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Аннотация

В этой статье мы рассмотрим методы и результаты классификации 𝑘-форм (соотв.
𝑘-векторов на R𝑛), понимаемых как описание пространства орбит стандартного GL(𝑛,R)-
действие на Λ𝑘R𝑛* (соотв. на Λ𝑘R𝑛). Мы обсудим существование связанной геометрии,
определяемой дифференциальными формами на гладких многообразиях. Эта статья так-
же содержит Приложение, написанное Михаил Боровым, о методах когомологии Галуа
для нахождения вещественных форм комплексных орбит.
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Abstract

In this paper we survey methods and results of classification of 𝑘-forms (resp. 𝑘-vectors on
R𝑛), understood as description of the orbit space of the standard GL(𝑛,R)-action on Λ𝑘R𝑛*

(resp. on Λ𝑘R𝑛). We discuss the existence of related geometry defined by differential forms
on smooth manifolds. This paper also contains an Appendix by Mikhail Borovoi on Galois
cohomology methods for finding real forms of complex orbits.

Keywords: GL(𝑛,R)-orbits in Λ𝑘R𝑛*; 𝜃-group; geometry defined by differential forms; Galois
cohomology
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Preface

Hamiltonian systems were one of research topics of Hông Vân Lê in her undergraduate study
and calibrated geometry was the topic of her Ph.D. Thesis under guidance of Professor Anatoly
Timofeevich Fomenko. Hamiltonian systems are defined on symplectic manifolds and calibrated
geometry is defined by closed differential forms of comass one on Riemannian manifolds. Since that
time she works frequently on geometry defined by differential forms, some of her papers were written
in collaboration with Jǐri Vanžura, [38, 39, 40]. We dedicate this survey on algebra and geometry of
𝑘-forms on R𝑛 as well as on smooth manifolds to Anatoly Timofeevich Fomenko on the occasion of
his 75th birthday and we wish him good health, happiness and much success for the coming years.

1. Introduction

Differential forms are excellent tools for the study of geometry and topology of manifolds and
their submanifolds as well as dynamical systems on them. Kähler manifolds, and more generally,
Riemannian manifolds (𝑀, 𝑔) with non-trivial holonomy group admit parallel differential forms
and hence calibrations on (𝑀, 𝑔) [27], [55], [40], [17]. In the study of Riemannian manifolds with
non-trivial holonomy groups these parallel differential forms are extremely important [7], [29].
In their seminal paper [27] Harvey-Lawson used calibrations as powerful tool for the study of
geometry of calibrated submanifolds, which are volume minimizing. Their paper opened a new
field of calibrated geometry [30] where one finds more and more tools for the study of calibrated
submanifolds using differential forms, see e.g., [17]. In 2000 Hitchin initiated the study of geometry
defined by a differential 3-form [25], and in a subsequent paper he analyzed beautiful geometry
defined by differential forms in low dimensions [26]. One starts investigation of a differential form
𝜙𝑘 of degree 𝑘 on a manifold 𝑀𝑛 of dimension 𝑛 by finding a normal form of 𝜙𝑘 at a point 𝑥 ∈𝑀𝑛

and, if possible, to find a normal form of 𝜙𝑘 up to certain order in a small neighborhood 𝑈(𝑥) ⊂𝑀𝑛.
Finding a normal form of 𝜙𝑘 at a point 𝑥 ∈𝑀𝑛 is the same as finding a canonical representative of
the equivalence class of 𝜙𝑘(𝑥) in Λ𝑘(𝑇 *

𝑥𝑀
𝑛), where two 𝑘-forms on 𝑇𝑥𝑀𝑛 are equivalent if they are

in the same orbit of the standard GL(𝑛,R)-action on Λ𝑘(𝑇 *
𝑥𝑀

𝑛) = Λ𝑘R𝑛*. We say that a manifold
𝑀𝑛 is endowed by a differential form 𝜙 ∈ Ω*(𝑀𝑛) of type 𝜙0 ∈ Λ*R𝑛*, if for all 𝑥 ∈ 𝑀𝑛 the
equivalence class of 𝜙(𝑥) ∈ Λ*𝑇 *

𝑥𝑀
𝑛 can be identified with the equivalent class of 𝜙0 ∈ Λ*R𝑛* via a

linear isomorphism 𝑇𝑥𝑀
𝑛 = R𝑛. Instead of investigation of a normal form of a concrete form 𝜙𝑘, we

may be also interested in a classification of (equivalent) 𝑘-forms on R𝑛, understood as a description
of the moduli space of equivalent 𝑘-forms on R𝑛, which could give us insight on a normal form
of 𝜙𝑘 and could also suggest interesting candidates for the geometry defined by differential forms.
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Classification of 𝑘-forms on R𝑛 is a part of algebraic invariant theory. Recall that an invariant of
an equivalence relation on a set 𝑆, e.g., defined by orbits of an action of a group 𝐺 on 𝑆, is a
mapping from 𝑆 to another set 𝑄 that is constant on the equivalence classes. A system of invariants
is called complete if it separates any two equivalent classes. If a complete system of invariants
consists of one element, we call this invariant complete. In the classical algebraic invariant theory
one deals mainly with actions of classical or algebraic groups on some space of tensors of a fixed
type over a vector space over a field F [23], see [48] for a survey of modern invariant theory and
source of algebraic invariant theory. From a geometric point of view, the most important invariants
of a form 𝜙𝑘 on R𝑛 are the rank of 𝜙𝑘 and the stabilizer of 𝜙𝑘 under the action of GL(𝑛,R).
Recall that the rank of 𝜙𝑘, denoted by rk𝜙𝑘, is the dimension of the image of the linear operator
𝐿𝜙𝑘 : R𝑛 → Λ𝑘−1R𝑛*, 𝑣 ↦→ 𝑖𝑣𝜙

𝑘. We denote the stabilizer of 𝜙𝑘 by StGL(𝑛,R)(𝜙
𝑘), and in general,

we denote by St𝐺(𝑥) the stabilizer of a point 𝑥 in a set 𝑆 where a group 𝐺 acts. A form 𝜙𝑘 ∈ Λ𝑘R𝑛*
is called non-degenerate, or multisymplectic, if rk𝜙𝑘 = 𝑛. Furthermore, it is important to study
the topology of the orbit GL(𝑛,R) · 𝜙𝑘 = GL(𝑛,R)/StGL(𝑛,R)(𝜙

𝑘), for example, the connectedness,
see Proposition 2 below, the openness, the closure of the orbit GL(𝑛,R) · 𝜙𝑘 ⊂ Λ𝑘R𝑛*. It turns
out that understanding these questions helps us to understand the structure of the orbit space of
GL(𝑛,R)-action on Λ𝑘R𝑛*. These invariants of 𝑘-forms shall be highlighted in our survey.

Let us outline the plan of our paper. In the first part of Section 2 we make several observations
on the duality between GL(𝑛,R)-orbits of 𝑘-forms on R𝑛 and GL(𝑛,R)-orbits of 𝑘-vectors as well
as the duality between GL+(𝑛,R)-orbits of 𝑘-forms on R𝑛 and GL+(𝑛,R)-orbits of (𝑛 − 𝑘)-forms
on R𝑛. Then we recall the classification of 2-forms on R𝑛 (Theorem 2) and present the Martinet’s
classification of (𝑛− 2)-forms on R𝑛 (Theorem 3).

In contrast to the classification of 2-forms on R𝑛, the classification of 3-forms on R𝑛 depends
on the dimension 𝑛. Since dimΛ3R𝑛* > dimGL(𝑛,R) + 1, if 𝑛 > 9, there are infinite numbers of
inequivalent 3-forms in R𝑛. Till now there is no classification of the GL(𝑛,R)-action on Λ3R𝑛*, if
𝑛 > 10.

