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AuHOTanuga

B macrosimieit crarbe IpoosKEeHbI UCCIEI0OBAHNS, CBI3AHHBIE C PACIPEIETIEHUEM 00PATHBIX
BBIYETOB 110 33JIAHHOMY MOJy/f0. Panee aBropom ObLI 1OJIyYeH Psiji HETPUBUAJIbHBIX OIEHOK
KOpOTKUX cymM KitoocTepMaHa ¢ MpOCTHIMY YUCIAMHU, OTBEYAIOIINX TPOU3BOJIBHOMY MOIYJIIO ¢.
CnencrBuemM TaKuX OIMEHOK CTAJIM PE3YJIBTATHI O PACIPEIEIEHIH BEIYETOB D, OOPATHBIX TPOCTHIM
qpcaaM “KopoTKoro” mpoMexkytka: pp = 1 (mod ¢), 1 < p < N, N < ¢, § > 0, u, 6omee
001110, 0 paciipeIeJIeHu 110 MOJYIIIO ¢ Besuuun g(p) = ap+bp, rae a, b — nesbie gucia, (ab, q) = 1.

Euie ogHO npusioykenue HaliIEHHBIX ONEHOK CBA3AHO C 33aJa4€ll O MPeJICTaBUMOCTH [IPOU3-
BOJILHOTO 33aHHOro0 Bhraeta m (mod ¢) cymmoro g(p1) + ... + g(px) Tpn GUKCHPOBAHHBIX a, b
u k > 3, u mpoctbix 1 < p1,...,px < N. st KOJU9IECTBA TAKWX MPEICTABJIEHUI aBTOPOM
ObLI1a Haiizena gopmMysia, IOBe/EHIE IPE/IIOIAraeMOro IJIABHOTO UJleHa KOTOPO#l OllpeesisieTcs
AHAJIOTOM “‘CHHIYJSPHOTO Psiad’ KJIACCHIECKOrO KPYrOBOTO METO/A, T.€. HEKOTOPOH BETUIWHON
K, 3aBUCAIeH or ¢ u HAOopa k, a, b, m. Ilpu pukcupoBauubix k, a, b, m oHa ABIAETCS MYIbTUATLIH-
KaTuBHOM (byHKIMeil ¢. B ciyuae, korma Momaysib ¢ He IeIUTcs Ha 2 WK 3, 3T BEJIMYWHA, CTPOTO
TOJIOYKUTEIbHA, TaK ITO (hOpMysa IJIsT HCKOMOTO YHCJIa, MPEICTABIECHUN SBIISETCS aCHMITOTHU-
9EeCKOM.

B nacrosmeit paGore uccnemyercs moBefieHue k B ciaydae, korga ¢ = 3". OkasbiBaeTcs,
910 npu 006X n = 1, k > 3 cymecTByioT “UCKI0OYATENbHBIE” TPOUKHU a,b, m, /yisi KOTOPBIX
k = 0. Iesib paboThL COCTOUT B OIUCAHUY BCEX TAKUX TPOEK M HUZKHEH OLEHKU BEJUIUHbBL K U1
“HEUCKJTIIOUUTETHHBIX TPOEK.
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MIPOCTBIE YUCJIA, CAHTYJISAPHBIN DI,
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Abstract

In the paper, we continue to study the distribution of inverse residues to given modulus.
Earlier, the author obtained a series of non-trivial estimates for incomplete Kloosterman sums
over prime numbers with an arbitrary modulus ¢g. One of the applications of such estimates are
some assertions concerning the distribution of inverse residues p to prime numbers lying in a
“short” segment: pp = 1 (mod ¢), 1 <p < N, N < ¢'%, 6§ > 0, and, more general, concerning
the distribution of the quantities g(p) = ap + bp with respect to modulus ¢, where a, b are some
integers, (ab,q) = 1.

Another application is connected with the problem of the representation of a given residue
m (mod q) by the sum g(p1)+. ..+ g(px) for fixed a,b and k > 3, in primes 1 < py,...,pr < N.
For the number of such representations, the author have found the formula, where the behavior
of the expected main term is controlled by some analogous of the “singular series” that appears
in classical circle method, that is, by some function x depending on ¢ and the tuple &, a, b, m.
For fixed k, a, b, m, this function is multiplicative with respect to ¢. In the case when ¢ is not
divisible by 2 or 3, this function is strictly positive, and therefore the formula for the number
of the representations becomes asymptotic.

