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Abstract

We describe in breaf the complete table of closed irreducible orientable 3-manifolds of
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1. Statement and history of the problem

By manifold, we understand a compact connected 3-dimensional manifold with boundary (the
boundary may be empty, in this case we speak about closed manifolds). Our project is related to
the following goals.

(A) Algorithmic recognition of manifolds. Given two manifolds (given by combinatorial data; say
by decomposition into simplexes), to understand whether they are homeomorphic?.

(B) Efficient tabulation of manifolds. To create a table (=list equipped with additional information
such as Thurston geometry type, some algebraic-topological information and the values of
Turaev-Viro invariants [23]) of all manifolds up to a certain complexity?® ¢ together with an
effective comparing method of any two manifolds of complexity < c.

2Recall that in dimension 3, the topological, smooth and PL categories are equivalent
3we will recall the definition of complexity in the appendix below; complexity of a manifold is a non-negative
integer and for each ¢ > 0 the number of closed irreducible manifolds of complexity c is finite
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Of course, both goals are fundamental, they stay in the center of modern three-dimensional
topology and were studied from different perspectives. Clearly, these two goals are closely related.
Indeed, having an effective and fast algorithm for the goal (A), one can list all manifolds up to
certain complexity allowing having homeomorphic manifolds in the list (there are naive and more
sophisticated ways to do it), compare the manifolds from the list pairwisely with the help of the
algorithm and kill the duplicates. A natural modification of this naive procedure will also label each
manifold with its complexity.

In the other direction, the goal (B) explicitly includes the goal (A) restricted to the manifolds
of complexity < c.

In theory, the goal (A) can be considered to be solved: there exists an algorithm that, given
two manifolds, decides whether they are homeomorphic. It is explained in the book [17, §6]. The
goal (A) was formulated at least in 1962 by W. Haken [5]. Nontrivial steps in the solution of this
problem are due in particular to G. Hemion [6] and as a consequence the goal (A) was announced
to be solved |8, 26]. Later, a crucial gap in the proof of [6] was found, see the discussion in [17,
§6.1]. The problem was finally solved in [17, Theorem 6.6.1].

Unfortunately, using this algorithm to compare two even relatively simple manifolds would
exceed the abilities of the modern computers. In simple words, in theory the algorithm exists, in
practice it does not help, i.e., the situation in general recognition problem is similar to the situation
in its following important special case. Given a closed manifold, how to understand whether it is
homeomorphic to the sphere. There is an algorithm of doing it, it is based on the ideas/works of A.
Thompson [20], and is is explained in details in [14]. The algorithm, at least in its initial version,
is so slow though that there is no sense to realize it on the computer. From the other hand now,
because of Perelmann’s proof of the Poincare conjecture, there exists a much faster algorithm that
answers whether a manifold is the sphere: one needs to check whether the fundamental group of
the manifold is trivial, and the operation is a relatively “cheap” from the calculation point of view.

The results which we report in this note are related to the goal (B). In the last 15 years [16, §2]
we (together with other mathematicians, see the list of coauthors in the references below) actively
worked on the table of manifolds. The new result of this note is the table of all closed orientable
irreducible manifolds of complexity 13. The result related to complexity < 12 is published, for
example, in [25].

2. On the table of 3-manifolds of complexity < 13

2.1. The exact numbers of pairwise nonhomeomorphic closed orientable
irreducible 3-manifolds of complexity < 13

Here n(c) denotes the number of closed orientable irreducible 3-manifolds of complexity c.

c 01234 |5 |6 |7 8 9 10 11 12 13 Total
N(c) |32 |47 |14 |31 | 74| 175|436 | 1154 | 3078 | 8421 | 23448 | 66197 | 103041

The definition of complexity of a manifold is given in appendix below. Additionally we list there
the manifolds of complexity 0.

2.2. An information about manifolds of complexity < 13 from the point of view
of Thurston’s classification

Recall that Thurston proved that there are 8 geometries: E3, S, 5?2 x R, H? x R, 5/'327:5, Nil, Sol
and H3, [22]. A 3-manifold allows not more than 1 of them. Following table gives an information
about manifolds of complexity < 13 according to the classification of Thurston.