In the dimension 𝑛 = 9 the classification of the SL(9,C)-orbits on Λ3C9 has been obtained by
Vinberg-Elashvili [65]. In the second part of Section 2 we survey Vinberg-Elashvili’s result and some
further developments by Le [34] and Dietrich-Facin-de Graaf [12], which give partial information
on GL(9,R)-orbits on Λ3R9. Then we review Djokovic’ classification of 3-vectors in R8 and present
a classification of 5-forms on R8 (Corollary 1). Djokovic’s classification method combines some
ideas from Vinberg-Elashvili’s work and Galois cohomology method for classifying real forms of a
complex orbit. Note that the classification of 3-vectors in R8 implies the classification of 3-forms in
R8 (Proposition 1) as well as the classifications of 3-forms in R𝑛 for 𝑛 6 7 (Theorem 1, Remark 5).
Then we review a classification of GL(8,C)-action on Λ4C8 by Antonyan [1], which is important
for classification of 4-forms on R8. At the end of Section 2 we review a scheme of classification of
4-forms on R8 proposed by Lê in 2011 [34] and Dietrich-Facin-de Graaf’s method of classification
of 3-forms on R8 in [12].

In Section 3, for 𝑘 = 2, 3, 4, we compile known results and discuss some open problems on
necessary and sufficient topological conditions for the existence of a differential 𝑘-form 𝜙 of given
type StGL(𝑛,R)(𝜙(𝑥)) on manifolds 𝑀𝑛 (in these cases the equivalence class of 𝜙(𝑥) is defined
uniquely by the type of the stablizer of 𝜙(𝑥), i.e., the conjugation class of StGL(𝑛,R)(𝜙(𝑥)) in
GL(𝑛,R)). In dimension 𝑛 = 8 (and hence also for 𝑛 = 6, 7) we observe that the stabilizer
StGL(𝑛,R)(𝜙) of a 3-form 𝜙 ∈ Λ3R𝑛* forms a complete system of invariants of the action of GL(𝑛,R)
on R𝑛 (Remark 6).

We include two appendices in this paper. The first appendix contains a result due to Hông Vân
Lê concerning the existence of 3-form of type 𝐺̃2 on a smooth 7-manifold, which has been posted in
arxiv in 2007 [33]. The second appendix outlines the Galois cohomology method for classification
of real forms of a complex orbit. This appendix is taken from a private note by Mikhail Borovoi
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with his kind permission.
Finally we would like to emphasize that our paper is not a bibliographical survey. Some

important papers may have been missed if they are not directly related to the main lines of our
narrative. We also don’t mention in this survey the relations of geometry defined by differential
forms to physics and instead refer the reader to [30], [15], [14], [60].

2. Classification of GL(𝑛,R)-orbits of 𝑘-forms on R𝑛

2.1. General theorems

We begin the classification of GL(𝑛,R)-orbits on Λ𝑘R𝑛* with the following observation that the
orbit of the standard action of GL(𝑛,R) on Λ𝑘R𝑛 can be identified with the orbit of the standard
action of GL(𝑛,R) on Λ𝑘R𝑛* by using an isomorphism 𝜇 ∈ 𝐻𝑜𝑚(R𝑛,R𝑛*) = R𝑛* ⊗ R𝑛* ⊃ 𝑆2R𝑛*.
Note that there are several papers and books devoted to the classification of 𝑘-vectors on R𝑛 [23,
Chapter VII] 3, [11], [65]. Hence we have the following well-known fact, see e.g., [45],

Proposition 1. There exists a bijection between the GL(𝑛,R)-orbits in Λ𝑘R𝑛 and GL(𝑛,R)-
orbits in Λ𝑘R𝑛*.

Next we shall compare GL+(𝑛,R)-orbits on Λ𝑘R𝑛 with GL+(𝑛,R)-orbits on Λ𝑛−𝑘R𝑛*. We take a
volume form Ω ∈ Λ𝑛R𝑛*∖{0} and define the Poincaré isomorphism 𝑃Ω : Λ𝑘R𝑛 → Λ𝑛−𝑘R𝑛*, 𝜉 ↦→ 𝑖𝜉Ω.
Since GL+(𝑛,R) is a direct product of its center 𝑍(GL+(𝑛,R)) = R+ with its semisimple subgroup
SL(𝑛,R), for any 𝜆 ∈ R the group GL+(𝑛,R) admits a 𝜆-twisted action on Λ𝑘R𝑛* defined as follows:
𝑔[𝜆](𝜙) := (det 𝑔)𝜆 · 𝑔(𝜙) for 𝑔 ∈ GL+(𝑛,R), 𝜙 ∈ Λ𝑘R𝑛*, where 𝑔(𝜙) denotes the standard action of
𝑔 on 𝜙.

Denote also by 𝜇 the isomorphism Λ𝑘R𝑛 → Λ𝑘R𝑛* induced from a scalar product 𝜇 on R𝑛.

Lemma 1. The composition 𝑃Ω ∘ 𝜇−1 : Λ𝑘R𝑛* → Λ𝑛−𝑘R𝑛* is a GL+(𝑛,R)-equivariant map
where GL+(𝑛,R) acts on Λ𝑘R𝑛* by the standard action and on Λ𝑛−𝑘R𝑛* by the (−1)-twisted action.

Proof. Let 𝜙 = 𝜇(𝑋) ∈ Λ𝑘R𝑛* and 𝑔 ∈ GL+(𝑛,R). Then

𝑃Ω ∘ 𝜇−1(𝑔*𝜙) = 𝑃Ω(𝑔
−1 ∘ 𝜇−1(𝜙)) = 𝑖𝑔−1𝜇−1(𝜙)Ω

= (det 𝑔)−1 · 𝑔(𝑖𝜇−1(𝜙)Ω) = 𝑔[−1](𝑃Ω ∘ 𝜇−1(𝜙)),

which proves the first assertion of Lemma 1. 2

Proposition 2. (1) There is a 1-1 correspondence between GL+(𝑛,R)-orbits of 𝑘-forms on
R𝑛 and GL+(𝑛,R)-orbits of (𝑛 − 𝑘)-forms on R𝑛. This correspondence preserves the openness of
GL+(𝑛,R)-orbits (and hence the openness of GL(𝑛,R)-orbits).

(2) The GL(𝑛,R)-orbit of 𝜙𝑘 ∈ Λ𝑘R𝑛* has two connected components if and only if
StGL(𝑛,R)(𝜙

𝑘) ⊂ GL+(𝑛,R). In other cases the GL(𝑛,R)-orbit of 𝜙𝑘 is connected.
(3) Assume that 𝜙𝑘 ∈ Λ𝑘R𝑛* is degenerate. Then the GL(𝑛,R)-orbit of 𝜙𝑘 is connected.

Proof. 1. The first assertion of Proposition 2 is a consequence of Lemma 1.
2. The second assertion of Proposition 2 follows from the fact that GL(𝑛,R) has two connected

components.
3. Assume that 𝜙 is degenerate. Then 𝑊 := ker𝐿𝜙 is non-empty. Let 𝑊⊥ be any complement

to 𝑊 in R𝑛 i.e., R𝑛 =𝑊 ⊕𝑊⊥. Then GL(𝑊 )⊕ 𝐼𝑑𝑊⊥ is a subgroup of 𝑆𝑡(𝜙). Since this subgroup
has non-trivial intersection with GL−(𝑛,R), this implies the last assertion of Proposition 2 follows
from the second one. This completes the proof of Proposition 2. 2

3under “polyvectors"Gurevich meant both covariant and contravariant polyvectors
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The following theorem due to Vinberg-Elashvili reduces a classification of (degenerate) 𝑘-forms
of rank 𝑟 in R𝑛 to a classification of 𝑘-forms on R𝑟. (Vinberg-Elashvili considered only the case
𝑘 = 3 and the SL(𝑛,C)-action on Λ3C𝑛 but their argument works for any 𝑘 and for GL(𝑛,R)-action
on Λ𝑘R𝑛*.)

