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Abstract

In this paper we survey methods and results of classification of k-forms (resp. k-vectors on
R™), understood as description of the orbit space of the standard GL(n,R)-action on AFR™*
(resp. on AFR™). We discuss the existence of related geometry defined by differential forms
on smooth manifolds. This paper also contains an Appendix by Mikhail Borovoi on Galois
cohomology methods for finding real forms of complex orbits.
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Preface

Hamiltonian systems were one of research topics of Hoéng Van Lé in her undergraduate study
and calibrated geometry was the topic of her Ph.D. Thesis under guidance of Professor Anatoly
Timofeevich Fomenko. Hamiltonian systems are defined on symplectic manifolds and calibrated
geometry is defined by closed differential forms of comass one on Riemannian manifolds. Since that
time she works frequently on geometry defined by differential forms, some of her papers were written
in collaboration with Jifi Vanzura, [38, 39, 40]. We dedicate this survey on algebra and geometry of
k-forms on R™ as well as on smooth manifolds to Anatoly Timofeevich Fomenko on the occasion of
his 75th birthday and we wish him good health, happiness and much success for the coming years.

1. Introduction

Differential forms are excellent tools for the study of geometry and topology of manifolds and
their submanifolds as well as dynamical systems on them. K#&hler manifolds, and more generally,
Riemannian manifolds (M, g) with non-trivial holonomy group admit parallel differential forms
and hence calibrations on (M, g) [27], [55], [40], [17]. In the study of Riemannian manifolds with
non-trivial holonomy groups these parallel differential forms are extremely important |7], [29].
In their seminal paper [27|] Harvey-Lawson used calibrations as powerful tool for the study of
geometry of calibrated submanifolds, which are volume minimizing. Their paper opened a new
field of calibrated geometry [30] where one finds more and more tools for the study of calibrated
submanifolds using differential forms, see e.g., [17]. In 2000 Hitchin initiated the study of geometry
defined by a differential 3-form [25], and in a subsequent paper he analyzed beautiful geometry
defined by differential forms in low dimensions [26]. One starts investigation of a differential form
©* of degree k on a manifold M™ of dimension n by finding a normal form of ©* at a point © € M™
and, if possible, to find a normal form of ©* up to certain order in a small neighborhood U (z) c M™.
Finding a normal form of ©* at a point z € M™ is the same as finding a canonical representative of
the equivalence class of ©*(z) in A¥(TM™), where two k-forms on T, M™ are equivalent if they are
in the same orbit of the standard GL(n,R)-action on A*(T}M™) = A¥R™. We say that a manifold
M™ is endowed by a differential form ¢ € Q*(M"™) of type o € A*R™ if for all z € M"™ the
equivalence class of ¢(x) € A*TFM™ can be identified with the equivalent class of ¢y € A*R™ via a
linear isomorphism T, M™ = R”. Instead of investigation of a normal form of a concrete form ¢*, we
may be also interested in a classification of (equivalent) k-forms on R™ understood as a description
of the moduli space of equivalent k-forms on R™, which could give us insight on a normal form
of ©* and could also suggest interesting candidates for the geometry defined by differential forms.
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Classification of k-forms on R"™ is a part of algebraic invariant theory. Recall that an invariant of
an equivalence relation on a set S, e.g., defined by orbits of an action of a group G on 5, is a
mapping from S to another set @) that is constant on the equivalence classes. A system of invariants
is called complete if it separates any two equivalent classes. If a complete system of invariants
consists of one element, we call this invariant complete. In the classical algebraic invariant theory
one deals mainly with actions of classical or algebraic groups on some space of tensors of a fixed
type over a vector space over a field F [23], see [48] for a survey of modern invariant theory and
source of algebraic invariant theory. From a geometric point of view, the most important invariants
of a form ¢* on R™ are the rank of ¢* and the stabilizer of ©* under the action of GL(n,R).
Recall that the rank of ¢, denoted by rk ¥, is the dimension of the image of the linear operator
Ly :R" — AFIR™ > i,0F. We denote the stabilizer of ¢* by StGL(n,R)(gok), and in general,
we denote by Stg(z) the stabilizer of a point z in a set S where a group G acts. A form ¢* € AFR™
is called non-degenerate, or multisymplectic, if tk ¥ = n. Furthermore, it is important to study
the topology of the orbit GL(n,R) - o¥ = GL(n, R)/StGL(n’R)(gpk), for example, the connectedness,
see Proposition 2 below, the openness, the closure of the orbit GL(n,R) - ¢¥ c AFR™. It turns
out that understanding these questions helps us to understand the structure of the orbit space of
GL(n,R)-action on A*R™. These invariants of k-forms shall be highlighted in our survey.

Let us outline the plan of our paper. In the first part of Section 2 we make several observations
on the duality between GL(n,R)-orbits of k-forms on R™ and GL(n,R)-orbits of k-vectors as well
as the duality between GL*(n,R)-orbits of k-forms on R and GL™ (n,R)-orbits of (n — k)-forms
on R™. Then we recall the classification of 2-forms on R™ (Theorem 2) and present the Martinet’s
classification of (n — 2)-forms on R™ (Theorem 3).

In contrast to the classification of 2-forms on R”, the classification of 3-forms on R" depends
on the dimension n. Since dim A>R™ > dim GL(n,R) + 1, if n > 9, there are infinite numbers of
inequivalent 3-forms in R™. Till now there is no classification of the GL(n,R)-action on ASR™ if
n = 10.

