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Аннотация

Дается замкнутое в себе альтернативное комбинаторное изложение доказательство тео-
ремы Размыслова-Кемера-Ббрауна о нильпотентности радикала афинной PI-алгебры над
нетеровым ассоциативно-коммутативным кольцом. В свое время сообщество не верило в
справедливость этого результата и вопреки общественному мнению соответствующий во-
прос был поставлен В.Н.Латышевым в его докторской диссертации.

Начнем с определения:

1. Алгебра 𝐴 является аффинной над коммутативным кольцом 𝐶, если 𝐴 порождается
как алгебра над 𝐶 конечным числом элементов 𝑎1, . . . , 𝑎ℓ; в этом случае мы пишем
𝐴 = 𝐶{𝑎1, . . . , 𝑎ℓ}.

2. Мы говорим, что алгебра 𝐴 является конечной, если 𝐴 порождено как 𝐶-модуль
конечным числом элементов.

3. Алгебры над полем называются PI алгебрами, если они удовлетворяют (нетриви-
альным) полиномиальным тождествам.

4. Многочлен Капелли Cap𝑘 степени 2𝑘 определяется так:

Cap𝑘(𝑥1, . . . , 𝑥𝑘; 𝑦1, . . . , 𝑦𝑘) =
∑︁
𝜋∈𝑆𝑘

sgn(𝜋)𝑥𝜋(1)𝑦1 · · ·𝑥𝜋(𝑘)𝑦𝑘

5. Jac(𝐴) обозначает радикал Джекобсона алгебры 𝐴, который для PI-алгебр является
пересечением максимальных идеалов 𝐴 по теореме Капланского.

Ключевые слова: алгебры с полиномиальными тождествами, многообразия алгебр;
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Abstract

A self-contained, combinatoric exposition is given for the Braun–Kemer–Razmyslov Theorem
over an arbitrary commutative Noetherian ring.At one time, the community did not believe in
the validity of this result, and contrary to public opinion, the corresponding question was posed
by V.N. Latyshev in his doctoral dissertation.

One of the major theorems in the theory of PI algebras is the Braun-Kemer-Razmyslov
Theorem. We preface its statement with some basic definitions.

1. An algebra 𝐴 is affine over a commutative ring 𝐶 if 𝐴 is generated as an algebra over 𝐶
by a finite number of elements 𝑎1, . . . , 𝑎ℓ; in this case we write 𝐴 = 𝐶{𝑎1, . . . , 𝑎ℓ}.

We say the algebra 𝐴 is finite if 𝐴 is spanned as a 𝐶-module by finitely many elements.
2. Algebras over a field are called PI algebras if they satisfy (nontrivial) polynomial

identities.
3. The Capelli polynomial Cap𝑘 of degree 2𝑘 is defined as

Cap𝑘(𝑥1, . . . , 𝑥𝑘; 𝑦1, . . . , 𝑦𝑘) =
∑︁
𝜋∈𝑆𝑘

sgn(𝜋)𝑥𝜋(1)𝑦1 · · ·𝑥𝜋(𝑘)𝑦𝑘

4. Jac(𝐴) denotes the Jacobson radical of the algebra 𝐴 which, for PI-algebras is the
intersection of the maximal ideals of 𝐴, in view of Kaplansky’s theorem.

The aim of this article is to present a readable combinatoric proof of the theorem: The

Braun-Kemer-Razmyslov Theorem The Jacobson radical Jac(𝐴) of any affine PI algebra

𝐴 over a field is nilpotent.
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1. The BKR Theorem

1.1. Introduction

One of the major theorems in the theory of PI algebras is the Braun-Kemer-Razmyslov Theorem
(Theorem 1.1 below). We preface its statement with some basic definitions.

Definition 1. 1. An algebra 𝐴 is affine over a commutative ring 𝐶 if 𝐴 is generated
as an algebra over 𝐶 by a finite number of elements 𝑎1, . . . , 𝑎ℓ; in this case we write
𝐴 = 𝐶{𝑎1, . . . , 𝑎ℓ}.

2. We say the algebra 𝐴 is finite if 𝐴 is spanned as a 𝐶-module by finitely many elements.

3. Algebras over a field are called PI algebras if they satisfy (nontrivial) polynomial identities.

4. The Capelli polynomial Cap𝑘 of degree 2𝑘 is defined as

Cap𝑘(𝑥1, . . . , 𝑥𝑘; 𝑦1, . . . , 𝑦𝑘) =
∑︁
𝜋∈𝑆𝑘

sgn(𝜋)𝑥𝜋(1)𝑦1 · · ·𝑥𝜋(𝑘)𝑦𝑘

5. Jac(𝐴) denotes the Jacobson radical of the algebra 𝐴 which, for PI-algebras is the intersection
of the maximal ideals of 𝐴, in view of Kaplansky’s theorem.

Theorem 1.1 (The Braun-Kemer-Razmyslov Theorem). The Jacobson radical Jac(𝐴) of any affine
PI algebra 𝐴 over a field is nilpotent.

The aim of this article is to present a readable combinatoric proof (essentially self-contained in
characteristic 0).

Let us put the BKR Theorem into its broader context in PI theory. We say a ring is Jacobson if
the Jacobson radical of every prime homomorphic image is 0. For PI-rings, this means every prime
ideal is the intersection of maximal ideals. Obviously any field is Jacobson, since its only prime
ideal 0 is maximal. Furthermore, any commutative affine algebra over a field is Noetherian by the
Hilbert Basis Theorem and is Jacobson, in view of [28, Proposition 6.37], often called the “weak
Nullstellensatz,” implying the following two results:

� (cf. Proposition 1.11) If a commutative algebra 𝐴 is affine over a field, then Jac(𝐴) is nilpotent.

� (Special case of Theorem 2) If 𝐴 is a finite algebra over an affine central subalgebra 𝑍 over
a field, then Jac(𝐴) is nilpotent. (Sketch of proof: Passing to homomorphic images modulo
prime ideals, we may assume that 𝐴 is prime PI, and 𝑍 is an affine domain over which 𝐴 is
torsion-free. The maximal ideals of 𝑍 lift up to maximal ideals of 𝐴, in view of Nakayama’s
lemma, implying 𝑍 ∩ Jac(𝐴) ⊆ Jac(𝑍) = 0. If 0 ̸= 𝑎 ∈ Jac(𝐴), then writing 𝑎 as integral over
𝑍, we have the nonzero constant term in 𝑍 ∩ Jac(𝐴) = 0, a contradiction.)

Since either of these hypotheses implies that 𝐴 is a PI-algebra, it is natural to try to find an
umbrella result for affine PI-algebras, which is precisely the Braun-Kemer-Razmyslov Theorem. This
theorem was proved in several stages. Amitsur [1, Theorem 5], generalizing the weak Nullstellensatz,
proved that if 𝐴 is affine over a commutative Jacobson ring, then Jac(𝐴) is nil. In particular, 𝐴
is a Jacobson ring. (Later, Amitsur and Procesi [3, Corollary 1.3] proved that Jac(𝐴) is locally
nilpotent.) Thus, it remained to prove that every nil ideal of 𝐴 is nilpotent.

It was soon proved that this does hold for an affine algebra which can be embedded into a
matrix algebra, see Theorem 1 below. However, examples of Small [33] showed the existence of
affine PI algebras which can not be embedded into any matrix algebra. Thus, the following theorem
by Razmyslov [22] was a major breakthrough in this area.
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Theorem 1.2 (Razmyslov). If an affine algebra 𝐴 over a field satisfies a Capelli identity, then its
Jacobson radical Jac(𝐴) is nilpotent.

Although Razmyslov’s theorem was given originally in characteristic zero, he later found a proof
that works in any characteristic. As we shall see, the same ideas yield the parallel result:

Theorem 1.3. Let 𝐴 be an affine algebra over a commutative Noetherian ring 𝐶. If 𝐴 satisfies a
Capelli identity, then any nil ideal of 𝐴 is nilpotent.

Following Razmyslov’s theorem, Kemer [15] then proved

Theorem 1.4. [15] In characteristic zero, any affine PI algebra satisfies some Capelli identity (see
Theorem 3.3).

Thus, Kemer completed the proof of the following theorem:

Theorem 1.5 (Kemer-Razmyslov). If 𝐴 is an affine PI-algebra over a field 𝐹 of characteristic zero,
then its Jacobson radical Jac(𝐴) is nilpotent.

Then, using different methods relying on the structure of Azumaya algebras, Braun proved the
following result, which together with the Amitsur-Procesi Theorem immediately yields Theorem 1.1:

Theorem 1.6. Any nil ideal of an affine PI-algebra over an arbitrary commutative Noetherian ring
is nilpotent.

Note that to prove directly that Jac(𝐴) is nilpotent it is enough to prove Theorem 1.6 and show
that Jac(𝐴) is nil, which is the case case when 𝐴 is Jacobson, and is called the “weak Nullstellensatz.”
But the weak Nullstellensatz requires some assumption on the base ring 𝐶. It can be proved without
undue difficulty that 𝐴 is Jacobson when 𝐶 is Jacobson, cf. [26, Theorem 4.4.5]. Thus, in this case
the proper general formulation of the nilpotence of Jac(𝐴) is:

Theorem 1.7 (Braun). If 𝐴 is an affine PI-algebra over a Jacobson Noetherian base ring, then
Jac(𝐴) is nilpotent.

Small has pointed out that Theorems 1.6 and 1.7 actually are equivalent, in view of a trick of [25].
Indeed, as just pointed out, Theorem 1.6 implies Theorem 1.7. Conversely, assuming Theorem 1.7,
one needs to show that Jac(𝐴) is nil. Modding out the nilradical, and then passing to prime images,
one may assume that 𝐴 is prime. Then one embeds 𝐴 into the polynomial algebra 𝐴[𝜆] over the
Noetherian ring 𝐶[𝜆], and localizes at the monic polynomials over 𝐶[𝜆], yielding a Jacobson base
ring by [25, Theorem 2.8].

Braun’s qualitative proof was also presented in [27, Theorem 6.3.39], and a detailed exposition,
by L’vov [19], is available in Russian. A sketch of Braun’s proof is also given in [5, Theorem 3.1.1].

Meanwhile, Kemer [17] proved:

Theorem 1.8. [17] If 𝐴 is a PI algebra (not necessarily affine) over a field 𝐹 of characteristic
𝑝 > 0, then 𝐴 satisfies some Capelli identity.

Together with a characteristic-free proof of Razmyslov’s theorem 1.2 due to Zubrilin [34],
Kemer’s Theorems 1.4 and 1.8 yield another proof of the Braun-Kemer-Razmyslov Theorem 1.1.
The paper [34] is given in rather general circumstances, with some non-standard terminology.
Zubrilin’s method was given in [7], although [7, Remark 2.50] glosses over a key point (given
here as Lemma 2.13), so a complete combinatoric proof had not yet appeared in print with all the
details. Furthermore, full combinatoric details were provided in [7] only in characteristic 0 because
the conclusion of the proof required Kemer’s difficult Theorem 1.8. We need the special case, which
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we call “Kemer’s Capelli Theorem,” that every affine PI-algebra 𝐴 over an arbitrary field satisfies
some Capelli identity. This can be proved in two steps: First, that 𝐴 satisfies a “sparse” identity, and
then a formal argument that every sparse identity implies a Capelli identity. The version given here
(Theorem 4.4) uses the representation theory of the symmetric group 𝑆𝑛, and provides a reasonable

quartic bound ((𝑝 − 1)𝑝
(︀
𝑢+1
2

)︀
, where 𝑢 = 2𝑝𝑒(𝑑−1)2

3 ) for the degree of the sparse identity of 𝐴 in
terms of the degree 𝑑 of the given PI of 𝐴.

It should be noted that every proof that we have cited of the Braun-Kemer-Razmyslov Theorem
ultimately utilizes an idea of Razmyslov defining a module structure on generalized polynomials
with coefficients in the base ring, but we cannot locate full details of its implementation anywhere
in the literature. One of the objectives of this paper is to provide these details, in §2.5 and §2.6.1.
Although the proof is rather intricate for a general expository paper, we feel that the community
deserves the opportunity to see the complete argument in print.

We emphasize the combinatoric approach here. Aside from the intrinsic interest in having such a
proof available of this important theorem (and characteristic-free), these methods generalize easily
to nonassociative algebras, and we plan to use this approach as a framework for the nonassociative
PI-theory, as initiated by Zubrilin. (The proofs are nearly the same, but the statements are
somewhat more complicated. See [6] for a clarification of Zubrilin’s work in the nonassociative
case.) To keep this exposition as readable as we can, we emphasize the case where the base ring
𝐶 is a field and prove Theorem 1.1 directly by an induction argument without subdividing it into
Theorem 1.6 and the weak Nullstellensatz, although we also treat these general cases.

§2 follows Zubrilin’s short paper [34], and gives full details of Zubrilin’s proof of Razmy-lov’s
theorem 1.2. This self–contained proof is characteristic free.

To complete the proof of the BKR Theorem, it remains to prove Kemer’s Capelli Theorem.
In §3 we provide the proof in characteristic 0, by means of Young diagrams, and §4 contains the
characteristic 𝑝 analog (for affine algebras). An alternative proof could be had by taking the second
author’s “pumping procedure” which he developed to answer Specht’s question in characteristic 𝑝,
and applying it to the “identity of algebraicity” [7, Proposition 1.59]. We chose the representation-
theoretic approach since it might be more familiar to a wider audience. The proof of Theorem 1.6,
over arbitrary commutative Noetherian rings, is given in §5.

Remark 1.9. An early version of Theorem 3.16 was written by Amitai Regev, to whom we are
indebted for suggesting this project and providing helpful suggestions all along the way. Belov
belongs lemma 3.8

1.2. Structure of the proof

We assume that 𝐴 is an affine 𝐶-algebra and satisfies the 𝑛 + 1 Capelli identity Cap𝑛+1 (but
not necessarily the 𝑛 Capelli identity Cap𝑛), and we induct on 𝑛: if such 𝐴 satisfies Cap𝑛 then we
assume that Jac(𝐴) is nilpotent, and we prove this for Cap𝑛+1. For the purposes of this sketch, in
Steps 1 through 3 and Step 7 we assume that 𝐶 is a field 𝐹 .

The same argument shows that any nil ideal 𝑁 of an affine algebra 𝐴 over a Noetherian ring
is nilpotent, yielding Theorem 1.3. For this result we would replace Jac(𝐴) by 𝑁 throughout our
sketch.

We write 𝐶{𝑥, 𝑦, 𝑡} for the free (associative) algebra over the base ring 𝐶, with inde-
terminates 𝑥𝑖, 𝑦𝑗 , 𝑡𝑘, 𝑧, containing one extra indeterminate 𝑧 for further use. This is a free module
over 𝐶, whose basis is the set of words, i.e., formal strings of the letters 𝑥𝑖, 𝑦𝑗 , 𝑡𝑘, 𝑧. The 𝑥 and
𝑦 indeterminates play a special role and need to be treated separately. We write 𝐶{𝑡} for the free
subalgebra generated by the 𝑡𝑘 and 𝑧, omitting the 𝑥 and 𝑦 indeterminates.

1. The induction starts with 𝑛 = 1. Then 𝑛 + 1 = 2, and any algebra satisfying Cap2 is
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commutative. We therefore need to show that if 𝐴 is commutative affine over a field 𝐹 , then Jac(𝐴)
is nilpotent. This classical case is reviewed in §1.3.1.

2. Next is the finite case: If 𝐴 is affine over a field 𝐹 and a finite module over an affine central
subalgebra, then Jac(𝐴) is nilpotent. This case was known well before Razmyslov’s Theorem, and
is reviewed in §1.3.2. Theorem 1.3 follows whenever 𝐴 is a subring of a finite dimensional algebra
over a field.

3. Let 𝒞𝒜𝒫𝑛 = 𝑇 (Cap𝑛) be the 𝑇 -ideal generated by Cap𝑛, and let 𝒞𝒜𝒫𝑛(𝐴) ⊆ 𝐴 be the
ideal generated in 𝐴 by the evaluations of Cap𝑛 on 𝐴, so 𝐴/𝒞𝒜𝒫𝑛(𝐴) satisfies Cap𝑛. Therefore, by
induction on 𝑛, Jac(𝐴/𝒞𝒜𝒫𝑛(𝐴)) is nilpotent. Hence there exists 𝑞 such that

Jac(𝐴)𝑞 ⊆ 𝒞𝒜𝒫𝑛(𝐴), so Jac(𝐴)2𝑞 ⊆ (𝒞𝒜𝒫𝑛(𝐴))2.

4. In §2.2.4 we work over an arbitrary base ring 𝐶 (which need not even be Noetherian), and
for any algebra 𝐴 introduce the ideal 𝐼𝑛,𝐴 ⊂ 𝐴[𝜉𝑛,𝐴], for commuting indeterminates 𝜉𝑛,𝐴, which

provides “generic” integrality relations for elements of 𝐴. Let ̂𝐶{𝑥, 𝑦, 𝑡} := 𝐶{𝑥, 𝑦, 𝑡}/𝒞𝒜𝒫𝑛+1, the
relatively free algebra of Cap𝑛+1. Taking the “doubly alternating” polynomial

𝑓 = 𝑡1Cap𝑛(𝑥1, . . . , 𝑥𝑛)𝑡2Cap𝑛(𝑦1, . . . , 𝑦𝑛)𝑡3,

we construct, in Section 2.2.1, the key 𝐶{𝑡}-module ̂︁ℳ⊂ ̂𝐶{𝑥, 𝑦, 𝑡}, which contains the polynomial
𝑓 . A combinatoric argument given in Proposition 2.17 applied to ̂𝐶{𝑥, 𝑦, 𝑡} (together with
substitutions) shows that 𝐼

𝑛, ̂𝐶{𝑥,𝑦,𝑡} ·
̂︁ℳ = 0.

5. We introduce the obstruction to integrality Obst𝑛(𝐴) = 𝐴 ∩ 𝐼𝑛,𝐴 ⊂ 𝐴 and show that
𝐴/Obst𝑛(𝐴) can be embedded into a finite algebra over an affine central 𝐹 -subalgebra; hence
Jac(𝐴/Obst𝑛(𝐴)) is nilpotent. This implies that there exists 𝑚 such that

Jac(𝐴)𝑚 ⊆ Obst𝑛(𝐴).

The proof of this step applies Shirshov’s Height Theorem [32], [7, Theorem 2.3].

6. We prove that Obst𝑛(𝐴) · (𝒞𝒜𝒫𝑛(𝐴))2 = 0 over an arbitrary ring 𝐶. This is obtained from
Step 4 via a sophisticated specialization argument involving free products.

7. We put the pieces together. When 𝐶 is a field, Step 3 shows that Jac(𝐴)𝑞 ⊆ 𝒞𝒜𝒫𝑛(𝐴) for
some 𝑞, and Step 5 shows that Jac(𝐴)𝑚 ⊆ Obst𝑛(𝐴) for some 𝑚. Hence

Jac(𝐴)2𝑞+𝑚 ⊆ Obst𝑛(𝐴) · (𝒞𝒜𝒫𝑛(𝐴))2 = 0,

which completes the proof of Theorem 1.2. When 𝐶 is Noetherian, any nil ideal 𝑁 of 𝐶 is nilpotent,
so the analogous argument shows that 𝑁𝑚 ⊆ Obst𝑛(𝐴) for some 𝑚. Hence

𝑁2𝑞+𝑚 ⊆ Obst𝑛(𝐴) · (𝒞𝒜𝒫𝑛(𝐴))2 = 0,

proving Theorem 1.3.

1.3. Special cases

We need some classical special cases.
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1.3.1. The commutative case

Our main objective is to prove that the Jacobson radical Jac(𝐴) of an affine PI-algebra 𝐴 (over
a field) is nilpotent. We start with the classical case for which 𝐴 is commutative.

Remark 1.10. Any commutative affine algebra 𝐴 over a Noetherian base ring 𝐶 is Noetherian,
by Hilbert’s Basis Theorem, and hence the intersection of its prime ideals is nilpotent, cf. [29,
Theorem 16.24].

But for any ideal 𝐼 ▷ 𝐴, the algebra 𝐴/𝐼 is also Noetherian, so the intersection of the prime
ideals of 𝐴 containing 𝐼 is nilpotent modulo 𝐼.

Proposition 1.11. If 𝐻 is a commutative affine algebra over a field, then Jac(𝐻) is nilpotent.

Proof. The “weak Nullstellensatz” [28, Proposition 6.37] says that 𝐻 is Jacobson, and thus
the Jacobson radical Jac(𝐻) is contained in the intersection of the prime ideals of 𝐻. But any
commutative affine algebra is Noetherian, so we conclude with Remark 1.10. 2

1.3.2. The finite case

To extend this to noncommutative algebras, we start with some other classical results:

1. [29, Theorem 15.23] (Wedderburn) Any nil subring of an 𝑛× 𝑛 matrix algebra over a field is
nilpotent, of nilpotence index 6 𝑛 (in view of [29, Lemma 15.22]).

2. [29, Theorem 15.18] (Jacobson) The Jacobson radical of an 𝑛-dimensional algebra over a field
is nilpotent, and thus has nilpotence index 6 𝑛, by (1).