Theorem 1. (cf. [65, §4.4], [53, Lemma 3.2]) There is a 1-1 correspondence between GL(𝑛,R)-
orbits of 𝑘-forms of rank less or equal to 𝑟 on R𝑛 and GL(𝑟,R)-orbits of 𝑘-forms on R𝑟.

2.2. Classification of 2-forms and (𝑛− 2)-forms on R𝑛

From Proposition 2 we obtain immediately the following known theorem [10], cf. [23, Theorem
34.9].

Theorem 2. (1) The rank of a 2-form 𝜙 ∈ Λ2R𝑛* is a complete invariant of the standard
GL(𝑛,R)-action on Λ2R𝑛*. Hence Λ2R𝑛* decomposes into [𝑛/2] + 1 GL(𝑛,R)-orbits.

(2) The GL(𝑛,R)-orbit of a 2-form 𝜙 ∈ Λ2R𝑛* has two connected components if and only if
𝑛 = 2𝑘 and 𝜙 has maximal rank.

(3) If 𝜙 is of maximal rank, then the GL(𝑛,R)-orbit of 𝜙 is open and its closure contains the
GL(𝑛,R)-orbit of any degenerate 2-form on R𝑛.

The classification of (𝑛 − 2)-forms on R𝑛 has been done by Martinet [41]. Martinet used the
inverse Poincaré isomorphism 𝑃−1

Ω : Λ𝑛−2R𝑛* → Λ2R𝑛 to define the length of 𝜙 ∈ Λ𝑛−2R𝑛, denoted
by 𝑙(𝜙), to be the half of the rank of the bi-vector 𝑃−1

Ω (𝜙) 4. By Proposition 2 and Theorem 2 the
map 𝑃−1

Ω induces an isomorphism between the GL(𝑛,R)-orbits of degenerate (𝑛 − 2)-forms 𝜙 on
R𝑛 and degenerate bivectors 𝑃−1

Ω (𝜙) on R𝑛.
∙ If 2𝑙(𝜙) < 𝑛 then 𝜙 has the following canonical form

𝜙 =

𝑙(𝜙)∑︁
𝑖=1

𝛼1 ∧ · · ·𝛼2𝑖−2 ∧ 𝛼2𝑖+1 ∧ · · · ∧ 𝛼𝑛. (1)

By Theorem 2 (2) the orbit GL(𝑛,R) · 𝑃−1
Ω (𝜙) is connected, and hence by Proposition 2 the orbit

GL(𝑛,R) · 𝜙 is connected.
∙ If 2𝑙(𝜙) = 𝑛, and 𝑙(𝜙) is odd, then using Lemma 1 and Theorem 2(2) we conclude that the

set of (𝑛− 2)-forms of length 𝑙 consists of two open connected GL(𝑛,R)-orbits that correspond to
the sign of 𝜆 = 𝜆Ω(𝜙) where

𝑃−1
Ω (𝜙) = 𝑒1 ∧ 𝑒2 + · · ·+ 𝑒2𝑘−1 ∧ 𝑒2𝑘,

Ω = 𝜆𝛼1 ∧ · · · ∧ 𝛼𝑛,

𝜙 = 𝜆

𝑙(𝜙)∑︁
𝑖=1

𝛼1 ∧ · · ·𝛼2𝑖−2 ∧ 𝛼2𝑖+1 ∧ · · · ∧ 𝛼𝑛 and 𝜆 = ±1. (2)

∙ If 2𝑙(𝜙) = 𝑛 and 𝑙(𝜙) is even, using the same argument as in the previous case, we conclude
that the set of (n-2)-forms of length 𝑙 consists of one open GL(𝑛,R)-orbit, which has two connected
components.

To summarize Martinet’s result, we assign the sign 𝑠Ω(𝜙) of a (n-2)-form 𝜙 ∈ Λ𝑛−2R𝑛 to be the
number 𝜆Ω(𝜙)𝑙(𝜙) if 2𝑙(𝜙) = 𝑛, and to be 1, if 2𝑙(𝜙) < 𝑛.

Theorem 3. (cf. [41, §5]) (1) The length 𝑙(𝜙) and the sign 𝑠Ω(𝜙) of a (n-2)-form 𝜙 ∈ Λ𝑛−2R𝑛*
form a complete system of invariants of the standard GL(𝑛,R)-action on Λ𝑛−2R𝑛*.

(2) The GL(𝑛,R)-orbit of a (n-2)-form 𝜙 ∈ Λ2R𝑛* has two connected components if and only if
𝑛 = 2𝑘, 𝑙(𝜙) = 𝑛/2 and 𝑙 is even.

4the rank of a 𝑘-vector is defined similarly as the rank of a 𝑘-form.
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2.3. Classification of 3-forms and 6-forms on R9

We observe that the vector space Λ𝑘R𝑛* is a real form of the complex vector space Λ𝑘C𝑛*.
Hence, for any 𝜙 ∈ Λ𝑘R𝑛* the orbit GL(𝑛,R) · 𝜙 lies in the orbit GL(𝑛,C) · 𝜙. We shall say that
GL(𝑛,R) ·𝜙 is a real form of the complex orbit GL(𝑛,C) ·𝜙. It is known that every complex orbit has
only finitely many real forms [3, Proposition 2.3]. Thus, the problem of classifying of the GL(𝑛,R)-
orbits in Λ𝑘R𝑛 can be reduced to the problem of classifying the real forms of the GL(𝑛,C)-orbits
on Λ𝑘C𝑛. The classification of GL(𝑛,C)-orbits on Λ3C𝑛 is trivial, if 𝑛 6 5, cf. Proposition 2. For
𝑛 = 6 it was solved by W. Reichel [50]; for 𝑛 = 7 it was solved by J. A. Schouten [57]; for 𝑛 = 8
it was solved by Gurevich in 1935, see also [23]; and for 𝑛 = 9 it was solved by Vinberg-Elashvili
[65]. In fact Vinberg-Elashvili classified SL(9,C)-orbits on Λ3C9, which are in 1-1 correspondence
with SL(9,C)-orbits in Λ3C9* and SL(9,C)-orbits on Λ6C9*. Since the center of GL(9,C) acts on
Λ3C9 ∖ {0} with the kernel Z3, it is not hard to obtain a classification of GL(9,C)-orbits on Λ3C9,
and hence on Λ3C9* and on Λ6C9* from the classification of the SL(9,C)-orbits on Λ3C9.

As we have remarked before, there are infinitely many GL(𝑛,C)-orbits on Λ3C9, and to solve
this complicated classification problem Vinberg-Elashvili made an important observation that the
standard SL(9,C)-action on Λ3C9 is equivalent to the action of the adjoint group 𝐺C0 (also called
the 𝜃-group) of the Z3-graded complex simple Lie algebra

e8 = gC−1 ⊕ gC0 ⊕ gC1 (3)

where gC0 = sl(9,C), gC1 = Λ3C3, gC−1 = Λ3C9* and 𝐺C0 = SL(9,C)/Z3 is the connected subgroup,
corresponding to the Lie subalgebra gC0 , of the simply connected Lie group 𝐸C8 whose Lie algebra
is e8.

Remark 1. Let gC be a complex Lie algebra. Any Z𝑚-grading gC := ⊕𝑖∈Z𝑚g
C
𝑖 on gC defines

an automorphism 𝜎 ∈ Aut(gC) of order 𝑚 by setting 𝜎(𝑥) := 𝜖𝑖𝑥 where 𝜖 = exp(2
√
−1𝜋/𝑚) and

𝑥 ∈ gC𝑖 . Conversely, any 𝜎 ∈ Aut(gC) of order 𝑚 defines a Z𝑚-grading gC := ⊕𝑖∈Z𝑚g
C
𝑖 by setting

gC𝑖 := {𝑥 ∈ gC|𝜎(𝑥) = 𝜖𝑖𝑥}.

