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Аннотация

Шахматные комплексы и их обобщения, как объекты, и дискретная теория Морса,
как инструмент, представлены в виде объединяющей темы, связывающая различные об-
ласти геометрии, топологии, алгебры и комбинаторики. Теорема Эдмондса и Фулкерсо-
на о бутылочном горлышке (минимаксе) реализуется и интерпретируется как результат
о критической точке дискретной функции Морса на сфере Бира 𝐵𝑖𝑒𝑟(𝐾) ассоциирован-
ного симплициального комплекса 𝐾. Мы проиллюстрируем использование «стандартных
дискретных функций Морса» на обобщенных шахматных комплексах, доказав результат
связности для шахматных комплексов с кратностями. Приложения включают новые ре-
зультаты типа Тверберга-Ван Кампена-Флореса для разбиений симплекса без 𝑗-кратных
пересечений.
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Abstract

Chessboard complexes and their generalizations, as objects, and Discrete Morse theory, as a
tool, are presented as a unifying theme linking different areas of geometry, topology, algebra and
combinatorics. Edmonds and Fulkerson bottleneck (minmax) theorem is proved and interpreted
as a result about a critical point of a discrete Morse function on the Bier sphere 𝐵𝑖𝑒𝑟(𝐾) of an
associated simplicial complex 𝐾. We illustrate the use of “standard discrete Morse functions”
on generalized chessboard complexes by proving a connectivity result for chessboard complexes
with multiplicities. Applications include new Tverberg-Van Kampen-Flores type results for 𝑗-
wise disjoint partitions of a simplex.
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1. Introduction

Chessboard complexes and their relatives have been for decades an important theme of
topological combinatorics. They have found numerous and often unexpected applications in
group theory, representation theory, commutative algebra, Lie theory, discrete and computational
geometry, algebraic topology, and geometric and topological combinatorics, see [1], [2], [3] [5], [15],
[16], [26], [28], [33], [35], [36], [38], [39], [40].

The books [25] and [31], as well as the review papers [38] and [41], cover selected topics of the
theory of chessboard complexes and contain a more complete list of related publications.
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Chessboard complexes and their generalizations are some of the most studied graph complexes
[25]. From this point of view chessboard complexes can be interpreted as relatives of L. Lovász
𝐻𝑜𝑚-complexes [29], matching complexes, clique complexes, and many other important classes of
simplicial complexes.

More recently new classes of generalized chessboard complexes have emerged and new methods,
based on novel shelling techniques and ideas from Forman’s discrete Morse theory, were introduced.
Examples include multiple and symmetric multiple chessboard complexes [22, 23], Bier complexes
[18], and deleted joins of collectively unavoidable complexes, see [18] and [20, 21]. Among
applications are the resolution of the balanced case of the “admissible/prescribable partitions
conjecture” [23], general Van Kampen-Flores type theorem for balanced, collectively unavoidable
complexes [20], and “balanced splitting necklace theorem” [21].

This paper is both a leisurely introduction and an invitation to this part of topological
combinatorics, and a succinct overview of some of the ideas of discrete Morse theory, combinatorics
and equivariant topology, used in our earlier papers.

New results are in Sections 5, 6 and 7. They include an alternative treatment of Edmonds
and Fulkerson bottleneck (minmax) theorem (Section 5) and the construction of “standard discrete
Morse functions” on generalized chessboard complexes with multiplicities (Section 6). This leads
to a frequently optimal connectivity result for generalized chessboard complexes with multiplicities
(Theorem 2 in Section 6), which is used in Section 7 for the proof of new Tverberg-Van Kampen-
Flores type results for 𝑗-wise disjoint partitions of a simplex.

2. Chessboard complexes

Chessboard complexes naturally arise in the study of the geometry of admissible rook
configurations on a general (𝑚 × 𝑛)-chessboard. An admissible configuration is any non-taking
placement of rooks, i.e., a placement which does not allow any two of them to be in the same row
or in the same column. The collection of all these placements forms a simplicial complex which is
called the chessboard complex and denoted by Δ𝑚,𝑛.