3. Any algebra finite over a Noetherian central subring 𝐶, is Noetherian (This follows at once
from induction applied to [28, Proposition 7.5].

Theorem 1. Suppose 𝐴 = 𝐶{𝑎1, . . . , 𝑎ℓ} is an affine algebra over a commutative Noetherian
ring 𝐶, with 𝐴 ⊆𝑀𝑛(𝐾) for a suitable commutative 𝐶-algebra 𝐾. Then

1. Any nil subalgebra 𝑁 of 𝐴 is nilpotent, of bounded nilpotence index 6 𝑚𝑛, where 𝑚 is given
in the proof. When 𝐾 is reduced, i.e., without nonzero nilpotent elements, then 𝑚 = 1, so
𝑁𝑛 = 0.

2. If 𝐶 is a field, then Jac(𝐴) is nilpotent.

Proof. For each 1 6 𝑘 6 ℓ, write each 𝑎𝑘 as an 𝑛 × 𝑛 matrix (𝑎
(𝑘)
𝑖𝑗 ), for 𝑎(𝑘)𝑖𝑗 ∈ 𝐾, and let 𝐻 be

the commutative 𝐶-subalgebra of 𝐾 generated by these finitely many 𝑎(𝑘)𝑖𝑗 ; then 𝐻 is 𝐶-affine. We
can view each 𝑎𝑘 in 𝑀𝑛(𝐻), so 𝐴 ⊆𝑀𝑛(𝐻).

(1) Let 𝑁 ⊆ 𝐴 be a nil subalgebra. Now 𝐴 ⊆𝑀𝑛(𝐻), so 𝑁 ⊆𝑀𝑛(𝐻) and is nil. Let 𝑃 ⊆ 𝐻 be
prime. The homomorphism 𝐻 → 𝐻/𝑃 extends to

𝑀𝑛(𝐻)→𝑀𝑛(𝐻/𝑃 ) (∼=𝑀𝑛(𝐻)/𝑀𝑛(𝑃 )).

Let 𝑁̄ be the image of 𝑁 , so 𝑁̄ = (𝑁 +𝑀𝑛(𝑃 ))/𝑀𝑛(𝑃 ) so 𝑁̄ ⊆ 𝑀𝑛(𝐻)/𝑀𝑛(𝑃 ) ∼= 𝑀𝑛(𝐻/𝑃 ) ⊆
𝑀𝑛(𝐿) where 𝐿 is the field of fractions of the domain 𝐻/𝑃 . By Wedderburn’s theorem 𝑁̄𝑛 = 0
which implies that 𝑁𝑛 ⊆𝑀𝑛(𝑃 ) (since 𝑃 = 0 in 𝐻/𝑃 and in 𝐿). Hence, letting 𝑈 denote the prime
radical of 𝐻, we have 𝑁𝑛 ⊆𝑀𝑛(𝑈). But, in view of Remark 1.10, we have 𝑈𝑚 = 0 for some 𝑚. (If
𝐾 is reduced then 𝑈 = 0, implying 𝑚 = 1.) We conclude that

𝑁𝑚𝑛 = (𝑁𝑛)𝑚 ⊆ (𝑀𝑛(𝑈))𝑚 =𝑀𝑛(𝑈
𝑚) = 0.
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(2) We need here the well-known fact [29, Exercise 15.28] that when 𝐽 ▷𝐴, with 𝐽 nilpotent, then
Jac(𝐴/𝐽) = Jac(𝐴)/𝐽 . It follows at once that if Jac(𝐴/𝐽) is nilpotent, then Jac(𝐴) is nilpotent.

By hypothesis 𝐻 is affine over the field 𝐶, so Jac(𝐻) is nilpotent, and thus 𝑀𝑛(Jac(𝐻)) =
Jac(𝑀𝑛(𝐻)) is nilpotent. Let 𝐴 = 𝐴/(𝐴 ∩𝑀𝑛(Jac(𝐻))) and 𝐻̃ = 𝐻/ Jac(𝐻). Then

𝐴 ⊆𝑀𝑛(𝐻/ Jac(𝐻)) =𝑀𝑛(𝐻̃),

and Jac(𝐻̃) = 0. Thus we may assume that Jac(𝐻) = 0, and we shall prove that 𝐽𝑛 = 0, where
𝐽 = Jac(𝐴).

For any maximal ideal 𝑃 of 𝐻, we see that 𝐻/𝑃 is an affine field extension of 𝐶, and thus is
finite dimensional over 𝐶, by [28, Theorem 5.11]. But then the image of 𝐴 in 𝑀𝑛(𝐻/𝑃 ) is finite
dimensional over 𝐶, so the image 𝐽 of 𝐽 is nilpotent, implying 𝐽𝑛 = 0. Hence 𝐽𝑛 is contained in
∩𝑀𝑛(𝑃 ) =𝑀𝑛(∩𝑃 ) = 0, where 𝑃 runs over the maximal ideals of 𝐻. 2

Theorem 2. Suppose 𝐴 is an algebra that is finite over 𝐶, itself an affine algebra over a field.
Then Jac(𝐴) is nilpotent.

Proof. Since 𝐴 is Noetherian, its nilradical 𝑁 is nilpotent by [29, Remark 16.30(ii)], so modding
out 𝑁 we may assume that 𝐴 is semiprime, and thus the subdirect product of prime algebras
{𝐴𝑖 = 𝐴/𝑃𝑖 : 𝑖 ∈ 𝐼} finite over their centers. If Jac(𝐴)𝑛 ⊂ 𝑃𝑖 for each 𝑖 ∈ 𝐼, then Jac(𝐴)𝑛 ⊂ ∩𝑃𝑖 = 0.

So we may assume that 𝐴 is prime. But localizing over the center, we may assume that 𝐶 is a
field. Let 𝑛 = dim 𝐶𝐴. Then 𝐴 is embedded via the regular representation into 𝑛×𝑛 matrices over
a field, and we are done by Theorem 1. 2

Since not every affine PI-algebra might satisfy the hypotheses of Theorem 1, cf. [33] and [18],
we must proceed further.

2. Proof of Razmyslov’s Theorem

In this section we give full details for Zubrilin’s proof of Theorem 1.2.

2.1. Zubrilin’s approach

2.1.1. The operator 𝛿
(𝑥,𝑛)
𝑘,𝑧

Let us fix notation for the next few sections. 𝐶 is an arbitrary commutative ring. We start with
a polynomial 𝑓 := 𝑓(𝑥1, . . . , 𝑥𝑛) ∈ 𝐶{𝑥, 𝑦, 𝑡} in 𝑥⃗ = {𝑥1, . . . , 𝑥𝑛} (which we always notate), as
well as possibly 𝑦⃗ = {𝑦1, . . . , 𝑦𝑛} (which we sometimes notate), and 𝑡⃗ = {𝑡1, . . . }, all of which are
noncommutative indeterminates.

Definition 2.1. Let 𝑓(𝑥⃗, 𝑦⃗, 𝑡⃗) be multilinear in the 𝑥𝑖 (and perhaps involving additional
indeterminates 𝑦⃗ and 𝑡⃗). Take 0 6 𝑘 6 𝑛, and expand

𝑓* = 𝑓((𝑧 + 1)𝑥1, . . . , (𝑧 + 1)𝑥𝑛, 𝑦⃗, 𝑡⃗),

where 𝑧 is a new noncommutative indeterminate. Then we write

𝛿
(𝑥,𝑛)
𝑘,𝑧 (𝑓) := 𝛿

(𝑥,𝑛)
𝑘,𝑧 (𝑓)(𝑥1, . . . , 𝑥𝑛, 𝑧)
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for the homogeneous component of 𝑓* of degree 𝑘 in the noncommutative indeterminate 𝑧. (We
have suppressed 𝑦⃗, 𝑡⃗ in the notation, as indicated above.)

For example let 𝑛 = 2 and 𝑓 = 𝑥1𝑥2. Then

(𝑧 + 1)𝑥1(𝑧 + 1)𝑥2 = 𝑧𝑥1𝑧𝑥2 + 𝑧𝑥1𝑥2 + 𝑥1𝑧𝑥2 + 𝑥1𝑥2.

Hence 𝛿(𝑥,2)0,𝑧 (𝑥1𝑥2) = 𝑥1𝑥2, 𝛿
(𝑥,2)
1,𝑧 (𝑥1𝑥2) = 𝑧𝑥1𝑥2 + 𝑥1𝑧𝑥2, and 𝛿

(𝑥,2)
2,𝑧 (𝑥1𝑥2) = 𝑧𝑥1𝑧𝑥2.

More generally, for any ℎ ∈ 𝐶{𝑡} we write 𝛿
(𝑥,𝑛)
𝑘,ℎ (𝑓) := 𝛿

(𝑥,𝑛)
𝑘,ℎ (𝑓)(𝑥1, . . . , 𝑥𝑛, ℎ), i.e., the

specialization of 𝛿(𝑥,𝑛)𝑘,𝑧 (𝑓) under 𝑧 ↦→ ℎ.

Remark 1.
1. In calculating 𝛿

(𝑥,𝑛)
𝑘,𝑧 (𝑓), the substitution 𝑥𝑖 → (𝑧+1)𝑥𝑖 is applied to the first 𝑛 positions in 𝑓 but

not to the other positions. For example, the last (i.e. 𝑛+1 st) variable in 𝑓(𝑥1, . . . , 𝑥𝑛−1, 𝑥𝑛+1, 𝑥𝑛)

is 𝑥𝑛, not 𝑥𝑛+1. Hence, to calculate 𝛿
(𝑥,𝑛)
𝑘,𝑧 (𝑓(𝑥1, . . . , 𝑥𝑛−1, 𝑥𝑛+1, 𝑥𝑛)) we apply 𝑥𝑖 → (𝑧 +1)𝑥𝑖 to all

𝑥𝑖’s except 𝑥𝑛.

2. We can also write

𝛿
(𝑥,𝑛)
𝑘,𝑧 (𝑓(𝑥1, . . . , 𝑥𝑛, 𝑡⃗)) =

∑︁
16𝑖1<···<𝑖𝑘6𝑛

𝑓(𝑥1, . . . , 𝑥𝑛, 𝑡⃗) |𝑥𝑖𝑗→𝑧𝑥𝑖𝑗
=

=
∑︁

16𝑖1<···<𝑖𝑘6𝑛
𝑓(𝑥1, . . . , 𝑧𝑥𝑖1 , . . . 𝑧𝑥𝑖𝑘 , . . . , 𝑥𝑛, 𝑡⃗).

3. In case 𝑓 = 𝑓(𝑥1, . . . , 𝑥𝑛, 𝑦1, . . . , 𝑦𝑛) also involves indeterminates 𝑦1, . . . , 𝑦𝑛, we still have

𝛿
(𝑥,𝑛)
𝑘,𝑧 (𝑓) =

∑︁
16𝑖1<···<𝑖𝑘6𝑛

𝑓 |𝑥𝑖𝑗→𝑧𝑥𝑖𝑗
,

indicating that the other indeterminates 𝑦1, . . . , 𝑦𝑛 remain fixed. Analogously,

𝛿
(𝑦,𝑛)
𝑘,𝑧 (𝑓) =

∑︁
16𝑖1<···<𝑖𝑘6𝑛

𝑓 |𝑦𝑖𝑗→𝑧𝑦𝑖𝑗
,

and the indeterminates 𝑥1, . . . , 𝑥𝑛 are fixed.

Definition 2.2. A polynomial 𝑓(𝑥1, . . . , 𝑥𝑛, 𝑡⃗ ) is alternating in 𝑥1, . . . , 𝑥𝑛 if 𝑓 is multilinear in
the 𝑥𝑖 and

𝑓(𝑥1, . . . , 𝑥𝑖, . . . , 𝑥𝑗 , . . . , 𝑥𝑛, 𝑡⃗ ) + 𝑓(𝑥1, . . . , 𝑥𝑗 , . . . , 𝑥𝑖, . . . , 𝑥𝑛, 𝑡⃗ ) = 0 for all 𝑖 < 𝑗. (1)

A stronger definition, which would suffice for our purposes, is to require that

𝑓(𝑥1, . . . , 𝑥𝑖, . . . , 𝑥𝑖, . . . , 𝑥𝑛, 𝑡⃗ ) = 0; (2)

i.e., we get 0 when specializing 𝑥𝑗 to 𝑥𝑖 for any 1 6 𝑖 < 𝑗 6 𝑛. We get (2.2) by linearizing (2), and
can recover (2) from (2.2) in characteristic ̸= 2.)

Lemma 2.3. Let 𝑓(𝑥1, . . . , 𝑥𝑛, 𝑡⃗ ) be multilinear and alternating in 𝑥1, . . . , 𝑥𝑛. Then for each

0 6 𝑘 6 𝑛, 𝛿(𝑥,𝑛)𝑘,𝑧 (𝑓(𝑥1, . . . , 𝑥𝑛, 𝑡⃗ )) is also alternating in 𝑥1, . . . , 𝑥𝑛.
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Proof. Let 𝑣 = 1 + 𝜀𝑧 where 𝜀 is a central indeterminate. Obviously 𝑓(𝑣𝑥1, . . . , 𝑣𝑥𝑛, 𝑡⃗ ) is also
alternating in 𝑥1, . . . , 𝑥𝑛. Since

𝑓(𝑣𝑥1, . . . , 𝑣𝑥𝑛, 𝑡⃗ ) =

𝑛∑︁
𝑘=0

(︁
𝛿
(𝑥,𝑛)
𝑘,𝑧 (𝑓(𝑥1, . . . , 𝑥𝑛, 𝑡⃗ )

)︁
· 𝜀𝑘

is alternating in 𝑥1, . . . , 𝑥𝑛, it follows that each 𝛿
(𝑥,𝑛)
𝑘,𝑧 (𝑓(𝑥1, . . . , 𝑥𝑛, 𝑡⃗) is alternating in 𝑥1, . . . , 𝑥𝑛.

2

Remark 2.4.
1. Since 𝒞𝒜𝒫𝑛 is generated as a 𝑇 -ideal by polynomials alternating in 𝑥1, . . . , 𝑥𝑛, we have

𝛿
(𝑥,𝑛)
𝑘,𝑧 (𝒞𝒜𝒫𝑛) ⊆ 𝒞𝒜𝒫𝑛 and 𝛿

(𝑥,𝑛)
𝑘,𝑧 (𝒞𝒜𝒫𝑛+1) ⊆ 𝒞𝒜𝒫𝑛+1.

2. The results proved for the indeterminate 𝑧 specialize to an arbitrary polynomial ℎ, and thus
can be formulated for ℎ.

Lemma 2.5. The 𝛿(𝑥,𝑛)𝑘,𝑧 (𝑓)-operator is functorial, in the sense that if 𝑎⃗ = (𝑎1, . . . , 𝑎𝑚) ∈ 𝐴 and

ℎ(⃗𝑎) = ℎ′(⃗𝑎), then 𝛿(𝑥,𝑛)𝑘,ℎ (𝑓)(⃗𝑎) = 𝛿
(𝑥,𝑛)
𝑘,ℎ′ (𝑓)(⃗𝑎).

Proof. We get the same result in Definition 2.1 by specializing 𝑧 to ℎ and then to 𝑎⃗, as we get
by specializing 𝑧 to ℎ′, and then to 𝑎⃗. 2

This observation is needed in our later specialization arguments.

The following observation, which is rather well known, motivates Proposition 2.10 below. Let
𝑉 = 𝐶𝑥1 ⊕ · · · ⊕ 𝐶𝑥𝑛 and let 𝑧 : 𝑉 → 𝑉 be a linear transformation from 𝑉 to 𝑉 . Let

det(𝜆𝐼 − 𝑧) =
𝑛∑︁
𝑘=0

𝑐𝑘(𝑧)𝜆
𝑘

be the characteristic (“Cayley-Hamilton") polynomial of 𝑧. Then we have the following formula
from [26, Theorem 1.4.12]:

𝛿
(𝑥,𝑛)
𝑘,𝑧 (Cap𝑛(𝑥1, . . . , 𝑥𝑛; 𝑦⃗)) =

∑︁
16𝑖1<···<𝑖𝑘6𝑛

Cap𝑛(𝑥1, . . . , 𝑧𝑥𝑖1 , . . . , 𝑧𝑥𝑖𝑘 , . . . , 𝑥𝑛; 𝑦⃗) =

= 𝑐𝑘(𝑧) · Cap𝑛(𝑥1, . . . , 𝑥𝑛; 𝑦⃗),

and the coefficients 𝑐𝑘(𝑧) are independent of the particular indeterminates 𝑥1, . . . , 𝑥𝑛. Proposi-
tion 2.10 below displays a similar phenomenon.

2.2. Zubrilin’s Proposition

Our goal in this section is Proposition 2.17. Let us define the terms used there.

Let ̂𝐶{𝑥, 𝑦, 𝑡} denote the relatively free algebra 𝐶{𝑥, 𝑦, 𝑡}/𝒞𝒜𝒫𝑛+1. We denote the image of

𝑓 ∈ 𝐶{𝑥, 𝑦, 𝑡} in ̂𝐶{𝑥, 𝑦, 𝑡} by 𝑓.
Remark 2.6. If 𝐴 satisfies Cap𝑛+1, then any algebra homomorphism 𝜙 : 𝐶{𝑥, 𝑦, 𝑡} → 𝐴 naturally

induces an algebra homomorphism ̂︀𝜙 : ̂𝐶{𝑥, 𝑦, 𝑡} → 𝐴 given by

̂︀𝜙(𝑓) = 𝜙(𝑓),

since 𝒞𝒜𝒫𝑛+1 ⊆ ker𝜙.
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Remark 2. Let 𝑓(𝑥1, . . . , 𝑥𝑛+1) be multilinear in 𝑥1, . . . , 𝑥𝑛+1 and alternating in 𝑥1, . . . , 𝑥𝑛.
Construct

𝑓 = 𝑓(𝑥1, . . . , 𝑥𝑛+1) =

𝑛+1∑︁
𝑘=1

(−1)𝑘−1𝑓(𝑥1, . . . , 𝑥𝑘−1, 𝑥𝑘+1, . . . , 𝑥𝑛+1, 𝑥𝑘). (3)

(All other variables occurring in 𝑓 are left untouched.)
Then 𝑓 is (𝑛+ 1)-alternating in 𝑥1, . . . , 𝑥𝑛+1.

Proposition 2.7. Let 𝑓(𝑥1, . . . , 𝑥𝑛, 𝑥𝑛+1) be multilinear in 𝑥1, . . . , 𝑥𝑛, 𝑥𝑛+1 and alternating in
𝑥1, . . . , 𝑥𝑛 (so 𝑓 of Equation (3) is (𝑛+ 1)-alternating). Then

𝑛∑︁
𝑗=0

(−1)𝑗𝛿(𝑥,𝑛)𝑗,𝑧 (𝑓(𝑥1, . . . , 𝑥𝑛, 𝑧
𝑛−𝑗𝑥𝑛+1)) ≡ 0 modulo 𝒞𝒜𝒫𝑛+1.

Proof. Throughout we work modulo 𝒞𝒜𝒫𝑛+1. Since 𝑓 is (𝑛+ 1)-alternating, we have

0 ≡ 𝑓 = 𝑓(𝑥2, 𝑥3 . . . , 𝑥𝑛+1, 𝑥1)− 𝑓(𝑥1, 𝑥3 . . . , 𝑥𝑛+1, 𝑥2) + · · ·+ (−1)𝑛𝑓(𝑥1, 𝑥2, . . . , 𝑥𝑛, 𝑥𝑛+1).

Thus, modulo 𝒞𝒜𝒫𝑛+1 the last summand (−1)𝑛𝑓(𝑥1, 𝑥2, . . . , 𝑥𝑛, 𝑥𝑛+1) can be replaced by minus
the sum of the other summands:

(−1)𝑛𝑓(𝑥1, 𝑥2, . . . , 𝑥𝑛, 𝑥𝑛+1) ≡
𝑛∑︁
𝑘=1

(−1)𝑘𝑓(𝑥1, . . . , 𝑥𝑘−1, 𝑥𝑘+1, . . . , 𝑥𝑛, 𝑥𝑛+1, 𝑥𝑘),

Given 0 6 𝑗 6 𝑛, substitute 𝑥𝑛+1 ↦→ 𝑧𝑛−𝑗𝑥𝑛+1, so

(−1)𝑛𝑓(𝑥1, 𝑥2, . . . , 𝑥𝑛, 𝑧𝑛−𝑗𝑥𝑛+1) ≡
𝑛∑︁
𝑘=1

(−1)𝑘𝑓(𝑥1, . . . , 𝑥𝑘−1, 𝑥𝑘+1, . . . .𝑥𝑛, 𝑧
𝑛−𝑗𝑥𝑛+1, 𝑥𝑘).

