AHajuTHUeCcKHe U TEOPETUKO-IUCIOBBIE CBOWCTBA JIBYMEDHBIX CUTMa-(DyHKITHIT 9

YEBBIINEBCKNIT CBOPHUK
Towm 21. Beimyck 1.

VIK 515.178.24-517.58, 512.554.32+517.98 DOT 10.22405/2226-8383-2020-21-1-9-50

ABasmTHYecKne M TEOPETUKO-4UCJI0BbIE CBOMCTBA
JABYMEPHBIX cuTrMa-(pyHKIIIit

T. Astno, B. M. Byxmrabep

Agno Takaumopu — Yuurepcurer ropoga Ocaka, MaremMaTuaecKuit HHCTUTYT BBICITHX HCCJIEI0-
Banwit (r. Ocaka, ZmoHns).

e-mail: ayano@sci.osaka-cu.ac.jp

Byxmrabep Bukrop MartBeeBud — qien-koppecmongent PAH, qokrop dusuko-maremaTnde-
cKuX Hayk, npodeccop, Maremarnueckuit wacturytT uM. B. A. Creknosa Poccuiickoit akamemun
Hayk (r. Mocksa).

e-mail: buchstab@mi-ras.ru

AnHOTanusa

O0630p MOCBAIIEH KJIACCHYECKUM M COBPEMEHHBIM 33/a49aM, CBA3aHHBbIM € 1esoil (DyHK-
mpedi o(u; A), KOTopasi ONpeJessercss ceMeficTBOM HeOCOOBIX anrefpanvdeckux KPHBBIX DPO-
ma 2, tne u = (ug,uz), A = (A4, A6, As, A1g). OTa DYHKIMA SBJIIETCI AHAJONOM CUTMa-
dbyukuuun Beitepuirpacca o(u; ga, gs) cemeiicTBa jumnTHYeCKUX KpuBbixX. Jlorapudmuueckue
UPOM3BOAHBIE TOPsAAKAa 2 1 Bbiile (GyHKIMU 0(U;A) HOPOKIAIT [OJ€ [UIEPIIIIUITUIECKUX

dbyukuuit or u = (uj,u3) Ha AKOOMAHAX KPUBBLIX € (DUKCUPOBAHHBIM 3HAYEHUEM BEKTOPA

napamerpos A. Mer paccmarpusaem tpu psaa Lypsuna o(wA) = Y0 lm (X)L,
uk uk

o(wA) = >so&k(us N7 1 oo(w ) = >0 pk(us; A) 7. OB30p moCBAmEH TeopeTHKo-

YHCIOBBIM CBOHCTBAM (DYHKIHIIA Gy (A), i (U1; A) 1 px (ug; A). OH BKIIIOYAET camble TOCTeIHIEe
pe3y/IbTaThl, JOKA3aTeIbCTBa KOTOPLIX MCIOJb3yeT TOT (PyHJaMEeHTAILHbLIH (akT, 4To (PyHK-
must 0(U; \) ONpenesseTcs CUCTeMOl YeThIpex yPABHEHUH TEILIONPOBOJAHOCTU B HETOJIOHOMHOM
perepe MeCcTUMEPHOTO TPOCTPAHCTBA.
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Abstract

This survey is devoted to the classical and modern problems related to the entire function
o(u; A), defined by a family of nonsingular algebraic curves of genus 2, where u = (u1,us)
and A = (g, X6, Ag, A10). It is an analogue of the Weierstrass sigma function o(u;ga,gs) of a
family of elliptic curves. Logarithmic derivatives of order 2 and higher of the function o(u; \)
generate fields of hyperelliptic functions of u = (u1,u3) on the Jacobians of curves with a

,m,.n
fixed parameter vector A. We consider three Hurwitz series o(w;A) = > o0 @mn(N) L,
n> Tn!

o(usA) = > 50 §k(u1;)\)% and o(w;A) = 37,5 ﬂk(ﬂg;)\)%. The survey is devoted to the
number-theoretic properties of the functions am n(A), &k(u1; A) and pg(us; A). It includes the
latest results, which proofs use the fundamental fact that the function o(u; A) is determined by
the system of four heat equations in a nonholonomic frame of six-dimensional space.
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1. Introduction

Deep results on the number-theoretic properties of fields of hyperelliptic functions were obtained
in the papers of V. P. Platonov, where he gave answers to long-standing questions. The fields
of meromorphic functions on the Jacobian of curves of genus 2 occupy one of the main places
in these papers (see [40], [41] and [42]). Abelian functions, including meromorphic functions on
the Jacobians of algebraic curves, were a central topic of the 19th century mathematics. In this
review, we mainly discuss the results obtained due to a new direction in the study of fields of
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Abelian functions. This direction arose in the mid-seventies of the last century in response to
the discovery that Abelian functions provide a solution to a number of challenging problems of
modern theoretical and mathematical physics. The elliptic sigma function, which was defined and
investigated by Weierstrass, is important in many fields in mathematics and physics. This function
is closely related to the theory of the elliptic curves. In [28] and [29], F. Klein posed the problem of
the construction of multi-dimensional sigma functions associated with the hyperelliptic curves. He
obtained important results in this direction. Many years later, F. Klein wrote a paper and a survey
in which he acknowledged that the theory of his sigma functions is still far from complete (see [30]
and [31]). The theory of the hyperelliptic sigma functions was developed by H. F. Baker in [5], [6],
[7], and [8]. Recently, by a series of work of V. M. Buchstaber, V. Z. Enolskii, and D. V. Leykin, the
theory of the hyperelliptic sigma functions was developed significantly and they were generalized
to the large family of algebraic curves called (n,s) curves, which include the hyperelliptic curves
as special cases (see [12], [13], [14], [15], [17]). After the publications of Buchstaber, Enolskii, and
Leykin, many papers appeared on the theory and applications of multi-dimensional sigma functions.
Our survey is devoted to the sigma functions of curves of genus 2. The focus of our attention is
the number-theoretic aspects of the results on these functions. Throughout the present survey, we
denote the sets of positive integers, integers, rational and complex numbers by N, Z, Q, and C,
respectively.

Let V be a hyperelliptic curve of genus g defined by

y? = 22T NPT 062?94 Mg+ Agga2, N € C. (1)
The sigma function o(u; \), where u = (u1,us, ..., ugg—1) and A = (A4, ..., Agg42), associated with
V', is an entire function in u € CY. It is shown that the coefficients of the power series expansion
of o(u) around u = 0 are polynomials of the coeflicients A4, ..., Agg+2 over the rationals ([14], [15],
[17], [33]). Let R be an integral domain with characteristic 0, uq,us, ..., u2g—1 be indeterminates,
and
i1 13 i2gfl
Uy Uz - Ugg_q
R((’U,l, us ... 7u29—1>> - Z a/il,ig,,...,igg,l% ai1,i3,...,igg,1 S R
. - 21123!”%29_1!
11,03,..0,02g—120
If a power series belongs to R({u1,us...,uz4—1)), then it is said to be Hurwitz integral over R. In
[39], Y. Onishi proved that the power series expansion of o(u) around u = 0 is Hurwitz integral over
the ring Z[A4, . .., Aag4+2] by using the expression of the sigma function in terms of the tau function

of KP-hierarchy given in [34]. In [37], in the case of g = 1, the Hurwitz integrality of the sigma
function is proved in a different way from [39] and relationships with number theory are discussed.
In [21], in the case of g = 1, it is conjectured that the power series expansion of the sigma function
is Hurwitz integral over Z[2\4,24)¢]. The focus of our survey is on the above fundamental fact,
i.e., the power series expansion of the sigma function around the origin is Hurwitz integral over
ZA4, - .. s Aagy2]. In this survey, we will discuss in detail expansions of the sigma functions of curves
of genus 1 and 2, including the Onishi’s proof for Hurwitz integrality (see Sections 2.2 and 2.3).

Weierstrass [45] showed that the elliptic sigma function o(u; A\, Ag) satisfies the following system
of equations

4\go ), +6X6oN\; —uoy +0 =0,
4 1 1
6)\60'>\4 - g)\ZO')\G - §O'uu + 6)\4U2U =0.
The second equation of this system is the heat equation or, equivalently, the Schrodinger equation

of type loo = %HQO', where fo = 6X60/0\s— (4/3)A\20/0\g and Hy = % — %/\4u2. Weierstrass gave
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recurrence relations of the coefficients of series expansion of the elliptic sigma function. Buchstaber
and Leykin succeeded in generalizing the theory of the heat equations to the sigma functions of
higher genus curves ([18], [19], and [20]). In [24], the detailed proof of their theory is given. In
[19] and |24], the recurrence relations of the coefficients of series expansion of the two-dimensional
sigma function are given based on the heat equations. In [25], the theory of the heat equations is
constructed for the elliptic curves defined by the most general Weierstrass equation. In [23], for
g = 1,2, it is shown that the holomorphic solution of the heat equations around (ug,0) € C39 for
some ug € CY is the sigma function up to a multiplicative constant. We consider the case of g = 2.
For A\ = (A4, As, Ag, A1o), we set

uj uf
o) = &)t o) = pu(us )

k>0 k>0

In Section 3, we will derive the differential equations satisfied by & and uy from the heat equations.
From these results, we will prove that two-dimensional sigma function is Hurwitz integral over

Z[)\4, )\67 >\87 2)\10} (Corollary 2).