In the dimension n = 9 the classification of the SL(9, C)-orbits on A3C? has been obtained by
Vinberg-Elashvili [65]. In the second part of Section 2 we survey Vinberg-Elashvili’s result and some
further developments by Le [34] and Dietrich-Facin-de Graaf [12], which give partial information
on GL(9,R)-orbits on A3R?. Then we review Djokovic’ classification of 3-vectors in R® and present
a classification of 5-forms on R® (Corollary 1). Djokovic’s classification method combines some
ideas from Vinberg-Elashvili’s work and Galois cohomology method for classifying real forms of a
complex orbit. Note that the classification of 3-vectors in R® implies the classification of 3-forms in
R (Proposition 1) as well as the classifications of 3-forms in R for n < 7 (Theorem 1, Remark 5).
Then we review a classification of GL(8, C)-action on A*C® by Antonyan [1], which is important
for classification of 4-forms on R®. At the end of Section 2 we review a scheme of classification of
4-forms on R® proposed by Lé in 2011 [34] and Dietrich-Facin-de Graaf’s method of classification
of 3-forms on R® in [12].

In Section 3, for &k = 2,3,4, we compile known results and discuss some open problems on
necessary and sufficient topological conditions for the existence of a differential k-form ¢ of given
type Starm,r)(¢(r)) on manifolds M™ (in these cases the equivalence class of p(z) is defined
uniquely by the type of the stablizer of ¢(z), i.e., the conjugation class of Stqr,r)(¢(z)) in
GL(n,R)). In dimension n = 8 (and hence also for n = 6,7) we observe that the stabilizer
StaLm,r) () of a 3-form ¢ € A3R™ forms a complete system of invariants of the action of GL(n,R)
on R™ (Remark 6).

We include two appendices in this paper. The first appendix contains a result due to Héng Van
Lé concerning the existence of 3-form of type Go on a smooth 7-manifold, which has been posted in
arxiv in 2007 [33]. The second appendix outlines the Galois cohomology method for classification
of real forms of a complex orbit. This appendix is taken from a private note by Mikhail Borovoi
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with his kind permission.

Finally we would like to emphasize that our paper is not a bibliographical survey. Some
important papers may have been missed if they are not directly related to the main lines of our
narrative. We also don’t mention in this survey the relations of geometry defined by differential
forms to physics and instead refer the reader to [30], [15], [14], [60].

2. Classification of GL(n,R)-orbits of k-forms on R"

2.1. General theorems

We begin the classification of GL(n, R)-orbits on A¥R™ with the following observation that the
orbit of the standard action of GL(n,R) on A*R™ can be identified with the orbit of the standard
action of GL(n,R) on A*R™ by using an isomorphism y € Hom(R", R™) = R™ @ R™ > S2R"*
Note that there are several papers and books devoted to the classification of k-vectors on R™ |23,
Chapter VII] 3, [11], [65]. Hence we have the following well-known fact, see e.g., [45],

PROPOSITION 1. There exists a bijection between the GL(n,R)-orbits in A*R™ and GL(n,R)-
orbits in AFR™.

Next we shall compare GL ™ (n, R)-orbits on A*FR"™ with GL™(n, R)-orbits on A""*R™*. We take a
volume form 2 € A"R™\{0} and define the Poincaré isomorphism P : AFR™ — A"FR™ ¢ s Q.
Since GL*(n,R) is a direct product of its center Z(GL™"(n,R)) = R with its semisimple subgroup
SL(n,R), for any A € R the group GL*(n, R) admits a M-twisted action on A*R™* defined as follows:
g () = (det ) - g(p) for g € GLT(n,R), p € A¥FR™, where g(¢) denotes the standard action of
g on .

Denote also by p the isomorphism A*R”™ — AFR™ induced from a scalar product g on R™.

LEMMA 1. The composition Po o u~' : AFR™ — A" FR™ is a GL*(n,R)-equivariant map
where GLT(n,R) acts on A*R™ by the standard action and on A"~FR™ by the (—1)-twisted action.

PrOOF. Let p = u(X) € A*FR™ and g € GL'(n,R). Then
Poo ™ (g"p) = Palg™ o ™ (9)) = ig-1,-1()Q

= (det g)_1 . g(iu—l(w)Q) = 9[—1}(PQ o N_I(VJ))a

which proves the first assertion of Lemma 1. O

PROPOSITION 2. (1) There is a 1-1 correspondence between GLT (n,R)-orbits of k-forms on
R"™ and GLT(n,R)-orbits of (n — k)-forms on R™. This correspondence preserves the openness of
GL™(n,R)-orbits (and hence the openness of GL(n,R)-orbits).

(2) The GL(n,R)-orbit of ¢* € AFR™ has two connected components if and only if
Starmr) (¢*) € GLT(n,R). In other cases the GL(n,R)-orbit of ¢ is connected.

(8) Assume that ¥ € A*R™ is degenerate. Then the GL(n,R)-orbit of ¢* is connected.

PrOOF. 1. The first assertion of Proposition 2 is a consequence of Lemma 1.

2. The second assertion of Proposition 2 follows from the fact that GL(n,R) has two connected
components.

3. Assume that ¢ is degenerate. Then W := ker L, is non-empty. Let W+ be any complement
to Win R" i.e., R® = W @ W+, Then GL(W) @ Idy, 1 is a subgroup of St(¢). Since this subgroup
has non-trivial intersection with GL™(n,R), this implies the last assertion of Proposition 2 follows
from the second one. This completes the proof of Proposition 2. O

3under “polyvectors"Gurevich meant both covariant and contravariant polyvectors
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The following theorem due to Vinberg-Elashvili reduces a classification of (degenerate) k-forms
of rank 7 in R™ to a classification of k-forms on R". (Vinberg-Elashvili considered only the case
k = 3 and the SL(n, C)-action on A3C" but their argument works for any k and for GL(n, R)-action
on AFR"™ )

THEOREM 1. (cf. [65, §4.4], [53, Lemma 3.2]) There is a 1-1 correspondence between GL(n,R)-
orbits of k-forms of rank less or equal to r on R™ and GL(r,R)-orbits of k-forms on R".