Applying 𝛿(𝑥,𝑛)𝑗,𝑧 and summing with sign, we get

(−1)𝑛
𝑛∑︁
𝑗=0

(−1)𝑗𝛿(𝑥,𝑛)𝑗,𝑧 (𝑓(𝑥1, . . . , 𝑥𝑛, 𝑧
𝑛−𝑗𝑥𝑛+1) ≡

≡
𝑛∑︁
𝑗=0

(−1)𝑗
𝑛∑︁
𝑘=1

(−1)𝑘𝛿(𝑥,𝑛)𝑗,𝑧 (𝑓(𝑥1, . . . , 𝑥𝑘−1, 𝑥𝑘+1, . . . , 𝑥𝑛, 𝑧
𝑛−𝑗𝑥𝑛+1, 𝑥𝑘)) =

=
𝑛∑︁
𝑘=1

(−1)𝑘
𝑛∑︁
𝑗=0

(−1)𝑗𝛿(𝑥,𝑛)𝑗,𝑧 (𝑓(𝑥1, . . . , 𝑥𝑘−1, 𝑥𝑘+1, . . . , 𝑥𝑛, 𝑧
𝑛−𝑗𝑥𝑛+1, 𝑥𝑘)).

Denote 𝑔𝑗,𝑘 = 𝑓(𝑥1, . . . , 𝑥𝑘−1, 𝑥𝑘+1, . . . , 𝑥𝑛, 𝑧
𝑛−𝑗𝑥𝑛+1, 𝑥𝑘), and

𝑄𝑘 =
𝑛∑︁
𝑗=0

(−1)𝑗𝛿(𝑥,𝑛)𝑗,𝑧 (𝑔𝑗,𝑘). (4)

It suffices to show that 𝑄𝑘 ≡ 0 for each 𝑘. Note that in calculating 𝛿(𝑥,𝑛)𝑗,𝑧 (𝑔𝑗,𝑘) = 𝛿
(𝑥,𝑛)
𝑗,𝑧 (𝑓(𝑥1, . . . ,

𝑥𝑘−1, 𝑥𝑘+1, . . . , 𝑥𝑛, 𝑧
𝑛−𝑗𝑥𝑛+1, 𝑥𝑘)), 𝑥𝑘 is unchanged (since it is the last indeterminate), while for all

other 𝑥𝑖’s (in particular – for 𝑥𝑛+1) we substitute 𝑥𝑖 ↦→ (𝑧 + 1)𝑥𝑖, cf. Remark 1.1. Therefore

𝛿
(𝑥,𝑛)
𝑗,𝑧 (𝑔𝑗,𝑘) = 𝛿

(𝑥,𝑛)
𝑗,𝑧,[𝑘′](𝑔𝑗,𝑘) + 𝛿

(𝑥,𝑛)
𝑗,𝑧,[𝑘′′](𝑔𝑗,𝑘)
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where

𝛿
(𝑥,𝑛)
𝑗,𝑧,[𝑘′](𝑔𝑗,𝑘) is the sum of the monomials of 𝛿(𝑥,𝑛)𝑗,𝑧 (𝑔𝑗,𝑘) having 𝑧-degree 𝑗, where 𝑥𝑛+1 was

replaced by 𝑧𝑥𝑛+1;

and

𝛿
(𝑥,𝑛)
𝑗,𝑧,[𝑘′′](𝑔𝑗,𝑘) is the sum of the monomials of 𝛿(𝑥,𝑛)𝑗,𝑧 (𝑔𝑗,𝑘) having 𝑧-degree 𝑗, where 𝑥𝑛+1 was

unchanged.

It is not difficult to see that for 𝑗 > 0,

𝛿
(𝑥,𝑛)
𝑗,𝑧,[𝑘′]𝑓(𝑥1, . . . , 𝑥𝑘−1, 𝑥𝑘+1, . . . , 𝑥𝑛, 𝑧

𝑛−𝑗𝑥𝑛+1, 𝑥𝑘) =

𝛿
(𝑥,𝑛)
𝑗−1,𝑧,[𝑘′′]𝑓(𝑥1, . . . , 𝑥𝑘−1, 𝑥𝑘+1, . . . , 𝑥𝑛, 𝑧

𝑛−𝑗+1𝑥𝑛+1, 𝑥𝑘),

namely

𝛿
(𝑥,𝑛)
𝑗,𝑧,[𝑘′](𝑔𝑗,𝑘) = 𝛿

(𝑥,𝑛)
𝑗−1,𝑧,[𝑘′′](𝑔𝑗−1,𝑘).

It also follows from the definitions that 𝛿(𝑥,𝑛)0,𝑧,[𝑘′](𝑔0,𝑘) = 𝛿
(𝑥,𝑛)
𝑛,𝑧,[𝑘′′](𝑔𝑛,𝑘) = 0. Hence

𝑛∑︁
𝑗=0

(−1)𝑗𝛿(𝑥,𝑛)𝑗,𝑧,[𝑘′](𝑔𝑗,𝑘) =
𝑛∑︁
𝑗=1

(−1)𝑗𝛿(𝑥,𝑛)𝑗,𝑧,[𝑘′](𝑔𝑗,𝑘) =

=

𝑛∑︁
𝑗=1

(−1)𝑗𝛿(𝑥,𝑛)𝑗−1,𝑧,[𝑘′′](𝑔𝑗−1,𝑘) = −
𝑛−1∑︁
𝑗=0

(−1)𝑗𝛿(𝑥,𝑛)𝑗,𝑧,[𝑘′′](𝑔𝑗,𝑘),

and
𝑛∑︁
𝑗=0

(−1)𝑗𝛿(𝑥,𝑛)𝑗,𝑧,[𝑘′′](𝑔𝑗,𝑘) =

𝑛−1∑︁
𝑗=0

(−1)𝑗𝛿(𝑥,𝑛)𝑗,𝑧,[𝑘′′](𝑔𝑗,𝑘).

Summing in (4) we get

𝑄𝑘 =

𝑛∑︁
𝑗=0

(−1)𝑗𝛿(𝑥,𝑛)𝑗,𝑧 (𝑔𝑗,𝑘) ≡
𝑛∑︁
𝑗=0

(−1)𝑗
(︁
𝛿
(𝑥,𝑛)
𝑗,𝑧,[𝑘′]𝑔𝑗,𝑘 + 𝛿

(𝑥,𝑛)
𝑗,𝑧,[𝑘′′]𝑔𝑗,𝑘

)︁
≡ 0.

2

2.2.1. The module ̂︁ℳ over the relatively free algebra of Cap𝑛+1

We need a special sort of alternating polynomials.

Definition 2.8. A polynomial 𝑓(𝑥1, . . . , 𝑥𝑛; 𝑦1, . . . , 𝑦𝑛; 𝑡⃗), where 𝑡⃗ denotes other possible indeter-
minates, is doubly alternating if 𝑓 is linear and alternating in 𝑥1, . . . , 𝑥𝑛 and 𝑦1, . . . , 𝑦𝑛.

Our main example is the double Capelli polynomial

DCap𝑛 = 𝑡1Cap𝑛(𝑥1, . . . , 𝑥𝑛; 𝑡⃗)𝑡2Cap𝑛(𝑦1, . . . , 𝑦𝑛; 𝑡⃗
′)𝑡3. (5)

Here 𝑡⃗ and 𝑡⃗′ are arbitrary sets of extra indeterminates. We suppress the indeterminates 𝑡⃗, 𝑡⃗′,
and 𝑡1, 𝑡2, 𝑡3 from the notation, since we do not alter them.
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Definition 2.9. Letℳ denote the 𝐶-submodule of 𝐶{𝑥, 𝑦, 𝑡} consisting of all doubly alternating
polynomials (in 𝑥1 . . . , 𝑥𝑛, and in 𝑦1, . . . , 𝑦𝑛).̂︁ℳ denotes the image of ℳ in ̂𝐶{𝑥, 𝑦, 𝑡}, i.e., the 𝐶-submodule of ̂𝐶{𝑥, 𝑦, 𝑡} consisting of the
images of all doubly alternating polynomials (in 𝑥1 . . . , 𝑥𝑛, and in 𝑦1, . . . , 𝑦𝑛).

Remark 3. ̂︁ℳ is a 𝐶{𝑡}-submodule of ̂𝐶{𝑥, 𝑦, 𝑡}, namely 𝐶{𝑡}̂︁ℳ⊆ ̂︁ℳ. Indeed, let ℎ ∈ 𝐶{𝑡}
and 𝑓 ∈ ℳ. If either ℎ or 𝑓 is in 𝒞𝒜𝒫𝑛+1 then ℎ𝑓 ∈ 𝒞𝒜𝒫𝑛+1; hence the product ℎ̂𝑓 = ̂︁ℎ𝑓 is well
defined. Moreover, if 𝑓 = 𝑓(𝑥1, . . . , 𝑥𝑛, 𝑦1, . . . , 𝑦𝑛, 𝑡⃗ ) is doubly alternating in the 𝑥’s and in the 𝑦’s,
and ℎ ∈ 𝐶{𝑡⃗ }, then ℎ𝑓 is doubly alternating in the 𝑥’s and in the 𝑦’s.

2.2.2. The Zubrilin action

The theory hinges on the following amazing result, which we prove in Section 2.7 below. (This
is also proved in [7, Theorem 4.82], but more details are given here.)

Proposition 2.10. Let 𝑓(𝑥1, . . . , 𝑥𝑛; 𝑦1, . . . , 𝑦𝑛) be doubly alternating in 𝑥1, . . . , 𝑥𝑛 and in
𝑦1, . . . , 𝑦𝑛 (perhaps involving additional indeterminates). Then for any polynomial ℎ,

𝛿
(𝑥,𝑛)
𝑘,ℎ (𝑓) ≡ 𝛿(𝑦,𝑛)𝑘,ℎ (𝑓) 𝑚𝑜𝑑𝑢𝑙𝑜 𝒞𝒜𝒫𝑛+1; (6)

namely, ∑︁
16𝑖1<···<𝑖𝑘6𝑛

𝑓 |𝑥𝑖𝑗→ℎ𝑥𝑖𝑗
≡

∑︁
16𝑖1<···<𝑖𝑘6𝑛

𝑓 |𝑦𝑖𝑗→ℎ𝑦𝑖𝑗
𝑚𝑜𝑑𝑢𝑙𝑜 𝒞𝒜𝒫𝑛+1.

Before proving Proposition 2.10 we deduce some of its consequences.

Remark 2.11. It follows from Proposition 2.10 that 𝛿(𝑥,𝑛)𝑘,ℎ (𝑓) − 𝛿
(𝑦,𝑛)
𝑘,ℎ (𝑓) ∈ 𝒞𝒜𝒫𝑛+1 whenever

𝑓 ∈ ̂︁ℳ, so working modulo 𝒞𝒜𝒫𝑛+1 we can suppress 𝑥 in the notation, writing 𝛿
(𝑛)
𝑘,ℎ(𝑓) for 𝛿

(𝑥,𝑛)
𝑘,ℎ (𝑓).

2.2.3. Commutativity of the operators 𝛿
(𝑛)
𝑘,ℎ𝑗

modulo 𝒞𝒜𝒫𝑛+1

We use ̂︁ℳ instead ofℳ because of the following lemma.

Lemma 2.12. (i) 𝛿(𝑛)𝑘,ℎ induces a well-defined map 𝛿
(𝑛)
𝑘,ℎ : ̂︁ℳ→ ̂︁ℳ given by 𝛿(𝑛)𝑘,ℎ(𝑓) =

̂
𝛿
(𝑥,𝑛)
𝑘,ℎ (𝑓).

(ii) 𝛿(𝑛)𝑘,ℎ produces the same result using the indeterminates 𝑥 or 𝑦.

Proof. (i) If 𝑓(𝑥1, . . . , 𝑥𝑛, 𝑦1, . . . , 𝑦𝑛) and 𝑔(𝑥1, . . . , 𝑥𝑛, 𝑦1, . . . , 𝑦𝑛) are doubly alternating poly-

nomials, with 𝑓 = 𝑔, then 𝑓 − 𝑔 ∈ 𝒞𝒜𝒫𝑛+1, so by Remark 2.4(1), 𝛿
(𝑛)
𝑘,ℎ(𝑓 − 𝑔) ∈ 𝒞𝒜𝒫𝑛+1 and hence

̂
𝛿
(𝑛)
𝑘,ℎ(𝑓 − 𝑔) = 0. Therefore we have

0 =
̂

𝛿
(𝑛)
𝑘,ℎ(𝑓 − 𝑔) = 𝛿

(𝑛)
𝑘,ℎ(𝑓)− 𝛿

(𝑛)
𝑘,ℎ(𝑔) = 𝛿

(𝑛)
𝑘,ℎ(𝑓)− 𝛿

(𝑛)
𝑘,ℎ(𝑔),

proving that 𝛿(𝑛)𝑘,ℎ is well-defined.

(ii) The assertion follows from Remark 2.11, which shows that
̂
𝛿
(𝑥,𝑛)
𝑘,ℎ (𝑓) =

̂
𝛿
(𝑦,𝑛)
𝑘,ℎ (𝑓). 2

Lemma 2.13. Let 𝑓 = 𝑓(𝑥1, . . . , 𝑥𝑛; 𝑦1, . . . , 𝑦𝑛) be doubly alternating in 𝑥1, . . . , 𝑥𝑛 and in 𝑦1, . . . , 𝑦𝑛
(and perhaps involving other indeterminates). Let 1 6 𝑘, ℓ 6 𝑛. Then for any ℎ1, ℎ2 ∈ 𝐶{𝑡},

𝛿
(𝑛)
𝑘,ℎ1

𝛿
(𝑛)
ℓ,ℎ2

(𝑓) = 𝛿
(𝑛)
ℓ,ℎ2

𝛿
(𝑛)
𝑘,ℎ1

(𝑓). (7)
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Proof. Equation (7) claims that modulo 𝒞𝒜𝒫𝑛+1,

(i)

𝛿
(𝑥,𝑛)
𝑘,ℎ1

𝛿
(𝑥,𝑛)
ℓ,ℎ2

(𝑓) ≡ 𝛿(𝑥,𝑛)ℓ,ℎ2
𝛿
(𝑥,𝑛)
𝑘,ℎ1

(𝑓) and

(ii)

𝛿
(𝑥,𝑛)
𝑘,ℎ1

𝛿
(𝑦,𝑛)
ℓ,ℎ2

(𝑓) ≡ 𝛿(𝑦,𝑛)ℓ,ℎ2
𝛿
(𝑥,𝑛)
𝑘,ℎ1

(𝑓) and

(iii)

𝛿
(𝑦,𝑛)
𝑘,ℎ1

𝛿
(𝑦,𝑛)
ℓ,ℎ2

(𝑓) ≡ 𝛿(𝑦,𝑛)ℓ,ℎ2
𝛿
(𝑦,𝑛)
𝑘,ℎ1

(𝑓).

The middle equivalence (ii) is an obvious equality. The first and third equivalences are similar, and
we prove the first. By Proposition 2.10, by (ii), and again by Proposition 2.10, modulo 𝒞𝒜𝒫𝑛+1 we
can write

𝛿
(𝑥,𝑛)
𝑘,ℎ1

𝛿
(𝑥,𝑛)
ℓ,ℎ2

(𝑓) ≡ 𝛿(𝑥,𝑛)𝑘,ℎ1
𝛿
(𝑦,𝑛)
ℓ,ℎ2

(𝑓) ≡ 𝛿(𝑦,𝑛)ℓ,ℎ2
𝛿
(𝑥,𝑛)
𝑘,ℎ1

(𝑓) ≡ 𝛿(𝑥,𝑛)ℓ,ℎ2
𝛿
(𝑥,𝑛)
𝑘,ℎ1

(𝑓).

Note that in the last step, Lemma 2.3 was applied (to 𝛿(𝑥,𝑛)𝑘,ℎ1
(𝑓)). 2

2.2.4. The ideal 𝐼𝑛,𝐴 ⊂ 𝐴[𝜉𝑛,𝐴] and the annihilator of 𝑀̂

Definition 2.14. For each 𝑎 ∈ 𝐴 let 𝜉1,𝑎, . . . , 𝜉𝑛,𝑎 be 𝑛 corresponding new commuting variables,
and construct 𝐴[𝜉𝑛,𝐴] = 𝐴[𝜉1,𝑎, . . . , 𝜉𝑛,𝑎 | 𝑎 ∈ 𝐴]. Let 𝐼𝑛,𝐴 ⊆ 𝐴[𝜉𝑛,𝐴] be the ideal generated in
𝐴[𝜉𝑛,𝐴] by the elements

𝑎𝑛 + 𝜉1,𝑎𝑎
𝑛−1 + · · ·+ 𝜉𝑛,𝑎, 𝑎 ∈ 𝐴,

namely
𝐼𝑛,𝐴 = ⟨𝑎𝑛 + 𝜉1,𝑎𝑎

𝑛−1 + · · ·+ 𝜉𝑛,𝑎 | 𝑎 ∈ 𝐴⟩.

Remark 2.15. In view of Proposition 2.10, the map 𝛿(𝑛)𝑘,ℎ : ̂︁ℳ→ ̂︁ℳ of Lemma 2.12 yields an action

of the 𝐶-algebra 𝐶{𝑡}[𝜉
𝑛,𝐶{𝑡}] on

̂︁ℳ, given by 𝜉𝑘,ℎ𝑓 = 𝛿
(𝑛)
𝑘,ℎ(𝑓).

Working with the relatively free algebra, our next goal is to prove that 𝐼
𝑛,𝐶{𝑡} ·

̂︁ℳ = 0. For that

we shall need the next result.

Proposition 2.16. (Zubrilin) Assume that a multilinear polynomial 𝑔(𝑥1, . . . , 𝑥𝑛) is alternating
in 𝑥1, . . . , 𝑥𝑛. Then, modulo 𝒞𝒜𝒫𝑛+1,

𝑛∑︁
𝑘=0

(−1)𝑘ℎ𝑛−𝑘𝛿(𝑛)𝑘,ℎ(𝑔) ≡ 0

for any ℎ ∈ 𝐶{𝑡}. In particular, if 𝑔 is doubly alternating, then (again modulo 𝒞𝒜𝒫𝑛+1)

𝑛∑︁
𝑘=0

(−1)𝑘ℎ𝑛−𝑘𝛿(𝑛)𝑘,ℎ(𝑔) ≡ 0.

Proof. First we take ℎ to be an indeterminate 𝑧. Let 𝑓(𝑥1, . . . , 𝑥𝑛+1) = 𝑥𝑛+1𝑔(𝑥1, . . . , 𝑥𝑛). By

Proposition 2.7, ̂𝐶{𝑥, 𝑦, 𝑡} satisfies the identity

𝑛∑︁
𝑗=0

(−1)𝑗𝛿(𝑛)𝑗,𝑧 (𝑓(𝑥1, . . . , 𝑥𝑛, 𝑧
𝑛−𝑗𝑥𝑛+1)) ≡ 0.
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Note that in computing 𝛿
(𝑛)
𝑗,𝑧 (𝑓(𝑥1, . . . , 𝑥𝑛, 𝑧

𝑛−𝑗𝑥𝑛+1)), the last indeterminate is 𝑥𝑛+1 and is
unchanged, cf. Remark 1.1, so

𝛿
(𝑛)
𝑗,𝑧 (𝑓(𝑥1, . . . , 𝑥𝑛, 𝑧

𝑛−𝑗𝑥𝑛+1)) = 𝑧𝑛−𝑗𝑥𝑛+1𝛿
(𝑛)
𝑗,𝑧 𝑔(𝑥1, . . . , 𝑥𝑛).

Using Proposition 2.7, we have that

𝑛∑︁
𝑗=0

(−1)𝑗𝑧𝑛−𝑗𝑥𝑛+1𝛿
(𝑛)
𝑗,𝑧 (𝑔(𝑥1, . . . , 𝑥𝑛)) ∈ 𝒞𝒜𝒫𝑛+1.

The proof now follows by substituting 𝑥𝑛+1 ↦→ 1 and 𝑧 → ℎ ∈ 𝐶{𝑡}.
2

As a consequence we can now prove the key result:

Proposition 2.17. Let ̂︁ℳ be the module given by Definition 2.9. Then, 𝐼
𝑛,𝐶{𝑡} ·

̂︁ℳ = 0.

Proof. We prove that 𝐼
𝑛,𝐶{𝑡} ·

̂︁ℳ = 0, by showing for any doubly alternating polynomial

𝑓(𝑥1, . . . , 𝑥𝑛, 𝑦1, . . . , 𝑦𝑛) ∈ ̂︁ℳ and ℎ ∈ 𝐶{𝑡}, that

(ℎ𝑛 + 𝜉1,ℎℎ
𝑛−1 + · · ·+ 𝜉𝑛,ℎ)𝑓 ≡ 0 (mod 𝒞𝒜𝒫𝑛+1).

It follows from the action 𝜉𝑘,ℎ𝑓 = 𝛿
(𝑛)
𝑘,ℎ(𝑓) and from Proposition 2.16 that modulo 𝒞𝒜𝒫𝑛+1,

(ℎ𝑛 + 𝜉1,ℎℎ
𝑛−1 + · · ·+ 𝜉𝑛,ℎ)𝑓 =

𝑛∑︁
𝑘=0

(−1)𝑘ℎ𝑛−𝑘𝛿(𝑛)𝑘,ℎ(𝑓) ≡ 0.