For (z,y) € V, let
dup = —ﬁdx, duz = ——dx,
2y 2y
which are a basis of the vector space of holomorphic one forms on V. We have two ultra-elliptic
integrals fojz duy and fo]z dus obtained with the help of two holomorphic differentials du; and dus.
We take a point P, € V' and an open neighborhood U, of this point P, such that U, is homeomorphic
to an open disk in C. Let us fix a path v, on the curve V from oo to the point P.. We consider the
holomorphic mappings defined by the ultra-elliptic integrals

P
I3 : U, — C, P:(w,y)>—>/ dug,

[e.9]

P
I : U.—C, P:(:B,y)»—>/ duy,

where as the path of integration we choose the composition of the fixed path ~, from co to the point
P, and some path in the neighborhood U, from P, to the point P. When we consider the map I3,
we assume P, # co. When we consider the map I, we assume Py # (0, £/ A19). If U, is sufficiently
small, then the maps I; and I3 are biholomorphisms. In [4], the inversion problems of the maps
I) and I3 are considered. In Section 4, we will summarize the results of [4|. Proposition 18 in the
present survey gives the recurrence formula of the coefficients of series expansion of the solution of
the inversion problem with respect to I; in the case of P, = oo. This result is not included in [4].
The classical Bernoulli numbers B,, are defined by the generating function

u u
T :ZBnH. (2)

Bernoulli numbers B,, are important in many areas of mathematics, including number theory and
algebraic topology. Many beautiful properties for the Bernoulli numbers B,, are known. For example,
the von Staudt-Clausen theorem states

1
BQn + Z — € Za
(r—1)j2n P
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where the summation is over all primes p such that p — 1 divides 2n. Let a > 1 be an integer, p be
a prime, and m,n be even positive integers such that m,n > a4+ 1, m and n are not divisible by
p—1,and n=m mod (p — 1)p®~ 1. Then the Kummer’s congruence states

B, _ Bn

— = —" mod p°.
n m

Let us introduce the universal logarithmic series

unJrl
alu) =u+ Oy ——— 3
()=t S0y 6
over the grading ring A = Z]ay, ag, .. .], dega,, = —2n, and the universal exponential series
tn+1
t) =1 —_— 4

n>1

over the grading ring B = Z[f51, B2, . . .}, deg B, = —2n. Set degu = degt = 2. Then a(u) and S(t)
are homogeneous series of degree 2. Imposing condition «(f3(t)) = t that equivalent to condition
B(a(u)) = u, we obtain an isomorphism of rings preserving grading

£ A=7[a1,69,..] — B=17[p1, Bs,.. ],

where &, = ;774 and B, = % Thus, we obtain the polynomials

B :/87L<d17---7dn> € A, n=12...,
which coefficients are integers satisfying the relations

Bla(u) + a(v)) € Alfu, v},

where A = Z[ay,as,...] C A, and

- 13, (& n

These relations play an important role in describing the coefficient ring of the universal formal
group (see [32], [16]) and in the algebraic-topological applications of the formal group in the theory
of complex cobordisms (see [36], [43]).

The polynomials B,, = Bp(d1,...,4,) € A which generating series is given by the Hurwitz
exponential series over the ring A
t" t
pILRC g
|
= ot B

are called universal Bernoulli numbers.
The classic Bernoulli numbers are obtained by substituting a,, = (—1)". For example,

By = a1, By =2(4y —@&3), Bs=3(d3 — 3d149 + 243).

5, Q3 = —%, we obtain numbers By = —%,Bg = %,33 =0.

Classical Bernoulli numbers entered into algebraic geometry and algebraic topology due to the
fact that the generating series (2) defines the Hirzebruch genus, which associates to any smooth
complex manifold an integer equal to the Todd genus of this manifold (see [26]). The generating
series (5) of universal Bernoulli numbers defines the universal Todd genus, which associates to any

Substituting &; = —%7 by = 1
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smooth complex manifold an integer polynomial (see details in [9]). In [22], F. Clarke generalized
the von Staudt-Clausen theorem for the classical Bernoulli numbers to the universal Bernoulli
numbers. The Kummer’s congruence for the classical Bernoulli numbers was generalized to the
universal Bernoulli numbers (|1}, |2], [3], [38]).

For a hyperelliptic curve of genus ¢ defined by equation (1), in a neighborhood of point (oo, c0),
we can choose a local coordinate u such that the functions x(u) and y(u) can be expanded around

u=0 as
n—2

1 ¢ > Ch u
Rt “n 2
x(u)_u2+ u +nz::2n(n—2)!’

1 d_ag d_q = D, ur 21
VR D D COpas P 11X
n=2g+1

Then C,, and D,, are called generalized Bernoulli- Hurwitz numbers. In [38], the von Staudt-Clausen
theorem and the Kummer’s congruence for the classical Bernoulli numbers are extended to the
generalized Bernoulli-Hurwitz numbers in the case of the curves 2 = 229! — 1 and y? = 229! — .
We will extend the methods of [38] to the curve y? = 2° + Mz + A\g2? + A\gx + A1¢ and show some
number-theoretical properties for the generalized Bernoulli-Hurwitz numbers associated with this
curve (Theorem 11). These results will give the precise information on the series expansion of the
solution of the inversion problem of the ultra-elliptic integrals.

2. Preliminaries

2.1. The sigma function

For a positive integer g, we set
A ={(A, X6, Magt2) € C¥ | f,(z) has a multiple root},

where
fo(@) = 2297 1 Xg2®7 4 Xe2 72 4 Mgy Aag2,

and B = C%9\ A. We consider the non-singular hyperelliptic curve of genus ¢
V={(x,y) € C*|y* = fy(2)}, (6)

where (A4, A6, ..., Adag+2) € B. In this paragraph we recall the definition of the sigma-function for
the curve V' (see [15]) and give facts about it which will be used later on. For (z,y) € V, let

97"
dugi—1 = — dr, 1<i<yg,

2y

which are a basis of the vector space of holomorphic one forms on V', and du="*(duy, dus, . . . , dugg_1).
Further, let
1 g+i—1 '
drai—1 = % > (1T 4 i — g)Aagraiokoatdr, 1<i<y, (7)
k=g—i+1

which are meromorphic one forms on V' with a pole only at co. In (7) we set \g = 1 and A2 = 0.
For g =1, we have

1
duy = —@dac, dry = —;—yd;r,
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for g = 2, we have

1 2 — Mz — 32
du; = —idac, duz = ——dx, dri = —x—dm, drz = “AMTTOT
2y 2y 2y 2y
Let {a;, B;}Y_, be a canonical basis in the one-dimensional homology group of the curve V. We
define the matrices of periods by

The matrix of normalized periods has the form 7 = wi lwy. Let § = 76" + 8", &',8"” € RY, be the
vectors of Riemann’s constants with respect to the choice ({ay, 8;},00) and § := t(*¢’,16"). Then we
have &' =(3,...,3) and 6" = (4 gL . L) If g is even, we define Ag = (29— 1,29 —5,...,7,3)

2 20 2 )2
and ¢y by the sign of the permutation
o 0 2 oo g—4 g—2 g—1 g—3 -+ 3 1
co—sgn<g_1 g—2 1 0/

If g is odd, we define Ay = (29 — 1,29 — 5,...,5,1) and ¢g by the sign of the permutation

_ 0 2 oo g—3 g—1 g—2 g—4 -+ 3 1
Co—Sgn<g_1 g—2 .. 1 0/°

We consider the Riemann’s theta-function with the characteristic ¢, which is defined by

00](u,7) = Y exp{mv=1"(n+ ) r(n+ ) +2rv=1"(n+ ) (u+45")},

nez9

where u = *(uy,us, ..., uzg—1) € C9. We set 9, = 9/0u;. For a non-empty subset I = {iy,...,ix} C
{1,3,...,29 — 1}, we set
O = u,, 0

uik~

It is known that 94,60[6](0,7) # 0 ([35]). The sigma-function o(u) is defined by (cf. [15], [35])

o (o) (o) )
o(u) = exp ( unwy 1“) c004,0(6](0,7)

2

which is an entire function on C9. We set p; ; = —auiauj logo, 0; = 04,0, and 0;; = &Liauja. We
define the period lattice A = {2w1my + 2wams | my,my € Z9} and set W = {u € CY | o(u) = 0}.

PrROPOSITION 1. ([15] Theorem 1.1 and [33] p.193) For my,ma € Z9, let Q = 2wimy + 2wama,
and let

A= (_1)2(t§/m1_t§//m2)+tm1m2 eXp(t(2n1m1 + 277277%2)(11 T wimy + w2m2))'

Then
(i) o(u+ Q) = Ao(u), where u € CY.
(ii) oy(u+ Q) = Ao(u), i=1,3,...,2g — 1, where u e W.

Proposition 1 (i) implies that u+ Q € W for any u € W and Q € A. The surface
(0):={uecCy/A|o(u) =0}

is called the sigma divisor. We set degusp_1 = —(2k — 1) and deg Ay; = 2i, where 1 < k < g
and 2 < i < 2g9 + 1. A sequence of non-negative integers p = (u1,u2,...,4;) such that
p1 = p2 = -+ = is called a partition. Let S,,(u) be the Schur function associated with the
partition pg = (9,9 —1,...,1) and set |pg| =g+ (¢ —1) +--- + 1 (cf. [33] Section 4).
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THEOREM 1. ([14] Theorem 6.3, [15] Theorem 7.7, [17], [33] Theorem 3, [35] Theorem 13) The
sigma function o(u) does not depend on the choice of {a;, Bi})_, and has the series expansion of
the form

o(w) = S, (W) + > Oy iy WU (®)
i1+3i3++(29—1)i2g—1>|pgl

where the coefficient ag,)ig,...,iz(,_l is a homogeneous polynomial in Q[A4, Xe, ..., Aag+2] of degree
i+ 3ig + oo+ (20— Ving1 — gl if ol #0

For g = 1, the sigma function o(u) is an entire odd function on C and it is given by the series

o(u) =u+ Z az(»l)u“rl,

124

1)

where the coefficient o, is a homogeneous polynomial in Q[A4, A¢] of degree i if agl) # 0. For
g = 2, the sigma function o(u) = o(u, u3) is an entire odd function on C? and it is given by the
series

1 o
o(uy,ug) = gu:f —uz + Z ag?j)uzlué, (9)
1+3527

(2)

where the coefficient o’ ; is a homogeneous polynomial in Q[A4, A6, As, A1) of degree i + 35 — 3 if

0%(,2]') #0.
THEOREM 2. ([10, 12, 18, 19, 20, 24])
(i) For g = 1, the sigma function o(u; Ay, Ag) satisfies the following system of equations:
dXg0y, +6X60\g —uoy +0 =0,

4 1 1
6)\60)\4 — g)\iU)\G — 5(7““ + 6)\4UQG = 0.

(1) For g = 2, the sigma function o(u1, us; \g, \¢, \s, A10) satisfies the following system of equations:
Qioc =0, where Q;=¥¢;—H;, i=0,2,4,6,

t(€07£2764’€6) =T t(a)uu akev aAsa 8>\10)’

AN 66 8)s 10A10
ro | G B —EAL 10h0— Nk —3Xihs
T 8Xs 10Ai0— SAide  Adads — A2 6MAi0 — SXes |
10A10  —2MAs  6MAd0— SAghs Ao — ENE

Hy = U18u1 + 3U38u3 — 3,

1 4 3 1
H2 = 5631 — 5)\4“36@“ + UlaU3 - E)\4U% + TO<15>\8 - 4)\121)2/%,

6 1 1
Hy = 811,1 8u3 — 5/\6u38ul + )\4U3au3 — 5)\6u% + Agujug + E(SO/\IO — 6/\4)\6)u§ — Mg,

1 3 1 3 1
Hg = 5633 — 5)\8’&381“ — E)\gu% + 2Aouiug — 1—0)\8)\4u§ — 5)\6
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2.2. Hurwitz integrality of the expansion of the elliptic sigma function

In [39], Hurwitz integrality of the expansion of the sigma functions is proved. In this subsection,
we will explain the proof of [39] for g = 1.