In [65, §2.2] Vinberg and Elashvili considered the automorphism 𝜃C of order 3 on e8 associated
to the Z3-gradation in (6) 5. To describe 𝜃C we recall the root system Σ of e8:

Σ = {𝜀𝑖 − 𝜀𝑗 ,±(𝜀𝑖 + 𝜀𝑗 + 𝜀𝑘)}, (𝑖, 𝑗, 𝑘 distinct),
9∑︁
𝑖=1

𝜀𝑖 = 0}.

Remark 2. Given a complex semisimple Lie algebra gC let us choose a Cartan subalgebra hC0
of gC. Let Σ be the root system of gC. Denote by {𝐻𝛼, 𝐸𝛼|𝛼 ∈ Σ} the Chevalley system in gC

i.e., 𝐻𝛼 ∈ hC0 and 𝐸𝛼 is the root vector corresponding to 𝛼 such that for any 𝐻 ∈ hC0 we have
[𝐻,𝐸𝛼] = 𝛼(𝐻)𝐸𝛼, [𝐻𝛼, 𝐸𝛼] = 2𝐸𝛼 and [𝐸𝛼, 𝐸−𝛼] = 𝐻𝛼 [28, §32.2]. Then

gC = ⊕𝛼∈Σ+
𝑠
⟨𝐻𝛼⟩C ⊕𝛼∈Σ+ ⟨𝐸𝛼⟩C ⊕𝛼∈Σ+ ⟨𝐸−𝛼⟩C (4)

where Σ+ ⊂ Σ denote the system of positive roots, and Σ+
𝑠 - the subset of simple roots.

The automorphism 𝜃C of order 3 on e8 is defined as follows

𝜃C|⟨𝐻𝛼,𝐸𝛼, 𝛼=𝜀𝑖−𝜀𝑗⟩C = 𝐼𝑑,

𝜃C|⟨𝐸𝛼,𝛼=(𝜀𝑖+𝜀𝑗+𝜀𝑘)⟩C = exp(𝑖2𝜋/3) · 𝐼𝑑,

𝜃C|⟨𝐸𝛼,𝛼=−(𝜀𝑖+𝜀𝑗+𝜀𝑘)⟩C = exp(−𝑖2𝜋/3) · 𝐼𝑑.
5Automorphisms of finite order of semisimple Lie algebras have been classified earlier independently by Wolf-Gray

[66] and Kac [31].
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Remark 3. Let {𝐻𝛼, 𝐸𝛼|𝛼 ∈ Σ} be the Chevalley system of a complex semisimple Lie algebra
gC. Then {𝐻𝛽, 𝐸𝛼|𝛼 ∈ Σ, 𝛽 ∈ Σ+

𝑠 } is a basis of the normal form g, also called split real form, of
gC. The normal form of the complex simple Lie algebra e8 is denoted by e8(8), and the normal form
of sl(𝑛,C) is the real simple Lie algebra sl(𝑛,R). Clearly the Lie subalgebra e8(8) has the induced

Z3-grading from the one on e8 defined in (3) (note that e8(8) is not invariant under 𝜃
C), i.e., we

have
e8(8) = g−1 ⊕ g0 ⊕ g1 (5)

where g𝑖 = e8(8) ∩ gC𝑖 is a real form of gC𝑖 for 𝑖 ∈ {−1, 0, 1}. Hence there is a 1-1 correspondence
between SL(9,R)-orbits on Λ3R9* and the adjoint action of the subgroup 𝐺0, corresponding to the
Lie subalgebra g0, of the Lie group 𝐺

C
0 .

Now let F be the field R or C. Based on (5), (3), Remark 3, and following [65, §1], [34, Lemma 2.5],
we shall call a nonzero element 𝑥 ∈ Λ3F9 semisimple, if its orbit SL(9,F) · 𝑥 is closed in Λ3F9, and
nilpotent, if the closure of its orbit SL(9,F) · 𝑥 contains the zero 3-vector. Our notion of semisimple
and nilpotent elements agrees with the notion of semisimple and nilpotent elements in semisimple
Lie algebras [65], [34], see also [11] for an equivalent definition of semisimple and nilpotent elements
in homogeneous components of graded semisimple Lie algebras.

Example 12. ([65, §4.4]) Let 𝑥 ∈ Λ3F9 be a degenerate vector of rank 𝑟 6 8, where F = R or
C. (The definition of the rank of a 𝑘-vector can be defined in the same way as the definition of the
rank of a 𝑘-form). Then for any 𝜆 ∈ R there exists an element 𝑔 ∈ SL(9,F) such that 𝑔 · 𝑥 = 𝜆 · 𝑥.
Hence the closure of the orbit SL(9,F) · 𝑥 contains 0 ∈ Λ3F9 and therefore 𝑥 is a nilpotent element.

Proposition 3. Every nonzero 3-vector 𝑥 in Λ3F9 can be uniquely written as 𝑥 = 𝑝+𝑒, where
𝑝 is a semisimple 3-vector, 𝑒 - a nilpotent 3-vector, and 𝑝 ∧ 𝑒 = 0.

Proposition 3 has been obtained by Vinberg-Elashvili in [65] for the case F = C. To prove
Proposition 3 for F = R, we use the Jordan decomposition of a homogeneous element in a real
Z𝑚-graded Lie semisimple algebra and a version of the Jacobson-Morozov-Vinberg theorem for real
graded semisimple Lie algebras [34, Theorem 2.1].

Using Proposition 3, Vinberg-Elashvili proposed the following scheme for their classification
of 3-vectors on C9. First they classified semisimple 3-vectors 𝑝. The SL(9,C)-equivalence class
of semisimple 3-vectors 𝑝 has dimension 4 - the dimension of a maximal subspace consisting of
commuting semisimple elements in g1. Then the equivalence classes of semisimple elements 𝑝 are
divided into seven types according to the type of the stabilizer subgroup St(𝑝) and the subspace
𝐸(𝑝) := {𝑥 ∈ Λ3C9|𝑝∧𝑥 = 0}. We assign a 3-vector on F9 to the same family as its semisimple part.
Then Vinberg-Elashvili described all possible nilpotent parts for each family of 3-vectors. When the
semisimple part is 𝑝, the latter are all the nilpotent 3-vectors 𝑒 of the space 𝐸(𝑝). The classification
is made modulo the action of StSL(9,C)(𝑝). Note that there is only finite number of nilpotent orbits
in 𝐸(𝑝) for any semisimple 3-vector 𝑝. Therefore the dimension of the orbit space Λ3C9/SL(9,C)
is 4, which is the dimension of the space of all semisimple 3-vectors.

To classify semisimple elements 𝑝 ∈ Λ3C9 and nilpotent elements in 𝐸(𝑝) Vinberg-Elashvili
developed further the general method invented by Vinberg [61, 62, 63, 64] for the study of the
orbits of the adjoint action of the 𝜃-group on Z𝑚-graded semisimple complex Lie algebras.