2

2.3. The ideal Obst𝑛(𝐴) ⊆ 𝐴

In order to utilize these results about integrality, we need another concept. We define
Obst𝑛(𝐴) = 𝐴 ∩ 𝐼𝑛,𝐴, viewing 𝐴 ⊂ 𝐴[𝜉𝑛,𝐴].

Remark 4.

1. Let

𝐴 = 𝐴[𝜉𝑛,𝐴]/𝐼𝑛,𝐴, (8)

with 𝑓 : 𝐴[𝜉𝑛,𝐴] → 𝐴 the natural homomorphism, and 𝑓𝑟 : 𝐴 → 𝐴 be the restriction of 𝑓 to
𝐴. Then

ker(𝑓𝑟) = 𝐴 ∩ 𝐼𝑛,𝐴 = Obst𝑛(𝐴).

2. Note that for every 𝑎 ∈ 𝐴, 𝑓(𝑎) is 𝑛-integral (i.e., integral of degree 𝑛) over 𝐶[𝜉𝑖,𝐴], and thus
over the center of 𝐴. Indeed, apply the homomorphism 𝑓 to the element

𝑎𝑛 + 𝜉1,𝑎𝑎
𝑛−1 + · · ·+ 𝜉𝑛,𝑎 (∈ 𝐼𝑛,𝐴)

to get
𝑎̄𝑛 + 𝜉1,𝑎𝑎̄

𝑛−1 + · · ·+ 𝜉𝑛,𝑎 = (𝑎𝑛 + 𝜉1,𝑎𝑎
𝑛−1 + · · ·+ 𝜉𝑛,𝑎) + 𝐼𝑛,𝐴 = 0.

Lemma 2.18. ker(𝑓𝑟) also is the intersection of all kernels ker(𝑔) of the following maps 𝑔:

𝑔 : 𝐴→ 𝐵, where 𝐵 is a 𝐶-algebra, and 𝑔 : 𝐴→ 𝐵 is a homomorphism such that for any 𝑎 ∈ 𝐴,
𝑔(𝑎) is 𝑛-integral over the center of 𝐵.
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Proof. Denote the above intersection ∩𝑔 ker(𝑔) as Obst′𝑛(𝐴). Then Obst′𝑛(𝐴) ⊆ Obst𝑛(𝐴) since
𝑘𝑒𝑟(𝑓𝑟) is among these ker(𝑔). To show the opposite inclusion we prove

Claim: For such 𝑔 : 𝐴→ 𝐵, ker(𝑔) ⊇ 𝐴 ∩ 𝐼𝑛,𝐴 = Obst𝑛(𝐴).

Extend 𝑔 to 𝑔* : 𝐴[𝜉𝑛,𝐴]→ 𝐵 as follows: 𝑔*(𝑎) = 𝑎 if 𝑎 ∈ 𝐴, while 𝑔*(𝜉𝑖,𝑎) = 𝛽𝑖,𝑎. We claim that
𝑔*(𝐼𝑛,𝐴) = 0. Indeed, let

𝑟 = 𝑎𝑛 + 𝜉1,𝑎𝑎
𝑛−1 + · · ·+ 𝜉𝑛,𝑎

be one of the generators of 𝐼𝑛,𝐴.
By assumption there exist 𝛽1,𝑎, . . . , 𝛽𝑛,𝑎 in the center of 𝐵 satisfying

𝑔(𝑎)𝑛 + 𝛽1,𝑎𝑔(𝑎)
𝑛−1 + · · ·+ 𝛽𝑛,𝑎 = 0. (9)

Hence,
𝑔*(𝑟) = 𝑔(𝑎)𝑛 + 𝛽1,𝑎𝑔(𝑎)

𝑛−1 + · · ·+ 𝛽𝑛,𝑎 = 0.

This shows that as claimed, 𝑔*(𝐼𝑛,𝐴) = 0.

Finally, if 𝑎 ∈ 𝐴∩𝐼𝑛,𝐴 then 𝑔(𝑎) = 𝑔*(𝑎) = 0. Hence 𝑎 ∈ ker(𝑔), so ker(𝑔) ⊇ 𝐴∩𝐼𝑛,𝐴 = Obst𝑛(𝐴).
2

Corollary 2.19. If every 𝑎 ∈ 𝐴 is 𝑛-integral (over the base field), then Obst𝑛(𝐴) = 0.

Proof. The assumption implies that in the above, the identity map 𝑖𝑑 = 𝑔 : 𝐴→ 𝐴 satisfies the
condition of Lemma 2.18. Hence 0 = ker(𝑔) ⊇ Obst𝑛(𝐴), and the proof follows. 2

This corollary explains the notation Obst𝑛(𝐴): it is the obstruction for each 𝑎 ∈ 𝐴 to be
𝑛-integral. The next result technically is not needed, but helps to show how Obst behaves.

Lemma 2.20. Obst𝑛−1(𝐴) ⊇ Obst𝑛(𝐴).

Proof. Represent

Obst𝑛−1(𝐴) = ∩ℎ ker(ℎ) and Obst𝑛(𝐴) = ∩𝑔 ker(𝑔),

with the respective conditions of 𝑛− 1 integrality and of 𝑛 integrality. Take 𝑎 ∈ 𝐴 and ℎ : 𝐴→ 𝐵
with ℎ(𝑎) being 𝑛− 1 integral over the center of 𝐵. Then ℎ(𝑎) is also 𝑛 integral over the center of
𝐵. Hence every ker(ℎ) in Obst𝑛−1(𝐴) also appears in the intersection Obst𝑛(𝐴) = ∩𝑔 ker(𝑔), and
the assertion follows. 2

2.4. Reduction to finite modules

The reduction to finite modules is done using Shirshov’s theorem.

Proposition 2.21. Let 𝐴 = 𝐶{𝑎1, . . . , 𝑎ℓ} have PI degree 𝑑 over the base ring 𝐶. Then the affine
algebra 𝐴/Obst𝑛(𝐴) can be embedded in an algebra which is finite over a central affine subalgebra.

Proof.
Let 𝐵 ⊆ 𝐴 be the subset of the words in the alphabet 𝑎1, . . . , 𝑎ℓ of length 6 𝑑. By Shirshov’s

Height Theorem there exists an integer ℎ such that the set

𝑊 = {𝑏𝑘11 · · · 𝑏
𝑘ℎ
ℎ | 𝑏𝑖 ∈ 𝐵, any 𝑘𝑖 > 0}

spans 𝐴 over the base ring 𝐶.
Similarly to 𝐴[𝜉𝑛,𝐴], construct 𝐴[𝜉𝑛,𝐵] ⊆ 𝐴[𝜉𝑛,𝐴]:

𝐴[𝜉𝑛,𝐵] = 𝐴[𝜉1,𝑏, . . . , 𝜉𝑛,𝑏 | 𝑏 ∈ 𝐵],
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and let 𝐼𝑛,𝐵 be the ideal

𝐼𝑛,𝐵 = ⟨𝑏𝑛 + 𝜉1,𝑏𝑏
𝑛−1 + · · ·+ 𝜉𝑛,𝑏 | 𝑏 ∈ 𝐵⟩ ▷ 𝐴[𝜉𝑛,𝐵]

Denote

𝐴′ = 𝐴[𝜉𝑛,𝐵]/𝐼𝑛,𝐵. (10)

We show that 𝐴′ is finite over an affine central subalgebra and thus is Noetherian.

Given 𝑎 ∈ 𝐴, denote 𝑎′ = 𝑎+ 𝐼𝑛,𝐵 ∈ 𝐴′, and similarly 𝜉′𝑖,𝑏 = 𝜉𝑖,𝑏 + 𝐼𝑛,𝐵. Then for every 𝑏 ∈ 𝐵,
𝑏′ is 𝑛-integral over 𝐶[𝜉′𝑛,𝐵], where

𝐶[𝜉′𝑛,𝐵] = 𝐶[𝜉′1,𝑏, . . . , 𝜉
′
𝑛,𝑏 | 𝑏 ∈ 𝐵] ⊆ center(𝐴′).

Hence the finite subset

𝑊 ′ = {𝑏′𝑘11 · · · 𝑏′
𝑘ℎ
ℎ | 𝑏𝑖 ∈ 𝐵, 𝑘𝑖 6 𝑛− 1} (⊆ 𝐴′) (11)

spans 𝐴′ over 𝐶[𝜉′𝑛,𝐵]. Thus 𝐴
′ is finite over the affine central subalgebra 𝐶[𝜉′𝑛,𝐵] ⊆ center(𝐴′) and

thus is Noetherian.

Restricting the natural map 𝑔 : 𝐴[𝜉𝑛,𝐵]→ 𝐴′ = 𝐴[𝜉𝑛,𝐵]/𝐼𝑛,𝐵 to 𝐴, we have

𝑔𝑟 : 𝐴→ 𝐴′ (𝑎 ↦→ 𝑎′ = 𝑎+ 𝐼𝑛,𝐵) (12)

which satisfies

ker(𝑔𝑟) = 𝐴 ∩ 𝐼𝑛,𝐵 ⊆ 𝐴 ∩ 𝐼𝑛,𝐴 = Obst𝑛(𝐴). (13)

Let

𝐴 = 𝐴/Obst𝑛(𝐴), (14)

and for 𝑎 ∈ 𝐴 denote 𝑎̃ = 𝑎 + Obst𝑛(𝐴) ∈ 𝐴. We then have the corresponding subset
𝐵̃ = {𝑏̃ | 𝑏 ∈ 𝐵} ⊆ 𝐴, as well as the set of commutative variables 𝜉𝑛,𝐵̃ and the ideal 𝐼𝑛,𝐵̃.

Let 𝐴* = 𝐴[𝜉𝑛,𝐵̃]/𝐼𝑛,𝐵̃.

Replacing 𝐴 by 𝐴 and 𝜉𝑖,𝐵 by 𝜉𝑖,𝐵̃, we clearly have the natural homomorphism

𝑔 : 𝐴[𝜉𝑛,𝐵̃]→ 𝐴[𝜉𝑛,𝐵̃]/𝐼𝑛,𝐵̃ := 𝐴*,

with restriction
𝑔|𝐴 = 𝑔𝑟 : 𝐴→ 𝐴*.

Note that each 𝑎̃ ∈ 𝐴 is 𝑛-integral over the center of 𝐴, implying, by Corollary 2.19, that
Obst𝑛(𝐴) = 0. Then, as in (13), we deduce that

ker(𝑔𝑟) ⊆ Obst𝑛(𝐴) (= 0).

Hence 𝑔𝑟 embeds 𝐴 = 𝐴/Obst𝑛(𝐴) into 𝐴*. Note that 𝐴* is a finite algebra over the affine central
subalgebra 𝑄 ⊆ 𝐴* generated by the finitely many central elements 𝜉𝑘,𝐵̃ + 𝐼𝑛,𝐵̃.

Denote 𝑏* = 𝑏̃+ 𝐼𝑛,𝐵̃. Then, as in (11), the finite subset

𝑊 * = {𝑏*1
𝑘1 · · · 𝑏*ℎ

𝑘ℎ | 𝑏𝑖 ∈ 𝐵, 𝑘𝑖 6 𝑛− 1} (⊆ 𝐴*)

spans 𝐴* over 𝑄. 2
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2.5. Proving that Obst𝑛(𝐴) · (𝒞𝒜𝒫𝑛(𝐴))2 = 0

In this section we show how Proposition 2.17 implies that Obst𝑛(𝐴) · (𝒞𝒜𝒫𝑛(𝐴))2 = 0, thereby
completing the proof of Razmyslov’s Theorem. For this, we need to specialize down to given
algebra 𝐴, requiring a new construction, the relatively free product, which enables us to handle
𝐴 together with polynomials. Since, to our knowledge, this crucial step, which is needed one way or
another in every published proof of the BKR theorem, has not yet appeared in print in full detail,
we present two proofs, one faster but more ad hoc (since we intersect with 𝐴 and bypass certain
difficulties), and the second more structural.

Both approaches are taken in the context of varieties in universal algebra, by taking the free
product of 𝐴 with the free associative algebra, and then modding out the identities defining its
variety.

2.5.1. The relatively free product

Definition 2.22. The free product 𝐴 *𝐶 𝐵 of 𝐶-algebras 𝐴 and 𝐵 is their coproduct in the
category of algebras.

(For 𝐶-algebras with 1, there are canonical 𝐶-module maps

𝐴→ 𝐴⊗ 1 ⊂ 𝐴⊗𝐶 𝐵, 𝐵 → 1⊗𝐵 ⊂ 𝐴⊗𝐶 𝐵,

viewed naturally as 𝐶-modules, so 𝐴 *𝐶 𝐵 can be identified with the tensor algebra of 𝐴⊗𝐶 𝐵, as
reviewed in [29, Example 18.38].)

Although the results through Theorem 2.32 hold over any commutative base ring 𝐶, it is easier
to visualize the situation for algebras over a field 𝐹 , in which case we have an explicit description
of 𝐴[𝜉𝑛,𝐴] * 𝐹{𝑥; 𝑦; 𝑡}:

Fix a base ℬ𝐴 = {1} ∪ ℬ0 of 𝐴 over 𝐹 , and let ℬ be the monomials in the {𝜉𝑛,𝑎 : 𝑎 ∈ 𝐴}
with coefficients in ℬ𝐴. (For algebras without 1, we take ℬ = ℬ0.) Thus ℬ is an 𝐹 -base of 𝐴[𝜉𝑛,𝐴],
and 𝐴[𝜉𝑛,𝐴] * 𝐹{𝑥; 𝑦; 𝑡} is the vector space having base comprised of all elements of the form
𝑏0ℎ1𝑏1ℎ2𝑏2 · · ·ℎ𝑚𝑏𝑚 where 𝑚 > 0, 𝑏0, 𝑏𝑚 ∈ ℬ, 𝑏1, . . . , 𝑏𝑚−1 ∈ ℬ ∖ {1}, and the ℎ𝑖 are nontrivial
words in the indeterminates 𝑥𝑖, 𝑦𝑗 , 𝑡𝑘. The free product 𝐴[𝜉𝑛,𝐴] * 𝐹{𝑥; 𝑦; 𝑡} becomes an algebra via
juxtaposition of terms. In other words, given

𝑔𝑗 = 𝑏𝑗,0ℎ𝑗,1𝑏𝑗,1ℎ𝑗,2𝑏𝑗,2 · · ·ℎ𝑗,𝑚𝑗𝑏𝑗,𝑚𝑗

for 𝑗 = 1, 2, we write 𝑏1,𝑚1𝑏2,0 = 𝛼1 +
∑︀

𝑘 𝛼𝑘𝑏𝑘 for 𝛼𝑘 ∈ 𝐹 and 𝑏𝑘 ranging over ℬ ∖ {1}, and define

𝑔1𝑔2 =𝛼1𝑏1,0ℎ1,1𝑏1,1ℎ1,2𝑏1,2 · · · (ℎ1,𝑚1ℎ2,1)𝑏2,1ℎ2,2𝑏2,2 · · ·ℎ2,𝑚2

+
∑︁
𝑘

𝛼𝑘𝑏1,0ℎ1,1𝑏1,1ℎ1,2𝑏1,2 · · ·ℎ1,𝑚1𝑏𝑘ℎ2,1𝑏2,1ℎ2,2𝑏2,2 · · ·ℎ2,𝑚2 .
(15)

For example, if 𝑏1𝑏2 = 1 + 𝑏3 + 𝑏4, then

(𝑏2ℎ1,1𝑏1)(𝑏2ℎ2,1𝑏2) = 𝑏2(ℎ1,1ℎ2,1)𝑏2 + 𝑏2ℎ1,1𝑏3ℎ2,1𝑏2 + 𝑏2ℎ1,1𝑏4ℎ2,1𝑏2.

2.5.2. The relatively free product of 𝐴 and 𝐶{𝑥; 𝑦; 𝑡} modulo a T-ideal

Even for algebras over an arbitrary base ring 𝐶, we can describe the free product of a 𝐶-algebra
with 𝐶{𝑥; 𝑦; 𝑡} by going over the same construction and mimicking the tensor product. Namely we
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form the free 𝐶-module 𝑀 having base comprised of all elements of the form 𝑎0ℎ1𝑎1ℎ2𝑎2 · · ·ℎ𝑚𝑎𝑚,
ℎ1𝑎1ℎ2𝑎2 · · ·ℎ𝑚𝑎𝑚, 𝑎0ℎ1𝑎1ℎ2𝑎2 · · ·ℎ𝑚, and ℎ1𝑎1ℎ2𝑎2 · · ·ℎ𝑚 where 𝑚 > 0, 𝑎0, . . . , 𝑎𝑚 ∈ 𝐴, and the
ℎ𝑖 are nontrivial words in the indeterminates 𝑥𝑖, 𝑦𝑗 , 𝑡𝑘.

The free product 𝐴 * 𝐶{𝑥; 𝑦; 𝑡} is 𝑀/𝑁 , where 𝑁 is the submodule generated by all

𝑎0ℎ1𝑎1ℎ2 · · · 𝑎𝑖 · · ·ℎ𝑚𝑎𝑚 + 𝑎0ℎ1𝑎1ℎ2 · · · 𝑎′𝑖 · · ·ℎ𝑚𝑎𝑚 − 𝑎0ℎ1𝑎1ℎ2 · · · (𝑎𝑖 + 𝑎′𝑖) · · ·ℎ𝑚𝑎𝑚,

(𝑐ℎ1)− 𝑐ℎ1,

𝑐𝑎0ℎ1𝑎1ℎ2 · · · 𝑎𝑖 − 𝑎0ℎ1𝑎1ℎ2 · · · (𝑐𝑎𝑖) · · ·ℎ𝑚𝑎𝑚, 𝑎𝑖 ∈ 𝐴, 𝑐 ∈ 𝐶;

𝐴 * 𝐶{𝑥; 𝑦; 𝑡} becomes an algebra via juxtaposition of terms, i.e., given

𝑔𝑗 = 𝑎𝑗,0ℎ𝑗,1𝑎𝑗,1ℎ𝑗,2𝑎𝑗,2 · · ·ℎ𝑗,𝑚𝑗𝑎𝑗,𝑚𝑗

for 𝑗 = 1, 2, we define

𝑔1𝑔2 = 𝑐𝑎1,0ℎ1,1𝑎1,1ℎ1,2𝑎1,2 · · · (ℎ1,𝑚1ℎ2,1)𝑎2,1ℎ2,2𝑎2,2 · · ·ℎ2,𝑚2 (16)

when 𝑎1,𝑚1𝑎2,0 = 𝑐 ∈ 𝐶, or

𝑔1𝑔2 = 𝛼1𝑎1,0ℎ1,1𝑎1,1ℎ1,2𝑎1,2 · · ·ℎ1,𝑚1(𝑎1,𝑚1𝑎2,0)ℎ2,1𝑎2,1ℎ2,2𝑎2,2 · · ·ℎ2,𝑚2 (17)

when 𝑎1,𝑚1𝑎2,0 /∈ 𝐶.
We write 𝐴⟨𝑥; 𝑦; 𝑡⟩ for the free product 𝐴 * 𝐶{𝑥; 𝑦; 𝑡}.
We have the natural embedding 𝐶{𝑥; 𝑦; 𝑡} → 𝐴⟨𝑥; 𝑦; 𝑡⟩. For 𝑔 ∈ 𝐶{𝑥; 𝑦; 𝑡}, we write 𝑔 for its

natural image in 𝐴 * 𝐶{𝑥; 𝑦; 𝑡}.

Definition 2.23. Suppose ℐ is a T-ideal of 𝐶{𝑥; 𝑦; 𝑡}, for which ℐ ⊆ id(𝐴). The relatively free
product 𝐴⟨𝑥; 𝑦; 𝑡⟩ℐ of 𝐴 and 𝐶{𝑥; 𝑦; 𝑡} modulo ℐ is defined as (𝐴 *𝐶 𝐶{𝑥; 𝑦; 𝑡})/ℐ̂, where ℐ̂ is
the two-sided ideal ℐ(𝐴 *𝐶 𝐶{𝑥; 𝑦; 𝑡}) consisting of all evaluations on 𝐴 *𝐶{𝑥; 𝑦; 𝑡} of polynomials
from ℐ.

We can consider 𝐴⟨𝑥; 𝑦; 𝑡⟩ℐ as the ring of (noncommutative) polynomials but with coefficients
from 𝐴 interspersed throughout, taken modulo the relations in ℐ.

This construction is universal in the following sense: Any homomorphic image of 𝐴⟨𝑥; 𝑦; 𝑡⟩
satisfying these identities (from ℐ) is naturally a homomorphic image of 𝐴⟨𝑥; 𝑦; 𝑡⟩ℐ . Thus, we have:

Lemma 2.24. (i) For any 𝑔1, . . . , 𝑔𝑘, ℎ1, . . . , ℎ𝑘 in 𝐴⟨𝑥; 𝑦; 𝑡⟩, there is a natural endomorphism
𝐴⟨𝑥; 𝑦; 𝑡⟩ → 𝐴⟨𝑥; 𝑦; 𝑡⟩ which fixes 𝐴 and all 𝑡𝑖 and sends 𝑥𝑖 ↦→ 𝑔𝑖, 𝑦𝑖 ↦→ ℎ𝑖.