In this subsection, we assume g = 1. For simplicity, we denote u; and du; by uw and du,
respectively. For an integral domain R with characteristic 0 and a variable u, let

RUu)) = {Zoﬂ:‘ o € R}.
=0

For n < 0 let py(u) = 0 and for n > 0 let

un

pn(u) = F

For an arbitrary partition p = (u1, pi2, . .., ), we define the Schur polynomial s, (u) by

sp(u) = det (pm—i+j(u))1<i,j<l :

X

LEMMA 1. We have s, (u) € Z{(u)).
Proor. For i,j > 0, we have

utul (i) utt _(i—l—j) nar

IR TR )] i ) (i+ )

Since (Z t ‘7> € 7Z, we obtain the statement of the lemma. O
Let

Then t is a local parameter of V' around oco. We have

1 1 (10)
x = -, =—.
S Y st
Denote by Zx, the set of integers that are not less than r.
LEMMA 2. We have the following expansion of s in terms of t around t =0
oo
s =t (1 +Zﬁitz> :
i=4
where B; is a homogeneous polynomial in Z[A4, Ag| of degree i. In particular, we have
S=t2+A4t6—|—/\6t8+-~- .
PROOF. By substituting (10) into y? = 2% + Az + g, we have
s = t2 4 \st? + NgsSt2. (11)

The expansion of s with respect to ¢t around ¢ = 0 takes the following form

e .
s=t2) Bt
1=0
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where 3; € C. By substituting the above expansion into (11), we have
Z Bit' =14 Agt? (Z ﬁitl> + Agt® (Z 5#) )
=0 i=0 i=0

By comparing the coefficients, we obtain By = 1, 84 = A4, 86 = A, and B, = 0 for n =1,2,3,5. For
n = 6, we have

Bo o= M D> BuButd >, BiBiBi

(i1,i2)€l1 (i1,i2,33)€l2

where It = {(i1,i2) € Z2 | i1 + iz = n—4} and Iy = {(i1,i2,43) € Z% | i1 + iz + i3 = n — 6}.
Therefore we obtain the statement of the lemma. O
From Lemma 2 and (10), we have the expansions

1 = 1 =
x:t2<1+zaitz>7 y:t3<1+2a¢tz>, (12)
i=4 i=4

where a; is a homogeneous polynomial in Z[A4, Ag] of degree i. We enumerate the monomials 2™y",
where m is a non-negative integer and n = 0, 1, according as the order of a pole at oo and denote
them by ¢;, j > 1. In particular we have 1 = 1. We set ¢; = 1. We expand tp; around oo with

respect to t. Let
tpj = Z&,jez',
i

where & j € Z[A4, X¢]. For a partition p = (1, p2, ..., ), we define

f,u = det(&mi,j)i,j€N>

where m; = p; — i and the infinite determinant is well defined. Then we have £, € Z[\4, X¢]. We
define the tau function 7(u) by

() = 3 &usu(u),
o

where the sum is over all partitions. From Lemma 1, we obtain the following proposition.
PROPOSITION 2. We have 7(u) € Z[Ayg, Ag]{{u)).

LeEMMA 3. The expansion of du around oo with respect to t takes the form

du= (> bt~ dt,
j=1

where by = 1 and by = b3 = by = 0.
PrROOF. From (12), we have

_ =172 = (14 O(tY) dt.
M=y T I, at (1+0Y)

O
We take the algebraic bilinear form

x1x2(21 + 22) + Aa(21 + 22) + 2y1y2 + 2X6

w(P Q)= dy1yo (w1 — 22)?

d.fvldl’g, (13)
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where P = (21,41),Q = (22,y2) € V. We can expand w(P, Q) around oo X 0o as

1

w(P,Q) = th-t)?

+ ) gty | dtdts, (14)
1,521
where ¢;; € C and t1,t2 are copies of the local parameter t.

LEMMA 4. We have g11 = 0.
ProOOF. From (13) and (14), we have

{z122(21 + 22) + M1 + 22) + 2Y1Y2 + 26 }dx1d22

1

i—1,7—1
m + Z ql-jtll t% dtldtg.

1,521

= dy1ya (21 — 22)°
By substituting the expansions of x1,x2,y1,y2 into the above equation and multiplying the both
sides of this equation by t{t5(t; — t2)?, we obtain
(t1 — t2)2(—=2 + 2a4t] + - ) (=2 + 2a4ts + - -)
< [FE)fE){f (1) + 1 f(t2)} + M {3 f (1) + 61 f(t2)} + 2tita f(11) f (2) + 2X6t15]

= 4D FE{BF (1) = BF ()Y 1+ an(t —2)° + D d@tith o,
i+5>3
where f(t) is defined by x = t~2f(t) and g;; € C. By comparing the coefficient of ¢§ in the above

equation, we obtain q;; = 0. O
We define ¢; by the following relation

du ¢
LEMMA 5. We have ¢; = 0.

PrROOF. From Lemma 3, we have the following expansion

On the other hand, we have
o0
exp (Z C;tz> =1+ ¢t + O(t?).
i=1
Thus we have ¢y = 0. O

THEOREM 3. ([34], Theorem 4) We have

1
7(u) = exp (clu + 2q11u2) o(bu).
From Theorem 3, Lemma 3, Lemma 4, and Lemma 5, we have
o(u) = 7(u). (15)
From Proposition 2 and (15), we obtain the following theorem.

THEOREM 4. ([39]) We have
o(u) € Z[Ag, Ae]((u)).
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2.3. Hurwitz integrality of the expansion of the two-dimensional sigma function

In this subsection, we will explain the proof of [39] for Hurwitz integrality of the expansion of
the sigma function for g = 2.

In this subsection, we assume g = 2. For an integral domain R with characteristic 0 and variables
ui, us, let

R((u1, u3)) = ZZ%JTJ, a;j € R
i=0 j=0
For n < 0 let p,(ui,us) =0 and for n > 0 let

pn(ulaUS) - Z L 3

i

where the summation is over all (i,7) € Zio satisfying ¢ + 35 = n. For an arbitrary partition
p= (p1, p2, - - -, 1), we define the Schur polynomial s, (u1,u3) by

su(u1, ug) = det (pp,—itj (U1, u3)) < oy -

LEMMA 6. We have s,(u1,u3) € Z{{u1,us)).

Proor. Fori,j,k, £ > 0, we have

wiub b (+R)IG+O! WM ik 0\ e
gt kel ilj1k10! (i 4+ k)5 +0)! ? J (t+ R+ O
Since (Z 4; k) (J j—£> € 7Z, we obtain the statement of the lemma. O
Let
72
t=—, s=—
Yy T
Then t is a local parameter of V' around oco. We have
1 1
I - 16
T= Y= (16)

LEMMA 7. We have the following expansion of s in terms of t around t =0

s =t (1 + i%ti) ,
=4
where y; is a homogeneous polynomial in Z|\y, X¢, As, A1o] of degree i. In particular, we have
s =17 4+ M\t + Nt 4+ (203 + X)t10 + (BAgdg + Aio)tt2 + - - - .
PROOF. By substituting (16) into y? = 2° + M3 + A\s2? + Asx + A10, we have
s =12 + Ms2t? 4+ Ags°t2 + Agst? + Ajps 't (17)

The expansion of s with respect to ¢t around ¢ = 0 takes the following form

e .
s=12) ',
1=0
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where 7; € C. By substituting the above expansion into (17), we have
Z yith =14 M\t (Z %‘ﬁ) + At® (Z %tl> + Agt® (Z 'Yitz> + Aott? <Z %t’) .
i=0 i=0 i=0 i=0 i=0

By comparing the coefficients, we obtain vg = 1,74 = A\g, 76 = A6, 78 = 2)‘421 + A8, 710 = DA Ae + A1
and v, =0 forn=1,2,3,5,7,9. For n > 10, we have

Too= MY Vv tAs DL adeYstA D TaViViaVa

(il,iQ)Efl (i1,i2,i3)6]2 (il,iz,i37i4)613

+A10 Z Yi1 Via Vi3 Via Vis

where 11 = {(il,ig) IS 2220 ‘ 11+ =n— 4}, I, = {(il,ig,ig) IS Z;O ‘ 11+ +13 =n— 6},
Is = {(i1, 42,13, 14) € ZL, | i1+ig+is+is = n—8}, and Iy = { (i1, i2, 43, i4,15) € ZL, | i1+iz+iz+is+
+i5 = n — 10}. Therefore we obtain the statement of the lemma. O

From Lemma 7, we have the expansions

1 S ) 1 S 2)
1), 2) i
r= <1+Zdz’ t1>, y=15 (1+Zdi t”),
i=4 =4
where dl(-l),dl(?) are homogeneous polynomials in Z[A4, Ag, Ag, A10] of degree i. We enumerate the
monormials zy", where m is a non-negative integer and n = 0,1, according as the order of a pole

at oo and denote them by ¢;, 7 > 1. In particular we have ¢1 = 1. We set e; = t'*+1. We expand
tzgoj around oo with respect to ¢. Let

o) = meez’,
where & ; € Z[A4, A6, A, Ao]. For a partition p = (1, po, . . ., ), we define

g;t = det(fmi,j)i,j€N7

where m; = p; —i and the infinite determinant is well defined. Then we have &, € Z[\4, X, Ag, A10].
We define the tau function 7(ui,us) by

T(uy,u3) = Zﬁusu(ul, uz),
I

where the sum is over all partitions. From Lemma 6, we obtain the following proposition.
PROPOSITION 3. We have T(u1,u3) € Z[A4, X6, As, A1o]({(u1, us)).

The expansions of du; around oo with respect to t take the following form

dui = Z bijtj_ldt.
J=1

LEMMA 8. We have by = 1,b13 = 0,b31 = 0,b33 = 1.
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Proor. We have

T

Rl P B U Yy 1 dz(gf.’ —2t78 £ Y (i = 2)d 0P ) = (14 O"))dt
2y 2075(14 372, d;7t) i—4

Therefore we obtain b1; = 1 and b;3 = 0. We have

dulz—

d —2t73 + 37 (i — 2)dVpi=3
dug = -5 = — ol ()2)3 = (2 + O(t%))dt.
2y 251+ T2, d2)
Therefore we obtain b3; =0 and b33 = 1. O

We define ¢; by the following relation

dus

o
=t —t 1.
a P <Z ; )
i=1
LEMMA 9. We have ¢t = co = c3 = 0.