Vinberg’s method has been developed by Antonyan for classification of 4-forms in C8, which
we shall describe in more detail in Subsection 2.5, by Lê [34] and Dietrich-Faccin-de Graaf [12] for
real graded semisimple Lie algebras. As a result, we have partial results concerning the orbit space
of the standard SL(9,R)-action on Λ3R9* (as well as partial results concerning the orbit space of
the standard action of SL(8,R) on Λ4R8* we mentioned above). By Proposition 3, and following
Vinberg-Elashvili scheme, the classification of the orbits of SL(9,R)-action on Λ3R9 can be reduced
to the classification of semisimple elements 𝑝 in Λ3R9, which is the same as the classification of real
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forms of SL(9,C)-orbits of semisimple elements 𝑝 in Λ3C9 (the classification of the SL(9,C)-orbits
has been given in [65]) and the classification of nilpotent elements 𝑒 ∈ Λ3R9 such that 𝑒 ∧ 𝑝 = 0.
Note that 𝑒 is a nilpotent element in the semisimple component 𝑍(𝑝)′ of the zentralizer 𝑍(𝑝) of
the semisimple element 𝑝. Thus the latter problem is reduced to the classification of real forms of
complex nilpotent orbits in Z(𝑝)′⊗C, and the classification of the latter orbits has been done in [65].
Lê’s method [34] and Dietrich-Faccin-de Graaf’s method of classification of nilpotent orbits of real
graded Lie algebras [12] give partial information on the real forms of these nilpotent orbits. We shall
discuss a similar scheme of classification of 4-forms on R8 in Subsection 2.5. Currently we consider
the Galois cohomology method for classification of 3-forms on R9 promising [4], and therefore we
include an appendix outlining the Galois cohomology method in this paper.

2.4. Classification of 3-forms and 5-forms on R8

The classification of 3-vectors (and hence 3-forms) on R8 has been given by Djokovic in [11].
Similar to [65], see (3), Djokovic made an important observation that for F = R (resp. for F = C)
the standard GL(8,F)-action on Λ3F8 is equivalent to the action of the adjoint group Ad𝐺0 of the
Z-graded Lie algebra g = e8(8) (resp. g = e8) on the homogeneous component g1 of degree 1, where

g = g−3 ⊕ g−2 ⊕ g−1 ⊕ g0 ⊕ g1 ⊕ g2 ⊕ g3. (6)

Here Ad𝐺0 = GL(8,F)/Z3 [11, Proposition 3.2], g−3 = F8*, g−2 = Λ2F8, g−1 = Λ3F8*,
g0 = gl(8,F), g1 = Λ3F8, g2 = Λ2F8*, g3 = F8.

Since there is only finite number of GL(𝑛,F)-orbits in g1, any element in g1 is nilpotent. To
study nilpotent elements in g1 = Λ3R8, as Vinberg-Elashvili did for complex nilpotent 3-vectors
on Λ3C9, Djokovic used a real version of Jacobson-Morozov-Vinberg’s theorem that associates with
each nilpotent element 𝑒 ∈ g1 a semisimple element ℎ(𝑒) ∈ g0 and a nilpotent element 𝑓 ∈ g−1 that
satisfy the following condition [11, Lemma 6.1]

[ℎ, 𝑒] = 2𝑒, [ℎ, 𝑓 ] = −2𝑓, [𝑒, 𝑓 ] = ℎ. (7)

Element ℎ is defined by 𝑒 uniquely up to conjugation and ℎ = ℎ(𝑒) is called a characteristic of 𝑒 [11,
Lemma 6.2], see also [34, Theorem 2.1] for a general statement. Given 𝑒 and ℎ, element 𝑓 is defined
uniquely. A triple (ℎ, 𝑒, 𝑓) in (7) is called an sl2-triple, which we shall denote by sl2(𝑒). With help of
sl2(𝑒)-triples Djokovic classified real forms of nilpotent orbits GL(8,C) · 𝑒, where 𝑒 ∈ g1 = Λ3C8, as
follows. Denote by 𝑍GL(8,C)(sl2(𝑒)) the centralizer of sl2(𝑒) in GL(8,C). Let Φ = Z2 be the Galois
group of the field extension of C over R. Then Djokovic proved that there is a bijection from the
Galois cohomology (Φ, 𝑍GL(8,C)(sl2(𝑒))) to the set of GL(8,R)-orbits contained in GL(8,C) · 𝑒 [11,
Theorem 8.2]. A similar argument has been first used by Revoy [51] and later by Midoune and Noui
for classification of alternating forms in dimension 8 over a finite field [43]. Recall that classification
of GL(8,C)-orbits has been obtained by Gurevich and later this classification is also re-obtained by
Vinberg-Elashvili in their classification of 3-vectors on C9. There are altogether 23 GL(8,C)-orbits
on Λ3C8. In [11] Djokovic gave another proof of this classification using the Z-graded Lie algebra
e8 in (6). Finally Djokovic computed the related Galois cohomology to obtain the number of real
forms of each complex orbit and he also found a canonical representation of each GL(8,R)-orbit on
Λ3R8. The space Λ3R8 decomposes into 35 GL(8,R)-orbits.

Remark 4. Since there is only finite number of GL(8,R)-orbits on Λ3R8*, there exists
𝜙 ∈ Λ3R8* such that the orbit GL(8,R) · 𝜙 is open in Λ3R8*. Such a 3-form 𝜙 is called stable.
Clearly any stable 3-form 𝜙 is nondegenerate, i.e., rk𝜙 = 8. In general, a 𝑘-form 𝜙 on R𝑛 is called
stable, if the orbit GL(𝑛,R) · 𝜙 is open in Λ𝑘R𝑛. Clearly any symplectic form is stable. It is not
hard to see that if 𝜙 ∈ Λ𝑘R𝑛 is open, and 𝑘 > 2, then either 𝑘 = 3 and 𝑛 = 5, 6, 7, 8, or 𝑘 = 4 and
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𝑛 = 6, 7, or 𝑘 = 5 and 𝑛 = 8. Stable forms on R8 have been studied in deep by Hitchin [26], Witt
[68] and later by Lê-Panak-Vanžura in [38], where they classified all stable forms on R𝑛 (they proved
that stable 𝑘-forms exist on R𝑛 only in dimensions 𝑛 = 6, 7, 8 if 3 6 𝑘 6 𝑛 − 𝑘), and determined
their stabilizer groups [38, Theorem 4.1].

Remark 5. Djokovic’s classification of 3-vectors on R8 contains the classification of 3-vectors
on R6 and the classification of 3-vectors on R7 by Theorem 1. The classification of 3-forms on
R7 has been first obtained by Westwick [67] by adhoc method. There are 8 equivalence classes of
multisymplectic 3-forms on R7, which are the real forms of 5 equivalent classes of multisymplectic
3-forms on C7, and there are 6 equivalence classes of 3-forms on R6, which are the real forms of 5
equivalence classes of 3-forms on C6. The stabilizer of 3-forms in R6 has been determined in [25]
and the stabilizer of multisymplectic 3-forms in R7 has been defined in [6]. The stabilizer of 3-forms
on F7 has been described by Cohen-Helminck in [8, Theorem 2.1] for any algebraically closed field
F.

Remark 6. There are 21 equivalence classes of multisymplectic 3-forms on R8 which are the
real forms of 13 equivalence classes of multisymplectic 3-forms on C8 [11, §9]. A complete list of
the stabilizer groups StGL(8,R)(𝜙) of each multi-symplectic 3-form 𝜙 on R8 has not been obtained
till now according to our knowledge. The stabilizer StGL(8,C)(𝜙) has been obtained by Midoune in
his PhD Thesis [42], see also [43]. In [11] Djokovic computed the dimension of each GL(8,R)-orbit
in Λ3R8 and the centralizer 𝑍GL(8,R)(sl2(𝑒)) for each nilpotent element 𝑒 ∈ e8(8). It follows that
the stabilizer algebra 𝑍gl(8,R)(𝜙) of 3-forms 𝜙 ∈ Λ3R8 forms a complete system of invariants of the
GL(8,R)-action on Λ3R8. In Proposition 4 below we show that the stabilizer of any multisymplectic
3-form 𝜙 on R8 is not connected.

Proposition 4. For any multisymplectic 3-form 𝜙 ∈ Λ3R8* we have StGL(8,R)(𝜙)∩GL−(8,R) ̸=
̸= ∅. Hence the GL(8,R)-orbit of any 3-form on R8 is connected.