(ii) For any 𝑔1, . . . , 𝑔𝑘, ℎ1, . . . , ℎ𝑘 in 𝐴⟨𝑥; 𝑦; 𝑡⟩ℐ , there is a natural endomorphism

𝐴⟨𝑥; 𝑦; 𝑡⟩ℐ → 𝐴⟨𝑥; 𝑦; 𝑡⟩ℐ ,

which fixes 𝐴 and all 𝑡𝑖 and sends 𝑥𝑖 ↦→ 𝑔𝑖, 𝑦𝑖 ↦→ ℎ𝑖.

Although difficult to describe explicitly, the relatively free product is needed implicitly in all
known proofs of the Braun-Kemer-Razmyslov Theorem in the literature. From now on, we assume
that ℐ contains 𝒞𝒜𝒫𝑛+1, so that we can work with ̂︁𝑀 .

Let ̂︁ℳ𝐴 denote the image of ℳ under substitutions to 𝐴, i.e., the 𝐶-submodule of ̂𝐶{𝑥, 𝑦, 𝑡}
consisting of the images of all doubly alternating polynomials (in 𝑥1 . . . , 𝑥𝑛, and in 𝑦1, . . . , 𝑦𝑛).
In view of Lemma 2.13, the natural action of Obst𝑛(𝐴) on ̂︁ℳ𝐴 respects multiplication by the

𝛿
(𝑛)
𝑘,ℎ
-operators.

Proposition 2.25. Obst𝑛(𝐴)̂︁ℳ𝐴 = 0.
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Proof. If 𝑎 ∈ Obst𝑛(𝐴), then 𝑎ℳ∈ ℐ, in view of Lemmas 2.5 and 2.12 and Proposition 2.17, so
is 0 modulo ℐ. 2

Corollary 2.26. If 𝑏 ∈ 𝐴 belongs to the 𝑇 -ideal generated by doubly alternating polynomials,
then Obst𝑛(𝐴)𝑏 = 0.

Proof. The element 𝑏 belongs to the linear combinations images of ̂︁ℳ𝐴 under specializations
𝑥𝑖 ↦→ 𝑎𝑖. 2

By Step 7 of Section 1.2, this will complete the proof of the nilpotence of Jac(𝐴) when 𝐶 is
a field, or more generally of any nil ideal when 𝐶 is Noetherian, once we complete the proof of
Proposition 2.10.

2.6. A more formal approach to Zubrilin’s argument

Rather than push immediately into 𝐴, one can perform these computations first at the level of
polynomials and then specialize. This requires a bit more machinery, since it requires adjoining the
commuting indeterminates 𝜉𝑛,𝐴 to the free product, but might be clearer conceptually.

Note that 𝐶{𝑡}[𝜉𝑛,𝐶{𝑡}] = 𝑅⊗𝐶 𝐶{𝑡}.

Lemma 2.27. ̂︁ℳ becomes an 𝐶{𝑡}[𝜉𝑛,𝐶{𝑡}]-module via the action given as follows:
Order the 𝜉𝑘,ℎ as 𝜉𝑗 = 𝜉𝑘𝑗 ,ℎ𝑗 for 1 6 𝑗 <∞.
For a letter 𝜉𝑗 = 𝜉𝑘𝑗 ,ℎ𝑗 , define

𝜉𝑗𝑓 = 𝛿
(𝑛)
𝑘𝑗 ,ℎ𝑗

(𝑓),

and, inductively,

𝜉𝑑𝑗 𝑓 = 𝛿
(𝑛)
𝑘𝑗 ,ℎ𝑗

(𝜉𝑑−1
𝑗 𝑓).

For a monomial ℎ = 𝜉
𝑑𝑗
𝑗 . . . 𝜉𝑑11 of degree 𝑑 = 𝑑1 + · · ·+ 𝑑𝑗 , define

ℎ𝑓 = 𝜉
𝑑𝑗
𝑗 (𝜉

𝑑𝑗−1

𝑗−1 . . . 𝜉𝑑11 𝑓)

inductively on 𝑗.
Finally, define ∑︁

(𝑐𝑖ℎ𝑖)𝑓 =
∑︁

𝛼𝑖(ℎ𝑖𝑓)

where 𝑐𝑖 ∈ 𝐶 and ℎ𝑖 are distinct monomials.

Proof.

The action is clearly well-defined, so we need to verify the associativity and commutativity of
the action. It is enough to show that (ℎ𝑖ℎ𝑖′)𝑓 = ℎ𝑖(ℎ𝑖′)𝑓 for any two monomials ℎ𝑖 and ℎ′𝑖. But this
follows inductively from induction on their length, plus the fact that 𝜉𝑗(𝜉𝑗′𝑓) = 𝜉𝑗′(𝜉𝑗𝑓) for any 𝜉𝑗
and 𝜉𝑗′ . 2

Let us continue to take ℐ = 𝒞𝒜𝒫𝑛+1.

Remark 2.28. Clearly 𝐴[𝜉𝑛,𝐴] *𝐶 𝐶{𝑡} ⊂ 𝐴[𝜉𝑛,𝐴] *𝐶 𝐶{𝑥; 𝑦; 𝑡} in the natural way, and then

ℐ(𝐴[𝜉𝑛,𝐴] *𝐶 𝐶{𝑡}) = (𝐴[𝜉𝑛,𝐴] *𝐶 𝐶{𝑡}) ∩ ℐ(𝐴[𝜉𝑛,𝐴] *𝐶 𝐶{𝑥; 𝑦; 𝑡})

since we are just restricting the indeterminates 𝑥⃗, 𝑦⃗, 𝑡⃗ to the indeterminates 𝑡⃗.

It follows from Noether’s Isomorphism Theorem that

ℱ := (𝐴[𝜉𝑛,𝐴] *𝐶 𝐶{𝑡})/ℐ(𝐴[𝜉𝑛,𝐴] *𝐶 𝐶{𝑡}),
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can be viewed naturally in (𝐴[𝜉𝑛,𝐴] *𝐶 𝐶{𝑥; 𝑦; 𝑡})/ℐ(𝐴[𝜉𝑛,𝐴] *𝐶 𝐶{𝑥; 𝑦; 𝑡}).
Viewingℳ⊂ 𝐶{𝑥; 𝑦; 𝑡} ⊂ 𝐴[𝜉𝑛,𝐴] *𝐶 𝐶{𝑥; 𝑦; 𝑡}, we define

ℳ̃′ = (𝐴[𝜉𝑛,𝐴] *𝐶 𝐶{𝑡})ℳ⊂ 𝐴[𝜉𝑛,𝐴] *𝐶 𝐶{𝑥; 𝑦; 𝑡}, (18)

and its image in (𝐴[𝜉𝑛,𝐴] *𝐶 𝐶{𝑥; 𝑦; 𝑡})/ℐ(𝐴[𝜉𝑛,𝐴] *𝐶 𝐶{𝑥; 𝑦; 𝑡}), which we call ℳ̃ (intuitively
consisting of terms ending with images of doubly alternating polynomials), which acts naturally by
right multiplication on ℱ . To understand how ℳ̃ works, we look at the Capelli polynomial acting
on 𝐴 *𝐶 𝐶{𝑥; 𝑦; 𝑡} for an arbitrary algebra 𝐴 satisfying Cap𝑛+1.

There is a more subtle action that we need. ℳ̃ can be viewed as an 𝑅-module where
𝑅 = 𝐶[𝜉

𝑛, ̂𝐶{𝑥;𝑦;𝑡}], via the crucial Lemma 2.12. But as above,ℳ is an 𝐴 * 𝐶{𝑡}-module where the

algebra multiplication is induced from (15) (viewingℳ⊂ 𝐶{𝑥; 𝑦; 𝑡}), implying ̂︁ℳ is an 𝐴 *𝐶{𝑡}-
module annihilated by 𝐶𝐴𝑃𝑛+1, and ℳ̃ thereby becomes an 𝐴[𝜉

𝑛, ̂𝐶{𝑥;𝑦;𝑡}]*𝐶{𝑡}-module, where we
define

𝜉𝑘,ℎ𝑓 = 𝛿
(𝑛)
𝑘,ℎ𝑓

for ℎ ∈ ̂𝐶{𝑥; 𝑦; 𝑡} and 𝑓 ∈ ̂︁ℳ, by means of the action given in Lemma 2.27, also cf. Remark 2.15.
Our main task is to identify these two actions when they are specialized to 𝐴.

2.6.1. The specialization argument

Having in hand the module ℳ̃ on which 𝐴[𝜉
𝑛, ̂𝐶{𝑥;𝑦;𝑡}] acts, we can specialize the assertion of

Proposition 2.17 down to 𝐴 once we succeed in matching the actions of 𝐴[𝜉
𝑛, ̂𝐶{𝑥;𝑦;𝑡}] and 𝐴[𝜉𝑛,𝐴]

when specializing to 𝐴.

Remark 2.29. 𝒞𝒜𝒫𝑘(𝐴[𝜉𝑛,𝐴]) = 𝒞𝒜𝒫𝑘(𝐴)[𝜉𝑛,𝐴], since Cap𝑘 is multilinear.
We write 𝒟𝒞𝒜𝒫𝑛 for the 𝐶{𝑡}-submodule of 𝐶{𝑥; 𝑦; 𝑡} generated by DCap𝑛, cf. (5), and

𝒟𝒞𝒜𝒫𝑛 for its image in ̂𝐶{𝑥; 𝑦; 𝑡}. This is a set of doubly alternating polynomials in 𝑥1, . . . , 𝑥𝑛
and 𝑦1, . . . , 𝑦𝑛, with variables 𝑡𝑖 interspersed arbitrarily.

Lemma 2.30. Any specialization 𝜙 : 𝐶{𝑥; 𝑦; 𝑡} → 𝐴 (together with its accompanying specialization̂︀𝜙 : ̂𝐶{𝑥; 𝑦; 𝑡} → 𝐴) gives rise naturally to a map

Φ : 𝐴[𝜉𝑛,𝐴]𝒟𝒞𝒜𝒫𝑛 → ℳ̃

given by ∑︁
𝑖

𝑎𝑖𝜉𝑘,𝜙(ℎ𝑗𝑖 )
̂︀𝑓𝑖 ↦→∑︁

𝑖

𝑎𝑖 ̂︀𝜙(𝜉𝑘,ℎ𝑗𝑖𝑓𝑖) =∑︁
𝑖

𝑎𝑖 ̂︀𝜙(𝛿(𝑥,𝑛)𝑘,ℎ𝑗𝑖
𝑓𝑖)

where ̂︀𝑓𝑖 ∈ 𝒟𝒞𝒜𝒫𝑛.
Proof. We need to show that this is well-defined, which follows from the functoriality property
given in Lemma 2.5. Namely, if 𝜙(ℎ𝑗𝑖) = 𝜙(ℎ′𝑗𝑖), then ̂︀𝜙(̂︁ℎ𝑗𝑖) = ̂︀𝜙̂︂(ℎ′𝑗𝑖) and∑︁

𝑖

𝑎𝑖𝜙(𝛿
(𝑥,𝑛)
𝑘,ℎ𝑗𝑖

̂︀𝑓𝑖) =∑︁
𝑖

𝑎𝑖𝜙(𝛿
(𝑥,𝑛)
𝑘,ℎ𝑗𝑖

𝑓𝑖) =
∑︁
𝑖

𝑎𝑖𝜙(𝛿
(𝑥,𝑛)
𝑘,ℎ′𝑗𝑖

𝑓𝑖) =
∑︁
𝑖

𝑎𝑖𝜙(𝛿
(𝑥,𝑛)
𝑘,ℎ′𝑗𝑖

𝑓𝑖).

2

The objective of this lemma was to enable us to replace 𝐴[𝜉𝑛,𝐴] by 𝐴 in our considerations.

kerΦ contains all 𝛿(𝑛)𝑘,ℎ𝑓 − 𝜉𝑘,ℎ𝑓 (cf. Remark 2.11) as well as (ℎ̂𝑛 −
∑︀𝑛−1

𝑘=0 ℎ̂
𝑘𝜉𝑘,ℎ) ̂︀𝑓 , where ℎ ranges

over all words and 𝑓 ∈ 𝒟𝒞𝒜𝒫𝑛, so we see that the Zubrilin integrality relations are passed on.
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Lemma 2.31. If 𝑡 is an infinite set of noncommuting indeterminates whose cardinality ℵ is at least
that of 𝐴, then for any given evaluation 𝑤 in 𝒟𝒞𝒜𝒫𝑛(𝐴 *𝐶 𝐶{𝑥; 𝑦; 𝑡}), there is a map

𝜙𝑤 : 𝐶{𝑥; 𝑦; 𝑡} → 𝐴 *𝐶 𝐶{𝑥; 𝑦; 𝑡},

sending 𝒟𝒞𝒜𝒫𝑛 to 𝒟𝒞𝒜𝒫𝑛(𝐴 *𝐶 𝐶{𝑥; 𝑦; 𝑡}), such that 𝑤 is in the image of 𝜙𝑤.

Proof. Note that 𝐴 *𝐶 𝐶{𝑥; 𝑦; 𝑡} has cardinality ℵ. Setting aside indeterminates

{𝑡𝑔 : 𝑔 ∈ 𝐴 *𝐶 𝐶{𝑥; 𝑦; 𝑡}},

we still have ℵ indeterminates left over, to map onto our original set 𝑡 of ℵ indeterminates. But any
evaluation 𝑤 of 𝒟𝒞𝒜𝒫𝑛 on 𝐴 *𝐶 𝐶{𝑥; 𝑦; 𝑡} can be written as

𝑤 = 𝑔Cap𝑛(𝑥1, . . . , 𝑥𝑛; 𝑔1, . . . , 𝑔𝑛)𝑔
′Cap𝑛(𝑦1, . . . , 𝑦𝑛;ℎ1, . . . , ℎ𝑛)𝑔

′′, (19)

for suitable 𝑔, 𝑔′, 𝑔′′, 𝑔𝑖, ℎ𝑗 ∈ 𝐴 *𝐶 𝐶{𝑥; 𝑦; 𝑡}. Defining 𝜙𝑤 by sending 𝑥𝑖 ↦→ 𝑥𝑖, 𝑦𝑗 ↦→ 𝑦𝑗 , and sending
the appropriate 𝑡𝑔 ↦→ 𝑔, 𝑡𝑔′ ↦→ 𝑔′, 𝑡𝑔′′ ↦→ 𝑔′′, 𝑡𝑔𝑖 ↦→ 𝑔𝑖, and 𝑡ℎ𝑗 ↦→ ℎ𝑗 , we have an element in 𝜙−1

𝑤 (𝑤).
2

Clearly 𝜙𝑤(𝒞𝒜𝒫𝑛+1) ⊆ 𝒞𝒜𝒫𝑛+1(𝐴 *𝐶 𝐶{𝑥; 𝑦; 𝑡}), so, when Cap𝑛+1 ∈ ℐ, 𝜙𝑤 induces a map

𝜙𝑤 : ̂𝐶{𝑥; 𝑦; 𝑡} → (𝐴 *𝐶 𝐶{𝑥; 𝑦; 𝑡})ℐ ,

which sends ̂︁ℳ→ ℳ̃.
Although we do not see that 𝒞𝒜𝒫𝑛+1 need be mapped onto 𝒞𝒜𝒫𝑛+1(𝐴 *𝐶 𝐶{𝑥; 𝑦; 𝑡}),

Lemma 2.31 says that it is “pointwise” onto, according to any chosen point, and this is enough
for our purposes.

Theorem 2.32. Obst𝑛(𝐴) · (𝒞𝒜𝒫𝑛(𝐴))2 = 0, for any PI-algebra 𝐴 = 𝐶{𝑎1, . . . , 𝑎ℓ} satisfying the
Capelli identity Cap𝑛+1.

Proof.
We form the free algebra 𝐶{𝑥; 𝑦; 𝑡} by taking a separate indeterminate 𝑡𝑗 for each element

of 𝐴[𝜉𝑛,𝐴]𝒟𝒞𝒜𝒫𝑛. We work with 𝐴[𝜉𝑛,𝐴]𝒟𝒞𝒜𝒫𝑛, viewed in the relatively free product 𝐴 :=
(𝐴[𝜉𝑛,𝐴] *𝐶 𝐶{𝑥; 𝑦; 𝑡})ℐ , where ℐ = 𝒞𝒜𝒫𝑛+1(𝐴[𝜉𝑛,𝐴] *𝐶 𝐶{𝑥; 𝑦; 𝑡}). In view of Lemma 2.30, the
relation

𝐼
𝑛, ̂𝐶{𝑥;𝑦;𝑡} ·

̂︁ℳ≡ 0 (mod 𝒞𝒜𝒫𝑛+1(𝐴[𝜉𝑛,𝐴] *𝐶 𝐶{𝑥; 𝑦; 𝑡}))

restricts to the relation 𝐼
𝑛, ̂𝐶{𝑥;𝑦;𝑡}𝒟𝒞𝒜𝒫𝑛 ≡ 0 (mod 𝒞𝒜𝒫𝑛+1(𝐴[𝜉𝑛,𝐴] *𝐶 𝐶{𝑥; 𝑦; 𝑡})). But the

various specializations of Lemma 2.31 cover all of 𝒟𝒞𝒜𝒫𝑛(𝐴). Hence Lemma 2.5 applied to
Proposition 2.17 and Lemma 2.30 implies 𝐼𝑛,𝐴𝒟𝒞𝒜𝒫𝑛(𝐴) = 0, and thus

Obst𝑛(𝐴) · (𝒞𝒜𝒫𝑛(𝐴))2 ⊆ 𝐼𝑛,𝐴𝒟𝒞𝒜𝒫𝑛(𝐴) = 0.

2

2.7. The proof of Proposition 2.10

Now we present the proof of the crucial Proposition 2.10, stating that for a doubly alternating
polynomial 𝑓 = 𝑓(𝑥1, . . . , 𝑥𝑛, 𝑦1, . . . , 𝑦𝑛, 𝑡⃗),

𝛿
(𝑥,𝑛)
𝑘,ℎ (𝑓) ≡ 𝛿(𝑦,𝑛)𝑘,ℎ (𝑓) 𝑚𝑜𝑑𝑢𝑙𝑜 𝒞𝒜𝒫𝑛+1.
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2.7.1. The connection to the group algebra of 𝑆𝑛

We begin with the basic correspondence between multilinear identities and elements of the group
algebra over 𝑆𝑛.

𝑉𝑛 = 𝑉𝑛(𝑥1, . . . , 𝑥𝑛) denotes the 𝐶-module of multilinear polynomials in 𝑥1, . . . , 𝑥𝑛, i.e.,

𝑉𝑛 = span𝐶{𝑥𝜎(1)𝑥𝜎(2) · · ·𝑥𝜎(𝑛) | 𝜎 ∈ 𝑆𝑛}.

Definition 2.33. We identify 𝑉𝑛 with the group algebra 𝐶[𝑆𝑛], by identifying a permutation
𝜎 ∈ 𝑆𝑛 with its corresponding monomial (in 𝑥1, 𝑥2, . . . , 𝑥𝑛):

𝜎 ↔𝑀𝜎(𝑥1, . . . , 𝑥𝑛) = 𝑥𝜎(1) · · ·𝑥𝜎(𝑛).

Any polynomial
∑︀
𝛼𝜎𝑥𝜎(1) · · ·𝑥𝜎(𝑛) corresponds to an element

∑︀
𝛼𝜎𝜎 ∈ 𝐶[𝑆𝑛], and conversely,∑︀

𝛼𝜎𝜎 corresponds to the polynomial(︁∑︁
𝛼𝜎𝜎

)︁
𝑥1 · · ·𝑥𝑛 =

∑︁
𝛼𝜎𝑥𝜎(1) · · ·𝑥𝜎(𝑛).

Here is a combinatorial identity of interest of its own.

Consider two disjoint sets𝑋∩𝑌 = ∅, each of cardinality 𝑛, and the symmetric group 𝑆2𝑛 = 𝑆𝑋∪𝑌
acting on 𝑋 ∪ 𝑌 . For each subset 𝑍 ⊆ 𝑋 we define an element 𝑃 (𝑍) ∈ 𝐶[𝑆2𝑛] as follows:

𝑃 (𝑍) =
∑︁

𝜎(𝑍)⊆𝑌
sgn(𝜎) · 𝜎.

In particular
𝑃 (∅) =

∑︁
𝜎∈𝑆2𝑛

sgn(𝜎) · 𝜎.

Proposition 2.34. ∑︁
𝑍⊆𝑋

(−1)|𝑍|𝑃 (𝑍) =
∑︁

𝜎(𝑋)=𝑋

sgn(𝜎) · 𝜎. (20)

Proof. Let 𝜎 ∈ 𝑆2𝑛 and let 𝑎𝜎 (resp. 𝑏𝜎) be the coefficient of 𝜎 on the l.h.s. (resp. r.h.s.) of (20).
We show that 𝑎𝜎 = 𝑏𝜎.