Proor. We have the following expansion

— =t(14+0(t%)).
o = o)
Therefore we have the following expansion

dU3 4
— =t(1+ O(t")).
541+ 0(t")
On the other hand, we have
e ic"ti et (249) g (@02, 2 ey
« = — c 2.4 = he'§
P\& L 2 "2 37 2 76
Thus we have ¢y = co =¢c3=0. O

We take the algebraic bilinear form
2

w(P Q) _ mlx%(ml + xg) + )\4331332(331 + xg) + 2 gT129 + /\8($1 + xg) + 2192 + 2A10
’ dyry2 (1 — x2)?

d.%‘ldajg,
(18)
where P = (z1,y1),Q = (x2,y2) € V (|15], p.217). We can expand w(P, Q)) around co X 0o as
1 1.
w(P, Q) = N2 =+ Z q,‘jtzl lt‘; 1 dtldtg, (19)

(t1 —t2)? = =

7,7/1

where ¢;; € C and 1,12 are copies of the local parameter t.

LeMMA 10. We have q11 = 0,q13 = q31 = A1, q51 = q15 = 2X6, @33 = 3.
PROOF. We define f(t) by s = t2f(t). From Lemma 7, we have

F) =14 Mt 4+ Ngt® + - -
From (18) and (19), we obtain

AB —C =D (qu1 + gs1t] + qi3ts + gs1t] + qusts + qsstits + ),
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where

A = Bf(t) +3f(t) + M3 f(t) F(t2) (B f(t1) + 5 F(L2)) + 2X6t1ts f(t1)2 f (t2)?
FAstitaf(t1)2f (82)2 (L1 F (t1) + 5.£ (£2)) + 2tata f (t1) F(t2) + 2M10t St £ (1) £ (£2)°

B = (143Xt} +406t8 + - )(1 + 3\t + 4AN6t§ +--+)
C = f(t)f(t2)(ts + t2)* {14+ Ma(t] + 1365 +35) + X9 + 185 + 75 +15) + - }?
D = f(t1)f(t2) (] — t3)°{1 + a(t] + 75 + 13) + A6 (£ + 113 + 515+ 19) + -+ }%.

By comparing the coefficient of ], we obtain qi; = 0. By comparing the coefficient of $, we obtain
@31 = q13 = M4 By comparing the coefficient of ¢}, we obtain gs; = q15 = 2)\¢. By comparing the
coefficient of t§t2, we obtain

433 — 2¢51 = —Xe.
Therefore we obtain g33 = 3Ag. O

THEOREM 5. ([34], Theorem 4) We have

1 1
T(u1,u3) = exp <—Clul — c3uz + 5%1”% + 56133“% + CI13U1U3> o(bi1uy + bigug, bsur + bazus).

From Theorem 5, Lemma 8, Lemma 9, and Lemma 10, we have

2

a(ul, U3) = exp (—3A6u23 — )\4U1U3> T(ul, U3). (20)

(2n)!

ol €.

LemMA 11. For any non-negative integer n, we have €, :=

PrROOF. We have 1 = 1 € Z. Assume ¢, € Z. Then we have

o @2n+2)! @2n+2)2n+1)
Entl = P 1) 2n+ 1) en=(2n+1)g, € Z.

By mathematical induction, we obtain the statement. O

LEMMA 12. We have
u2
exp <_3/\623 - )\4U1u3> € Z[A4, A6, Ag, Avo] ((u1,u3)).
ProOOF. We have
u? =1 u? "
exp <—3)\623 — )\4U1U3> = nZ:O E <_3)\623 — )\4U1U3> .

From Lemma 11, for any k, ¢ € Z>¢, we have

k
(k+0)! ( k ) (‘3%’ 2) (=Aqurus)

euf w2k 4 0)!
0 (2k 4 0)! 2Kk

Therefore we obtain the statement. O

= (=3X)" (=)

€ Z[A4, X6, As, Ao ((u1, us)).

From Proposition 3, Lemma 12, and (20), we obtain the following theorem.
THEOREM 6. ([39]) We have
o(ur,uz) € Z[As, A6, As, Ao {(u1, us)).
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2.4. Universal Bernoulli numbers

In this subsection, we will describe the definition of the universal Bernoulli numbers and their
properties according to [38].
Let f1, fa,... be infinitely many indeterminates. We consider the power series
& n+1
u=u(z)=z+ Y fn
1

n=

z
n+1
and its formal inverse series

2 , i
ZZZ(“):U—fngr(?’fl —2f2)§+"'7

namely, the series such that u(z(u)) = u. Then we define By, € Q|[f1, f2,...] by

o n
vy
Z(u) n=0
and call them the wuniversal Bernoulli numbers. We have 30 = 1. If we set degf; = 1,

then B, is homogeneous of degree n if B, # 0. Let S be the set of finite sequences
U = (Uy,Us,...) of non-negative integers. For U = (Uy,Us,...) € S, we use the notations
Ul = U\Uy! - | AU — 2U13U24:U3,..7 fU — flUlf2U2...7 I AUU!7 wU) = ijUj, and
d(U) = Zj Uj-

PROPOSITION 4. ([38] Proposition 2.8) We have the expression

BTL
7: 2 7'UfU,
w(U)=n
where (w(U) + d(U) — 2)!
w — !
TU = (—1)d(U)71 o . (21)

For a rational number «, we denote by |« the largest integer which does not exceed . If p is a
prime and the p-part of given rational number r is p®, then we write e = ord,r. If 7 is a polynomial
(possibly in several variables) with rational coefficients, then we denote by ord,7 the least number
of ord,r for all the coefficients 7 of 7. For a prime number p and an integer a, let al, = a/p° .
For positive integers a, b and a prime number p, we have

(a+10)!

ord,(a + b)! — ordya! — ord,b! = ord, T
alb!

Since (a + b)!/(alb!) € Z, we have
ord,(a + b)! > ordya! + ord,b!. (22)

For a positive integer a and a prime number p

ord,(al) = i {“J . (23)

v
r=1 p

If positive integers a and b are relatively prime, we denote it by a L b.
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LemMMA  13. ([38] Proposition 3.11) Let p be an odd prime and U = (Uy,Us,...,) be an
element of S. If p > 5, we assume Uy = Uy = Up—1 = Ugp—1 =0 and d(U) # 0. If p = 3, we assume
Uy =Uy=Us =Us =0 and d(U) # 0. Then 1y defined in (21) satisfies

U)+d(U) -2
2p '

ord, (1) = {w

PrOOF. For the sake to be complete and self-contained, we give a proof of this lemma. By using
(22) and (23), we have

ordy(ry) = ordy(w(U) 4+ d(U) —2)! — ord, ()

= ordy [ > JU+D Uj—=2|1= D kUeq— Y ordy(Uy)
j=1 j=1 e,k>1,elp j=z1
> ordy | Y U =21 = Y kU
j=1 ek>1,elp
= ordy [ =24 ) U+ DY (e -DU 1= D) KU
pti+1 e,k>1,elp e,k>1,elp
=11
. k
S EET SEURID SRNCUESI A | R Sy
v=1 | pti+1 ek=1,elp ek=>1,elp
1 ‘
> = =24+ > iU+ D> (@ DU || = DD EUe
_p pty+1 e,k=1,elp ek>1,elp
1 .
= , -2+ Z JU; + Z (ep® — kp — DU pk 1

pti+1 e,k=1,elp

1 _ )
= g | 4t Z 2jU;+ > 2ep —kp— DU,
L pti+1 e,k>1,elp

By the assumption of the lemma, there exists a positive integer ¢ such that ¢ > 3 and U; # 0.
For j > 3, we have 2j — (j +1) > 2. lf p > 5, let T, = {(1,1),(2,1)}. If p = 3, let
T, = {(1,1),(2,1),(1,2)}. By the assumption of the lemma, we have U_,x_; = 0 for any (¢, k) € T).

For any integers € > 1 and k > 1 such that (¢,k) ¢ T), and € L p, we can check
2ept —kp — 1) —ep® > 2.

Therefore we have

1
OI‘dp(TU) > — | =2+ Z (] + 1)Uj + Z EpkUspk_l — \‘

w(U) + d(U) — zJ
2p : '
pli+1 ek>1,elp

2p

LEMMA 14. Let U = (U, Us,...,) be an element of S such that U; = 0 for any odd integer i,
Us =0, and d(U) # 0. Then we have

ordy(ryy) > {“’(U) +d(U) - 2J |

4
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PrROOF. We can prove this lemma in the same way as [38] Proposition 3.11. For the sake to be
complete and self-contained, we give a proof of this lemma. By using (22), (23), and ords(AY) = 0,
we have

orda(ryy) = orde(w(U) 4+ d(U) — 2)! — orda(vyy) = ords ZjUj + Z Uj =2 |! = ordy(UY)

j>4 j>4
5 $5 Sl =2| | | St =2
o _ jz4IYi j=4 )Y
> ordy jU; =2 | = L o J}L 5 J

j=4 v=1

{Zj% 2jU; — 4J
S

Since j > 4, we have 2j — (j + 1) > 3. Therefore we have

In [22], F. Clarke showed the following resutls, which are a generalization of the von Staudt-
Clausen theorem for the classical Bernoulli numbers to the universal Bernoulli numbers, cf. the
paper of Onishi [38]. These results were used in the proof of our Theorem 11 in the present survey.

THEOREM 7. (1) We have

(i) If n = 0 mod 4, then we have

B a‘fl mod p1+ordpa
Doy R med )
n=a(p—1), p : prime p
(iii) If n = 2 mod 4 and n # 2, then we have
B fnfG 2 ’I’Lfn a‘fl mod p1+ordpa
771 _h 5 3 _ 81 n Z p oy foy mod Z[f1, fa,...].

n=a(p—1), p : odd prime
(i) If n = 1,3 mod 4 and n # 1, then we have

Bn ny n—3

= w mod Z[f1, fa . .. ].

In (ii) and (iii), al,* mod p'tor® denotes an integer & such that (al,)0 =1 mod p'tordr®,

3. Differential equations for the coefficients of the expansions
of the two-dimensional sigma function

In this section, we assume g = 2.
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3.1. The coefficients of us
Let A = ()\4, )\67 )\8, )\10). We set

k
u
o(ur,us; \) = ka(ul; )\)k—?" .
k>0
PROPOSITION 5. For k > 0, the functions &, &1, ... satisfy the following hierarchy of systems
1&g, + 3(k — 1)&k = 4Ma&kx, + 6268k 0 + 8Ask g + 10X10Ek 2105 (24)
1, 4k 3 k(k — 1)
urp1 = _551/4: + €>\451;_1 + TOM”%& - 170(15)\8 - 4>\421)fk—2
12 8 4
+6X68k,0, + (8A8 — E)‘i)fk,)\a + (10A10 — 5)\4>\6)fk,>\8 — g)\4)\85k,)\10a (25)
6k A k(k—1
€ = S heth oy — kM + St — kst — 0 (803 — 6AiAe) s + M
8 12 6
+8Xs&k 2, + (10A10 — g)\4)\6)§k,,\6 + (4Aghs — EA%)&W + (6AgA10 — 5)\6>\8)5k,>\10a (26)
6k A 3k(k—1
Sht2 = E)\Sfl,g—l + ?U%fk — 4k ouréi—1 + (5))\8)\4§k—2 + A6k
8 12 16
+20A 10800y — g>\4)\8€k,)\6 + (12X4 10 — E)\G)‘S)fk,)\g + (8A6A10 — EAg)ﬁk,\m, (27)

where the prime denotes the derivation with respect to uy and & x,, denotes the derivation of &
with respect to Agj.