Proof. For each equivalence class of a 3-form 𝜙 of rank 8 we choose a canonical element 𝜙0 in
the Djokovic’s list [11, p. 36-37]. Then we find an element 𝑔∈StGL(8,R)(𝜙0)∩GL−(8,R). Hence the
GL(𝑛,R)-orbit of each multisymplectic 3-form on R8 is connected. If 𝜙 is not multisymplectic, the
orbit GL(8,R) · 𝜙 is connected by Proposition 2. This completes the proof of Proposition 4. 2

Proposition 4 and Proposition 2 imply immediately the following

Corollary 1. (cf. [53, Proposition 4.1]) The Poincaré map 𝑃Ω induces an isomorphism
between GL(8,R)-orbits on Λ3R8 and GL(8,R)-orbit on Λ5R8*. Each GL(8,R)-orbit on Λ5R8 is
connected.

2.5. Classification of 4-forms on R8

Classification of 4-forms on C8, whose equivalence is defined via the standard action of SL(8,C),
has been given by Antonyan [1], following the scheme proposed by Vinberg-Elashvili for the
classification of 3-vectors on C9. In [34] Lê proposed a scheme of classification of 4-forms on R8 as
application of her study of the adjoint orbits in Z𝑚-graded real semisimple Lie algebras. In this
subsection we outline Antonyan’s method and Lê’s method.

Let F = C (resp. R). Denote by g the exceptional complex simple Lie algebra e7 (rep. e7(7)
- the split form of e7). The starting point of Antonyan’s work on the classification on 4-vectors
on C8 (resp. the starting point of Lê’s scheme of classification of 4-forms on R8) is the following
observation, cf. (3), (5). The standard GL(8,F)-action on Λ4F8 is equivalent to the action of the
𝜃-group of the Z2-graded simple Lie algebra

g = g0 ⊕ g1 (8)
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on its homogeneous component g1, which is isomorphic to Λ4F8. Here g0 = sl(8,F).
Let us describe the components g0 and g1 in (8) for the case F = C using the root decomposition

of e7. Recall that e7 has the following root system:

Σ = {𝜀𝑖 − 𝜀𝑗 , 𝜀𝑝 + 𝜀𝑞 + 𝜀𝑟 + 𝜀𝑠, | 𝑖 ̸= 𝑗, (𝑝, 𝑞, 𝑟, 𝑠 distinct),
8∑︁
𝑖=1

𝜀𝑖 = 0}.

By Remark 1, the Z2-grading on e7 is defined uniquely by an involution 𝜃C of e7. In terms of the
Chevalley system of e7, see Remark 2, the involution 𝜃C is defined as follows:

𝜃C|h0 = 𝐼𝑑,

𝜃C(𝐸𝛼) = 𝐸𝛼, if 𝛼 = 𝜀𝑖 − 𝜀𝑗 ,

𝜃C(𝐸𝛼) = −𝐸𝛼, if 𝛼 = 𝜀𝑖 + 𝜀𝑗 + 𝜀𝑘 + 𝜀𝑙.

Note that 𝜃 := 𝜃C|g=e7(7)
is an involution of 𝑒7(7) and it defines the induced Z2-gradation from e7

on e7(7).
Following the Vinberg-Eliashivili scheme of the classification of 3-vectors on C9, Antonyan

classified SL(8,C)-equivalent 4-vectors on C8 by using the Jordan decomposition (Proposition 3).
First he classified all semisimple 4-vectors on C8 using Vinberg’s theory on finite automorphisms of
semisimple algebraic groups [61], which has been employed by Vinberg-Elashvili for the classification
of semisimple 3-vectors as we mentioned above. Next we include each semisimple element 𝑥 ∈ g1 of
the Z2-graded complex Lie algebra e7 into a Cartan subalgebra of g1, which is defined as a maximal
subspace in g1 consisting of commuting semisimple elements [63] (this definition is also applied to
real or complex Z𝑚-graded semisimple Lie algebras g). If g is a complex Z𝑚-graded sesmisimple
Lie algebra, then all the (complex) Cartan subalgebras in g1 are conjugate under the action of the
adjoint group 𝐺C0 . To reduce the classification of semisimple elements in g1 further we introduce
the notion of the Weyl group 𝑊 (g, 𝒞) of a complex Z𝑚-graded semisimple Lie algebra g w.r.t. to a
Cartan subalgebra 𝒞 ⊂ g1 as follows. Let 𝐺C be the connected semisimple Lie algebra having the
Lie algebra g and 𝐺C0 the Lie subgroup of the 𝐺C having the Lie algebra g0. We define

𝑁0(𝒞) := {𝑔 ∈ 𝐺0| ∀𝑥 ∈ 𝒞 𝑔(𝑥) ∈ 𝒞},

𝑍0(𝒞) := {𝑔 ∈ 𝐺0| ∀𝑥 ∈ 𝒞 𝑔(𝑥) = 𝑥}.

Then 𝑊 (g, 𝒞) := 𝑁0(𝒞)/𝑍0(𝒞). The Weyl group 𝑊 (g, 𝒞) is finite, moreover 𝑊 (g, 𝒞) is generated
by complex reflections, which implies that the algebra of 𝑊 (g, 𝒞)-invariants on 𝒞 is free [61].
Furthermore, two semisimple elements in 𝒞 belong to the same 𝐺C0 -orbit if and only if they are
in the same orbit of the 𝑊 (g, 𝒞)-action on 𝒞. Antonyan showed that the Weyl group 𝑊 (e7, 𝒞) has
order 2903040 and the generic semisimple element has trivial stabilizer. He also found a basis of
a Cartan algebra 𝒞 ⊂ g1, which is also a Cartan subalgebra of the Lie algebra e7. Thus the set of
SL(8,C)-equivalent semisimple 4-vectors on C8 has dimension 7. This set is divided into 32 families
depending on the type of the stabilizer of the action of the Weyl group 𝑊 (e7, 𝒞) on the Cartan
algebra 𝒞. For the classification of nilpotent elements and mixed 4-vectors on C8 Antonyan used
the Vinberg method of support [64].

Lê suggested the following scheme of classification of the SL(8,R)-orbits on Λ4R8 [34]. Observe
that we also have the Jordan decomposition of each element in Λ4R8 into a sum of a semisimple
element and a nilpotent element [34, Theorem 2.1], as in Proposition 3. First, we classify semisimple
elements, using the fact that every Cartan subspace 𝒞 ⊂ g1 is conjugated to a standard Cartan
subspace 𝒞0 that is invariant under the action of a Cartan involution 𝜏u of the Z2-graded Lie algebra
e7(7) [47]. The set of all standard Cartan subspaces 𝒞0 ⊂ g1 ⊂ g = e7(7), and more generally, the set
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of all standard Cartan subspaces 𝒞 ⊂ g1 in any Z2-graded real semisimple Lie algebra g, has been
classified by Matsuki and Oshima in [47]. Lê decomposed each semisimple element into a sum of an
elliptic semisimple element, i.e., a semisimple element whose adjoint action on g⊗C = e7 has purely
imaginary eigenvalues, and a real semisimple element, i.e., a semisimple element whose adjoint
action on g⊗C = e7 has real eigenvalues, cf. [52] for a similar decomposition of semisimple elements
in a real sesimsimple Lie algebra. The classification of real semisimple elements and commuting
elliptic semisimple elements in 𝒞0 ⊂ g1 is then reduced to the classification of the orbits of the Weyl
groups of associated Z2-graded symmetric Lie algebras on their Cartan subalgebras [34, Corollary
5.3]. As in [65] and [1], the classification of mixed 4-vectors on R8 is reduced to the classification of
their semisimple parts and the corresponding nilpotent parts. The classification of nilpotent parts
can be done using algorithms in real algebraic geometry based on Lê’s theory of nilpotent orbits in
graded semisimple Lie algebras [34], that develops further Vinberg’s method of support also called
carrier algebra. In [12] Dietrich-Faccin-de Graaf developed Vinberg’s method further and applied
their method to classification of the orbits of homogeneous nilpotent elements in certain graded
real semisimple Lie algebras. In particular, they have a new proof for Djokovic’s classification of
3-vectors on R8.