PacnoznaBanve u tabynupopanue 3-muOT000pa3uit 10 caoxuocTu 13

293

c|S?xR|E}| H*>xR S3 | Nil 5/'52'1/% Sol | H? | Non-geometric
0 0| 0 0 3 0 0 0 0 0
1 0| 0 0 2 0 0 0 0 0
2 0| 0 0 41 0 0 0 0 0
3 0| 0 0 7|0 0 0 0 0
4 0 0 0 14 0 0 0 0 0
5 0 0 0 31 0 0 0 0 0
6 0 6 0 61 7 0 0 0 0
7 0 0 0| 117 | 10 39 5) 0 4
8 0 0 2] 214 | 14 162 9 0 35
9 0| 0 0| 414 | 15 513 | 23 4 185
10 0| 0 8| 798 | 15| 1416 | 39 25 77
11 0| 0 4 11582 | 15| 3696 | 83 | 120 2921
12 0 0 24 | 3118 | 15 9324 | 149 | 461 10357
13 0 0 9 16222 | 15 | 22916 | 303 | 1641 35091

The first column of the table above contains zeros only because, as it well known, there exist
exactly 2 closed orientable 3-manifolds having S? x R geometry and both these manifolds are
reducible. Therefore, they do not involve in our table.

Below we visualize the same information as in the table above. The diagram contains not 9 but
4 graphs. Here we use the fact that a manifold having a geometry of the first 6 types is a seifert
manifold. All values are shown on a logarithmic scale.

65500+
32800
16400 |-
8190 |-
4100+
2050 |-
1020 -
512+
256 -
128+
64 -

32 -

16 |

—e— Seifert

—— Non-geometric
—a— Hyperbolic
——Sol

2.3. An information about manifolds of complexity < 13 from the point of view
of another classification

Now we consider manifolds in the table from the other point of view, we partition the manifolds
into 4 types depending on the type (seifert or hyperbolic) of blocks which are involved in the
JSJ-decomposition of a manifold under consideration:
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1. S — seifert manifolds,

2. h — hyperbolic manifolds,

3. Cs — manifolds which are not seifert but can be glued from seifert blocks only,

4. C}y — non-hyperbolic manifolds of which JSJ-decomposition involves a hyperbolic block.

The classification above do not coincide with classical Thurston’s classification, at the same time
it is clear that our classification is closely related to Thurston’s one. The fact that a manifold
is of the type S is equivalent to the fact that the manifold has a geometry of the first 6 types.
The h-manifolds are exactly the hyperbolic manifolds. The main difference concerns the other
manifolds. We separate out Cp-manifolds from all other non-geometric manifolds. Cg-manifolds
are manifolds having geometry Sol together with non-geometric manifolds which are not Cj. The
partition of composite manifolds into two different types C's and C}, in particular, is motivated by
a consideration below (see 3.4). Note also following relationship with knot theory. a satellite knot
is a knot which can be placed in a regular neighborhood of some other knot. One can expand the
classification to the manifolds which are the complement of prime knots. Then a satellite knots
(and probably no other) would give Cj-manifolds.

The table below shows how the numbers of manifolds of 4 types defined above increase depending
on the complexity.

lcJof1][2]3[4]5][6] 7 | 8[9 ] 10| 11 ] 12 | 13 [ Total |

S 131247 |14 |31 |74|166 | 392 | 942 | 2237 | 5297 | 12481 | 29162 | 50812
h 10]0[0]0] 0] 010 0 0 4 25 120 461 1641 | 2251
Cs|0O]0O]0O]O] O[O0 O 9 44 | 208 | 816 | 3001 | 10482 | 35177 | 49737
Cp,b10]0|0O]0O]O0O[0]O0 0 0 0 0 3 24 217 244

3. On the growth of the number of some types of manifolds

3.1. On the growth of the total number of manifolds

Recall that if a manifold is glued from n tetrahedra then its complexity is at most n [25, Theorem
2.2.5]. In fact for most manifolds their complexity is precisely the minimal number of tetrahedra
the manifold can be glued from, see [25, Theorems 2.2.6 and 2.2.7| and the discussion around and
also [11]. The number of distinct gluings of n tetrahedra increases (depending on n) very fast. A
theoretical consideration and computing experiments show the the growth is faster than exponential.
We list exact numbers of distinct gluings of 1,2,3 and 4 tetrahedra: 11,169, 5959,405607 ([19]).
However, our results shows that if we consider not all gluings but gluings which gives close orientable
irreducible manifolds only then the growth is exponential.