ProOOF. We substitute the expressions

/ uf uf " uf
o = ka(m)ﬁ, U3=ka+1(u1)ﬁ, o1 Zka(m)y’
k=0 ) k>0 ) k>0 ’
k k
u u
o13 = Z§2+1(U1)ﬁ, 033 = Zﬁmz(m)ﬁ-
k>0 ' k>0 '

into the equations Q;o = 0 for i = 0,2, 4,6 in Theorem 2 (ii) and compare the coefficients of u5 /k!.
Then, from Qoo = 0,Q20 = 0,Q40 = 0,Qso = 0, we obtain (24), (25), (26), (27), respectively. O

LEMMA 15. The fact that &, satisfies the differential equation (24) means that & is homogeneous
inup and Agj, j=2,...,5, with degree 3k — 3.

ProoF. We set

V) (k) 11 yJa \J6 \Js yJ10 (k)
GlusN) = D 4 e NN a4 e € C
%1,J4,J6,78,310=0

By substituting the above expression into (24) and comparing the coefficient of u’f )\14)\%6)\%8 /\]1})0,
we have

(k) : %) : : . .
@y ja,d6 s 10 (Zl + 3k — 3) = Q4 ja g6 sjssdno (4j4 + 6J6 + 85 + 10]10)'
If az(h)j47je7jg,j1o = 0, we have 4j4 + 656 + 8jg + 10510 — 31 =3k — 3. O
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PROPOSITION 6. The function & satisfies the following differential equation

1 1 7 A6 3
556’ — Ul o= E)\4U%£O - gu%fo + E)\wi’fé — 8\suibon,
8 12 6
—(10A10 — g)\4/\6)’u%€0,>\6 — (4haXg — g)\g)uﬁo,xg — (64 10 — gAGAB)Uffo,,\m

12 8 4
g)‘?l)ulftl),/\e) + (10)\10 — g)\4)\6)U1£6’>\8 — g

12 8 4
—6X6é0,0, — (8As — gﬁ)ﬁo,xg — (10A10 — 5>\4>\6)50,A8 + g)\4/\850,m = 0.

+6)\6U1§(/)7,\4 + (8)\8 — /\4)\8'“1{67)\10

PrOOF. From (25) with k& = 0, we have

1 3 12 8 4
uré) = —556' + TOA4U%£O + 6600, + (8Ag — E)\i)fo,xe + (10A10 — 5)\4)\6)€O,A8 — g)\4)\850,>\10- (28)

From (26) with k = 0, &] can be expressed in terms of &) and its derivatives. We take the derivative
with respect to uy of (28) and substitute into it the expression for £]. As a result, we obtain

1 2 A 3 8
S —556" - g>\4u1§0 — guifﬁo + TOM“%% —8Asu1ép.ay — (10A10 — 5)\4/\6)1&150,,\6

12 6 12
—(4AgAg — g)\g)mfo,xg — (6A4 10 — g)\G)\S)Ulfo,/\m + 6600, + (8Xs — g/\i)&/),xﬁ
4

5)‘4)‘856,,\10-

8
+(10A10 — g)\4/\6)§6,)\8 -

We substitute the above equation into (28) and finally obtain the statement of the proposition. O
We set

ué
=Y nn"L (29)

>0
LEMMA 16. If ¢ is even, then pp = 0. We have p1 =0 and p3 € C.
PrOOF. From Lemma 15 and (24) with k& = 0, we obtain the statement of the lemma. O
PROPOSITION 7. For £ > 2, the following recurrence relation holds :

Ml(30 — 13 2\
Py = 4(5>pz—2 - ?65(5 —2)(£ = 3)pr—a — 16Xslpyp_2 5,

16 24 12
—(20A10 — €A4)\6)fpz—2,x6 — (8\4Ag — Ekg)gpz—mg — (122410 — E)\GAB)«@%—Q,AN
2 16 8
+12X6pen, + (168 — 3)\4)106,% + (2019 — €A4)\6)p€,>\g - g)\zx)\spz,m,

where p; x,; denotes the derivative of p; with respect to Ag;.

PROOF. By substituting (29) into the differential equation in Proposition 6 and comparing the
coefficients of uf /¢!, we obtain the statement of the proposition. O

COROLLARY 1. The sigma function o(uj,us;\) is uniquely determined by the differential
equations Q;0 =0, 1 =0,2,4, up to a mulliplicative constant.

PrOOF. From Lemma 16 and Proposition 7, we find that all the coefficients p, are determined
from ps3. Note that Lemma 16 and Proposition 7 follow from (24), (25), and (26). By (25), all the
functions § are determined from &y. As mentioned in the proof of Proposition 5, (24), (25), (26)
follow from Qo = 0, Q20 = 0, Q40 = 0. Therefore we obtain the statement of this corollary. O
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REMARK 1. It is known that the sigma function o(uy,us;\) is uniquely determined by the
differential equations Q;o = 0, i = 0,2,4,6, up to a multiplicative constant ([18], [19], [24]). In
[11], the following expression is proved :

10Q6 = 5[Q2, Q4] — 8X6Qo + 8M\1Q2,

where [Q2, Q4] is the commutator of Qo and Q4. From this result, in [11], it is shown that the sigma
function o(uy,us; \) is uniquely determined by the differential equations Qo =0, i =0,2,4, up to
a multiplicative constant.

COROLLARY 2. We have
o(u1,u3) € Z[Aa, X, A, 2A10] ((u1, u3)).

PrROOF. From Lemma 16 and (9), we have pgp = p1 = p2 = 0 and p3 = 2. From
Proposition 7, we can show py € Z[1/5, A4, Ag, Ag, 2A10] for any ¢ by mathematical induction.
Therefore we have & € Z[1/5, 4, Xs, As, 2A10]((u1)). From (26) with & = 0, we can show
fi S Z[1/5,)\4, >\67)\872)\10]<<u1>>~ Since 51 = —1+O(U1), we have fl € 2[1/5,)\4, )\6, )\8,2)\10]<<U1>>.
From (27), we can show & € Z[1/5, A4, s, As, 2A10)({u1)) for any k by mathematical induction.
Therefore we have

U(ul,U3) S Z[1/5,)\4, )\6,)\8,2)\10]<<U1,U3>>.

From Theorem 6, we obtain the statement of the corollary. O

3.2. Expansions of &

In this subsection we will calculate the expansions of . From (9), we have ps = 2. The initial
terms of &;,1=0,1,2,3,4, are as follows.

uld ol u ull ul3

g = 24 i L4 92), 7‘ — 26 5 + 23(510\% — 200)\8)— +27(67TAaNg — 140)\10)@ +-

6 = -1+ 2/\4 + 23/\6 a I 22()\4 + 8/\8) 9l + 25(3/\4)\6 — 20A10)1fé?
+23(30422 + 510} — 184A4A8)j +27(1256 A6 As + 237TA N — 124”@10)75 +

& = 2\ ; + 23\ 7;“? 1 22(20)\10 + M) 77 + 25(5/\4/\8 — 2)\2) 99 + 23(51)\4)\6 + 104X\
—360A4A10)—H 4 2°(232)\% — 31)\?1)\8 + 268A4\2 + 320)\6>\10)?;’ +-

& = —do+ 2 i 4 a0+ 00t 42200+ 2200 1220088 1 100000 — 8363)
+2%(88)% + 51AZA8 +12X4)8 — 160)\6)\10)11%0,
+(7104X 4 M6 Ag + 8960Xs A 10 + 2432038 4 408A3\g — 12768A2 A1) 1;2, e

5
& = 23)\10 -+ 2(72 + 2)\4/\8) + 2* (N6 s + )\4)\10)5

9
+22(2)\4)\8 + MAZ 4 88X A 10 — 28)\8) + 25(6A4 A6 s + 16Xg A0 — 23 + 51A§A10)%
11

+-23 (744003 + 40802\ + 1023 \g + 51)31/\% — 1008\ A6 A0 — 16022,) L i
13

+25(960A6 A2 + 237A2A6As + 1072X A8 10 + 134028 + 16802\ 10 — 849A3A10) L ETE
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3.3. The coefficients of u;
We set

k
u

o(ur,ug; \) = Y puk(us; A)]j (30)
k>0 ’

PROPOSITION 8. For k > 0, the functions ug, i1, ... satisfy the following hierarchy of systems

(k — 3)pk + Buspy, = 4Xapien, + 6A61k2s + 8Ashtkxs + 101040k 10 (31)
8 3k(k—1 15X — 4\2
Mkt = g>\4u3,uk+1 —2kpy, 4 + ( ))\4ﬂk—2 - #uguk
2 16 8
+ 12Xgpp, + (16As — €A4)Mk,)\6 + (2010 — g/\4/\6)uk,xg — g)\4/\8ﬂk,/\107 (32)

6 k(k—-1 3
M1 — 5)\6U3Mk+1 = —Aqugpy, + (5))\6#]4—2 — kAguspip—1 — (3A10 — 5/\4>\6)Uguk

8 12
+Aqpr + 8)\8/%’)\4 + (10)\10 — g)\4)\6),uk,>\6 + (4>\4)\8 — f)‘g)“k“

6
+<6)\4)\10 - 5)\6A8)Ml€,)\107 (33)
5 k(k—1 10 A 5
AU MR +1 = é,ulkl - (6)\8Hk—2 + Ek)\lou?)/lk—l - %u?uk — 6)\6ﬂk
50 4 20 8
— 3/\10/%,)\4 + g)\4)\8ﬂk,)\6 — (10A4A10 — 26 A8) ik A5 — (g)\ﬁ)\lo - §/\§)Mk,>\m7 (34)

where the prime denotes the derivation with respect to us and ke Ao denotes the derivation of uy
with respect to \oj.

PrROOF. We substitute the expression (30) into the equations Q;o = 0 for i = 0,2,4,6 in Theorem
2 (ii) and compare the coefficients of u¥/k!. Then, from Qoo = 0, Q20 =0, Q40 =0, Q¢o = 0, we
obtain (31), (32), (33), (34), respectively. O

LEMMA  17. The fact that py satisfies the differential equation (81) means that uy is
homogeneous in ug and \oj, j = 2,...,5, with degree k — 3.