2.2. Classification of 2-forms and (n — 2)-forms on R"

From Proposition 2 we obtain immediately the following known theorem [10], cf. |23, Theorem
34.9].

THEOREM 2. (1) The rank of a 2-form ¢ € A’R™ is a complete invariant of the standard
GL(n,R)-action on A’R™. Hence A’R™ decomposes into [n/2] + 1 GL(n,R)-orbits.

(2) The GL(n,R)-orbit of a 2-form @ € A*R™ has two connected components if and only if
n = 2k and ¢ has mazimal rank.

(8) If ¢ is of mazimal rank, then the GL(n,R)-orbit of ¢ is open and its closure contains the
GL(n,R)-orbit of any degenerate 2-form on R™.

The classification of (n — 2)-forms on R™ has been done by Martinet [41]. Martinet used the
inverse Poincaré isomorphism P, L AP2R™ 5 A2R" to define the length of ¢ € A" 2R", denoted
by 1(¢), to be the half of the rank of the bi-vector P, () *. By Proposition 2 and Theorem 2 the
map P;," induces an isomorphism between the GL(n,R)-orbits of degenerate (n — 2)-forms ¢ on
R™ and degenerate bivectors Py (¢) on R™.

o If 2i(¢) < n then ¢ has the following canonical form

)
(p:Zal/\"'agifg/\am#l/\'-'/\Oén. (1)
i=1
By Theorem 2 (2) the orbit GL(n,R) - Py () is connected, and hence by Proposition 2 the orbit
GL(n,R) - ¢ is connected.
o If 2I(¢) = n, and () is odd, then using Lemma 1 and Theorem 2(2) we conclude that the
set of (n — 2)-forms of length [ consists of two open connected GL(n, R)-orbits that correspond to
the sign of A = Aq(p) where

Pgl(go) =ei1Neg+ -+ e2p—1 N eag,

Q=X A+ Ay,
()
<p:)\Zal/\~~a2i_2/\a2i+1/\~-/\anand)\::tl. (2)
i=1

e If 2I(¢) = n and I(y) is even, using the same argument as in the previous case, we conclude
that the set of (n-2)-forms of length [ consists of one open GL(n, R)-orbit, which has two connected
components.

To summarize Martinet’s result, we assign the sign sq(¢) of a (n-2)-form ¢ € A"~?R" to be the
number \q(p)'¥) if 21(¢) = n, and to be 1, if 2I(p) < n.

THEOREM 3. (cf. [41, §5]) (1) The length [(¢) and the sign sq(¢) of a (n-2)-form ¢ € A" ~2R"™
form a complete system of invariants of the standard GL(n,R)-action on A"~2R"™.

(2) The GL(n,R)-orbit of a (n-2)-form @ € A>R™ has two connected components if and only if
n =2k, l(p) =n/2 and l is even.

“the rank of a k-vector is defined similarly as the rank of a k-form.
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2.3. Classification of 3-forms and 6-forms on R?

We observe that the vector space AFR™ is a real form of the complex vector space AFC™*.
Hence, for any ¢ € AFR™ the orbit GL(n,R) - ¢ lies in the orbit GL(n,C) - ¢. We shall say that
GL(n,R)-p is a real form of the complex orbit GL(n,C)- . It is known that every complex orbit has
only finitely many real forms [3, Proposition 2.3]. Thus, the problem of classifying of the GL(n, R)-
orbits in A¥R™ can be reduced to the problem of classifying the real forms of the GL(n, C)-orbits
on A¥C". The classification of GL(n, C)-orbits on A3C™ is trivial, if n < 5, cf. Proposition 2. For
n = 6 it was solved by W. Reichel [50]; for n = 7 it was solved by J. A. Schouten [57]; for n = 8
it was solved by Gurevich in 1935, see also [23]; and for n = 9 it was solved by Vinberg-Elashvili
[65]. In fact Vinberg-Elashvili classified SL(9, C)-orbits on A3C®, which are in 1-1 correspondence
with SL(9, C)-orbits in A3C?* and SL(9, C)-orbits on ASC?*. Since the center of GL(9,C) acts on
A3C?\ {0} with the kernel Zg, it is not hard to obtain a classification of GL(9, C)-orbits on A3C?,
and hence on A3C%* and on ASC?* from the classification of the SL(9, C)-orbits on A3C?.

As we have remarked before, there are infinitely many GL(n, C)-orbits on A3CY and to solve
this complicated classification problem Vinberg-Elashvili made an important observation that the
standard SL(9, C)-action on A3C? is equivalent to the action of the adjoint group G (also called
the O-group) of the Zs-graded complex simple Lie algebra

es = g5 @ g5 ©gf (3)

where g = sl(9,C), gf = A3C?, ¢, = A3C* and G§ = SL(9,C)/Zs is the connected subgroup,
corresponding to the Lie subalgebra gg, of the simply connected Lie group Eéc whose Lie algebra
is eg.

REMARK 1. Let g€ be a complex Lie algebra. Any Z,,-grading g© = @iezmgic on gC defines
an automorphism o € Aut(g®) of order m by setting o(z) := 'z where ¢ = exp(2y/—1m/m) and
x € g(ic. Conversely, any o € Aut(g®) of order m defines a Zp,-grading g€ := @iezmgéc by setling
ot = {z € g% o(2) = €'z}.

In [65, §2.2] Vinberg and Elashvili considered the automorphism 6 of order 3 on eg associated

to the Zs-gradation in (6) °. To describe 6 we recall the root system % of es:

9
Y ={e —¢j,£(e; +¢j+en)}, (4,7, k distinct), Ze—:i = 0}.
i=1
REMARK 2. Given a complex semisimple Lie algebra g© let us choose a Cartan subalgebra hg
of g€. Let ¥ be the root system of gC. Denote by {H,, E,|a € X} the Chevalley system in g©

e, Hy, € hg and E, is the root vector corresponding to « such that for any H € b(g we have
[H,E,| = «(H)E,, [Ha, Ey) = 2E, and [Eo, E_,] = Hy [28, §32.2]. Then

Q(C = @aezj <Ha><C Daes+ <Ea><C Daen+ <E—a><€ (4)

where X7 C X denote the system of positive roots, and XF - the subset of simple roots.