In this paper, we study the behavior of k for ¢ = 3™. It appears that, for any n > 1, k > 3,
there exist the “exceptional” triples a, b, m such that k = 0. The main purpose is to describe all
such triples and to obtain the lower estimate for x for all non-exceptional triples.
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1. Introduction

In the present paper, we continue the study of the solvability of some congruences with inverse
residues to modulo ¢ started in [1] and [2]. As in [2], the main subject now is the congruence

gp1) + ... +g9(px) = m (mod q), (1)

where ¢ > 2 is an arbitrary integer, g(z) = ax + bx (mod q), k,a,b,m are any fixed integers
satisfying the conditions k£ > 3, 1 < a,b,m < q, (ab,q) = 1. The variables py,...,py run through
prime numbers from the interval (1, N]. This interval is assumed to be “short”, that is, we are
interested in the case when N < ¢' 9 for some positive 6.

The key role in such problems is played by the estimates of Kloosterman sums with primes,
that is, of the exponential sums of the type

Wola b X) = 3 exp (i}“(ambp)),

p<X, plq

(for such estimates and their applications, see: [3]-[16]). The estimates given in [1], [2] lead to the
following assertion (see [2]):

THEOREM A. Let 0 < ¢ < 0.01 be an arbitrary fized constant and let k > 3 be any fized integer.
Suppose that q > qo(e, k). Further, let (ab,q) = 1 and g(x) = aT + bz (mod q). Finally, let

2k +33) 3k + 50

<k<16 and 7 = T i k>17,
seror U3 6 and W= gty 7

Ve =

and suppose that ¢ < N < q. Then the number I(N) = I (N, q,a,b,m) of solutions of (1) in
primes p; < N, (pj,q) = 1, satisfies the relation

7Tk
I(N) = (qN) (sa(a) + O(AL)). @)

Here 3.(q) = s(a,b,m;q) is some non-negative multiplicative function of q for any fized tuple
k,a,b and m. Moreover,
a) for any k > 7 we have Ay = (Inln N)B(In N)=4,

1 29
A= _-+=(k-7), B=2"-1
2 + 2 ( )7 )
b) for any k > 3 we have Ay, = q ¢, if Generalized Riemann hypothesis is true.
REMARK. One can check that v, <1 — % for any k > 3.

The ascertaining of the conditions of when (2) becomes the asymptotic formula is connected
with the detailed study of the multiplicative function s (q) = s (a, b, m;q). In this direction, in [2],
we prove the following assertion:

THEOREM B. Suppose that q is coprime to 6 and let k > 3 be any fived integer. Then, for any
triple (a,b,m) with the conditions 1 < a,b,m < q, (ab,q) =1 the following inequalities hold:

c2y/Ingq

clexp<— Inlng )7 k=3
c3(Inlng)=8, if k=4,
107°, forany k=5

%k(av ba m; Q) P
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where the constants cj, j = 1,2,3, are absolute.
REMARK. The exponent (—6) (for k = 4) and constant 10~ (for k > 5) are not optimal.

Now the purpose is to study the behavior of s(q) in the case when ¢ = 3™. Unlike the case
(g,6) = 1, for any pair k,n there exists the set ;(3™) of “exceptional triples” (a,b, m) such that
i (a,b,m;3™) = 0. In what follows, we shall refer these sets as “exceptional sets”.

The main results of this paper is the description of all exceptional sets Qx(3™), k > 3, n > 1.
Namely, we prove here the following assertion:

THEOREM. In the cases k > 8, n > 1 and 3 < k <7, n =1, the set Qp(3") consists of the
triples satisfying the conditions

1<a,bom<3", (ab;3)=1, a+b=0 (mod3), m=#Z0 (mod 3). (3)

In particular, |Qi(3™)] = 4 - 331,
In the case 3 < k < 7, the set Q,(32) consists of the triples listed in (13)-(16); in particular,
904(37)] = 18(14 — k);
Finally, in the case 3 < k <7, n > 3, the set Qx(3™) consists of the triples coinciding modulo
2 with the triples from the set Q1,(32); in particular, |Qx(3™)] = 2 - 337=4(14 — k).
At the same time, for any k > 3,n > 1 and for any “non-exceptional” triple (a,b,m) & Qx(3™)
one has

1
i (a,b,m;3") > 0"

2. Complete Kloosterman sums to prime power moduli
In [2], we establish the following formula for s (p") = s (a, b, m; p™):
sp(p") = 14 Ar(p) + Ap(P®) + ... + Ar(p™).