PROOF. In the same way as Lemma 15, we obtain the statement of the lemma. O

PROPOSITION 9. The function po satisfies the following differential equation
9 6 18 6 3 .
po + g)\4)\8u§ﬂ0 — A6lo — 3>\§U§M0 - gASAwU%MO —uzpy + g)\GU%ﬂg - 5A4>\8U§#6
, 8 12 16
+Aeuspg — 20A1000,0, + 5)\4>\8M0,>\6 + F)\ﬁ)\S — 12X4 10 | poxg + E)\g — 8X6A10 | 10,010

8 12 16
+20)\10U3,u67)\4 - g)\4/\8U3M6’>\6 + <12)\4)\10 — 5)\6)\8> Ug,u()’)\g + <8/\6)\10 — 5)\%) U3M/0,)\10

72

48 24
+ <5)\§ — 24)\6)\10> U0 n, + 1228 M0U3 10 N + <5)\4)\§ - 5>\4)\6/\10) U0, A

36 48 12
+ <5)\4>\8>\10 - EA%)‘M + 5>\6)\§> U305, = 0
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PROOF. By substituting (34) for k& = 0 into (33) for & = 0, we obtain the statement of the
proposition. O

We set

ub
o= a(\) ;- (35)

>0
LEMMA 18. If ¢ is even, then gy = 0. We have q1 € C and q3 = Agq1.

ProOOF. From Lemma 17 and (31), we obtain ¢, = 0 for any non-negative even integer ¢ and
q1 € C. Further, we find that the coefficient of ug in p1 is equal to 0. By comparing the coefficient
of ug in the equation (34) for k£ = 0, we obtain g3 = A\¢q1. O

PropOSITION 10. For £ > 2, the following recurrence relation holds :

der = (0 Do+ 03— SOMdsars — I3ty — BT
+ 20A10qe0, — %M)\S%AG + (122410 — %M&)%Ag + (8X6A10 — ?Ag)%,xm
+ (4§A2 — 2406 A10)0q0—2, 0, + 1228 M100qr—2 2 + (%AM% = %)\4)\6/\10)&]6—2,)\8
+ (356 AaAgA10 — 58 Ao + %Aﬁ/\g)fqéfz,,\w

where q; »,; denotes the derivative of q; with respect to Agj.

PROOF. By substituting (35) into the differential equation in Proposition 9 and comparing the
coefficients of ug /0!, we obtain the statement of the proposition. O

COROLLARY 3. Let A\ # 0. Then the sigma function o(u1,us; \) is uniquely determined by the
differential equations Q;0 =0, i = 0,4,6, up to a multiplicative constant.

ProoOF. From Lemma 18 and Proposition 10, we find that all the coefficients ¢, are determined
from ¢;. Note that Lemma 18 and Proposition 10 follow from (31), (33), and (34). By (34), all the
functions py are determined from pp. As mentioned in the proof of Proposition 8, (31), (33), (34)
follow from Qo = 0, Q40 = 0, Qo = 0. Therefore we obtain the statement of this corollary. O

REMARK 2. In [11], the following expression is proved :

6A8Q2 = 5[Q4, Q6] + 10A10Q0 + 6A6Q4 — 10A4Qs.

From this result, the statement of Corollary 3 can be also proved.

3.4. Expansions of

In this subsection we will calculate the expansions of ug. From (9), we have ¢; = —1. The initial
terms of u;, ¢ =0,1,2,3, are as follows.
uj 2 u3 3 7
o = —ug— AG? — (g + 2)\4)\8)5 + (8AgA10 — 6 A1 6 As — A 24)\4)\10) 7' cee
uj 2 U 2 2 uj
nr = 8)\101 + (88)\6)\10 — 16)‘8)7 + (816)\6)\10 — 192X A5 — 160)\4)\8)\10)87 +--
ul 5
o = 2)\8 i + (244 10 + 4)\6/\8)5 (160M7q + 264X4 X6 A 10 + 6A2Ng — 36)\4/\2) S
w2 Ul 6
s = 242X i‘” (22 + 4>\4)\8)—3 + (1204268 + 3228 \10 + 2A8 + 4877 )10) ij SR
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4. The ultra-elliptic integrals
In [4], the inversion problem of the ultra-elliptic integrals is considered. In this section, we will
summarize the main results in [4]. Proposition 18 is not described in [4].

In this section, we assume g = 2. Let us take a point P, € V and an open neighborhood U, of
this point that is homeomorphic to an open disk in C. We fix a path v, on the curve V from oo to
P.. Let us consider the holomorphic mappings

P
I, : U, —C, P:(x,y)'—>/ duq,

[e.e]

P
I3 : U, — C, P:(x,y)»—>/ dug,

where as the path of integration we choose the composition of the path ~, from oo to the point
P, and any path in the neighborhood U, from P, to the point P. We consider the meromorphic

function on C2
f=-=

01

We assume P, # oo. If we take the open neighborhood U, sufficiently small, then I3 is injective.
Let ¢(u) be the implicit function defined by o(p(u),u) = 0 around (I1(Px), I3(Px)). We define the
function F(u) = f(p(u),u).

ProposiTION  11. ([4]) Set uw = I3(P), where P = (x,y) € U.. Then © = F(u) and
y=—F'(u)/2, where F' is the derivative of F with respect to u.

THEOREM 8. ([4]) The function F(u) satisfies the following ordinary differential equations:
(F'/2)* = F° + MF? + X\ F? + \sF + A1, (36)

F" = 10F* 4+ 6\, F? + 4\6F + 2)s. (37)

From Proposition 11 and Theorem 8, one can obtain the series expansion of F(u). Since the
function F'(u) is holomorphic in a neighborhood of u* = I3(Py), the expansion in the neighborhood
of this point has the form

oo
F(u) = Zﬁ3n+2(u —u")",  Pang2 €C. (38)
n=0
ProrosITION 12. ([4]) Set Py = (x«,y«). Then in the expansion (38) we have pa = . and
ﬁ5 = —2y*.
We set deg ps = 2 and degps = 5.

PrOPOSITION 13. ([4]) The coefficients psn+2 in the expansion (38) are determined from the
following recurrence relations:

o Ps = 5pa + 3\up3 + 2AeP2 + As,

o (n+2)(n+ 1)P3nts =103, 1y ng.na)es, P3ni+2 P3na+2 Pns+2 Pang+2+

FOA1 D (1 m0)eSs P3na+2 P3ng+2 + 4A6P3nr2, n =1, where



AHanuTHIecKe U TEOPETUKO-TUCIOBBIE CBOWCTBA JBYMEDPHBIX CUTMa-(DYHKITHIT 33

S1 = {(n1,n2,n3,n4) € Z4 | 1 + na + ng + na = n}, So = {(n1,n2) € Z%; | n1 4+ na = n},

and the coefficient panyo is a homogeneous polynomial in Q[p2, ps, A1, A6, As, A1o] of degree 3n + 2,
if Pant2 # 0.

We assume P, # (0,+v/A1g). If we take the open neighborhood U, sufficiently small, then Iy is
injective. Let n(u) be the implicit function defined by o(u,n(u)) = 0 around (I1(Py), I3(Ps)). Let
us define the function G(u) = f(u, n(u)).

ProposITION 14. ([4]) For P = (z,y) € Uy let uw = I1(P). Then we have x = G(u) and
y = —G(u)G'(u)/2, where G’ is the derwative of G with respect to u.

THEOREM 9. ([4]) The function G(u) satisfies the following ordinary differential equations:
(GG'/2)% = G° + MG® 4+ NsG? + MG + Mo, (39)
GHG" — 12GG") — ANsGG' — 12)10G’ = 0. (40)

Let us assume that P, # (0,4++v/A10) and P, # oo. Using Proposition 14 and Theorem 9, one
can obtain the series expansion of the function G(u). Since the function G(u) is holomorphic in the
neighborhood of the point u* = I;(P;), this expansion in the neighborhood of this point has the
form

G(“) = Z(jn—ﬂ(u - u*)n’ dn+2 e C. (41)
n=0

PrOPOSITION 15. ([4]) Let Py = (24, y«). Then we have Go = z, and g3 = —2y./x..
Let us set deg gz = 2 and deggs = 3.

PROPOSITION  16. (/4]) The coefficients Gn42 are determined from the following recurrence
relations:

o G1 =G, °(3G5 + M@ — Nsd2 — 2\10),

n—1
o ng(n + 2)(n + 1)6714'4 = = Z (k + 2)(k + 1>q~k+4 Z q~n1+2 Cjn2+2 Cjn3+2 +
k=0 (nl,ng,ng)éTl(k)
+6 Z Gni+2 Gna+2 Gns+2 Qni+2 Qns+2+

(n1,n2,n3,n4,n5)€T2

20 > Gmt2 Gnot2 Gngt2 — 2Asdng2, n =1, where

(n1,n2,n3)ET3

k
Tl( ) = {(n1,m2,m3) € 73, | ni+ngtng = n—k}, T = {(n1,n2,n3,n4,15) € 73 | ni4na+ns+ng+
+ns =n}, Ts = {(n1,n2,n3) € Z‘;O | n1 4+ ne +n3 = n}, and the coefficient Gn42 is a homogeneous
polynomial in Q[qz2, §3, A, A6, As, A1o] of degree n+ 2 if Gny2 # 0.

Let us take P, = oo and the path v, defined by the function R : [0,1] — V such that R(r) = oo
for any point r € [0,1]. Then we have (I;(Py), I3(Py)) = (0,0).
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PropoOSITION 17. ([4]) In a neighborhood of the point uw = 0, the function G(u) is given by a
series

G(U) =5 T FuU - —=u + === |+ =M— — —i— Z Tn+2u
U ) 7 ™9 385 =

where the coefficient T2 is a homogeneous polynomial in Q[A4, Ae, Ag, A\1o] of degree n + 2 if
Th+23# 0.

PrOPOSITION 18. The coefficients 1, for n = 12 are determined from the following recurrence
formula :

n3——2n4——2
(n+1)r1, = Z 5 g TmTnTnaTng
(n1,n2,n3,n4)€T1
— Z Tri Tng Tna Trg Tng — M Z Ty Tna Tna
(n1,n2,n3,n4,n5)ET> (n1,n2,n3)€T3
Y Z TniTng — A8Tn—8,
(n1,n2)€Ty
where Th1 = {(n1,n2,n3,n4) € Zio | n1+--+ng =mn, 0 < ny,....ng < n}, TQ(: {(n1,
ng, N3, Ny, N5) € Z5>0 |ni+-4+mns =n, 0< ny,....,n5 < n}, T3 = {(n1,n2,n3) € Z‘;O | nq+
+ng +ng =n—4}, and Ty = {(n1,n2) € Z2( | n1 +ng =n — 6}.
PRrROOF. Let
1 [oe)
G(u) = = + ZOTn+2Un. (42)
n—=

Then we have

- 2 ::ag 2 Tn+3U
n=0
oo o0
G'(u n—2
u2G(u) = 7;;)7'”u”, u? 2( ) —nz_;] 5 T,

where 79 = 1 and 71 = 0. By substituting (42) into (39) and multiplying the both sides by u'°, we

obtain
Tou" b = mau™ | 4 At Tau"
(Soe) (5] = (o) oot ()
o0 2 o
+ Aeub (Z Tnu"> + Agu® Z Tat” + Apout?
n=0

n=0

By comparing the coefficient of «™ for n > 12, we obtain the statement of the proposition. O
PROPOSITION 19. ([4]) There exists the formula
G(u) = p(u) + g(u),
where g(u) is a holomorphic function that in a neighborhood of the point u = 0 is given by a series
A >\10
glu) = =T’ = T=ut + Z Tntou”.
n=10

Here the coefficient Ty, 12 is a homogeneous polynomial in Q[A\4, As, Ag, A1o] of degree n+2 if T2 # 0.
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Denote by G4(u) the formal Laurent series obtained from G(u) by substitution Ag = A\jg = 0 in
the series expansion of this function in a neighborhood of the point u = 0.