275
L N() - : N(c)
Here we visualize the value N(e—1)» 1€ the ratio ., N(e—T)
of next member of the sequence by previous one. ,,
The value is informative in the case we concern a 2! m
sequence like geometric progression. 175 o
1 2 3 4 5 6 7 8 9 10 11 12 13

The graph above allows us to formulate the following conjecture concerning the growth of the
number of closed orientable irreducible manifolds:

limM>O, limNT<oo

c—oo 2.5¢ c—00
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3.2. On the growth of the number of seifert manifolds

We see that most manifolds of low complexity are Seifert (which was expected and even proved
for very low complexity [1, 12, 15]). Our table allows to conjecture that the growth of the number of
seifert manifolds is not so fast as the growth of the total number of manifolds, but it is exponential
also.

The graph on the right illustrates the supposition. 2 S(c)

Here we visualize the value quc(f)l), where S(c) 2% g7 ‘/W
denotes the number of seifert manifolds of com- )

plexity c. For sufficiently large c the ratio is closed \\/

to 2.3 and decreases slowly. 1 2 3 4 5 6 7 85 9 10 1 12 13

We congecture that

lim®>0, lim&<oo
c—oo  2€ c—oo 2.5¢
At the same time the proportion between the
number of seifert manifolds of a complexity and !
the total number of manifolds of the complexity 0es S(c)
(i.e., the value %) monotonously decreases star- " N(e)
ting at ¢ = 6. Probably this is a consequence 0e
of the facts that g(;c) approaches to 0 while ggi) D

approaches to infinity.

3.3. On the growth of the number of hyperbolic manifolds

We also see that relatively few manifolds in our table are hyperbolic, which was actually not
expected: recall that there it is generally believed that “most” manifolds are hyperbolic. In folklore,
this statement is attributed to M. Gromov (rather as a conjecture or a general direction of research
that as a claim) and is possibly nowhere published. Partial results include [2, 7], see also discussion
in [9, §2].

(©) s
the number of hyperbolic manifolds of complexity
0

¢) is not large but increases monotonously.

In our table hyperbolic manifolds appear at 02 pe) /',/.
c = 9. The proportion between hyperbolic and all N(e) e
manifolds (i.e., the value J}\Z,(‘? where h(c) denotes 0.01 '

65

At the same time the speed of the growth (we 55 ij(h@l) \
Cc—
mean the value h?(f)l ) decreases monotonously
c—1) 45

and very fast. A
y ag \.\I

1 2 3 4 5 6 7 8 9 10 11 12 13
Now we know not much about the complexity of hyperbolic manifolds, but we conjecture that
the proportion between hyperbolic manifolds and all manifolds (contrary to the opinion mentioned
above) approaches not to 1 but to O:

LG
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3.4. On the growth of the number of Cs and () manifolds

It is understood, that we do not have enough information to formulate a well-grounded
conjectures, however, we think that for sufficiently large values of complexity the dominating kind
of manifolds is not hyperbolic manifolds but the union Cg U C}, and probably C} will dominate
Cg, i.e.,

lim —CS(C) + Cnlc) =1 lim Cs(c)
c—00 N(c) T S Ch(c)

=0.

Here Cg(c) and Cj(c) denote, respectively, the numbers of C's and C}, manifolds having complexity
c.

These suppositions are based on following consideration.