Here

Ar(p") = Axla, b,m;p")

S*(fa, fb;p"),

and S(a, b; q) is a complete Kloosterman sum, that is,

To study the properties of s (q), we need some explicit expressions and the estimates for the
quantities S(a, b;p"™), Ar(a,b,m;3™), n > 2.

LEMMA 2.1. Let p > 3 and (ab,p) = 1. If ab is a quadratic non-residue modulo p then
S(a,b;p™) =0 for any n > 2. Otherwise, setting q for p™ and v for any solution of the congruence
ab=v? (mod q), we have

2,/q cos dmv for even n,

S(a,b;q) = S(v,v;q) = {Q\f(q)cos (47T7V_|_ 777) for odd n,

where s =0 for p=1 (mod 4) and s =1 for p =3 (mod 4).

For the proof, see [17].
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COROLLARY. Under the conditions of Lemma 2.1, for any n > 2 and ¢ = p" we have

1S(a,b; q)| < 24/

LEMMA 2.2. For any a,b coprime to 3 the following equalities hold:

2 ' b=0 d3
S(a,b,B) — b /Lf CL+ ' (mo )7
—1, otherwise;
3(=1)bcos T (4a+b), if b—a=0 (mod 3),
sty = [PV el (mod 3
0, otherwise.
PROOF. Setting w = e2™/3 we get

2
S(a, b; 3) _ ZwaEerw _ wa+b+w2(a+b) _ {

r=1

2, ifa+b=0 (mod3),

—1, otherwise.

Further, setting # = y + 3z in the sum S(a, b; 3%) we obtain

3 . 3
2ms ai
S(a,b;3%) = E /e 52 (W) E wb=a),
z=1

y=1
So, S(a,b;3%) =0 for b—a # 0 (mod 3). Finally, if a = b+ 3n for some integer n then

Wi(q4p) | 2Mi(5q By i (30+30)

S(a,b;3%) = 3(e 3 + e3? 3e 32 cosg(4a+9).

Since

2 2
9<3a—|—32b> 9(31)—}—3b+9n> =b+2n=0>b (mod 2),

we arrive at the assertion of the lemma. O

In this section, we use the explicit formulas for Kloosterman sums S(a, b;p"), p > 3,

provide the explicit formulas for the values

n
- m

p
}je S*(fa, fb;p™).
f:l

Ak (™) = Ag(a,b,m;p")

LEMMA 2.3. Suppose that (ab,3) = 1. If a+b=0 (mod 3) then

A3

2 =
) = { , when m=0 (mod 3), A(3™) =0 for n>2.

—1, when m#0 (mod 3);

If a+b#0 (mod 3) then

(—1)k+m ™ (—1)k 2rm
Ar(3) = ToEoT G083~ = py €S,
32
AR(3%) = Z,( 1)kbf fcos]c 7Tf(4a—i—b)

n >1to
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PROOF. In the case a + b =0 (mod 3), Lemma 2.2 implies that

2
h =
A(3) = i.gkzw—mf _ )2, when m=0 (mod 3),
—1, when m#0 (mod 3).

b
It is easy to check that the conditions a +b = 0 (mod 3) and (%) = —1 are equivalent, so we

have A (3™) =0 for any n > 2 by Lemma 2.1. In the case a + b # 0 (mod 3), Lemma 2.2 implies:

2 . .
Ar(3) = i -mf(_1)k = (_1)k —-m —2my (_1)k —m mgm —% _
kU—Qka (1" = o W W) = ape (e3 +e ) =
=1

(_1)k+m m
=g
Finally we have
- !
1 —omi L
Ap(3%) = & 6~ Z/e "9 (—1)RF cosk 9f (da +b) =
f=1
32
2
= ,(—1)kbf Cosﬂfcoskﬂ(éla—kb).
1 9 9

Lemma is proved. O
LEMMA 2.4. Suppose that s 2n =2 2, k > 5. Then the following inequality holds:

‘ZS:Ak(?) )

9. 3k+n7kn/271
< 1—31-k/2 ~°

LEMMA 2.5. Suppose that n > 5. Then, for any s > n and for any a,b satisfying the condition
b
(C; > =1 the following inequality holds:

362 when n=0 (mod 2),
(3")

3
156
6" 30=m/2 " when n=1 (mod 2);

LEMMA 2.6. Suppose that n > 4. Then

37‘

oo\H

LEMMA 2.7. Suppose n = 3. Then, for any s 2 n, the following inequalities hold:

3 334=/2  when n=0 (mod 2),

Z 5(37”) 5156
— 99 9(11-3n)/2 — .
= 16 3 , when n=1 (mod 2);

Lemmas 2.4, 2.5, 2.6 and 2.7 are particular cases of Lemmas 6.1, 6.3-6.5 from [2], respectively.
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3. The singular series »y(a,b, m;q) for g = 3"

In the cases ¢ = 2",3", n = 1,2,3,..., the behavior of the series s (a,b,m;q) is more
sophisticated than in the case (¢,6) = 1. In particular, for “small” k& and any n there exist some
“exceptional” set Qi (q) of triples (a,b,m) such that s(a,b,m) = 0. These exceptional sets can
be completely described in the case ¢ = 3™ and partially in the case ¢ = 2". In what follows, we
consider only the case p = 3 which is more easy.

LeEMMA 3.1. Suppose that (ab,3) =1, a+b =0 (mod 3). Then, for anyn > 1 and ¢ = 3" we
have

0, when m#0 (mod 3),
%k(a7 b7 m; Q) =
3, when m=0 (mod 3).
PROOF. Obviously, the conditions (ab,3) = 1, a+b =0 (mod 3) are equivalent to the condition

(%) = —1. In view of Lemma 2.1, in this case we have s;(q) = 1 + Ag(3). By Lemma 2.3,
A(3) = =1 for m # 0 (mod 3) and Ax(3) =2 for m =0 (mod 3). Thus lemma follows. O

COROLLARY. For any n > 1, the set Qi(3™) contains all the triples (a,b,m) satisfying the
following conditions: 1 < a,b,m < 3", (ab,3) =1, a+b=0 (mod 3), m # 0 (mod 3). The number
of such triples is equal 4 - 33("=1),

LEMMA 3.2. Suppose that k > 8, (ab,3) = 1 and a +b # 0 (mod 3). Then, for any n > 1,

g = 3" and for any m, 1 < m < q, one has s (a,b,m;q) > 50

PRrROOF. Suppose first that n = 1. Since T = x (mod 3) for any = € Zj then g(z) becomes
a linear function: g(z) = aT 4+ bz = (a + b)x. Hence, the congruence (1) is equivalent to

(a+b)(x1+...+x,) =m (mod 3)

or to

1+ ...+x, =p (mod3), p=m(a+b* =m(a+bd) (mod3). (4)
At the same time, the number of solutions (z1,..., ) of (4) such that (z;,3)=1,j=1,...,k,is
equal to

1 3 2 2m3(x1+ ATp—p) 1 i 27ri% k —2m’%
=32 X ¢ gZ(Ze ) e =
c=1x1,...,x,=1 c=1
1 ro 1 2 1
_ —c c 2c _ k k —c _ k k
= 3;w Hor+0) = 2 (254 (D) ;w ") = 3 @5+ (1)),
where w = 27/3,
5 — 2, when m=0 (mod 3),
| -1, when m#0 (mod 3).
Thus we obtain
(=1)%s 1 1 15

k Y
Vi(3) = (p3(3) (1+( 21,3 5), a(3) = 1+

b
Further, let n = 2. Since (%) =1, then Lemma 2.2 implies

( 1k‘+m

s (3%) = 1+ 2) cos % Z 1)*7 cos (@) co 3{(4a +0b). (5)
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The direct tabulation over all triples (a,b,m), 1 < a,b,m < 9, (ab,3) = 1 shows that

5,(3%) > 0.0351562... for k=38,9, (6)
s,(3%) > 0.0966797... for k=10,11, (7)
s,(3%) > 0.171387... for k = 12. (8)

Moreover, (4) implies the inequality

32,
|5:(3%) — 1] <

k
+ cos 7;5(4@ +b)| .