COROLLARY 4. (/4]) We have Gy(u) = p(u).

5. Number-theoretical properties of the generalized
Bernoulli-Hurwitz numbers for the curve of genus 2

In this section, we assume g = 2. Let V' be a hyperelliptic curve of genus 2 defined by
y? = 2° + M 4+ Ngz? + Asz + Aio. (43)

We take an open neighborhood U, of oo such that U, is homeomorphic to an open disk in C. We
consider the map

Py
I : U, —C, P:(:U,y)&—>/ —@dx,

where as the path of integration we take any path in U, from oo to P. For P = (z,y) € U,, let
u = I1(P). If U, is sufficiently small, then the map I; is biholomorphism. Therefore, we can regard
x and y as functions of u. From Proposition 14, we have z(u) = G(u) and y(u) = —G(u)G'(u)/2.
From Proposition 17, the function x(u) can be expanded around u = 0 as

n—2

1 > Cn u
x(u):2+;n<_2)!7 (44)

n

where the coefficient C), is a homogeneous polynomial in Q[\4, Ag, Ag, A1g] of degree n if C,, # 0.

LEMMA 19. We have 1

() = — (o))’

where (z(u)?)" denotes the derivative of x(u)? with respect to u.

PrROOF. From Proposition 14, we obtain the statement of the lemma. O
From (44) and Lemma 19, we find that y(u) can be expanded around u = 0 as

1 =D, u™>®
y(u) = u5+n§6n<n_5)!’ (45)

where the coefficient D,, is a homogeneous polynomial in Q[A4, A¢, As, A10] of degree n if D,, # 0.
Then C, and D, are called generalized Bernoulli-Hurwitz numbers. In particular, we find that
C, = D,, = 0 for any odd integer n. In [38], the hyperelliptic curve of genus 2 defined by 3? = 2° — 1
is considered and the following formulae are proved.

THEOREM 10. ([38]) For the curve y? = 2° — 1, we have

ClOn _ a‘gjl mod p1+ordpa Ao
10n = Z pl—l—ordpa p mod Z,
p : prime, p=1 mod 10, 10n=a(p—1)
DlOn (4!@)‘;1 mod p1+ordpa .
10n = Z p1+ordpa AP mod Z,

p : prime, p=1 mod 10, 10n=a(p—1)

where A, = (—1)P~1/10. < ((5__11))//120 )
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In this section, we will generalize the method of [38] to the curve V defined by (43) and derive
some number-theoretical properties of the generalized Bernoulli-Hurwitz numbers for the curve V.

PROPOSITION 20. [t is possible to take a local parameter z of V around oo such that

1 1 =~ .
T= y:;(l-kZanz )s
n=4

where a, 45 a homogeneous polynomial in Z[%, A, Ag, As, A10] of degree n if a,, # 0.
PRrROOF. It is possible to take a local parameter z; such that

1

= —.
2
21

The expansion of y around oo with respect to z1 takes the following form

y = %(1 +0(z)), aecC.
1

By substituting the above expansions into (43), multiplying the both sides by 2{°, and comparing
the coefficient of z{, we obtain
ot =1.

If « =1, then we set z = z1. If @« = —1, then we set 2 = —z1. Then we have
1 1 =
ZE:?, y:;(l—i_zanzn%
n=1

where a,, € C. By substituting the above expressions into (43), we obtain
. 2
(1 + Z Gn2n> =1+ )\424 + )\626 + /\828 + )\10210.
n=1

From the above equation, we can find that a, is a homogeneous polynomial in Z[%, A, A6, Agy A10]
of degree n if a,, # 0 recursively. O
We can regard u(z) as a function defined around z = 0.
PROPOSITION 21. The function u(z) is expanded around z =0 as
Zn+1

u(z) :Z+T;fnn+1’ (46)

where f1 = fo = f3 = 0 and f,, is a homogeneous polynomial in Z[%,)\4,)\6,)\8,)\10] of degree n if

fn #0.

PrROOF. From Proposition 20, we have

—1
# 272 (=2)z73 z =
u /o 2+ S e /o F2 | ds

From Proposition 20, we obtain the statement of the proposition. O
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For positive integers n and k such that n > k, we use the notation

n)g=nn—-1)---(n—k+1).

We consider the inverse mapping z(u) of u(z). The expansions of z—* where k = 1,2, 3, 4, have
the following forms :

1 1 X CW ynk
- = —_— k=1,2,3,4 47
Zk uk +7§ (n)k (n _ k’)" y &y Dy FEy ( )

where 07(1 Vis a homogeneous polynomial in Q[A4, Ag, As, A10] of degree n if C’ 7é 0.

From Theorem 7, we obtain

oy 3 21(p,n)

= 1+ordpya 1(71*1 + fn’ (48)
n=a(p—1), p=5 : prime
where z1(p,n) € Z and f; IS Z[%, A, A6, Agy A1o]-
LEMMA 20. For k=1,2,3, we have
00 CngFl) u—k o0 Cyf) u—k
By Y [
nzz;l (M)kt1 (0 — k) nzz;l () ( Z —k

Proor. For k =1,2,3, we have

U 1 s — o0 k+1) uFk
) Zk+17uk+1 = Z n—k)

k+1

By differentiating the both sides of (46) with respect to u, we obtain

z > dz
- E+S
n=4

By dividing the both sides of the above equation by z**1, we have
1 1 dz & n_k_10d%
s Zk+1@+zfnz du

n=4

Therefore we have

/u EET d ——li—kifﬁ Z Zfi
o \zFtl  qhktl YT Tk — "n—k kuk k "

Thus we have
9 k+1 n—k S C(k)

w M un—k . et Zn—k
NG i R e R W e

k:+1
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LemMmA 21. (/27], [38]) Let Ry and Ry be two integral domains with characteristic 0 satisfying
Ry C Ry. We consider a formal power series of z

= iani, oy € Ro.
n=0 ’
If ag,...,an—1 belong to Ry, and there is a polynomial F' of n variables over Ry such that
W™ (2) = F(h(2), 1 (2),..., K" (2)),
where W™ (2) is the n-th derivative of h(z) with respect to z, then we have h(z) € Ry{(2)).
LeEmMMA 22. ([27], [38]) Let R be an integral domain with characteristic 0 and
h(z) = 2+ O(z%) € R{(2)).
Then for any positive integer m,

h(z)™
m!

also belongs to R{(z)).
LemMA 23, ([27], [38], [44]) Let R be an integral domain with characteristic 0 and
w(z) = = + O(%) € R{(2)).

Then, the formal inverse series z(w) = w + O(w?) belongs to R{{w)).

We set degu = —1.

PROPOSITION 22. We have z(u) = u+ O(u?) € Z[\4, A6, As, Mo){(w)) and z(u) is homogeneous
of degree —1 with respect to u, A\g, A\g, A\g, A\10-

ProOOF. We have x(u) z(u)~2. Therefore we have 2/(u) = —2z(u)~32'(u). From Lemma 19, we
obtain y(u) = z(u)~°2'(u). From (43), we obtain

(Z/)2 =1+ )\424 + /\62’6 + )\828 + )\102:10

By differentiating the both sides of the above equation with respect to w and dividing by 22/, we
obtain

2= 2)\4Z3 + 3)\625 + 4>\827 + 5/\1029. (49)

We define the polynomial F(Z1, Z3) over Z[A4, A¢, As, A10] by
F(Z1, Z) = 2\ Z3 + 3N Z} + AN Z] + 5M10 2.
From (49), we have 2’ = F(z,2’). Since the function z(u) is expanded around u = 0 as
2(u) = u+ O?),

we have z(0) = 0 and 2/(0) = 1. From Lemma 21, we have z(u) € Z[\4, X¢, As, A10] ((v)). O
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LEMMA 24. For n > 4, we have the following relations.

2 a
(i) )2 [1/2, A4, A6, A, A1)
07(13) 07(12)
1) 1 A
(“) 2(7’1)3 + (n)2 € Z[ /27)‘47)\67 )\87 10]
(4) 0(3)
(n)4‘+'(n)3 [ / 7A43A67A83 10]
o ol
(’L’U) — + 6@ € 2[1/2, A4, Ag, Ag, )\10]
Proor. In Lemma 20, we set £ = 1. Then we have
o 07(12) unfl o C(l)
n(n — 2
;(n)2(n—1)!+7§ n (n—1)! Zf " n—l) (50)

From Lemma 22 and Proposition 22, we have

Zn—l

CEE

Z[A4, A6, Ag, A1o]((u)).
By comparing the coefficient of * ( ), in (50) and using f, € Z[ , A4, A6, A, A\1p], we obtain

07(12) 07(11)

[1/2, A4, A6, A, Ao]-

(n)2
In Lemma 20, we set k£ = 2. Then we have
n—2 o0 CT(LZ) w2 0 n—2
22 n—2) Z;L(n)2 (n—2)! :2;f"(”_3)!(n—2)!' (51)

By comparing the coefficient of * (=] 2), in (51) and using fn € Z[3, A1, A6, As, A1g], We obtain

07(13) C7(12)
—— + —— € Z[1/2, Ay, Xs, A, A10]-
2(n)3 + ) € Z[1/2, M, A6, As, Ao
In Lemma 20, we set k£ = 3. Then we have
o 07(14) un—3 o 07(13) un—3 © ,m—3
3 + =3 n(n —4)! : 52
D e TP DYy et Ak DR Gl ey 52)

By comparing the coefficient of (=] 3), in (52) and using fn € Z[3, A1, A, As, A1g], We obtain

; b o®
(n)a  (n)3

From (i), (ii), and (iii), we obtain (iv). O

[1/2, A4, A6, A, Ato)-
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LEMMA 25. It is possible to take a local parameter s of V around oo such that
1 (o]

$:?(1+Zan3n)7 y:;7
n=1

where au, 1s a homogeneous polynomial in Z[%, A, A6y Ag, A1o] of degree n if o, # 0.