The automorphism #C of order 3 on eg is defined as follows
C
9‘<HO¢,EQ, azsi—€j>c = Id?

eﬁEava:(éi-&-&j—&-ek))c = exp(i27/3) - 1d,

0\(C<Ea,a=*(€i+€j+sk)>c = exp(—i27/3) - Id.

5 Automorphisms of finite order of semisimple Lie algebras have been classified earlier independently by Wolf-Gray
[66] and Kac [31].
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REMARK 3. Let {H,, Eo| o € X} be the Chevalley system of a complex semisimple Lie algebra
gC. Then {Hs,Eo|a € S, B € X} is a basis of the normal form g, also called split real form, of
aC. The normal form of the complex simple Lie algebra eg is denoted by eg(g), and the normal form
of sl(n,C) is the real simple Lie algebra sl(n,IR). Clearly the Lie subalgebra eg)y has the induced
Zs3-grading from the one on es defined in (3) (note that eg) is not invariant under 0%), i.e., we

have
eg(8) = 9-1 D go © g1 (5)

where g; = eg(gy N g;C 1s a real form of g;C for i € {—1,0,1}. Hence there is a 1-1 correspondence
between SL(9, R)-orbits on AR and the adjoint action of the subgroup Gy, corresponding to the
Lie subalgebra go, of the Lie group Gg,

Now let F be the field R or C. Based on (5), (3), Remark 3, and following [65, §1], 34, Lemma 2.5|,
we shall call a nonzero element x € A3FY semisimple, if its orbit SL(9,F) - z is closed in A3F?, and
nilpotent, if the closure of its orbit SL(9,F) - z contains the zero 3-vector. Our notion of semisimple
and nilpotent elements agrees with the notion of semisimple and nilpotent elements in semisimple
Lie algebras [65], [34], see also [11] for an equivalent definition of semisimple and nilpotent elements
in homogeneous components of graded semisimple Lie algebras.

EXAMPLE 12. (/65, §4.4]) Let x € A3F° be a degenerate vector of rank r < 8, where F = R or
C. (The definition of the rank of a k-vector can be defined in the same way as the definition of the
rank of a k-form). Then for any \ € R there exists an element g € SL(9,F) such that g-x = X - z.
Hence the closure of the orbit SL(9,F) - x contains 0 € A3FY and therefore = is a nilpotent element.

PROPOSITION 3. Ewvery nonzero 3-vector x in A3F? can be uniquely written as x = p+e, where
p is a semisimple 3-vector, e - a nilpotent 3-vector, and p N e = 0.

Proposition 3 has been obtained by Vinberg-Elashvili in [65] for the case F = C. To prove
Proposition 3 for F = R, we use the Jordan decomposition of a homogeneous element in a real
Zm-graded Lie semisimple algebra and a version of the Jacobson-Morozov-Vinberg theorem for real
graded semisimple Lie algebras [34, Theorem 2.1].

Using Proposition 3, Vinberg-Elashvili proposed the following scheme for their classification
of 3-vectors on CY. First they classified semisimple 3-vectors p. The SL(9,C)-equivalence class
of semisimple 3-vectors p has dimension 4 - the dimension of a maximal subspace consisting of
commuting semisimple elements in g;. Then the equivalence classes of semisimple elements p are
divided into seven types according to the type of the stabilizer subgroup St(p) and the subspace
E(p) := {x € A3C°|pAz = 0}. We assign a 3-vector on F” to the same family as its semisimple part.
Then Vinberg-Elashvili described all possible nilpotent parts for each family of 3-vectors. When the
semisimple part is p, the latter are all the nilpotent 3-vectors e of the space F(p). The classification
is made modulo the action of Stgy,g,c)(p). Note that there is only finite number of nilpotent orbits
in E(p) for any semisimple 3-vector p. Therefore the dimension of the orbit space A3CY/SL(9,C)
is 4, which is the dimension of the space of all semisimple 3-vectors.

To classify semisimple elements p € A3CY and nilpotent elements in E(p) Vinberg-Elashvili
developed further the general method invented by Vinberg [61, 62, 63, 64] for the study of the
orbits of the adjoint action of the f-group on Z,,-graded semisimple complex Lie algebras.

Vinberg’s method has been developed by Antonyan for classification of 4-forms in C®, which
we shall describe in more detail in Subsection 2.5, by Lé [34] and Dietrich-Faccin-de Graaf [12] for
real graded semisimple Lie algebras. As a result, we have partial results concerning the orbit space
of the standard SL(9,R)-action on A®R?* (as well as partial results concerning the orbit space of
the standard action of SL(8,R) on A*R®* we mentioned above). By Proposition 3, and following
Vinberg-Elashvili scheme, the classification of the orbits of SL(9, R)-action on A3R? can be reduced
to the classification of semisimple elements p in A3R?, which is the same as the classification of real
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forms of SL(9, C)-orbits of semisimple elements p in A3C? (the classification of the SL(9, C)-orbits
has been given in [65]) and the classification of nilpotent elements e € A3RY such that e A p = 0.
Note that e is a nilpotent element in the semisimple component Z(p)' of the zentralizer Z(p) of
the semisimple element p. Thus the latter problem is reduced to the classification of real forms of
complex nilpotent orbits in Z(p)j ¢, and the classification of the latter orbits has been done in [65].
Lé’s method [34] and Dietrich-Faccin-de Graaf’s method of classification of nilpotent orbits of real
graded Lie algebras [12] give partial information on the real forms of these nilpotent orbits. We shall
discuss a similar scheme of classification of 4-forms on R® in Subsection 2.5. Currently we consider
the Galois cohomology method for classification of 3-forms on R? promising [4], and therefore we

include an appendix outlining the Galois cohomology method in this paper.

