 1), and
so forth until the last of length p — 1. The number of bozes is

u

RZZ(p—l)jZ(p—1)<u;rl>-

Jj=1

When p = 2, the wide staircase just becomes the staircase described earlier.

In analogy to Example 3, the dimension of the “wide staircase” T, can be estimated as follows:
We write j = (p — 1)j' + 7" for 1 < j” < p — 1. The hook of a box in the (i, j) position has length
(u+1—1i)(p—1)+1—j, and depth u+ 1 — 5" — 7, so the hook number is

(utl-d)p-)+1—jtu—j —i=@u+l-ip—j—j=(w+1+j —ip—j",

which is prime to p. Thus each wide staircase satisfies a stronger condition than Fayer’s criterion.
The dimension can again be calculated by means of the hook formula. The first p — 1 boxes in
the first row have hook numbers

pu—1l,pu—2,....,pu—(p—1),

whose sum is (p — 1)pu — (5) = (5)(2u —1).
The next p — 1 boxes in the first row have hook numbers

plu—1)=1Lpu—1)-2,...;p(u—1) = (p—1),

whose sum is (p — 1)p(u — 1) — (5) = (5)(2u — 3).
Thus the sum of the hook numbers in the first row is

<§)((2u—1)+(2u_3)+"‘+1) = (22?)“2-

Summing over all rows yields

th _ <129> kzu:_lkg _ <]29> u(u—|—1)6(2u+1) _ (];)(Qu—;l)n

LEMMA 4.2. For any integer u, let p be the wide staircase T, of u rows. Let n = (p — 1)(12‘) Then

(p(p — 1(;7(1211 n 1))” . (i)n < fH (where e =2.718281828...).

In particular, if o < (?’%1), then o™ < fH.

2u e

ProOoOF. We imitate the proof of Lemma 3.11. Since the geometric mean is bounded by the

arithmetic mean,
1/n
1 p\ 2u+1)n  plp—1)2u+1)n
x g - X g == 9
(In) <ixn=(3) ;

TEM TEU

in view of Example 4, together with (n/e)™ < n!, implies that

<p(p— 16)7(12“ + 1))” ' <(13)" - (9” (p(p — 1)6(2u+ 1))” - HIZLM -
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LEMMA 4.3. Let A be a PI algebra over a field of characteristic p, that satisfies an identity of degree

d. Choose a natural number u such that, for n = (p — 1)(“;1),

6n 1
o D) o2 @D

Let A F n be any partition of n corresponding to the “wide staircase” T;,. Then the elements of the
corresponding F[S,]-bimodule Iy C V! are sparse identities of A.

Proor. By Remark 3.12,

can4) < (d =17 < (p(p - 16)?211 +1) flf> <7

and we conclude from Lemma 3.18. O

4.1.1. Existence of Capelli identities

We are ready for a version of Proposition 3.15.

THEOREM 4.4. [17] Any PI- algebra A over a field F' of characteristic p > 0 satisfies a Capelli
identity. Explicitly:

(a) Suppose the F-algebra A satisfies an identity of degree d. Then A satisfies a sparse identity

of degree d' = (p — 1)p("+"), where ;1(‘2(313 > (d—1)2%.

(b) Suppose A = F{ay,...,a,}, and A satisfies an identity of degree d and take d’ as in (a).
Let n = rd + d ~ r4*(@=D" Then A satisfies the Capelli identity Cap,,.

PRrOOF. (a) is by Lemma 4.3. Then (b) follows from Theorem 3.3. O

: ut1 1 2pe(d—1)2
For example, since 5;°5 > 3, =

This concludes the proof of Theorem 4.1 in the affine case.

we could take u >

5. Results and proofs over Noetherian base rings

We turn to the case where C' is a commutative Noetherian ring. In general, we say a C-algebra
is PI if it satisfies a polynomial identity having at least one coefficient equal to 1. Let us indicate
the modifications that need to be made in order to obtain proofs of Theorems 1.6 and 1.7.

The method of proof of Theorem 1(2) (for the case in which the base ring C is a field) was to
verify the “weak Nullstellensatz”, and a similar proof works for A commutative when C' is Jacobson,
cf. [26, Proposition 4.4.1]. Thus we have Theorems 1.6 and 1.7 in the commutative case, which
provide the base for our induction to prove Theorem 1.3. The argument is carried out using Zubrilin’s
methods (which were given over an arbitrary commutative base ring.)

It remains to find a way of proving Kemer’s Capelli Theorem over arbitrary Noetherian base
rings. One could do this directly using Young diagrams, but there also is a ring-theoretic reduction.
The following observations about Capelli identities are useful.

LeMMA 5.1. (i) Suppose n = ning---ng. If A satisfies the identity Cap,,, x --- x Cap,,, then A
satisfies the Capelli identity Cap,,.

(ii) If I < A and A/I satisfies Cap,, for m odd, with I* = 0, then A satisfies Capy,,, .

(iii) If I < A and A/I satisfies Cap,, with I¥ = 0, then A satisfies Capy (1) -
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PrROOF. (i) Viewing the symmetric group Sy, X -+ xSy, < Sy, we partition S,, into orbits under
the subgroup S,, X --- xSy, and match the permutations in Cap,,.

(ii) This time we note that any interchange of two odd-order sets of letters has negative sign,
so we partition Sk, into k parts each with m letters.

(ili) Any algebra satisfying Cap,, for m even, also satisfies Cap,, ;, and m + 1 is odd. O

Thus, it suffices to prove that A satisfies a product of Capelli identities.

THEOREM 5.2. Any affine PI algebra over a commutative Noetherian base ring C' satisfies some
Capelli identity.

ProOOF. By Noetherian induction, we may assume that the theorem holds for every affine Pl-algebra
over a proper homomorphic image of C.

First we do do the case where C is an integral domain, and A = C{ay,...,as} satisfies some
multilinear PI f. It is enough to assume that A is the relatively free algebra C{x1,...,z,}/I (where
I is the T-ideal generated by f). Let F' be the field of fractions of C. Then Ap := A ®¢ F is also
a Pl-algebra, and thus, by Theorem 4.1 satisfies some Capelli identity f; = Cap,, . Thus the image
fi of fi in A becomes 0 when we tensor by F, which means that there is some s € C for which
sfi = 0. Letting I’ denote the T-ideal of A generated by the image of fi, we see that sI’ = 0. If
s = 1 then we are done, so we may assume that s € C' is not invertible. Then A/sA is an affine
Pl-algebra over the proper homomorphic image C/sC of C, and by Noetherian induction, satisfies
some Capelli identity Cap,,,, so A/(sANI’) satisfies Capyaxim,n}- But sANI" is nilpotent modulo
sAI' = AsI’ = 0, implying by Lemma 5.1 that A satisfies some Capelli identity.

For the general case, the nilpotent radical N of C is a finite intersection P N --- N P; of prime
ideals. By the previous paragraph, A/P; A, being an affine PI-algebra over the integral domain C'/P;,
satisfies a suitable Capelli identity Cap,, , for 1 < j < ¢, so A/ N (PjA) satisfies Cap,,, where
n = max{ni,...,n:}. But N(P;A) is nilpotent modulo NA, so, by Lemma 5.1, A/N A satisfies a
suitable Capelli identity Cap,, . Furthermore, N™ = 0 for some m, implying again by Lemma 5.1
that A satisfies C™". O
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