Let 𝑍(𝜎) = 𝜎−1(𝑌 ) be the largest subset 𝑍 ⊆ 𝑋 such that 𝜎(𝑍) ⊆ 𝑌 . Note that 𝜎(𝑋) = 𝑋 if
and only if 𝑍(𝜎) = ∅. Therefore

𝑏𝜎 = sgn(𝜎) if 𝑍(𝜎) = ∅ and 𝑏𝜎 = 0 if 𝑍(𝜎) ̸= ∅, (21)

since 𝑃 (∅) =
∑︀

sgn(𝜎) · 𝜎. We claim that

𝑎𝜎 = sgn(𝜎) ·
∑︁

𝑍⊂𝑍(𝜎)
(−1)|𝑍|.

To show this, recall that
𝑙.ℎ.𝑠 =

∑︁
𝑍⊆𝑋

(−1)|𝑍|
∑︁

𝜎(𝑍)⊆𝑌
sgn(𝜎) · 𝜎.

In 𝑃 (𝑍) the coefficient of 𝜎 is sgn(𝜎) if 𝑍 ⊆ 𝑍(𝜎) (since then 𝜎(𝑍) ⊆ 𝑌 ), and is zero if 𝑍 ̸⊆ 𝑍(𝜎)
(since if 𝜎(𝑍) ⊆ 𝑌 then 𝜎(𝑍 ∪ 𝑍(𝜎)) ⊆ 𝑌 , contradicting the maximality of 𝑍(𝜎)). It follows that
as claimed,

𝑎𝜎 = sgn(𝜎) ·
∑︁

𝑍⊆𝑍(𝜎)
(−1)|𝑍|.
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It is well known that
∑︀

𝑍⊆𝑍(𝜎)(−1)|𝑍| = 1 when 𝑍(𝜎) = ∅ and = 0 otherwise. Therefore

𝑎𝜎 = sgn(𝜎) if 𝑍(𝜎) = ∅ and 𝑎𝜎 = 0 if 𝑍(𝜎) ̸= ∅. (22)

The proof now follows by comparing (21) with (22).
2

Lemma 2.35. Let 𝑓(𝑥1, . . . , 𝑥𝑛, 𝑦1, . . . , 𝑦𝑛, 𝑡⃗ ) be doubly alternating. Then

𝑓(𝑥1, . . . , 𝑥𝑛, 𝑦1, . . . , 𝑦𝑛, 𝑡⃗ ) ≡ 𝑓(𝑦1, . . . , 𝑦𝑛, 𝑥1, . . . , 𝑥𝑛, 𝑡⃗ ) modulo 𝒞𝒜𝒫𝑛+1.

Proof. Let 𝑋 = {𝑥1, . . . , 𝑥𝑛} and 𝑌 = {𝑦1, . . . , 𝑦𝑛}. Then |𝑋| = |𝑌 | = 𝑛 and 𝑋 ∩ 𝑌 = ∅,
and we identify 𝑆2𝑛 = 𝑆𝑋∪𝑌 . Let 𝑀 = {𝑥𝑖1 , . . . , 𝑥𝑖𝑘} ⊆ 𝑋, with 1 6 𝑖1 < · · · < 𝑖𝑘 6 𝑛, and
𝑁 = {𝑦𝑗1 , . . . , 𝑦𝑗𝑘} ⊆ 𝑌 , with 1 6 𝑗1 < · · · < 𝑗𝑘 6 𝑛. Thus, |𝑀 | = |𝑁 | = 𝑘 6 𝑛. 𝑀 will play
the role of 𝑍 in Proposition 2.34. We consider permutations 𝜎 ∈ 𝑆2𝑛 with 𝜎(𝑀) = 𝑁 . Define the
permutation

𝜏𝑀𝑁 = (𝑥𝑖1 , 𝑦𝑗1) · · · (𝑥𝑖𝑘 , 𝑦𝑗𝑘).

Since 𝑀 ∩𝑁 = ∅, 𝜏𝑀𝑁 has order 2 in 𝑆2𝑛, and satisfies sgn(𝜏𝑀𝑁 ) = (−1)𝑘. If 𝑀 = 𝑋 then 𝑁 = 𝑌
and sgn(𝜏𝑀𝑁 ) = sgn(𝜏𝑋𝑌 ) = (−1)𝑛. Moreover 𝜏𝑀𝑁 (𝑀) = 𝑁 and 𝜏𝑀𝑁 (𝑁) =𝑀 .

Next, we define

𝑇𝑀𝑁 =
∑︁

𝜋(𝑀)=𝑁

sgn(𝜋) · 𝜋 ∈ 𝐶[𝑆𝑛].

Let 𝜌 = 𝜏𝑀𝑁 · 𝜋, so that 𝜌(𝑀) =𝑀 . Then 𝜋 = 𝜏𝑀𝑁 · 𝜌 and

𝑇𝑀𝑁 = sgn(𝜏𝑀𝑁 ) · 𝜏𝑀𝑁 ·

⎛⎝ ∑︁
𝜌(𝑀)=𝑀

sgn(𝜌) · 𝜌

⎞⎠ .

But by Proposition 2.34, ∑︁
𝑀⊆𝑋

(−1)|𝑀 |𝑃 (𝑀) =
∑︁

𝜎(𝑋)=𝑋

sgn𝜎 · 𝜎. (23)

If 𝑀 ( 𝑋, then 𝑃 (𝑀) is alternating on 2𝑛 − |𝑀 | > 𝑛 + 1 indeterminates, and hence is 0 modulo
𝒞𝒜𝒫𝑛+1. Thus, modulo 𝒞𝒜𝒫𝑛+1, the left hand side of (23) equals the unique summand with
𝑀 = 𝑋, which is

(−1)𝑛
∑︁

𝜎(𝑋)=𝑌

sgn(𝜎) · 𝜎 = (−1)𝑛sgn(𝜏𝑋𝑌 ) · 𝜏𝑋𝑌 ·

⎛⎝ ∑︁
𝜎(𝑌 )=𝑌

sgn(𝜎) · 𝜎

⎞⎠ =

= 𝜏𝑋𝑌 ·

⎛⎝ ∑︁
𝜎(𝑌 )=𝑌

sgn(𝜎) · 𝜎

⎞⎠ .

Since 𝜎(𝑋) = 𝑋 if and only if 𝜎(𝑌 ) = 𝑌 , it follows that

∑︁
𝜎(𝑌 )=𝑌

sgn(𝜎) · 𝜎 =
∑︁

𝜎(𝑋)=𝑋

sgn(𝜎) · 𝜎 ≡ 𝜏𝑋𝑌 ·

⎛⎝ ∑︁
𝜎(𝑌 )=𝑌

sgn(𝜎) · 𝜎

⎞⎠ , modulo 𝒞𝒜𝒫𝑛+1.
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Now we identify elements in 𝐶[𝑆2𝑛] with polynomials multilinear in 𝑥1, . . . , 𝑥𝑛, 𝑦1, . . . , 𝑦𝑛. Taking a
monomial ℎ(𝑥1, . . . , 𝑥𝑛, 𝑦1, . . . , 𝑦𝑛; 𝑡⃗) multilinear in 𝑥1, . . . , 𝑥𝑛, 𝑦1, . . . , 𝑦𝑛, we define

𝑓(𝑥1, . . . , 𝑥𝑛, 𝑦1, . . . , 𝑦𝑛; 𝑡⃗) :=

⎛⎝ ∑︁
𝜎(𝑌 )=𝑌

sgn(𝜎) · 𝜎

⎞⎠ℎ.

Then

𝜏𝑋𝑌 ·

⎛⎝ ∑︁
𝜎(𝑌 )=𝑌

sgn(𝜎) · 𝜎

⎞⎠ℎ = 𝑓(𝑦1, . . . , 𝑦𝑛, 𝑥1, . . . , 𝑥𝑛; 𝑡⃗).

Again, since 𝜎(𝑋) = 𝑋 if and only if 𝜎(𝑌 ) = 𝑌 , it follows that 𝑓(𝑥1, . . . , 𝑥𝑛, 𝑦1, . . . , 𝑦𝑛; 𝑡⃗) is doubly
alternating, and we have proved that

𝑓(𝑥1, . . . , 𝑥𝑛, 𝑦1, . . . , 𝑦𝑛; 𝑡⃗) ≡ 𝑓(𝑦1, . . . , 𝑦𝑛, 𝑥1, . . . , 𝑥𝑛; 𝑡⃗) modulo 𝒞𝒜𝒫𝑛+1,

as desired.

2

2.7.2. Proof of Proposition 2.10

We may assume that ℎ is a new indeterminate 𝑧. Recall that

𝛿
(𝑥,𝑛)
𝑘,𝑧 (𝑓(𝑥1, . . . , 𝑥𝑛, 𝑦1, . . . , 𝑦𝑛, 𝑡⃗ )) =

=
∑︁

16𝑖1<···<𝑖𝑘6𝑛
𝑓(𝑥1, . . . , 𝑥𝑛, 𝑦1, . . . , 𝑦𝑛, 𝑡⃗ )|𝑥𝑖𝑢 ↦→𝑧𝑥𝑖𝑢 ; 𝑢 = 1, . . . , 𝑘,

and
𝛿
(𝑦,𝑛)
𝑘,𝑧 (𝑓(𝑥1, . . . , 𝑥𝑛, 𝑦1, . . . , 𝑦𝑛, 𝑡⃗ )) =

=
∑︁

16𝑖1<···<𝑖𝑘6𝑛
𝑓(𝑥1, . . . , 𝑥𝑛, 𝑦1, . . . , 𝑦𝑛, 𝑡⃗ )|𝑦𝑖𝑢 ↦→𝑧𝑦𝑖𝑢 ; 𝑢 = 1, . . . , 𝑘.

Let 𝑧′ = 1 + 𝜀𝑧, 𝜀 being a central indeterminant. Then clearly

𝑓(𝑧′𝑥1, . . . , 𝑧′𝑥𝑛, 𝑦1, . . . , 𝑦𝑛, 𝑡⃗ ) =
𝑛∑︁
𝑘=0

𝜀𝑘 · 𝛿(𝑥,𝑛)𝑘,𝑧 (𝑓(𝑥1, . . . , 𝑥𝑛, 𝑦1, . . . , 𝑦𝑛, 𝑡⃗ )) (24)

and

𝑓(𝑥1, . . . , 𝑥𝑛, 𝑧
′𝑦1, . . . , 𝑧′𝑦𝑛, 𝑡⃗ ) =

𝑛∑︁
𝑘=0

𝜀𝑘 · 𝛿(𝑦,𝑛)𝑘,𝑧 (𝑓(𝑥1, . . . , 𝑥𝑛, 𝑦1, . . . , 𝑦𝑛, 𝑡⃗ )). (25)

By Equations (24) and (25) it is enough to show that

𝑓(𝑧′𝑥1, . . . , 𝑧′𝑥𝑛, 𝑦1, . . . , 𝑦𝑛, 𝑡⃗ ) ≡ 𝑓(𝑥1, . . . , 𝑥𝑛, 𝑧′𝑦1, . . . , 𝑧′𝑦𝑛, 𝑡⃗ ) modulo 𝒞𝒜𝒫𝑛+1.

Let
𝑔1(𝑥1, . . . , 𝑥𝑛, 𝑦1, . . . , 𝑦𝑛, 𝑡⃗ ) = 𝑓(𝑧′𝑥1, . . . , 𝑧′𝑥𝑛, 𝑦1, . . . , 𝑦𝑛, 𝑡⃗ )

and
𝑔2(𝑥1, . . . , 𝑥𝑛, 𝑦1, . . . , 𝑦𝑛, 𝑡⃗ ) = 𝑓(𝑥1, . . . , 𝑥𝑛, 𝑧

′𝑦1, . . . , 𝑧′𝑦𝑛, 𝑡⃗ ).
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We have to show that
𝑔1 ≡ 𝑔2 modulo 𝒞𝒜𝒫𝑛+1.

Denote 𝑥′𝑖 = 𝑧′𝑥𝑖, 𝑦′𝑖 = 𝑧′𝑦𝑖; 𝑖 = 1, . . . , 𝑛. Then

𝑔1(𝑥1, . . . , 𝑥𝑛, 𝑦1, . . . , 𝑦𝑛, 𝑡⃗ ) = 𝑓(𝑥′1, . . . , 𝑥
′
𝑛, 𝑦1, . . . , 𝑦𝑛, 𝑡⃗ ) ≡

≡ 𝑓(𝑦1, . . . , 𝑦𝑛, 𝑥′1, . . . , 𝑥′𝑛, 𝑡⃗ ) =

= 𝑔2(𝑦1, . . . , 𝑦𝑛, 𝑥1, . . . , 𝑥𝑛, 𝑡⃗ ) ≡

≡ 𝑔2(𝑥1, . . . , 𝑥𝑛, 𝑦1, . . . , 𝑦𝑛, 𝑡⃗ ) modulo 𝒞𝒜𝒫𝑛+1.

The congruences follow from Lemma 2.35 since both 𝑓 and 𝑔2 are doubly alternating.

3. Proof of Kemer’s “Capelli Theorem,”

To complete the proof of Theorem 1.1, it remains to present an exposition of Kemer’s “Capelli
Theorem,” that any affine PI algebra over a field 𝐹 satisfies a Capelli identity Cap𝑛 for large enough
𝑛. This is done by abstracting a key property of Cap𝑛, called spareseness.

Definition 3.1. A multilinear polynomial 𝑔 =
∑︀
𝛼𝜎𝑥𝜎(1) . . . 𝑥𝜎(𝑑) is a sparse identity of 𝐴 if, for

any monomial 𝑓(𝑥1, . . . , 𝑥𝑑; 𝑡⃗) we have∑︁
𝛼𝜎𝑓(𝑥𝜎(1), . . . , 𝑥𝜎(𝑑); 𝑡⃗) ∈ id(𝐴).

See [7, §2.5.2] for more detail. The major example of a sparse identity is the Capelli identity. One
proves rather quickly that any sparse identity implies a Capelli identity, so it remains to show that
any affine PI algebra over a field satisfies a sparse identity. There are two possible approaches, both
using the classical representation theory of 𝑆𝑛. One proof relies on “the branching theorem,” which
requires characteristic 0, and the other relies more on the structure of the group algebra 𝐹 [𝑆𝑛], also
with the technique of “pumping” polynomial identities, and works in arbitrary characteristic.

3.1. Affine algebras satisfying a sparse identity

Sparse identities work well with the left lexicographic order <. If 𝑏1 < · · · < 𝑏𝑚 and 1 ̸= 𝜎 ∈ 𝑆𝑚,
then (𝑏1, . . . , 𝑏𝑚) < (𝑏𝜎(1), . . . , 𝑏𝜎(𝑚)). Any sparse identity over a field yields a powerful sparse
reduction procedure. Namely, we may assume 𝛼(1) = 1; given 𝑎1, . . . , 𝑎𝑑 in 𝐴, we can replace
any term 𝑓(𝑎1, . . . , 𝑎𝑑) by

−
∑︁
𝜎 ̸=1

𝛼𝜎𝑓(𝑥𝜎(1) . . . 𝑥𝜎(𝑑), 𝑥𝑑+1, . . . , 𝑥𝑛).

(The analogous assertion also holds for 𝑐𝑑.)

Lemma 3.2. Let 𝐴 = 𝐶{𝑎1, 𝑎2 . . .} be a PI algebra, satisfying a sparse multilinear identity 𝑝 =∑︀
𝜎∈𝑆𝑑

𝛽𝜎𝑥𝜎(1) · · ·𝑥𝜎(𝑑) of degree 𝑑, with 𝑑 6 𝑛, and let𝑀(𝑥1, . . . , 𝑥𝑛; 𝑦⃗ ) be a monomial multilinear

in 𝑥1, . . . , 𝑥𝑛 and perhaps involving extra indeterminates 𝑦⃗. We consider Δ = 𝑀(𝑣1, . . . , 𝑣𝑛; 𝑦⃗),
where 𝑣1, . . . , 𝑣𝑛 are words in the generators 𝑎1, 𝑎2, . . . and 𝑦⃗ is an arbitrary specialization of 𝑦⃗ in
𝐴. Assume that 𝑘 of the 𝑣𝑖 satisfy |𝑣𝑖| > 𝑑 (length as words in 𝑎1, 𝑎2, . . .). If ℓ > 𝑑, then Δ is a
linear combination of monomials Δ′ = 𝑀(𝑣′1, . . . , 𝑣

′
𝑛; 𝑦⃗ ) where at most ℓ− 1 of the words 𝑣′𝑖 have

length > 𝑑.
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This clearly implies that 𝐴 is spanned by monomials Δ′ =𝑀(𝑣′1, 𝑣
′
2, . . .), with at most 𝑑− 1 of

the 𝑣′𝑖 having length > 𝑑.
Proof.

Claim: If |𝑣𝑖1 |, . . . , |𝑣𝑖𝑑 | > 𝑑, then Δ = 𝑀(𝑣1, . . . , 𝑣𝑛; 𝑦⃗ ) is a linear combination of terms
Δ′ =𝑀(𝑣′1, . . . , 𝑣

′
𝑛; 𝑦⃗ ) satisfying

(|𝑣′1|, . . . , |𝑣′𝑛|) < (|𝑣1|, . . . , |𝑣𝑛|).

The above Claim implies the existence of descending sequences of monomials, under the left
lexicographic order. Such a descending sequence must stop. When it stops we have a corresponding
monomial having strictly fewer words 𝑣′𝑖 for which |𝑣′𝑖| > 𝑑. Therefore proving the above Claim will
prove the lemma. We now prove the Claim.

We rewrite Δ = 𝑀(𝑣𝑖1 , . . . , 𝑣𝑖𝑑 ; 𝑦⃗ ), where 𝑖1 < 𝑖2, · · · < 𝑖𝑑; then we may assume that
𝑖1 = 1, . . . , 𝑖𝑑 = 𝑑. We write 𝑣𝑖 = 𝑤𝑖𝑢𝑖 where |𝑢𝑖| = 𝑑− 𝑖, 1 6 𝑖 6 𝑑. The sparse identity 𝑝 implies
that Δ is a linear combination of terms Δ𝜎 =𝑀(𝑤1𝑢𝜎(1), . . . , 𝑤ℎ𝑢𝜎(𝑑); 𝑦⃗ ) =𝑀(𝑣′1, . . . , 𝑣

′
𝑑; 𝑦⃗ ) where

1 ̸= 𝜎 ∈ 𝑆𝑑. (Δ itself corresponds to 𝜎 = 1.) To see this, we rewrite Δ = 𝑀(𝑤1𝑢1, . . . , 𝑤𝑑𝑢𝑑; 𝑦⃗ ) as

𝑁(𝑢1, . . . , 𝑢𝑑;𝑊 ). The sparse identity 𝑝 implies that 𝑁(𝑢1, . . . , 𝑢𝑑;𝑊 ) is a linear combination of
elements of the form

𝑁(𝑢𝜎(1), . . . , 𝑢𝜎(𝑑);𝑊 ) =𝑀(𝑤1𝑢𝜎(1), . . . , 𝑤𝑑𝑢𝜎(𝑑); 𝑦⃗ ), 1 ̸= 𝜎 ∈ 𝑆𝑑.

Denote 𝑤𝑖𝑢𝜎(𝑖) = 𝑣′𝑖, 1 6 𝑖 6 𝑑. But then (|𝑣′1|, . . . , |𝑣′𝑑|) < (|𝑣1|, . . . , |𝑣𝑑|) for such 𝜎 ̸= 1. This
proves the Claim, and completes the proof of the lemma. 2

Although we did not apply Shirshov’s Height Theorem, the main argument here is similar. Note
also that Lemma 3.2 applies to any PI algebra, not necessarily affine. In the next theorem, due to
Kemer, we do assume that 𝐴 is affine.

Theorem 3.3. Let 𝐴 = 𝐶{𝑎1, . . . , 𝑎𝑟} be an affine PI algebra over a commutative ring 𝐶, satisfying
a sparse identity 𝑝 of degree 𝑑, and let 𝑛 > 𝑟𝑑 + 𝑑. Then 𝐴 satisfies the Capelli identity Cap𝑛[𝑥; 𝑦].

Proof. We may assume that 𝑟 > 2, since otherwise 𝐴 is commutative. Consider

Cap𝑛(𝑣1, . . . , 𝑣𝑛;𝑤1, . . . , 𝑤𝑛)

where 𝑣𝑖, 𝑤𝑖 ∈ 𝐴. By Lemma 3.2 we may assume that at most 𝑑− 1 of the 𝑣𝑖 have length > 𝑑 (as
words in the generators 𝑎1 . . . , 𝑎𝑟). Hence at least 𝑛 − (𝑑 − 1) of the 𝑣𝑖 have length 6 𝑑 − 1. The
number of distinct words of length 𝑞 is 6 𝑟𝑞. Hence the number of words of length 6 𝑑− 1 is

6 1 + 𝑟 + 𝑟2 + · · ·+ 𝑟𝑑−1 =
𝑟𝑑 − 1

𝑟 − 1
< 𝑟𝑑 (since 𝑟 > 2).