2.4. Classification of 3-forms and 5-forms on R?®

The classification of 3-vectors (and hence 3-forms) on R® has been given by Djokovic in [11].
Similar to [65], see (3), Djokovic made an important observation that for F = R (resp. for F = C)
the standard GL(8, F)-action on A3F® is equivalent to the action of the adjoint group Ad G of the
Z-graded Lie algebra g = eg(g) (resp. g = eg) on the homogeneous component g; of degree 1, where

=90 3Pg2@g-1DPgoDg1 D g2 D gs. (6)

Here AdGy = GL(8,F)/Z3 [11, Proposition 3.2], g3 = F% g o = A?F% g ; = A3F®,
go = gl(8,F), g1 = A3F8, go = A2F® g3 = IFS.

Since there is only finite number of GL(n,F)-orbits in g;, any element in g; is nilpotent. To
study nilpotent elements in g; = A’R®, as Vinberg-Elashvili did for complex nilpotent 3-vectors
on A3C?, Djokovic used a real version of Jacobson-Morozov-Vinberg’s theorem that associates with
each nilpotent element e € g; a semisimple element h(e) € go and a nilpotent element f € g_; that
satisfy the following condition [11, Lemma 6.1]

[hve]:2€7 [h7f]:_2f7 [evf]:h (7)

Element & is defined by e uniquely up to conjugation and h = h(e) is called a characteristic of e [11,
Lemma 6.2], see also [34, Theorem 2.1] for a general statement. Given e and h, element f is defined
uniquely. A triple (h, e, f) in (7) is called an sly-triple, which we shall denote by sla(e). With help of
sly(e)-triples Djokovic classified real forms of nilpotent orbits GL(8,C) - e, where e € g; = A3C?, as
follows. Denote by Zgr,s,c)(sl2(e)) the centralizer of slz(e) in GL(8,C). Let ® = Zy be the Galois
group of the field extension of C over R. Then Djokovic proved that there is a bijection from the
Galois cohomology (®, Zgrs,c)(sl2(e))) to the set of GL(8,R)-orbits contained in GL(8,C) - e [11,
Theorem 8.2]. A similar argument has been first used by Revoy [51] and later by Midoune and Noui
for classification of alternating forms in dimension 8 over a finite field [43]. Recall that classification
of GL(8, C)-orbits has been obtained by Gurevich and later this classification is also re-obtained by
Vinberg-Elashvili in their classification of 3-vectors on C?. There are altogether 23 GL(8, C)-orbits
on A3C8. In [11] Djokovic gave another proof of this classification using the Z-graded Lie algebra
¢eg in (6). Finally Djokovic computed the related Galois cohomology to obtain the number of real
forms of each complex orbit and he also found a canonical representation of each GL(8,R)-orbit on
A3R8. The space A’R® decomposes into 35 GL(8, R)-orbits.

REMARK 4. Since there is only finite number of GL(8,R)-orbits on A3R®*, there exists
© € A3R®* such that the orbit GL(8,R) - ¢ is open in APR®*. Such a 3-form ¢ is called stable.
Clearly any stable 3-form ¢ is nondegenerate, i.e., rkp = 8. In general, a k-form © on R™ is called
stable, if the orbit GL(n,R) - ¢ is open in AFR™. Clearly any symplectic form is stable. It is not
hard to see that if € A*R™ is open, and k > 2, then either k =3 and n = 5,6,7,8, or k =4 and
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n=6,7, or k=25 and n = 8. Stable forms on R® have been studied in deep by Hitchin [26], Witt
[68] and later by Lé-Panak-Vanzura in [38], where they classified all stable forms on R™ (they proved
that stable k-forms exist on R™ only in dimensions n = 6,7,8 if 3 < k < n — k), and determined
their stabilizer groups [38, Theorem 4.1].

REMARK 5. Djokovic’s classification of 3-vectors on R® contains the classification of 3-vectors
on RS and the classification of 3-vectors on R7 by Theorem 1. The classification of 3-forms on
R7 has been first obtained by Westwick [67] by adhoc method. There are 8 equivalence classes of
multisymplectic 3-forms on R”, which are the real forms of 5 equivalent classes of multisymplectic
3-forms on C7, and there are 6 equivalence classes of 3-forms on RS, which are the real forms of 5
equivalence classes of 3-forms on C°®. The stabilizer of 3-forms in R® has been determined in [25]
and the stabilizer of multisymplectic 3-forms in R” has been defined in [6]. The stabilizer of 3-forms
on F7 has been described by Cohen-Helminck in [8, Theorem 2.1] for any algebraically closed field
F.

REMARK 6. There are 21 equivalence classes of multisymplectic 3-forms on R® which are the
real forms of 13 equivalence classes of multisymplectic 3-forms on C8 [11, §9]. A complete list of
the stabilizer groups Stqrsr)(w) of each multi-symplectic 3-form ¢ on R® has not been obtained
till now according to our knowledge. The stabilizer Stars c)(¢) has been obtained by Midoune in
his PhD Thesis [42], see also [43]. In [11] Djokovic computed the dimension of each GL(8,R)-orbit
in APR® and the centralizer Zausr)(sla(e)) for each milpotent element e € egeg). It follows that
the stabilizer algebra Zy s r)(p) of 3-forms ¢ € A3R® forms a complete system of invariants of the
GL(8,R)-action on A3R8. In Proposition 4 below we show that the stabilizer of any multisymplectic
3-form ¢ on R® is not connected.

PROPOSITION 4. For any multisymplectic 3-form ¢ € APR®* we have Stars,r) (@) NGL™ (8, R) #
# (. Hence the GL(8,R)-orbit of any 3-form on R® is connected.