A manifold of these two types (Cs and C}), by definition, can be glued from seifert and
hyperbolic manifolds with toric (maybe disconnected) boundary. The number of such manifolds
of a complexity is much more and increases faster than the number of closed manifolds of the same
complexity. The complexity of glued manifold usually is greater than the sum of complexities of
parts of which it is glued from (it is necessary to take into account a “complexity” of the gluings).
However, seemingly the growth of the number of blocks which one can use for gluing (more precisely,
the growth of the number of combinations of blocks) determinates the growth of the number of closed
manifolds composed from these blocks. Our supposition that C} dominates C's for ¢ — oo is based
on the observation that the number of hyperbolic blocks increases faster than the number of seifert
blocks. A closed seifert manifold also can be glued from seifert blocks. It takes place if very specific
gluings are used. The proportion between such gluing and all possible gluings decreases for ¢ — co.
The fact explains the decreasing of the proportion of seifert manifolds which was mentioned above.

Additionally we note the following information from our table which, as we think, corroborates
the congecture above.

Cgs-manifolds ag)pear at complexity 7. Then the
proportion N increases monotonously. At ¢ =
= 13 the Value is already more than a half.
The total number (the sum over all values of
complexity) of Cg manifolds is almost equal to
the total number of seifert manifolds (see the table
in § 2.3).

Taking into account trends which were mentioned above we can think that at complexity 14
Cs-manifolds will leave seifert manifolds behind.

The speed of the growth of Cg(c) (we mean the Cs(e)
value CS(SC(E)I)) decreases but within our table it
remains greater than the corresponding value for

the total number of manifolds. 335
1 2 3 4 5 [ T 8 9 10 11 12 13

The proportion of hyperbolic manifolds also increases monotonously and fast but it is essentially
less and the speed decreases faster than it takes place for Cg-manifolds. Additionally at ¢ = 11 the
Cp-manifolds appear. The proportion of Cp-manifolds is very little but the number of the manifolds

increases very fast (3at c =11, 24 at ¢ = 12, 217 at ¢ = 13). Also note that the speed of the growth

increases: 22147 > 3 , while if we denote by n(c) the number of manifolds of any other type (5, Cg or

h) then the ratio decreases, i.e., nq(f(t)l) < M9 for any ¢ for Cg and h manifolds and for ¢ > 9 for

: n(c—1)
S-manifolds.
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4. On the way of obtaining of our table

Our table was created in three steps.

Firstly we have enumerated all manifolds of complexity < 13. More precisely, we have
enumerated their special spines with < 13 real vertices (we recall the definitions of special spine
in appendix below). The obtained list contained many duplicates. The step was much more longer
than two other steps. It was necessary to use supercomputer.

Then each manifold was recognized using the method described in [17, §7]. As a result each
manifold was labeled with a “name” which contains an information about the structure of the
manifold. The name of a seifert manifold is its base surface and parameters of its exceptional
fibers. The name of a manifold having non-trivial JSJ-decomposition is composed from the names
of blocks involved in the decomposition and a description of their gluings. The name of a hyperbolic
manifold is a representation of the manifold as a Dehn filling of a hyperbolic manifold with toric
(not necessary connected) boundary.

Finally we have removed all duplicates. The ways we do it are different for manifolds of
different types. Seifert manifolds and composite manifolds gluing from seifert blocks only (S and Cg
manifolds) can be labeled with canonical names which are uniquely defined and can be obtained
starting with any of admissible name of the manifold. Hence for manifolds of these types it is
possible to find duplicates by comparing of names only. For hyperbolic manifolds and composite
manifolds gluing from seifert and hyperbolic blocks (h and Cj, manifolds) our methods do not give
canonical names. So to prove that two manifolds of these types are nonhomeomorphic we compare
their first homology groups and the values of Turaev-Viro invariants. It is interesting to note that the
invariants of relatively low order were enough. Almost all pairs were distinguished by invariants of
order < 8. 42 pairs were distinguished by invariants of order 9. And only one pair was distinguished
by invariants of order 10.