ok
2 |

The condition a + b # 0 (mod 3) implies that 4a + b Z 0 (mod 3), that is, (4a + b,3) = 1. Hence,
both the quantities f and (4a + b) f run through the reduced residual system modulo 32. Thus,
32

1
por(3%) = 1] < o + 3

k 1 2 4
cosﬂ’ = — + 2(005'“% + cosk?7r + coskg). (9)

Denote the right-hand-side of (9) by g(k). Since g(k) is decreasing function of k then for any k > 13
we have

1
56(3%) — 1| = g(k) < g(13) = 0.953621..., 5(3%) > 0.0463788... > %"
The last inequality together with (6)-(8) yields:
1
»,(3%) > 0.0463788... > 5 forany k> 8.

Finally, let n > 3. Then, for k£ > 10, Lemma 2.4 implies the inequality

‘ i Ap(3")
r=3

Setting h(k) for right-hand-side and using (9) we find

18 - 37k/2
< 1 — 31-k/2"

|sx(q) — 1] < g(k) + h(k)

for any n > 3 and ¢ = 3". Since h(k) < h(13) < 0.0142895... for any k > 13, we get

1
|s6(q) — 1] < g(13) + A(13) < 0.967911..., s(q) > 0.0320892... > ok

For 10 < k < 12, the inequalities (7), (8) together with the bound
s,(3") > 3x(3%) — h(k)
imply

#10(3") > 0.0966797.... — 0.075 > 0.021 > .

#1(3") > 0.0966797 ... — 0.0430737 > 0.053606 > —o.
1

sa12(3") > 0.171387 ... —0.0247934 > 0.1465936 > .
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To conclude the proof, it remains to consider the cases kK = 8,9. By Lemma 2.4,

54 .37k

(8 = oa(3) + 3 A3 > () - g

r=4

The direct calculation with all triples (a,b,m), 1 < a,b,m < 3%, (ab,3) = 1, a+b # 0 (mod 3)
shows that

s,(3%) > 0.0347222..., k=28,9
Therefore,
#5(3") > 0.0347222.... — 0.00854701 > 0.026175 > o,
1
#9(3") > 0.0347222... — 0.00280343 > 0.031918 > —.

This proves the lemma. O

COROLLARY. For any k > 8, the exceptional set Q. (3™) consists precisely of the triples pointed
wn Corollary of Lemma 3.1.

Now we proceed to study the values of s (a,b,m;3") for 3 < k < 7 and n > 2. In view of
Corollary to Lemma 3.1, we will assume that a + b #Z 0 (mod 3) or, that is the same, a = b
(mod 3).

LEMMA 3.3. Suppose that 3 < k < 7. Then the set §,(3%) contains 18(8 — k) triples (a,b,m),
a=b (mod 3), (ab,3) =1 listed in (10)-(13).

Proor. Indeed, let G = G, = Gp o be the set of values of the function g(z) = aT + bx on Zj.
The direct computation shows that

G ={1,8} for the pairs (a;b) € &, & = {(1;

G =1{2,7} for the pairs (a;b) € &, & = {(1;

G ={4,5} for the pairs (a;b) € &, & = {(1;4), (4;

Also, the direct computation shows that the sets kG = G + ...+ G do not coincide with complete
—

k times

residual system Zg for 3 < k < 7. Thus, the sets 3G have the forms
Z9\ {0,2,4,5,7}, Zy\{0,1,4,5,8}, Zy\{0,1,2,7,8}
respectively, the sets 4G have the form
Zo\ {1,3,6,8}, Zy\{2,3,6,7}, Zy\ {3,4,5,6},
respectively, the sets 5G have the form
Zo\ {0,2,7}, Zg\{0,4,5}, Zg\{0,1,8},
respectively, the sets 6G have the form
Zo\ {1,8}, Zo\{2,7}, Zy\ {4,5},
respectively, and, finally, all the sets 7G coincide with Zg \ {0}. Hence, 3¢3(3%) = 0 for the triples

(a,b,0), (a,b,2), (a,b,4), (a,b,5), (a,b,7) (a;b) € &,
(a,b,0), (a,b,1), (a,b,4), (a,b,5), (a,b,8) (a;b) € &, (10)
(a,b,0), (a,b,1), (a,b,2), (a,b,7), (a,b,8) (a;b) € &s,
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24(3%) = 0 for the triples