PRrROOF. For each equivalence class of a 3-form ¢ of rank 8 we choose a canonical element g in

the Djokovic’s list [11, p. 36-37]. Then we find an element g€ Stqr,sr)(0) N GL™ (8, R). Hence the

GL(n, R)-orbit of each multisymplectic 3-form on R® is connected. If ¢ is not multisymplectic, the

orbit GL(8,R) - ¢ is connected by Proposition 2. This completes the proof of Proposition 4. O
Proposition 4 and Proposition 2 imply immediately the following

COROLLARY 1. (cf. [53, Proposition 4.1]) The Poincaré map Pq induces an isomorphism
between GL(8,R)-orbits on ASR® and GL(8,R)-orbit on ASR®*. Each GL(8,R)-orbit on ASR® is
connected.

2.5. Classification of 4-forms on R?

Classification of 4-forms on C8, whose equivalence is defined via the standard action of SL(8, C),
has been given by Antonyan [1]|, following the scheme proposed by Vinberg-Elashvili for the
classification of 3-vectors on C?. In [34] Lé proposed a scheme of classification of 4-forms on R® as
application of her study of the adjoint orbits in Z,,-graded real semisimple Lie algebras. In this
subsection we outline Antonyan’s method and Lé’s method.

Let F = C (resp. R). Denote by g the exceptional complex simple Lie algebra ez (rep. e7(7)
- the split form of e¢7). The starting point of Antonyan’s work on the classification on 4-vectors
on C® (resp. the starting point of Lé’s scheme of classification of 4-forms on R®) is the following
observation, cf. (3), (5). The standard GL(8,F)-action on A*F® is equivalent to the action of the
f-group of the Zy-graded simple Lie algebra

g=g0Dg (8)
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on its homogeneous component g;, which is isomorphic to A*F®. Here gq = sl(8,TF).
Let us describe the components go and g; in (8) for the case F = C using the root decomposition
of e7. Recall that e7 has the following root system:

8

S ={ei—cjeptegtentenli# g (g s distinet), Y & =0}
=1

By Remark 1, the Zy-grading on e7 is defined uniquely by an involution 6% of ¢7. In terms of the
Chevalley system of e7, see Remark 2, the involution #C is defined as follows:

C
0=y, = 1d,

HC(EQ) =FE,, if a =¢; —¢j,
QC(EQ) =—-F, iffa=¢+ €5+ e +ep

Note that 6 := 9|(C:
g=¢e7(7)
on 67(7).

Following the Vinberg-Eliashivili scheme of the classification of 3-vectors on CY Antonyan
classified SL(8, C)-equivalent 4-vectors on C8 by using the Jordan decomposition (Proposition 3).
First he classified all semisimple 4-vectors on C® using Vinberg’s theory on finite automorphisms of
semisimple algebraic groups [61], which has been employed by Vinberg-Elashvili for the classification
of semisimple 3-vectors as we mentioned above. Next we include each semisimple element x € g; of
the Zs-graded complex Lie algebra e into a Cartan subalgebra of g;, which is defined as a maximal
subspace in gj consisting of commuting semisimple elements [63] (this definition is also applied to
real or complex Z,,-graded semisimple Lie algebras g). If g is a complex Z,,-graded sesmisimple
Lie algebra, then all the (complex) Cartan subalgebras in g; are conjugate under the action of the
adjoint group Gg. To reduce the classification of semisimple elements in g; further we introduce
the notion of the Weyl group W(g,C) of a complex Z,,-graded semisimple Lie algebra g w.r.t. to a
Cartan subalgebra C C g; as follows. Let GT be the connected semisimple Lie algebra having the
Lie algebra g and G(g the Lie subgroup of the G€ having the Lie algebra go. We define

is an involution of e7(7) and it defines the induced Zs-gradation from ez

No(C) == {g € Go| Vz € C g(x) € C},

Zo(C) :={g € Go|Vzr € C g(x) = x}.

Then W(g,C) := No(C)/Zy(C). The Weyl group W(g,C) is finite, moreover W(g,C) is generated
by complex reflections, which implies that the algebra of W (g,C)-invariants on C is free [61].
Furthermore, two semisimple elements in C belong to the same G§-orbit if and only if they are
in the same orbit of the W (g, C)-action on C. Antonyan showed that the Weyl group W (e7,C) has
order 2903040 and the generic semisimple element has trivial stabilizer. He also found a basis of
a Cartan algebra C C g1, which is also a Cartan subalgebra of the Lie algebra e;. Thus the set of
SL(8, C)-equivalent semisimple 4-vectors on C® has dimension 7. This set is divided into 32 families
depending on the type of the stabilizer of the action of the Weyl group W (e7,C) on the Cartan
algebra C. For the classification of nilpotent elements and mixed 4-vectors on C® Antonyan used
the Vinberg method of support [64].

Lé suggested the following scheme of classification of the SL(8, R)-orbits on A*R® [34]. Observe
that we also have the Jordan decomposition of each element in A*R® into a sum of a semisimple
element and a nilpotent element [34, Theorem 2.1], as in Proposition 3. First, we classify semisimple
elements, using the fact that every Cartan subspace C C g; is conjugated to a standard Cartan
subspace Cp that is invariant under the action of a Cartan involution 7, of the Zo-graded Lie algebra
e7(7) [47]. The set of all standard Cartan subspaces Co C g1 C g = ¢7(7), and more generally, the set
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of all standard Cartan subspaces C C g1 in any Zs-graded real semisimple Lie algebra g, has been
classified by Matsuki and Oshima in [47]. Lé decomposed each semisimple element into a sum of an
elliptic semisimple element, i.e., a semisimple element whose adjoint action on ggc = ey has purely
imaginary eigenvalues, and a real semisimple element, i.e., a semisimple element whose adjoint
action on ggc = e¢7 has real eigenvalues, cf. [52] for a similar decomposition of semisimple elements
in a real sesimsimple Lie algebra. The classification of real semisimple elements and commuting
elliptic semisimple elements in Cy C g; is then reduced to the classification of the orbits of the Weyl
groups of associated Zg-graded symmetric Lie algebras on their Cartan subalgebras [34, Corollary
5.3]. As in [65] and [1], the classification of mixed 4-vectors on R® is reduced to the classification of
their semisimple parts and the corresponding nilpotent parts. The classification of nilpotent parts
can be done using algorithms in real algebraic geometry based on Lé’s theory of nilpotent orbits in
graded semisimple Lie algebras [34], that develops further Vinberg’s method of support also called
carrier algebra. In [12| Dietrich-Faccin-de Graaf developed Vinberg’s method further and applied
their method to classification of the orbits of homogeneous nilpotent elements in certain graded
real semisimple Lie algebras. In particular, they have a new proof for Djokovic’s classification of
3-vectors on RS,