Remark 7. (1) The method of 𝜃-group has been extended by Antonyan and Elashvili for
classifications of spinors in dimension 16 [2].

(2) Many results of classifications of 𝑘-vectors over the fields R and C have their analogues over
other fields F and their closures F [43]. Over the field F = Z2 the classification of 3-vectors in F𝑛 is
related to some open problems in the theory of self-dual codes [49]. Till now there is no classification
of 3-vectors in F𝑛 if 𝑛 > 9 and F ̸= C.

3. Geometry defined by differential forms

In this section we briefly discuss several results and open questions on the existence of differential
𝑘-forms of given type on a smooth manifold, where 𝑘 = 2, 3, 4.
∙ Assume that 𝑘 = 2 and 𝜙 is a closed 2-form with constant rank on 𝑀𝑛, then 𝜙 is called

a pre-symplectic form [60]. Till now there is no general necessary and sufficient condition for the
existence of a pre-symplectic form 𝜙 on a manifold 𝑀𝑛 except the case that 𝜙 is a symplectic
form. Necessary conditions for the existence of a symplectic form 𝜙 on 𝑀2𝑛 are the existence of
an almost complex structure on 𝑀2𝑛 and if 𝑀2𝑛 is closed, the existence of a cohomology class
𝑎 ∈ 𝐻2(𝑀2𝑛;R) with 𝑎𝑛 > 0. If 𝑀2𝑛 is open, a theorem of Gromov [18, 19] asserts that the
existence of an almost complex structure is also sufficient, his argument has been generalized in
[13] and used in the proof of Theorem 4(2) below. Taubes using Seiberg-Witten theory proved that
there exist a closed 4-manifold 𝑀4 admitting an almost complex structure and 𝑎 ∈ 𝐻2(𝑀,R) such
that 𝑎2 ̸= 0 but 𝑀4 has no symplectic structure [59]. Note that for any symplectic form 𝜔 on 𝑀2𝑛

there exists uniquely up to homotopy an almost complex structure 𝐽 on 𝑀2𝑛 that is compatible
with 𝜔, i.e., 𝑔(𝑋,𝑌 ) := 𝜔(𝑋, 𝐽𝑌 ) is a Riemannian metric on 𝑀2𝑛. Connolly-Lê-Ono using the
Seiberg-Witten theory showed that a half of all homotopy classes of almost complex structures on
a certain class of oriented compact 4-manifolds is not compatible with any symplectic structure [9].
∙Manifolds𝑀2𝑛 endowed with a nondegenerate conformally closed 2-form 𝜔, i.e., 𝑑𝜔 = 𝜃∧𝜔 for

some closed 1-form 𝜃 on 𝑀2𝑛, are called conformally symplectic manifolds. A necessary condition
for the existence of nondegenerate 2-form 𝜔 on𝑀2𝑛 is the existence of an almost complex structure
on 𝑇𝑀2𝑛, which is equivalent to the existence of a section 𝐽 of the associated bundle SO(2𝑛)/U(𝑛),
see [56] where a necessary condition for the existence of a section 𝐽 has been determined in terms
of the Whitney-Stiefel characteristic classes. We don’t have necessary and sufficient conditions
for the existence of a general conformally symplectic form on 𝑀2𝑛, except the existence of an
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almost complex structure on 𝑀2𝑛. In [39] Lê-Vanžura proposed new cohomology theories of locally
conformal symplectic manifolds.
∙ Assume that 𝑘 = 3 and 𝜙 is a stable 3-form on 𝑀8. In [46] Noui and Revoy proved that the

Lie algebra of the stabilizer of 𝜙 is a real form of the Lie algebra sl(3,C). Hence stable 3-forms
on R8 are equivalent to the Cartan 3-forms on the real forms sl(3,R), s𝑢(1, 2) and s𝑢(3) of the
complex Lie algebra sl(3,C). Later in [38] Lê-Panak-Vanžura reproved the Noui-Revoy result by
associating to each 3-form on R8 various bilinear forms, which are invariants of the GL(8,R)-action
on Λ3R8*, and studied properties of these forms. They computed the stabilizer group of a stable
form 𝜙 ∈ Λ3R8* and found a necessary and sufficient condition for a closed orientable manifold
𝑀8 to admit a stable 3-form [38, Proposition 7.1]. In [36] Lê initiated the study of geometry and
topology of manifolds admitting a Cartan 3-form associated with a simple compact Lie algebra.
∙ Necessary and sufficient conditions for a closed connected 7-manifold 𝑀7 to admit a

multisymplectic 3-form has been determined in [54], see also Appendix 4 below. There are two
equivalence classes of stable 3-forms on R7 with the stablizer groups 𝐺2 and 𝐺̃2 respectively.
Since 𝐺2 and 𝐺̃2 are exceptional Riemannian and pseudo Riemannian holonomy groups, manifolds
𝑀7 admitting stable 3-form of 𝐺2-type (resp. of 𝐺̃2-type) are in focus of research in Riemannian
geometry (respectively in pseudo Riemannian geometry) [30], [35], [32]. As we have mentioned, the
study of geometries of stable forms in dimension 6,7, 8 have been initiated by Hitchin [25, 26].
∙ It is worth noting that the algebra of parallel forms on a quaternion Kähler manifold is

generated by the quaternionic 4-form, the algebra of parallel forms on a Spin(7)-manifold is
generated by the self-dual Cayley 4-form. Riemannian manifolds admitting parallel 2-forms of
maximal rank are Kähler manifolds, which are the most studied subjects in geometry, in particular
in the theory of minimal submanifolds, see e.g., [37].

4. Manifolds admitting a 𝐺̃2-structure

In 2000 Hitchin initiated the study of geometries defined by differential forms [25], and
subsequently in [26] he initiated the study of geometries defined by stable forms. The latter
geometries have been investigated further in [68], [38]. A necessary and sufficient condition for
a manifold 𝑀 to admit a stable form 𝜙 of 𝐺2-type, i.e., the stabilizer of 𝜙 is isomorphic to the
group 𝐺2, has been found by Gray [20]. In this Appendix we state and prove a necessary and
sufficient condition for a manifold 𝑀 to admit a stable form 𝜙 of 𝐺̃2-type. We recall that a 3-form
𝜙 on R7 is called of 𝐺̃2-type, if it lies on the GL(R7)-orbit of a 3-form

𝜙0 = 𝜃1 ∧ 𝜃2 ∧ 𝜃3 + 𝛼1 ∧ 𝜃1 + 𝛼2 ∧ 𝜃2 + 𝛼3 ∧ 𝜃3.

Here 𝛼1, 𝛼2 are 2-forms on R7 which can be written as

𝛼1 = 𝑦1 ∧ 𝑦2 + 𝑦3 ∧ 𝑦4, 𝛼2 = 𝑦1 ∧ 𝑦3 − 𝑦2 ∧ 𝑦4, 𝛼3 = 𝑦1 ∧ 𝑦4 + 𝑦2 ∧ 𝑦3

and (𝜃1, 𝜃2, 𝜃3, 𝑦1, 𝑦2, 𝑦3, 𝑦4) is an oriented basis of R7*.
Bryant showed that StGL(7,R)(𝜙0) = 𝐺̃2 [7]. He also proved that 𝐺̃2 coincides with the

automorphism group of the split octonians [7].

Theorem 4. (1) Suppose that 𝑀7 is a compact 7-manifold. Then 𝑀7 admits a 3-form of 𝐺̃2-
type, if and only if 𝑀7 is orientable and spinnable. Equivalently the first and second Stiefel-Whitney
classes of 𝑀7 vanish.