Of course, if the numbers of the order 100000 appear, it is necessary to double-check the result.
There are an “internal” methods to check the table, but the most convincing was the comparison of
our list with the lists independently obtained by other groups. There are at least two more scientific
groups successfully working in the tabulation /recognition problem of 3-dimensional manifolds. The
group lead by B. Burton (initially University of Melbourne, now University of Queensland) created
a program called Regine. It is available at https://regina-normal.github.io/. “Regine” is very
powerful and very useful tool for a research in the area of 3-dimensional topology. In 2012 using
the program the Burton’s group has created a table of manifolds of complexity < 12 (the result
seemingly is not properly published). The other group is at ENS Pisa lead by C. Petronio. B. Martelli
and C. Petronio went [10] up to complexity 9. Tables obtained by these two groups coincide with
corresponding subsets of our table. Till now we do not know about some other list of manifolds of
complexity > 12. So we have nothing to compare our list with.

Our table and the program which we used are available online http://www.matlas.math.csu.
ru/.

The “inner” language of our algorithm and of our computer program is based on the theory
of special spines, but of course our program understands also many other popular combinatorial
ways of describing the manifolds (for example, surgery presentation and singular triangulation)
automatically translating them to the language of special spines.
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Appendix: informal explanation of terminology of 3-dimensional
topology used above

Let M be a connected compact 3-dimensional manifold with boun-
dary. An imbedded 2-dimensional CV-complex P is a spine of M, if
M\ P=0M x (0,1]. A two-dimensional analog is on the picture.

A spine is simple, if it has a nice local structure as on the picture below.

Nonsingular point Triple line True vertex

A True Vertez of a spine is a point having a neighborhood like in the figure above on the right.
A simple spine allows a natural stratification. Strata are of dimension 0,1 and 2. A spine is special
if each its 1-stratum is a 1-cell and each its 2-stratum is a 2-cell.

Each closed connected 3-manifold with non-empty boundary has a special spine [17, Theorem
1.1.13]. If the boundary is empty, we remove a 3-dimensional ball from the manifold and obtain a
manifold with the boundary. A special spine allows one to reconstruct the manifold [17, Theorem
1.1.17].

A graphical presentation of two special spines are on the picture.
It is clearly a combinatorial object, the information necessary to
reconstruct the special spine is the vertices, the 1-dimensional edges
between the vertices (i.e., the 1-skeleton), and also the information
how the 2-cells are glued near the vertices. One can give it as a
word in a certain alphabet consisting of the number of vertices plus
3 symbols.

Note that not every special polyhedron corresponds to a manifold — there exist so-called
unthickenable special polyhedra that can not be special spines of 3-manifolds. It is quite easy
to understand whether a special polyhedron is unthickenable, see the discussion in [25, §2.2] and
[17, discussion starting from page 9].

The complezity of a manifold is the minimal numbers of true vertices in its simple spine. It is a
finite number. In this notes we concern with closed irreducible manifolds only. Within the class of
manifolds for each complexity c there exists finitely many pairwise nonhomeomorphic manifolds of
complexity c. Note that the class contains exactly 3 manifolds of complexity 0 (i.e., having a simple
spines with no vertex). They are S3,Rp® and lens space L(3,1). Of course, the manifolds have
special spines (with non-zero number of true vertices) also, but in the case of these three manifolds
the minimum of the number of true vertices in a spine reaches on a simple spines with no vertices.

One of the first spectacular applications of the theory of complexity is due to A.T. Fomenko. and
the first author ([12], see also [13] and [17, 2.5.1]). They have found all closed hyperbolic manifolds
of the lowest complexity 9 (there are precisely four such) and calculated their volumes. The result
of the calculation were the numbers & 0.94272, ~ 0.98139, ~ 1.01494 and ~ 1.26370. Recall that by
the Mostow Rigidity Theorem [18]| the Riemannian metric of constant negative sectional curvature
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is unique on every closed 3-manifold on which it exists, which makes the notion “volume of closed
hyperbolic manifold” well-defined. The manifold with the volume =~ 0.98139 was previously studied
by W. Thurston [21] and he suggested it as a candidate for the hyperbolic manifold of the smallest
volume. Since 0.94272 < 0.98139 (even taking into account the numerical error of calculations),
this our result proved that the conjecture of Thurston is wrong. We conjectured [12, Conjecture
1] that the hyperbolic manifold with volume ~ 0.94139 is the one with the smallest volume. The
conjecture was proved in 3, Corollary 1.3|, see also the discussion in [4].
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