REMARK 7. (1) The method of 0-group has been extended by Antonyan and FElashvili for
classifications of spinors in dimension 16 [2].

(2) Many results of classifications of k-vectors over the fields R and C have their analogues over
other fields F and their closures F [43]. Over the field F = Zs the classification of S-vectors in F™ is
related to some open problems in the theory of self-dual codes [49]. Till now there is no classification
of 8-vectors in F™ ifn > 9 and F #£ C.

3. Geometry defined by differential forms

In this section we briefly discuss several results and open questions on the existence of differential
k-forms of given type on a smooth manifold, where k = 2, 3, 4.

e Agsume that £k = 2 and ¢ is a closed 2-form with constant rank on M™, then ¢ is called
a pre-symplectic form [60]. Till now there is no general necessary and sufficient condition for the
existence of a pre-symplectic form ¢ on a manifold M™ except the case that ¢ is a symplectic
form. Necessary conditions for the existence of a symplectic form ¢ on M?" are the existence of
an almost complex structure on M?" and if M?" is closed, the existence of a cohomology class
a € H?>(M*;R) with a® > 0. If M?" is open, a theorem of Gromov [18, 19] asserts that the
existence of an almost complex structure is also sufficient, his argument has been generalized in
[13] and used in the proof of Theorem 4(2) below. Taubes using Seiberg-Witten theory proved that
there exist a closed 4-manifold M* admitting an almost complex structure and a € H?(M,R) such
that a? # 0 but M* has no symplectic structure [59]. Note that for any symplectic form w on M?"
there exists uniquely up to homotopy an almost complex structure J on M?" that is compatible
with w, ie., g(X,Y) := w(X,JY) is a Riemannian metric on M?". Connolly-Lé-Ono using the
Seiberg-Witten theory showed that a half of all homotopy classes of almost complex structures on
a certain class of oriented compact 4-manifolds is not compatible with any symplectic structure |9].

e Manifolds M?" endowed with a nondegenerate conformally closed 2-form w, i.e., dw = 6 Aw for
some closed 1-form 6 on M?", are called conformally symplectic manifolds. A necessary condition
for the existence of nondegenerate 2-form w on M?" is the existence of an almost complex structure
on TM?" which is equivalent to the existence of a section J of the associated bundle SO(2n)/U(n),
see [56] where a necessary condition for the existence of a section J has been determined in terms
of the Whitney-Stiefel characteristic classes. We don’t have necessary and sufficient conditions
for the existence of a general conformally symplectic form on M?", except the existence of an
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almost complex structure on M?". In [39] Lé-Vanzura proposed new cohomology theories of locally
conformal symplectic manifolds.

e Assume that k = 3 and ¢ is a stable 3-form on M?®. In [46] Noui and Revoy proved that the
Lie algebra of the stabilizer of ¢ is a real form of the Lie algebra sl(3,C). Hence stable 3-forms
on R® are equivalent to the Cartan 3-forms on the real forms sl(3,R), su(1,2) and su(3) of the
complex Lie algebra sl(3,C). Later in [38] Lé-Panak-Vanzura reproved the Noui-Revoy result by
associating to each 3-form on R® various bilinear forms, which are invariants of the GL(8, R)-action
on A3R® and studied properties of these forms. They computed the stabilizer group of a stable
form ¢ € A’R®* and found a necessary and sufficient condition for a closed orientable manifold
M? to admit a stable 3-form [38, Proposition 7.1]. In [36] Lé initiated the study of geometry and
topology of manifolds admitting a Cartan 3-form associated with a simple compact Lie algebra.

e Necessary and sufficient conditions for a closed connected 7-manifold M7 to admit a
multisymplectic 3-form has been determined in [54], see also Appendix 4 below. There are two
equivalence classes of stable 3-forms on R7 with the stablizer groups Go and Gy respectively.
Since Go and G are exceptional Riemannian and pseudo Riemannian holonomy groups, manifolds
M7 admitting stable 3-form of Go-type (resp. of Gg—type) are in focus of research in Riemannian
geometry (respectively in pseudo Riemannian geometry) [30], [35], [32]. As we have mentioned, the
study of geometries of stable forms in dimension 6,7, 8 have been initiated by Hitchin [25, 26].

e It is worth noting that the algebra of parallel forms on a quaternion Kahler manifold is
generated by the quaternionic 4-form, the algebra of parallel forms on a Spin(7)-manifold is
generated by the self-dual Cayley 4-form. Riemannian manifolds admitting parallel 2-forms of
maximal rank are Kéhler manifolds, which are the most studied subjects in geometry, in particular
in the theory of minimal submanifolds, see e.g., [37].