(2) Suppose that 𝑀7 is an open manifold which admits an embedding to a compact orientable
and spinnable 7-manifold. Then 𝑀7 admits a closed 3-form 𝜙 of 𝐺̃2-type.
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Proof. First we recall that the maximal compact Lie subgroup of 𝐺̃2 is SO(4). This follows from
the Cartan theory on symmetric spaces. We refer to [27, p. 115] for an explicit embedding of SO(4)
into 𝐺2. The reader can also check that the image of this group is also a subgroup of 𝐺̃2 ⊂ GL(R7).
We shall denote this image by 𝑆𝑂(4)3,4.

Now assume that a smooth manifold𝑀7 admits a 𝐺̃2-structure. Then it must be orientable and
spinnable, since the maximal compact Lie subgroup SO(4)3,4 of 𝐺2 is also a compact subgroup of
the group 𝐺2.

Lemma 2. Assume that 𝑀7 is compact, orientable and spinnable. Then 𝑀7 admits a 𝐺̃2-
structure.

Proof. Since 𝑀7 is compact, orientable and spinable, 𝑀7 admits a SU(2)-structure [16]. Since
𝑆𝑈(2) is a subgroup of 𝑆𝑂(4)3,4,𝑀7 admits a 𝑆𝑂(4)3,4-structure. Hence𝑀7 admits a 𝐺̃2-structure.
2

This completes the proof of the first assertion of Theorem 4.

Let us prove the last statement of Theorem 4. Assume that𝑀7 is a smooth open manifold which
admits an embedding into a compact orientable and spinnable 7-manifold. Taking into account the
first assertion of Theorem 4, there exists a 3-form 𝜙 on 𝑀7 of 𝐺̃2-type. We shall use the following
theorem due to Eliashberg-Mishachev to deform the 3-form 𝜙 to a closed 3-form 𝜙 of 𝐺̃2-type on
𝑀7.

Let𝑀 be a smooth manifold and 𝑎 ∈ 𝐻𝑝(𝑀,R). For a subspace ℛ ⊂ Λ𝑝𝑀 we denote by 𝐶𝑙𝑜𝑎ℛ
the subspace of the space Γ(𝑀,ℛ) of smooth sections 𝑀 → ℛ that consists of closed 𝑝-forms
𝜔 ∈ Γ(𝑀,ℛ) ⊂ Ω𝑝(𝑀) such that [𝜔] = 𝑎 ∈ 𝐻𝑝(𝑀,R). Denote by Diff(𝑀) the diffeomorphism
group of 𝑀 .

Proposition 5 (Eliashberg-Mishashev Theorem). ([13, 10.2.1]) Let 𝑀 be an open manifold,
𝑎 ∈ 𝐻𝑝(𝑀,R) and ℛ ⊂ Λ𝑝𝑀 an open Diff(𝑀)-invariant subset. Then the inclusion

𝐶𝑙𝑜𝑎ℛ →˓ Γ(𝑀,ℛ)

is a homotopy equivalence. In particular,
- any 𝑝-form 𝜔 ∈ Γ(𝑀,ℛ) is homotopic in ℛ to a closed form 𝜔̄;
- any homotopy 𝜔𝑡 ∈ Γ(𝑀,ℛ) of 𝑝-forms which connects two closed forms 𝜔0, 𝜔1 such that

[𝜔0] = [𝜔1] = 𝑎 ∈ 𝐻𝑝(𝑀,R) can be deformed in ℛ into a homotopy of closed forms 𝜔̄𝑡 connecting
𝜔0 and 𝜔1 such that [𝜔𝑡] = 𝑎 for all 𝑡.

Let ℛ be the space of all 3-forms of 𝐺̃2-type on 𝑀7. Clearly this space is an open Diff(𝑀7)-
invariant subset of Λ3𝑀7. Now we apply the Eliashberg-Mishashev theorem to the 3-form 𝜙3 of
𝐺̃2-type whose existence has been proved above. This completes the proof of Theorem 4. 2

5. Classification of orbits over a nonclosed field
of characteristic 0

by Mikhail Borovoi

We consider a linear algebraic group 𝐺 with group of 𝑘-points 𝐺(𝑘) over an algebraically closed
field 𝑘 of characteristic 0. Assume that𝐺 acts on a 𝑘-variety𝑋 with set of 𝑘-points𝑋(𝑘), and assume
that we know the classification of 𝐺(𝑘)-orbits in 𝑋(𝑘), e.g., 𝑘 = C, 𝐺 = GL(9,C), 𝑋 = Λ3C9. Let
𝑘0 be a subfield of 𝑘 such that 𝑘 is an algebraic closure of 𝑘0. We write Γ = Gal(𝑘/𝑘0) for the Galois
group of the extension 𝑘 over 𝑘0. If 𝑘0 = R, then Γ = Gal(C/R) = {1, 𝛾}, where 𝛾 is the complex



Классификация 𝑘-форм и ассоциированная геометрия 375

conjugation. Assume that we have compatible 𝑘0-forms 𝐺0 of 𝐺 and 𝑋0 of 𝑋. We wish to classify
𝐺0(𝑘0)-orbits in 𝑋0(𝑘0). We start with one 𝐺-orbit 𝑌 in 𝑋. We check whether 𝑌 is Γ-stable. If not,
then 𝑌 has no 𝑘0-points. Assume that 𝑌 is Γ-stable. Then the Γ-action on 𝑌 defines a 𝑘0-model
𝑌0 of 𝑌 . Now 𝐺0 acts on 𝑌0 over 𝑘0. We say that 𝑌0 is (a twisted form of) a homogeneous space of
𝐺0. We ask

(1) whether 𝑌0 has 𝑘0-points;
(2) if the answer to (1) is positive, we wish to classify 𝐺(𝑘0)-orbits in 𝑌0(𝑘0).
Question (1) is treated in [5]. Assume that for our 𝑌 , the answer to question (1) is Yes.

Let 𝑦0 ∈ 𝑌0(𝑘0), and let 𝐻0 = St𝐺0(𝑦0). Then we may write 𝑌0 = 𝐺0/𝐻0. The Galois group
Γ = Gal(𝑘/𝑘0) acts compatibly on 𝐺0(𝑘) = 𝐺(𝑘), 𝐻0(𝑘) = 𝐻(𝑘), and 𝑌0(𝑘) = 𝑌 (𝑘) = 𝐺(𝑘)/𝐻(𝑘).

Theorem 5 ([58], Section I.5.4, Corollary 1 of Proposition 36). There is a canonical bijection
between the set of orbits 𝑌0(𝑘0)/𝐺0(𝑘0) and the kernel ker[𝐻

1(𝑘0, 𝐻0)→ 𝐻1(𝑘0, 𝐺0)].

Here 𝐻1(𝑘0, 𝐻0) := 𝐻1(Γ, 𝐻0(𝑘)).
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6. J. Bureš and J. Vanžura, Multisymplectic forms of degree three in dimension seven, Proceedings
of the 22nd Winter School “Geometry and Physics”. Circolo Matematico di Palermo, Palermo.
Rendiconti del Circolo Matematico di Palermo, Serie II, Supplemento No. 71 (2003), p. 73-91.

7. R. Bryant, Metrics with exceptional holonomy, Ann. of Math. (2), 126 (1987), 525-576.

8. A. Cohen and A. Helminck, Trilinear alternating forms on a vector space of dimension 7,
Commun. Algebra 16 (1988), pp. 1-25.
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4. Borovoi, M., de Graaf, W.A. & Lê, H. V. 2019, “Classification of 3-vectors on R9”, in preparation.



Классификация 𝑘-форм и ассоциированная геометрия 379

5. Borovoi, M. 1993, “Abelianization of the second nonabelian Galois cohomology”, Duke Math.
Journal, vol. 72, pp. 217–239.
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