PRrROOF. It is possible to take a local parameter s; of V around oo such that
1
Yy = s?'
The expansion of x around oo with respect to s; takes the following form

x = %(1 +0(s1)), a€eC.
1

By substituting the above expansions into (43), multiplying the both sides by si?, and comparing

the coefficient of s, we obtain

1=a°.

There exists 5 € C such that %> =1 and % = a. Let s = 37 's;. Then we have
1 [o¢]

xr = g(l + Zans"), y=
n=1

where a,, € C. By substituting the above expressions into (43) and multiplying the both sides by
519 we obtain

o0 o0 o0 [o¢]
1=01+ Z ans™)? + Agst(1 + Z ans™)® 4+ s (1 + Z ans™)? 4+ Ags®(1 + Z ans™) + Aos™.
n=1 n=1 n=1 n=1

From the above equation, we can find that «,, is a homogeneous polynomial in Z[%, A, A6, Agy A10]
of degree n if a;, # 0 recursively. O
We can regard u(s) as a function defined around s = 0.

LEMMA 26. The function u(s) is expanded around s =0 as
oo Tl+1
s
— 53
wo) =3+ Sy 53)

where g1 = g2 = g3 = g4 = 0 and g, is a homogeneous polynomial in Z[%,)q, A6, As, A10] of degree
n if gn # 0.

ProoF. We have
o o0
2(s) =524 ans" % (s) =25+ (n—2)ans" .
n=4 n=4

Since o, € Z[%, A, A6, Ag, A10] is homogeneous of degree n if «,, # 0, we have a,, = 0 if n is odd.
Therefore, all the coefficients of the expansion of z’(s) are included in 2 Z[%, A, A6, Ag, A1o]. We

have s —2 o] n—2 -9 -3 &) -9 n—3
/ _ (S + Zn:4 Qns )( S + Zn:ll(n )ans )dS
2575
0

u(s) =
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n+1

s > “n—2 - S
— /0 s°(s72 + Z ans" ) (s73 — Z 5 ans" ) ds = s + Z In T (54)
n=4 n=4 n=1

where g1 = go = g3 = 0 and g, is a homogeneous polynomial in Z[%, A, A6y Agy A1o] of degree n if
gn # 0. We find that the coefficient of s~! in

(s72 + i s ) (573 — i n- 2a §73)
n 2 n
n=4 n=4

is equal to 0. From (54), we have g4 = 0. O

We consider the inverse mapping s(u) of u(s).

PROPOSITION 23. We have s(u) € Z[}, A4, X6, As, A1o]((u)) and s(u) is homogeneous of degree
—1 with respect to u, A4, Ag, Ag, A10.

PROOF. From Lemma 26, we have u(s) = s + O(s?) € Z[}, A, X6, As, A10]((s)). Therefore, from
Lemma 23, we have s(u) = u+O(u?) € Z[£, Ay, A6, As, A0} ((u)). From Lemma 26, we can find that
s(u) is homogeneous of degree —1 with respect to u, \g, A\g, A\g, A1p. O

Therefore the expansions of s7%, where k = 1,2, 3,4, 5, have the following forms :

1 1 DY ynk
S S k= 1,2,3,4,5,
sk b +n:6 (n)g (n —k)!

where D7(L Visa homogeneous polynomial in Q[A4, A, As, A10] of degree n if D 75 0. From Theorem
7, we obtain

D(l) 32(p7 )
= > —tordya9p—1 + Gns (55)
=a(p—1), p=7 : prime p

where Zg(p,n) € 7Z and ﬁn € Z[%, A4, Mg, Ag, /\10].

LEMMA 27. For any integer n > 6, we have

<D§}>> {n - 1J
ordy > .
n 4

PROOF. From Proposition 4, we have

Z TUgU.

w(U)=n

Note that go = 0 and ¢g; = 0 for any odd integer i. Therefore, from Lemma 14, we obtain the
statement of the lemma. O

LEMMA 28. For k=1,2,3,4, we have

k+1 u— k 0 D(k) un—k 0 Sn—k
k + n Y kY g
Z et (1 — k)| nzﬁ,(n)k (n—k&)! ;69 n—k

ProOOF. We can prove this lemma in the same way as Lemma 20. O
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LEMMA 29. For n > 6, we have the following relations.

D7(12) Dg)

0 o 3 Z[1/5, M\, A6, s, Aol
(ii) 251’(;3; ﬁf) S8 Z[1/5, A, Ao, As Aol
(iii) 355‘2 + 6;)3) €23 Z[1/5, A, Mg, As, Ao]
(iv) 451’%5) f(:) Z[1/5, M, Mg, As, Aol
(v) Dy — 24(D§S) € 22 -3 Z[1/5, A1, X6, Mg, A10)

PrROOF. We can prove this lemma in the same way as Lemma 24. O
LeEMMA 30. The function x(u) salisfies the following differential equation
2" = 622 +2X4 — 2)\81‘_2 — 4)\1055_3

ProOOF. From y(u) = —z(u)z’(u)/2 and (43), we have

za'\?
(—2) = 2% + M2 + Nex? + Asx + Aio.

By multiplying the above equation by =2 and differentiating this equation with respect to u, we
obtain the statement of the lemma. O

LEMMA 31. The first terms of Cy/n and D, /n are as follows :

Cy 2 Cs 23.3 Cs 2%*.3

1T G T e g =y TN
cu_zi, v,
10 11 4% 1
Dg 1 Dy 22 2., Dy 23325 24 32
6 779 8 3757 0 1 476

PrOOF. From Proposition 17 and Lemma 19, we obtain the statement of the lemma. O

THEOREM 11. (i) For any n > 4, we have

ords <Cn) > 1, ords <Cn> > 0.
n n
(i1) For any n > 6, we have

D D
ords <n> > —1, ords <n> > —1.
n n
Let p = 5 be a prime.

(i4i) If p— 14 n, then we have

n DTL
ord, <C) >0, ord, <> > 0.
n n
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(i) If p— 1| n, then we have
n Dn
ord, <C> > —1—ordpa, ord, <) > —1 — ordpa.
n n

PrOOF. For n > 4, we have

where n = a(p — 1).

c, o

n (n)s
From (48) and Lemma 24 (i), we obtain

ords (C’n> > 0.
n

From (48) and Lemma 24 (i), we find that if p > 5 and p — 1 { n, then we have

Cn
Ordp <n> 2 O,
if p>5and p—1]n, then we have

Chn
ord,, <n> > —1 —ord,a,

where n = a(p — 1). From 22 = 1/2* and Lemma 19, for n > 6, we have

D, 1cW

n o 4(n)y
From Lemma 24 (iv), (48), and (56), we obtain if p > 5 and p — 1 { n,

o (2) 0

D
ord, <n> > —1 —ordya,
n

where n = a(p — 1). Since y = 1/s°, we have

ifp>5andp—1|n,

From Lemma 29 (v), (55), and (57), we obtain

Dy,
ords <> > —1.
n

(1)
ords (Dn> > 2, forn > 10.
n

Therefore, from Lemma 29 (v), (57), and Lemma 31, we have

From Lemma 27, we have

D
ordy <"> > -1, forn>6.
n

(57)
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From (56), we have

0(4)
ordy | —— | > 1, forn > 6.
(n)4

From the above equation, 27! = 22 € Z[\4, A\g, As, M10]({u)), Lemma 30, and Lemma 31, we obtain

ordy <Cn> >1, forn>4.
n

REMARK 3. Theorem 11 gives the precise information on the series expansion of the solution of
the inversion problem of the ultra-elliptic integrals given in Proposition 17.
We assume Ay = A\¢ = Ag = 0 and consider the curve defined by y? = 2° + Ajp.

LEMMA 32. For any integer m > 1, we have

(1) N (1) a (1) _
ondy [ Ciom | 5 [10m=1| L (Chgn ) [0m=1) L (Chgy ) o [10m =1
10m 6 10m 10 10m 14

PrROOF. From Proposition 4 and Lemma 13, we obtain the statement of the lemma. O

LEMMA 33. (/38]) For m > 1, we have the following relations.

) Ciom, Clom ¢ 52
(Z) (10mﬂ;2+ 107;7 €3 '5‘72[1/2,)\10]

519 Cion , Ciom _
(“)2(107733—"_(1077;’;2 €3 57Z[1/2,)\10]
W oW

v o Clom -
(111) 3(10170n)4 + (101;;)3 €335 7Z[1/2, Ao

o Clow . Clow
() 6 Fom)s  Tom

PROOF. Since Ay = A\¢ = A\g = 0, we have f,, =0 for 1 < n <9 in (46). We can prove this lemma
in the same way as Lemma 24. O

€325 7Z[1/2, Ao

LeMMA 34, ([38]) For m > 1, we have the following relations.

Ditm . Diom o7 52
€27 .32.72[1/5,\

(T0m)s © 10m [1/5; Aol

Ditm , Ditw o5
i) 2 ut s 2°.3°-77Z[1
(ZZ) (1Om)3 + (10m)2 S 37 [ /5,)\10]
(4) (3)
DlO DlO 4 3
o m 2732 Z[1/5, A
(113) 3(1Om)4 + (10m)3 € 3 Z[1/5, Awo]
(5) (4)
DlO DlO 5
m M- c2°-37Z[1/5, A
(10m)s ~ (10m); 3 Z{L/5 Mol

(5) (1)
DlO DlO 5 2

m m ¢ 95.327[1/5,\
(10m)s ~ 10m [1/5 Mol

(1)

(iv) 4

(v) —24
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PROOF. Since Ay = A\¢ = A\g = 0, we have g, =0 for 1 < n <9 in (53). We can prove this lemma
in the same way as Lemma 24. O

For the curve 4% = 2% 4+ A1, we obtain the following theorem.

THEOREM 12. For m > 1, we have

C'lOm C'10m ClOm ClOm
> > ] > >
ordy < 10m> 22, ords < 10m> 22, ords ( 10m> > 1, ordy ( 10m> > 1

From Lemma 33 (iv), for m > 1, we have

cid ¥ cd
m > m > m > 0.
ords <(10m)4 > 1, ords (10m) > 1, ordy (10m)s 0

From (56), we have

D D
ord3 <D10m> = 1, OI‘d5< lOm) = 1, OI‘d7( 10m> = 0

10m

From Lemma 27, for m > 3, we have

p
10
m >
OI“dQ <1Om ) = 7

From Lemma 34 (v), Lemma 31, and Dgy/20 = —213.35.53.7.13.2},/11, for m > 1, we have

Diom
> 2
ordy ( 10m )

From (56), we have

i
_J1om_ | 5 g4
ords ((IOm)4 >4

Ciom
> 2.
ords < 10m>
O
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