(a,b,1), (a,b,3), (a,b,6), (a,b,8), (a;b) € &,
(a,b,2), (a,b,3), (a,b,6), (a,b,7), (a;b) € &, (11)
(a,b,3), (a,b,4), (a,b,5), (a,b,6), (a;b) € &s,

25(3%) = 0 for the triples
(a7 ba 0)7 ((L, ba 2)7 (aa ba 7)7 (a; b) € gla

(a,b,0), (a,b,4), (a,b,5), (a;b) € &, (12)
(a,b,0), (a,b,1), (a,b,8), (a;b) € &3,

»6(3%) = 0 for the triples
(a,b,1), (a,b,8), (a;b) € &,

(a,b,2), (a,b,7), (a;b) € &y, (13)
(a,b,4), (a,b,5), (a;b) € &,

and, finally, s7(3%) = 0 for the triples (a, b,0), where (a;b) € & U & U&3. It is not difficult to check
that the number of such triples coincides with 18(8 — k) in each case. This proves the lemma. O

COROLLARY. For any k, 3 < k <7, we have
| (3%)| = 18(14 — k).

PRrROOF. This assertion easily follows from the above lemma and the Corollary of Lemma 3.1. O

Suppose now that n > 3 and the triple (a, b, m) with the conditions 1 < a,b,m < 3", (ab,3) =1
is congruent with some exceptional triple (a’, b, m’) € Q4(3?) modulo 32. Then the triple (a, b, m)
is contained in the exceptional set Q;(3"). Indeed, if the congruence

g(x1)+ ...+ g(zx) = m (mod 3"), g¢g(z)=azx + bz,
is solvable, then the congruence
Jx)+...+4d(xx) =m (mod3?), ¢(z)=dz*+Vz,

is also solvable, and that is impossible (here zZ = 1 (mod 3"), z2z* = 1 (mod 32), so T = z*
(mod 32)). The below lemma shows that there are no other triples in Q(3").

LeMMA 3.4. Suppose thatn > 3, 3 < k < 7. Then there exists an absolute constant ¢4 > 0 such
that the inequality

7,(3") = sp(a,b,m,3") > ¢y

holds for any triple (a,b,m), 1 < a,b,m < 3", (ab,3) = 1, that does not coincide with some
exceptional triple from the set Qi (3%) modulo 3.

ProOOF. By Lemma 2.4,

54 .37k
1 — 31-k/2"

54 .37k

3k and therefore ¢,(3") > (3%) —

|5a,(3") — 4(3%)] <
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In particular,

(3" > 6(3) — =, (3 > sar(3) = VP S (3 - -

27 + /3
, V3 . (14)
12 332 37

The direct calculation with all triples (a,b,m), 1 < a,b,m < 32, (ab,3) = 1, that are not congruent
with triples from Q(3¥) modulo 3% (k = 6,7) shows that the least values of 5(3%) and s(3%) are

equal to 199 and Too- Thus, by (14) we conclude that
25 1 3 1311
3 > 19 12 T 00 7 12 5 7 5
The calculations also shows that
1
75(3") > 1 for n =3, (15)
7
2 (3") > — for n =3, (16)
16
#3(3") > z for n=3,4,5 (17)

for any triple (a,b,m), 1 < a,b,m < 3", (ab,3) = 1 that does not coincide with some triple from
the set Qx(3%) modulo 3? (3 < k < 5). At the same time, the inequalities of Lemmas 2.7, 2.6 and
2.5 imply that

|565(3") — 325(3%)| < 16 for n >4, (18)
|524(3") — 34(3%)| < g for n >4, (19)
|523(3") — %3(35)‘ < 1% for n > 6. (20)
Thus the relations (15)-(20) yield:
%5(3”)2%5(33)—%23—%56>% for n >4,
%4(3")>%4(33)—g>r76—g>% for n > 4,
%3(3”)2%5(35)—1%>%—%>% for n > 6.

Taking ¢4 = ——, we arrive at the assertion of the lemma. O

37
COROLLARY. For any 3 < k<7, n > 2 one has
10,(3™)| = 332 . 18(14 — k) = 2-3%"4(14 — k).

This assertion finishes the description of the quantities »(3"), k > 3, n > 1.
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