4. Manifolds admitting a Go-structure

In 2000 Hitchin initiated the study of geometries defined by differential forms [25]|, and
subsequently in [26] he initiated the study of geometries defined by stable forms. The latter
geometries have been investigated further in [68], [38]. A necessary and sufficient condition for
a manifold M to admit a stable form ¢ of Ga-type, i.e., the stabilizer of ¢ is isomorphic to the
group Go, has been found by Gray [20]. In this Appendix we state and prove a necessary and
sufficient condition for a manifold M to admit a stable form ¢ of Ga-type. We recall that a 3-form
¢ on R7 is called of Ga-type, if it lies on the GL(R")-orbit of a 3-form

wo=01 N0 NOs+ a1 N0+ as AbOs+ ag A bs.
Here a1, ap are 2-forms on R” which can be written as

a1 =Y1 A NY2 +yYsNya, ca =91 ANys — Y2 ANys, @3 =y1 Nya +y2 N ys

and (01, 02,03, v1,%2,y3,y4) is an oriented basis of R7*.
Bryant showed that Stgrzr)(vo) = G2 [7]. He also proved that G2 coincides with the
automorphism group of the split octonians [7].

THEOREM 4. (1) Suppose that M7 is a compact 7-manifold. Then M7 admits a 3-form of Go-
type, if and only if M7 is orientable and spinnable. Equivalently the first and second Stiefel- Whitney
classes of M7 vanish.

(2) Suppose that M7 is an open manifold which admits an embedding to a compact orientable
and spinnable 7-manifold. Then M7 admits a closed 3-form ¢ of Ga-type.



374 Xour Bau Jle, 1. Bamxypa

PROOF. First we recall that the maximal compact Lie subgroup of Gy is SO(4). This follows from
the Cartan theory on symmetric spaces. We refer to [27, p. 115] for an explicit embedding of SO(4)
into Go. The reader can also check that the image of this group is also a subgroup of Ga C GL(R").
We shall denote this image by SO(4)3 4.

Now assume that a smooth manifold M7 admits a Gg—structure. Then it must be orientable and
spinnable, since the maximal compact Lie subgroup SO(4)s 4 of G2 is also a compact subgroup of
the group Go.

LEMMA 2. Assume that M7 is compact, orientable and spinnable. Then M7 admits a Go-
structure.

PROOF. Since M7 is compact, orientable and spinable, M7 admits a SU(2)-structure [16]. Since
SU(2) is a subgroup of SO(4)3 .4, M admits a SO(4)3 4-structure. Hence M7 admits a Go-structure.
O

This completes the proof of the first assertion of Theorem 4.

Let us prove the last statement of Theorem 4. Assume that M7 is a smooth open manifold which
admits an embedding into a compact orientable and spinnable 7-manifold. Taking into account the
first assertion of Theorem 4, there exists a 3-form ¢ on M7 of Ga-type. We shall use the following
theorem due to Eliashberg-Mishachev to deform the 3-form ¢ to a closed 3-form @ of Go-type on
M.

Let M be a smooth manifold and a € HP(M,R). For a subspace R C APM we denote by ClogR
the subspace of the space I'(M,R) of smooth sections M — R that consists of closed p-forms
we I'(M,R) C QP(M) such that [w] = a € HP(M,R). Denote by Diff(M) the diffeomorphism
group of M.

ProposITION 5 (Eliashberg-Mishashev Theorem). ([13, 10.2.1]) Let M be an open manifold,
a € HP(M,R) and R C APM an open Diff (M )-invariant subset. Then the inclusion

ClogR — T'(M,R)

1s a homotopy equivalence. In particular,

- any p-form w € T'(M,R) is homotopic in R to a closed form ©;

- any homotopy wy € T'(M,R) of p-forms which connects two closed forms wgy,w; such that
[wo] = [wi] = a € HP(M,R) can be deformed in R into a homotopy of closed forms iw; connecting
wo and wy such that [w] = a for all t.

Let R be the space of all 3-forms of Ga-type on M7. Clearly this space is an open Diff (M7)-
invariant subset of A3MT. Now we apply the Eliashberg-Mishashev theorem to the 3-form @3 of
Go-type whose existence has been proved above. This completes the proof of Theorem 4. O

5. Classification of orbits over a nonclosed field
of characteristic 0

by Mikhail Borovoi

We consider a linear algebraic group G with group of k-points G(k) over an algebraically closed
field & of characteristic 0. Assume that G acts on a k-variety X with set of k-points X (k), and assume
that we know the classification of G(k)-orbits in X (k), e.g., k = C, G = GL(9,C), X = A3C. Let
ko be a subfield of k such that k is an algebraic closure of ko. We write I' = Gal(k/ko) for the Galois
group of the extension k over kg. If kg = R, then I' = Gal(C/R) = {1,~}, where v is the complex
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conjugation. Assume that we have compatible kg-forms Gg of G and Xy of X. We wish to classify
Go(ko)-orbits in Xo(ko). We start with one G-orbit Y in X. We check whether Y is I'-stable. If not,
then Y has no ko-points. Assume that Y is I'-stable. Then the I'-action on Y defines a kgp-model
Yy of Y. Now Gy acts on Yy over kg. We say that Yj is (a twisted form of) a homogeneous space of
Go. We ask

(1) whether Yj has ko-points;

(2) if the answer to (1) is positive, we wish to classify G(ko)-orbits in Yy (ko).

Question (1) is treated in [5]. Assume that for our Y, the answer to question (1) is Yes.
Let yo € Yo(ko), and let Hy = Stg,(yo). Then we may write Yy = Go/Hp. The Galois group
I' = Gal(k/ko) acts compatibly on Go(k) = G(k), Ho(k) = H(k), and Yy(k) =Y (k) = G(k)/H (k).

THEOREM 5 ([58], Section 1.5.4, Corollary 1 of Proposition 36). There is a canonical bijection
between the set of orbits Yo(ko)/Go(ko) and the kernel ker[H(ko, Ho) — H*(ko, Go)].

Here H'(ko, Hy) := HY(T', Hy(k)).
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