But we have at least 𝑛 − (𝑑 − 1) such words appearing in 𝑣1, . . . , 𝑣𝑛, and 𝑛 − (𝑑 − 1) > 𝑟𝑑

(since by assumption 𝑛 > 𝑟𝑑 + 𝑑). It follows that there must be repetitions among 𝑣1, . . . , 𝑣𝑛,
so Cap𝑛(𝑣1, . . . , 𝑣𝑛;𝑤1, . . . , 𝑤𝑛) = 0. 2

3.2. Actions of the group algebra

It remains to prove the existence of sparse identities for affine PI-algebras. For this, we turn to
the representation theory of 𝑆𝑛. After a brief review of actions of 𝑆𝑛 on Young diagrams, we treat
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the characteristic 0 case, cf. Kemer [15]. The characteristic 𝑝 > 0 proof, which requires some results
about modular representations but bypassing branching, is done in §3.2 and §4.

Given 𝜎, 𝜋 ∈ 𝑆𝑛, by convention we take 𝜎𝜋(𝑖) = 𝜋(𝜎(𝑖)). The product 𝜎𝜋 corresponding (by
Definition 2.33) to the monomial

𝑀𝜎𝜋 = 𝑥𝜎𝜋(1) · · ·𝑥𝜎𝜋(𝑛)

can be interpreted in two ways, according to left and right actions of 𝑆𝑛 on 𝑉𝑛, described
respectively as follows:

Let 𝜎, 𝜋 ∈ 𝑆𝑛. Let 𝑦𝑖 = 𝑥𝜎(𝑖). Then

(i) 𝜎𝑀𝜋(𝑥1 . . . , 𝑥𝑛) :=𝑀𝜎𝜋 =𝑀𝜋(𝑥𝜎(1), . . . , 𝑥𝜎(𝑛)) and
(ii) 𝑀𝜎(𝑥1 . . . , 𝑥𝑛)𝜋 := (𝑦1 · · · 𝑦𝑛)𝜋 =𝑀𝜎𝜋 = 𝑦𝜋(1) · · · 𝑦𝜋(𝑛).

Thus, the effect of the right action of 𝜋 on a monomial is to permute the places of the indeterminates
according to 𝜋.

Extending by linearity, we obtain for any 𝑓 = 𝑓(𝑥1, . . . , 𝑥𝑛) ∈ 𝑉𝑛 that

(i) 𝜎𝑝(𝑥1, . . . , 𝑥𝑛) = 𝑝(𝑥𝜎(1), . . . , 𝑥𝜎(𝑛));

(ii) 𝑝(𝑥1, . . . , 𝑥𝑛)𝜋 = 𝑞(𝑦1, . . . , 𝑦𝑛), where 𝑞(𝑦1, . . . , 𝑦𝑛) is obtained from 𝑝(𝑥1, . . . , 𝑥𝑛) by place-
permuting all the monomials of 𝑝 according to the permutation 𝜋.

For any finite group 𝐺 and field 𝐹 , there is a well-known correspondence between the
𝐹 [𝐺]-modules and the representations of 𝐺. The simple modules correspond to the irreducible
representations.

Remark 3.4. If 𝑝 ∈ Id(𝐴), then 𝜎𝑝 ∈ Id(𝐴) since the left action is just a change of variables.
Hence, for any PI-algebra 𝐴, the spaces

Id(𝐴) ∩ 𝑉𝑛 ⊆ 𝑉𝑛

are in fact left ideals of 𝐹 [𝑆𝑛] (thereby affording certain 𝑆𝑛 representations), but need not be two-
sided ideals. However, we prove below the existence of a nonzero two-sided ideal in Id(𝐴) ∩ 𝑉𝑛, a
fact which is of crucial importance in what follows.

Remark 3.5. Let 𝜆 be a partition. As explained in [7, p. 147], any tableau 𝑇 of 𝜆 gives rise to an
element

𝑎𝑇 =
∑︁

𝑞∈𝒞𝑇𝜆 , 𝑝∈ℛ𝑇𝜆

sgn(𝑞)𝑞𝑝 ∈ 𝐶[𝑆𝑛],

where 𝒞𝑇𝜆 (resp. ℛ𝑇𝜆 ) denotes the set of column (resp. row) permutations of the tableau 𝑇𝜆.
𝑎2𝑇 = 𝛼𝑇𝑎𝑡 for some 𝛼𝑇 in the base field 𝐹 . When 𝛼𝑇 ̸= 0, which by [29, Lemma 19.59(i)] is
always the case when char(𝐹 ) does not divide 𝑛, in particular, when char(𝐹 ) = 0, we will call the
idempotent 𝑒𝑇 := 𝛼−1

𝑇 𝑎𝑇 the Young symmetrizer of the tableau 𝑇 .
Furthermore, by [29, Lemma 19.59(i)], if 𝑎𝑇 ̸= 0 and then 𝐹 [𝑆𝑛]𝑎𝑇 = 𝐹𝑎𝑇 , implying 𝐹 [𝑆𝑛]𝑎𝑇

(if nonzero) is a minimal left ideal, which we call 𝐽𝜆. Thus, if 𝐽𝜆 contains an element corresponding
to a nontrivial PI of 𝐴, 𝑎𝑇 itself must correspond to a PI of 𝐴.

𝑠𝜆 := dim 𝐽𝜆 is given by the “hook"formula, see for example [30] or [14], where we recall that
each “hook"number ℎ𝑥 for a box 𝑥 is the number of boxes in “hook"formed by taking all boxes to
the right of 𝑥 and beneath 𝑥. (In the literature, one writes 𝑓𝜆 instead of 𝑠𝜆, but here we have used
𝑓 throughout for polynomials.)

Lemma 3.6. Suppose 𝐿 is a minimal left ideal of a ring 𝑅. Then the minimal two-sided ideal of 𝑅
containing 𝐿 is a sum of minimal left ideals of 𝑅 isomorphic to 𝐿 as modules.
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We let 𝐼𝜆 denote the minimal two-sided ideal of 𝐹 [𝑆𝑛] containing 𝐽𝜆.

We define the codimension 𝑐𝑛(𝐴) = dim
(︁

𝑉𝑛
Id(𝐴)∩𝑉𝑛

)︁
. The characteristic 0 version of the next

result is in [24].

Lemma 3.7. Let 𝐴 be an 𝐹 -algebra, and let 𝜆 be a partition of 𝑛. If dim 𝐽𝜆 > 𝑐𝑛(𝐴), then
𝐼𝜆 ⊆ Id(𝐴) ∩ 𝑉𝑛.

Proof. By Lemma 3.6, 𝐽𝜆 is a sum of minimal left ideals, with each such minimal left ideal 𝐽
isomorphic to 𝐽𝜆. Thus, dim 𝐽 = dim 𝐽𝜆 > 𝑐𝑛(𝐴). Since 𝐽 is minimal, either 𝐽 ⊆ Id(𝐴) ∩ 𝑉𝑛 or
𝐽 ∩

(︀
Id(𝐴) ∩ 𝑉𝑛

)︀
= 0. If 𝐽 ∩

(︀
Id(𝐴) ∩ 𝑉𝑛

)︀
= 0 then it follows that

𝑐𝑛(𝐴) = dim 𝑉𝑛/
(︀
Id(𝐴) ∩ 𝑉𝑛

)︀
> dim 𝐽 > 𝑐𝑛(𝐴),

a contradiction. Therefore each 𝐽 ⊆ Id(𝐴) ∩ 𝑉𝑛. 𝐼𝜆 ⊆ Id(𝐴) ∩ 𝑉𝑛 since 𝐼𝜆 equals the sum of these
minimal left ideals. 2

3.3. The characteristic 0 case [15]

The characteristic 0 case is treated separately here, since it can be handled via the classical
representation theory of the symmetric group. By Maschke’s Theorem, the group algebra 𝐹𝑆𝑛 now
is a finite direct product of matrix algebras over 𝐹 . We have the decomposition 𝐹𝑆𝑛 =

⨁︀
𝜆⊢𝑛 𝐼𝜆.

Thus, Lemma 3.7 yields at once:

Lemma 3.8. [24] Let char(𝐹 ) = 0, let 𝐴 be an 𝐹 algebra, and let 𝜆 be a partition of 𝑛. If 𝑠𝜆 > 𝑐𝑛(𝐴),
then 𝐼𝜆 ⊆ Id(𝐴) ∩ 𝑉𝑛.

(Here 𝐼𝜆 is the sum of those 𝐹 [𝑆𝑛]𝑒𝑇 for which 𝑇 is a standard tableau with partition 𝜆. These
𝐼𝜆 are minimal two sided ideals, each a sum of 𝑠𝜆 minimal left ideals isomorphic to 𝐽𝜆.)

Example 3. Consider the “rectangle” of 𝑢 rows and 𝑣 columns. By [20, page 11], the hook
numbers of the partition 𝜇 = (𝑢𝑣) satisfy∑︁

𝑥∈𝜇
ℎ𝑥 = 𝑢𝑣(𝑢+ 𝑣)/2 = 𝑛

𝑢+ 𝑣

2
.

Let us review the proof, for further reference. For any box 𝑥 in the (1, 𝑗) position, the hook has
length 𝑢+ 𝑣 − 𝑗, so the sum of all hook numbers in the first row is

𝑣∑︁
𝑗=1

(𝑢+ 𝑣 − 𝑗) = 𝑢𝑣 +
𝑣(𝑣 − 1)

2
= 𝑣

(︂
𝑢+

𝑣 − 1

2

)︂
.

Summing this over all rows yields

𝑣
𝑢(𝑢+ 1)

2
+ 𝑢𝑣

𝑣 − 1

2
= 𝑢𝑣

(︂
𝑢+ 1

2
+
𝑣 − 1

2

)︂
= 𝑢𝑣

𝑢+ 𝑣

2
,

as desired.

3.3.1. Strong identities

Definition 3.9. Let 𝐴 be a PI algebra. The multilinear polynomial 𝑔 ∈ 𝑉𝑛 is a strong identity of
𝐴 if for every 𝑚 > 𝑛 we have 𝐹𝑆𝑚 · 𝑔 · 𝐹𝑆𝑚 ⊆ Id(𝐴).
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Note that every strong identity is sparse. To obtain strong identities, we utilize the following
construction, due to Amitsur.

The natural embedding 𝑆𝑛 ⊂ 𝑆𝑛+1 (via 𝜎(𝑛 + 1) = 𝑛 + 1 for 𝜎 ∈ 𝑆𝑛) induces the embedding
𝑉𝑛 ⊂ 𝑉𝑛+1: 𝑓(𝑥1, . . . , 𝑥𝑛) ≡ 𝑓(𝑥1, . . . , 𝑥𝑛) · 𝑥𝑛+1. More generally, for any 𝑛 < 𝑚 we have the
inclusion 𝑉𝑛 ⊂ 𝑉𝑚 via 𝑓(𝑥1, . . . , 𝑥𝑛) ≡ 𝑓(𝑥1, . . . , 𝑥𝑛) · 𝑥𝑛+1 · · ·𝑥𝑚.

For 𝑓(𝑥) = 𝑓(𝑥1, . . . , 𝑥𝑛) =
∑︀

𝜎∈𝑆𝑛
𝛼𝜎𝑥𝜎(1) · · ·𝑥𝜎(𝑛) ∈ 𝑉𝑛, we define

𝑓*(𝑥1, . . . , 𝑥𝑛;𝑥𝑛+1, . . . , 𝑥2𝑛−1) =
∑︁
𝜎∈𝑆𝑛

𝛼𝜎𝑥𝜎(1)𝑥𝑛+1𝑥𝜎(2)𝑥𝑛+2 · · ·𝑥𝜎(𝑛−1)𝑥2𝑛−1𝑥𝜎(𝑛) (26)

= (𝑓(𝑥1, . . . , 𝑥𝑛)𝑥𝑛+1 · · ·𝑥2𝑛−1)𝜂,

where 𝜂 ∈ 𝑆2𝑛−1 is the permutation

𝜂 =

(︂
1 2 3 4 · · · 2𝑛− 1
1 𝑛+ 1 2 𝑛+ 2 · · · 𝑛

)︂
. (27)

Let 𝐿 ⊆ {𝑥𝑛+1, . . . , 𝑥2𝑛−1} and denote by 𝑓*𝐿 the polynomial obtained from 𝑓* by substituting
𝑥𝑗 → 1 for all 𝑥𝑗 ∈ 𝐿. Rename the indeterminates in {𝑥𝑛+1, . . . , 𝑥2𝑛−1} ∖ 𝐿 as {𝑥𝑛+1, . . . , 𝑥𝑛+𝑞}
(where 𝑞 = 𝑛 − 1 − |𝐿|) and denote the resulting polynomial as 𝑓*𝐿. Then similarly to (26), there
exists a permutation 𝜌 ∈ 𝑆𝑛+𝑞 such that 𝑓*𝐿 = (𝑓𝑥𝑛+1 · · ·𝑥𝑛+𝑞)𝜌.

Note that if 1 ∈ 𝐴 and 𝑓* ∈ Id(𝐴), then also 𝑓*𝐿 ∈ Id(𝐴) for any such 𝐿, and in particular
𝑓 ∈ Id(𝐴). The converse is not true: it is possible that 𝑓 ∈ Id(𝐴) but 𝑓* ̸∈ Id(𝐴).

Lemma 3.10. Let 𝐴 be a PI algebra, let 𝐼 ⊆ 𝑉𝑛 be a two–sided ideal in 𝑉𝑛, and assume for any
𝑓 ∈ 𝐼 that 𝑓* ∈ Id(𝐴) (and thus 𝑓 ∈ Id(𝐴)). Then for any 𝑚 > 𝑛,

(𝐹𝑆𝑚)𝐼(𝐹𝑆𝑚) ⊆ Id(𝐴).

Proof. Since (𝐹𝑆𝑚)𝐼 ⊆ Id(𝐴), it suffices to prove:

Claim: If 𝑓 ∈ 𝐼 and 𝜋 ∈ 𝑆𝑚, then 𝑓*𝐿𝜋 = (𝑓(𝑥1, . . . , 𝑥𝑛)𝑥𝑛+1 · · ·𝑥𝑚)𝜋 ∈ Id(𝐴).

If 𝑓 =
∑︀

𝜎∈𝑆𝑛
𝑎𝜎𝜎(𝑥1 · · ·𝑥𝑛 · · ·𝑥𝑚), then 𝑓*𝐿𝜋 =

∑︀
𝜎∈𝑆𝑛

𝑎𝜎𝜎(𝜋(𝑥1 · · ·𝑥𝑛 · · ·𝑥𝑚)).

Consider the positions of 𝑥1, . . . , 𝑥𝑛 in the monomial 𝜋(𝑥1 · · ·𝑥𝑚): There exists 𝜏 ∈ 𝑆𝑛 such
that

𝜋(𝑥1 · · ·𝑥𝑛 · · ·𝑥𝑚) = 𝑔0𝑥𝜏(1)𝑔1𝑥𝜏(2)𝑔2 · · · 𝑔𝑛−1𝑥𝜏(𝑛)𝑔𝑛 = 𝜏(𝑔0𝑥1𝑔1𝑥2𝑔2 · · · 𝑔𝑛−1𝑥𝑛𝑔𝑛),

where each 𝑔𝑗 is = 1 or is a monomial in some of the indeterminates 𝑥𝑛+1, . . . , 𝑥𝑚. It follows
that 𝑓*𝐿𝜋 = (𝑓𝜏)(𝑔0𝑥1𝑔1𝑥2𝑔2 · · · 𝑔𝑛−1𝑥𝑛𝑔𝑛). Since 𝑓 ∈ 𝑉𝑛 and 𝜏 ∈ 𝑆𝑛, 𝑓𝜏 only permutes the
indeterminates 𝑥1, . . . , 𝑥𝑛, and hence (see (26))

𝑓*𝐿𝜋 = (𝑓𝜏)(𝑔0𝑥1𝑔1𝑥2𝑔2 · · · 𝑔𝑛−1𝑥𝑛𝑔𝑛) = 𝑔0((𝑓𝜏)
*[𝑥1, . . . , 𝑥𝑛; 𝑔1, . . . , 𝑔𝑛−1])𝑔𝑛.

Since 𝐼 is two-sided, 𝑓𝜏 ∈ 𝐼, hence by assumption (𝑓𝜏)* ∈ Id(𝐴), which by the last equality implies
that 𝑓𝜋 ∈ Id(𝐴). 2
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3.3.2. Existence of nonzero two-sided ideals 𝐼𝜆 ⊆ 𝐹𝑆𝑛 of identities

Let 𝑐𝑛(𝐴) 6 𝛼𝑛 for all 𝑛. The next lemma yields rectangles 𝜇 = (𝑢𝑣) ⊢ 𝑛 such that 𝛼𝑛 < 𝑠𝜇.

Lemma 3.11. Let 0 < 𝑢, 𝑣 be integers and let 𝜇 be the 𝑢× 𝑣 rectangle 𝜇 = (𝑢𝑣) ⊢ 𝑢 · 𝑣. Let 𝑛 = 𝑢𝑣.
Then (︂

𝑛

𝑢+ 𝑣

)︂𝑛
·
(︂
2

𝑒

)︂𝑛
< 𝑠𝜇 (where 𝑒 = 2.718281828 . . .).

In particular, if 𝛼 6 𝑛
𝑢+𝑣 ·

2
𝑒 then 𝛼

𝑛 6 𝑠𝜇.

Proof.
Since the geometric mean is bounded by the arithmetic mean,(︃∏︁

𝑥∈𝜇
ℎ𝑥

)︃1/𝑛

6
1

𝑛

∑︁
𝑥∈𝜇

ℎ𝑥 =
𝑢+ 𝑣

2
,

in view of Example 3, and hence (︂
2

𝑢+ 𝑣

)︂𝑛
6

1∏︀
𝑥∈𝜇 ℎ𝑥

.

Together with the classical inequality (𝑛/𝑒)𝑛 < 𝑛!, this implies that(︂
𝑢𝑣

𝑢+ 𝑣

)︂𝑛
·
(︂
2

𝑒

)︂𝑛
=
(︁𝑛
𝑒

)︁𝑛
·
(︂

2

𝑢+ 𝑣

)︂𝑛
<

𝑛!∏︀
𝑥∈𝜇 ℎ𝑥

= 𝑠𝜇.

2

Remark 3.12. To apply this, we need Regev’s estimate [23] of codimensions,

𝑐𝑚(𝐴) 6 (𝑑− 1)2𝑚,

as explained in [7, Theorem 5.38].

Proposition 3.13. [4] Let 𝐴 be a PI algebra satisfying an identity of degree 𝑑. Choose natural
numbers 𝑢 and 𝑣 such that

𝑢𝑣

𝑢+ 𝑣
· 2
𝑒
> (𝑑− 1)4 . For example, choose 𝑢 = 𝑣 > 𝑒 · (𝑑− 1)4.

Let 𝑛 = 𝑢𝑣 and let 𝜇 = (𝑢𝑣) be the 𝑢×𝑣 rectangle. Let 𝑛 6 𝑚 6 2𝑛 and let 𝜆 ⊢ 𝑚 be any partition
of 𝑚 which contains 𝜇: (𝑢𝑣) ⊆ 𝜆. Then the elements of the corresponding two–sided ideal 𝐼𝜆 ⊆ 𝐹𝑆𝑚
are identities of 𝐴: 𝐼𝜆 ⊆ Id(𝐴) ∩ 𝑉𝑚.

Proof. Since𝑚 6 2𝑛, (𝑑−1)2𝑚 6 (𝑑−1)4𝑛, and by assumption (𝑑−1)4 6 𝑛
𝑢+𝑣 ·

2
𝑒 . By Lemma 3.11,(︁

𝑛
𝑢+𝑣 ·

2
𝑒

)︁𝑛
< 𝑠𝜇 and since 𝜇 ⊆ 𝜆, we know that 𝑠𝜇 6 𝑠𝜆. Thus, by Remark 3.12,

𝑐𝑚(𝐴) 6 (𝑑− 1)2𝑚 6 (𝑑− 1)4𝑛 6

(︂
𝑢𝑣

𝑢+ 𝑣
· 2
𝑒

)︂𝑛
< 𝑠𝜇 6 𝑠𝜆,

and the assertion now follows from Lemma 3.8. 2

Corollary 3.14. Hypotheses as in Proposition 3.13, for 𝑛 6 𝑚 6 2𝑛,⨁︁
𝜆⊢𝑚
𝜇⊆𝜆

𝐼𝜆 ⊆ Id(𝐴).

Consequently, if 𝑓 ∈ 𝐼𝜇 then 𝑓* ∈ Id(𝐴) ∩ 𝑉2𝑛−1 (see (26)). Also, for any subset 𝐿 ⊆
{𝑛+ 1, . . . , 2𝑛− 1}, 𝑓*𝐿 ∈ Id(𝐴), and in particular 𝑓 ∈ Id(𝐴).
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Proof. By “branching,” the two–sided ideal generated in 𝑉𝑚 by 𝐼𝜇 is

𝑉𝑚𝐼𝜇𝑉𝑚 = (𝐹𝑆𝑚)𝐼𝜇(𝐹𝑆𝑚) =
⨁︁
𝜆⊢𝑚
𝜇⊆𝜆

𝐼𝜆.

Hence, (𝐹𝑆𝑚)𝐼𝜇(𝐹𝑆𝑚) ⊆ Id(𝐴) for any 𝑛 6 𝑚 6 2𝑛 − 1, and in particular, if 𝑓 ∈ 𝐼𝜇 and 𝜌 ∈ 𝑆𝑚
then 𝑓𝜌 ∈ Id(𝐴). (26) concludes the proof. 2

By Proposition 3.13 and Lemma 3.10 we have just proved

Proposition 3.15. Every PI algebra in characteristic 0 satisfies non-trivial strong identities.
Explicitly, let char(𝐹 ) = 0 and let 𝐴 satisfy an identity of degree 𝑑. Let 𝑢, 𝑣 be natural numbers
such that 𝑢𝑣

𝑢+𝑣 ·
2
𝑒 > (𝑑 − 1)4, and let 𝜇 = (𝑢𝑣) be the 𝑢 × 𝑣 rectangle. Then every 𝑔 ∈ 𝐼𝜇 is a

strong identity of 𝐴. The degree of such a strong identity 𝑔 is 𝑢𝑣. We can choose for example
𝑢 = 𝑣 = ⌈𝑒 · (𝑑− 1)4⌉, so deg(𝑔) = ⌈𝑒 · (𝑑− 1)4⌉2 = 𝑒2(𝑑− 1)8.

We summarize:

Theorem 3.16. Every affine PI algebra over a field of characteristic 0 satisfies some Capelli identity.
Explicitly, we have the following:

(a) Suppose the 𝐹 -algebra 𝐴 satisfies an identity of degree 𝑑. Then 𝐴 satisfies a strong identity
of degree

𝑑′ = ⌈𝑒(𝑑− 1)4⌉2 = 𝑒2(𝑑− 1)8.

(b) Suppose 𝐴 = 𝐹{𝑎1, . . . , 𝑎𝑟}, and 𝐴 satisfies an identity of degree 𝑑 and take 𝑑′ as in (a).
Let 𝑛 = 𝑟𝑑

′
+ 𝑑′ ≈ 𝑟𝑒2(𝑑−1)8 . Then 𝐴 satisfies the Capelli identity Cap𝑛.

Proof. (a) is by Proposition 3.15, and then (b) follows from Theorem 3.3, since every strong
identity is sparse. 2

3.4. Actions of the group algebra on sparse identities

Although the method of §3.2 is the one customarily used in the literature, it does rely on
branching and thus only is effective in characteristic 0. A slight modification enables us to avoid
branching. The main idea is that any sparse identity follows from an identity of the form

𝑓 =
∑︁
𝜎∈𝑆𝑛

𝛼𝜎𝑥𝜎(1)𝑥𝑛+1 · · ·𝑥𝜎(𝑛)𝑥2𝑛,

since we could then specialize 𝑥𝑛+1, . . . , 𝑥2𝑛 to whatever we want. Thus, letting 𝑉 ′
𝑛 denote the

subspace of 𝑉2𝑛 generated by the words 𝑥𝜎(1)𝑥𝑛+1 · · ·𝑥𝜎(𝑛)𝑥2𝑛, we can identify the sparse identities
with 𝐹 [𝑆𝑛]-subbimodules of 𝑉 ′

𝑛 inside 𝑉2𝑛. But there is an as 𝐹 [𝑆𝑛]-bimodule isomorphism
𝜙 : 𝑉𝑛 → 𝑉 ′

𝑛, given by 𝑥𝜎(1) · · ·𝑥𝜎(𝑛) → 𝑥𝜎(1)𝑥𝑛+1 · · ·𝑥𝜎(𝑛)𝑥2𝑛. In particular 𝑉 ′
𝑛 has the same

simple 𝐹 [𝑆𝑛]-subbimodules structure as 𝑉𝑛 and can be studied with the same Young representation
theory, although now we only utilize the left action of permutations.

Thus, for any PI-algebra 𝐴, the spaces

Id(𝐴) ∩ 𝑉 ′
𝑛 ⊆ 𝑉 ′

𝑛

are 𝐹 [𝑆𝑛]-subbimodules of 𝑉 ′
𝑛.
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Remark 3.17. Again, any tableau 𝑇 of 2𝑛 boxes gives rise to an element

𝑎𝑇 = 𝜙

⎛⎝ ∑︁
𝑞∈𝒞𝑇𝜆 , 𝑝∈ℛ𝑇𝜆

sgn(𝑞)𝑞𝑝

⎞⎠ ∈ 𝐹 [𝑆2𝑛],
where 𝒞𝑇𝜆 (resp. ℛ𝑇𝜆 ) denotes the set of column (resp. row) permutations of the tableau 𝑇𝜆.

Thus, 𝐹 [𝑆𝑛]𝑎𝑇 (if nonzero) is an 𝐹 [𝑆𝑛]-submodule, which we call 𝐽𝜆. If 𝐽𝜆 contains an element
corresponding to a nontrivial PI of 𝐴, 𝑎𝑇 itself must correspond to a PI of 𝐴.

We let 𝐼𝜆 denote the minimal 𝐹 [𝑆𝑛]-bisubmodule of 𝐹 [𝑆2𝑛] containing 𝐽𝜆.

Lemma 3.18. Let 𝐴 be an 𝐹 -algebra, and let 𝜆 be a partition of 𝑛. If dim 𝐽𝜆 > 𝑐2𝑛(𝐴) and 𝐽𝜆 is a
simple 𝐹 [𝑆𝑛]-module, then 𝐼𝜆 ⊆ Id(𝐴) ∩ 𝑉 ′

𝑛.

Proof. Same as Lemma 3.7, noting that 𝐼𝜆 is a sum of 𝐹 [𝑆𝑛]-submodules 𝐽𝜆𝑎 each isomorphic to
𝐽𝜆. Thus, taking such 𝐽 , one has

𝑐𝑛(𝐴) = dim

(︂
𝑉 ′
𝑛

Id(𝐴) ∩ 𝑉 ′
𝑛

)︂
> dim 𝐽 > 𝑐2𝑛(𝐴),

a contradiction. Therefore each 𝐽 ⊆ Id(𝐴) ∩ 𝑉 ′
𝑛, implying 𝐼𝜆 ⊆ Id(𝐴) ∩ 𝑉𝑛. 2

Note that when char(𝐹 ) = 𝑝 > 0, the lemma might fail unless 𝐽𝜆 is simple. James and Mathas
[13, Main Theorem] determined when 𝐽𝜆 is simple for 𝑝 = 2.

One such example is when 𝜆 is the staircase, which we define to be the Young tableau 𝑇𝑢 whose
𝑢 rows have length 𝑢, 𝑢− 1, . . . , 1. This gave rise to the James-Mathas conjecture [21] of conditions
on 𝜆 characterizing when 𝐽𝜆 is simple in characteristic 𝑝 > 2, which was solved by Fayers [9].

4. Kemer’s Capelli Theorem for all characteristics

In this section we give a proof of Kemer’s “Capelli Theorem” over a field of any characteristic.
In fact in characteristic 𝑝 Kemer proved a stronger result, even for non-affine algebras.

Theorem 4.1. [17] Any PI algebra over a field 𝐹 of characteristic 𝑝 > 0 satisfies a Capelli identity
Cap𝑛 for large enough 𝑛.

This fails in characteristic 0, since the Grassmann algebra does not satisfy a Capelli identity. The
proof of Theorem 4.1 given in [17] is quite complicated; an elementary proof using the “identity of
algebraicity” is given in [7, §2.5.1], but still requires some computations. In the spirit of providing a
full exposition which is as direct as possible, we treat only the affine case via representation theory,
in which case characteristic 𝑝 > 0 works analogously to characteristic 0. This produces a much
better estimate of the degree of the sparse identity, which we obtain in Theorem 4.4.

In view of Theorem 3.3, it suffices to show that any affine PI algebra satisfies a sparse identity.
Although we cannot achieve this through branching, the ideas of the previous section still apply,
using [9].

4.1. Simple Specht modules in characteristic 𝑝 > 0

In order to obtain a 𝑝-version of Proposition 3.13 in characteristic 𝑝 > 2, first we need to find
a class of partitions satisfying Fayer’s criterion.

For a positive integer 𝑚, define 𝑣𝑝 to be the 𝑝-adic valuation, i.e., 𝑣𝑝(𝑚) is the largest power
of 𝑝 dividing 𝑚. Also, temporarily write ℎ(𝑖;𝑗) for ℎ𝑥 where 𝑥 is the box in the 𝑖, 𝑗 position. The
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James-Mathas conjecture for 𝑝 ̸= 2, proved in [9], is that 𝐽𝜆 is simple if and only if there do not
exist 𝑖, 𝑗, 𝑖′, 𝑗′ for which 𝑣𝑝(ℎ(𝑖;𝑗)) > 0 with 𝑣𝑝(ℎ(𝑖;𝑗)), 𝑣𝑝(ℎ(𝑖′;𝑗)), 𝑣𝑝(ℎ(𝑖;𝑗′)) all distinct. Of course this
is automatic when each hook number is prime to 𝑝, since then every 𝑣𝑝(ℎ(𝑖;𝑗)) = 0.

Example 4. A wide staircase is a Young tableau 𝑇𝑢 whose 𝑢 rows have all have lengths
different multiples of 𝑝− 1, the first row of length (𝑝− 1)𝑢, the second of length (𝑝− 1)(𝑢− 1), and
so forth until the last of length 𝑝− 1. The number of boxes is

𝑛 =

𝑢∑︁
𝑗=1

(𝑝− 1)𝑗 = (𝑝− 1)

(︂
𝑢+ 1

2

)︂
.

When 𝑝 = 2, the wide staircase just becomes the staircase described earlier.
In analogy to Example 3, the dimension of the “wide staircase” 𝑇𝑢 can be estimated as follows:

We write 𝑗 = (𝑝− 1)𝑗′ + 𝑗′′ for 1 6 𝑗′′ 6 𝑝− 1. The hook of a box in the (𝑖, 𝑗) position has length
(𝑢+ 1− 𝑖)(𝑝− 1) + 1− 𝑗, and depth 𝑢+ 1− 𝑗′ − 𝑖, so the hook number is

(𝑢+ 1− 𝑖)(𝑝− 1) + 1− 𝑗 + 𝑢− 𝑗′ − 𝑖 = (𝑢+ 1− 𝑖)𝑝− 𝑗 − 𝑗′ = (𝑢+ 1 + 𝑗′ − 𝑖)𝑝− 𝑗′′,

which is prime to 𝑝. Thus each wide staircase satisfies a stronger condition than Fayer’s criterion.
The dimension can again be calculated by means of the hook formula. The first 𝑝− 1 boxes in

the first row have hook numbers

𝑝𝑢− 1, 𝑝𝑢− 2, . . . , 𝑝𝑢− (𝑝− 1),

whose sum is (𝑝− 1)𝑝𝑢−
(︀
𝑝
2

)︀
=
(︀
𝑝
2

)︀
(2𝑢− 1).

The next 𝑝− 1 boxes in the first row have hook numbers

𝑝(𝑢− 1)− 1, 𝑝(𝑢− 1)− 2, . . . , 𝑝(𝑢− 1)− (𝑝− 1),

whose sum is (𝑝− 1)𝑝(𝑢− 1)−
(︀
𝑝
2

)︀
=
(︀
𝑝
2

)︀
(2𝑢− 3).

Thus the sum of the hook numbers in the first row is(︂
𝑝

2

)︂
((2𝑢− 1) + (2𝑢− 3) + · · ·+ 1) =

(︂
𝑝

2

)︂
𝑢2.

Summing over all rows yields∑︁
ℎ𝑥 =

(︂
𝑝

2

)︂ 𝑢∑︁
𝑘=1

𝑘2 =

(︂
𝑝

2

)︂
𝑢(𝑢+ 1)(2𝑢+ 1)

6
=

(︂
𝑝

2

)︂
(2𝑢+ 1)𝑛

3
.

Lemma 4.2. For any integer 𝑢, let 𝜇 be the wide staircase 𝑇𝑢 of 𝑢 rows. Let 𝑛 = (𝑝− 1)
(︀
𝑢
2

)︀
. Then(︂

6𝑛

𝑝(𝑝− 1)(2𝑢+ 1)

)︂𝑛
·
(︂
1

𝑒

)︂𝑛
< 𝑓𝜇 (where 𝑒 = 2.718281828 . . .).

In particular, if 𝛼 6 3𝑛
(2𝑢+1)𝑒 , then 𝛼

𝑛 6 𝑓𝜇.

Proof. We imitate the proof of Lemma 3.11. Since the geometric mean is bounded by the
arithmetic mean,(︃∏︁

𝑥∈𝜇
ℎ𝑥

)︃1/𝑛

6
1

𝑛

∑︁
𝑥∈𝜇

ℎ𝑥 6

(︂
𝑝

2

)︂
(2𝑢+ 1)𝑛

3
=
𝑝(𝑝− 1)(2𝑢+ 1)𝑛

6
,

in view of Example 4, together with (𝑛/𝑒)𝑛 < 𝑛!, implies that(︂
6𝑛

𝑝(𝑝− 1)(2𝑢+ 1)

)︂𝑛
·
(︂
1

𝑒

)︂𝑛
=
(︁𝑛
𝑒

)︁𝑛
·
(︂

6

𝑝(𝑝− 1)(2𝑢+ 1)

)︂𝑛
<

𝑛!∏︀
𝑥∈𝜇 ℎ𝑥

= 𝑓𝜇.

2
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Lemma 4.3. Let 𝐴 be a PI algebra over a field of characteristic 𝑝, that satisfies an identity of degree
𝑑. Choose a natural number 𝑢 such that, for 𝑛 = (𝑝− 1)

(︀
𝑢+1
2

)︀
,

6𝑛

𝑝(𝑝− 1)(2𝑢+ 1)
· 1
𝑒
> (𝑑− 1)2.

Let 𝜆 ⊢ 𝑛 be any partition of 𝑛 corresponding to the “wide staircase” 𝑇𝑢. Then the elements of the
corresponding 𝐹 [𝑆𝑛]-bimodule 𝐼𝜆 ⊆ 𝑉 ′

𝑛 are sparse identities of 𝐴.

Proof. By Remark 3.12,

𝑐2𝑛(𝐴) 6 (𝑑− 1)4𝑛 6

(︂
6𝑛

𝑝(𝑝− 1)(2𝑢+ 1)
· 1
𝑒

)︂𝑛
< 𝑠𝜆,

and we conclude from Lemma 3.18. 2

4.1.1. Existence of Capelli identities

We are ready for a version of Proposition 3.15.

Theorem 4.4. [17] Any PI- algebra 𝐴 over a field 𝐹 of characteristic 𝑝 > 0 satisfies a Capelli
identity. Explicitly:

(a) Suppose the 𝐹 -algebra 𝐴 satisfies an identity of degree 𝑑. Then 𝐴 satisfies a sparse identity
of degree 𝑑′ = (𝑝− 1)𝑝

(︀
𝑢+1
2

)︀
, where 3𝑢(𝑢+1)

𝑝(2𝑢+1) > (𝑑− 1)2𝑒.

(b) Suppose 𝐴 = 𝐹{𝑎1, . . . , 𝑎𝑟}, and 𝐴 satisfies an identity of degree 𝑑 and take 𝑑′ as in (a).
Let 𝑛 = 𝑟𝑑

′
+ 𝑑′ ≈ 𝑟4𝑒2(𝑑−1)4 . Then 𝐴 satisfies the Capelli identity Cap𝑛.

Proof. (a) is by Lemma 4.3. Then (b) follows from Theorem 3.3. 2

For example, since 𝑢+1
2𝑢+1 >

1
2 , we could take 𝑢 >

2𝑝𝑒(𝑑−1)2

3 .

This concludes the proof of Theorem 4.1 in the affine case.

5. Results and proofs over Noetherian base rings

We turn to the case where 𝐶 is a commutative Noetherian ring. In general, we say a 𝐶-algebra
is PI if it satisfies a polynomial identity having at least one coefficient equal to 1. Let us indicate
the modifications that need to be made in order to obtain proofs of Theorems 1.6 and 1.7.

The method of proof of Theorem 1(2) (for the case in which the base ring 𝐶 is a field) was to
verify the “weak Nullstellensatz”, and a similar proof works for 𝐴 commutative when 𝐶 is Jacobson,
cf. [26, Proposition 4.4.1]. Thus we have Theorems 1.6 and 1.7 in the commutative case, which
provide the base for our induction to prove Theorem 1.3. The argument is carried out using Zubrilin’s
methods (which were given over an arbitrary commutative base ring.)

It remains to find a way of proving Kemer’s Capelli Theorem over arbitrary Noetherian base
rings. One could do this directly using Young diagrams, but there also is a ring-theoretic reduction.
The following observations about Capelli identities are useful.

Lemma 5.1. (i) Suppose 𝑛 = 𝑛1𝑛2 · · ·𝑛𝑡. If 𝐴 satisfies the identity Cap𝑛1
× · · · × Cap𝑛𝑡

, then 𝐴
satisfies the Capelli identity Cap𝑛.

(ii) If 𝐼 ▷ 𝐴 and 𝐴/𝐼 satisfies Cap𝑚 for 𝑚 odd, with 𝐼𝑘 = 0, then 𝐴 satisfies Cap𝑘𝑚 .
(iii) If 𝐼 ▷ 𝐴 and 𝐴/𝐼 satisfies Cap𝑚 with 𝐼𝑘 = 0, then 𝐴 satisfies Cap𝑘(𝑚+1) .
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Proof. (i) Viewing the symmetric group 𝑆𝑛1 × · · ·×𝑆𝑛𝑚 →˓ 𝑆𝑛, we partition 𝑆𝑛 into orbits under
the subgroup 𝑆𝑛1 × · · · × 𝑆𝑛𝑚 and match the permutations in Cap𝑛.

(ii) This time we note that any interchange of two odd-order sets of letters has negative sign,
so we partition 𝑆𝑘𝑚 into 𝑘 parts each with 𝑚 letters.

(iii) Any algebra satisfying Cap𝑚 for 𝑚 even, also satisfies Cap𝑚+1, and 𝑚+ 1 is odd. 2

Thus, it suffices to prove that 𝐴 satisfies a product of Capelli identities.

Theorem 5.2. Any affine PI algebra over a commutative Noetherian base ring 𝐶 satisfies some
Capelli identity.

Proof. By Noetherian induction, we may assume that the theorem holds for every affine PI-algebra
over a proper homomorphic image of 𝐶.

First we do do the case where 𝐶 is an integral domain, and 𝐴 = 𝐶{𝑎1, . . . , 𝑎ℓ} satisfies some
multilinear PI 𝑓 . It is enough to assume that 𝐴 is the relatively free algebra 𝐶{𝑥1, . . . , 𝑥𝑛}/𝐼 (where
𝐼 is the T-ideal generated by 𝑓). Let 𝐹 be the field of fractions of 𝐶. Then 𝐴𝐹 := 𝐴 ⊗𝐶 𝐹 is also
a PI-algebra, and thus, by Theorem 4.1 satisfies some Capelli identity 𝑓1 = Cap𝑛 . Thus the image
𝑓1 of 𝑓1 in 𝐴 becomes 0 when we tensor by 𝐹 , which means that there is some 𝑠 ∈ 𝐶 for which
𝑠𝑓1 = 0. Letting 𝐼 ′ denote the T-ideal of 𝐴 generated by the image of 𝑓1, we see that 𝑠𝐼 ′ = 0. If
𝑠 = 1 then we are done, so we may assume that 𝑠 ∈ 𝐶 is not invertible. Then 𝐴/𝑠𝐴 is an affine
PI-algebra over the proper homomorphic image 𝐶/𝑠𝐶 of 𝐶, and by Noetherian induction, satisfies
some Capelli identity Cap𝑚, so 𝐴/(𝑠𝐴 ∩ 𝐼 ′) satisfies Capmax{𝑚,𝑛}. But 𝑠𝐴 ∩ 𝐼 ′ is nilpotent modulo
𝑠𝐴𝐼 ′ = 𝐴𝑠𝐼 ′ = 0, implying by Lemma 5.1 that 𝐴 satisfies some Capelli identity.

For the general case, the nilpotent radical 𝑁 of 𝐶 is a finite intersection 𝑃1 ∩ · · · ∩ 𝑃𝑡 of prime
ideals. By the previous paragraph, 𝐴/𝑃𝑗𝐴, being an affine PI-algebra over the integral domain 𝐶/𝑃𝑗 ,
satisfies a suitable Capelli identity Cap𝑛𝑗

, for 1 6 𝑗 6 𝑡, so 𝐴/ ∩ (𝑃𝑗𝐴) satisfies Cap𝑛, where
𝑛 = max{𝑛1, . . . , 𝑛𝑡}. But ∩(𝑃𝑗𝐴) is nilpotent modulo 𝑁𝐴, so, by Lemma 5.1, 𝐴/𝑁𝐴 satisfies a
suitable Capelli identity Cap𝑛 . Furthermore, 𝑁

𝑚 = 0 for some 𝑚, implying again by Lemma 5.1
that 𝐴 satisfies 𝐶𝑚𝑛. 2
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