More formally, the set of vertices of Δ𝑚,𝑛 is Vert(Δ𝑚,𝑛) = [𝑚] × [𝑛] and 𝑆 ⊆ [𝑚] × [𝑛] is a
simplex of Δ𝑚,𝑛 if and only if for each two distinct elements (𝑖1, 𝑗1), (𝑖2, 𝑗2) ∈ 𝑆 neither 𝑖1 = 𝑖2 nor
𝑗1 = 𝑗2.

2.1. An example

Let us take a closer look at one of the simplest chessboard complexes, the complex Δ4,3, based
on the 4× 3 chessboard (see Figure 1).

The 𝑓 -vector of Δ4,3 is 𝑓(Δ4,3) = (12, 36, 24) so its Euler characteristics is 𝜒(Δ4,3) = 0.
Moreover, the geometric realization of Δ4,3 is an orientable 2-dimensional manifold.

Indeed, the link of each vertex is isomorphic to Δ3,2 (= hexagonal triangulation of the circle 𝑆1)
while the link of each edge is the circle 𝑆0. Each 2-dimensional simplex 𝜎 = {𝐴𝑖, 𝐵𝑗 , 𝐶𝑘} is uniquely
completed to a permutation 𝜋 = (𝑖, 𝑗, 𝑘, 𝑙) of the set [4] = {1, 2, 3, 4} and Sign(𝜎) := Sign(𝜋) defines
an orientation on Δ4,3.

From here we immediately conclude that Δ4,3 is a triangulation of the 2-dimensional torus
𝑇 2. The universal covering of Δ4,3 is identified as the honeycomb tiling of the plane and the
corresponding fundamental domain is exhibited in Figure 1. From here we can easily read off the
generators of the group 𝐻1(Δ4,3;Z) ∼= Z2 as the geodesic edge-paths connecting the three copies of
vertex 𝐶3, shown in Figure 1.
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Figure 1: Chessboard complex Δ4,3

2.2. Graph complexes

Let 𝐺 be a finite graph with vertex set 𝑉 = 𝑉𝐺 and edge set 𝐸 = 𝐸𝐺. A graph complex on 𝐺 is
an abstract simplicial complex consisting of subsets of 𝐸. We usually interpret such a complex as
a family of subgraphs of 𝐺. The study of graph complexes, with the emphasis on their homology,
homotopy type, connectivity degree, Cohen-Macaulayness, etc., has been an active area of study in
topological combinatorics, see [25].

The chessboard complex Δ𝑚,𝑛 can be interpreted as a graph complex of the complete bipartite
graph 𝐾𝑚,𝑛, where the simplices 𝑆 ⊂ [𝑚]× [𝑛] are interpreted as “matchings” in 𝐾𝑚,𝑛. Recall that
Γ ⊆ 𝐸𝐺 is a matching on the graph 𝐺 if each 𝑣 ∈ 𝑉𝐺 is incident to at most one edge in Γ.

All “generalized chessboard complexes”, introduced in Section 3, can be also described as graph
complexes of the graph 𝐾𝑚,𝑛.

2.3. Chessboard complexes as Tits coset complexes

Perhaps the first appearance of chessboard complexes was in the thesis of Garst [16], as Tits
coset complexes. Recall that a Tits coset complex Δ(𝐺;𝐺1, . . . , 𝐺𝑛), associated to a group 𝐺 and
a family {𝐺1, . . . , 𝐺𝑛} of its subgroups is the nerve 𝑁𝑒𝑟𝑣𝑒(ℱ) of the associated family of cosets
ℱ = {𝑔𝐺𝑖 | 𝑔 ∈ 𝐺, 𝑖 ∈ [𝑛]}. More explicitly vertices of Δ(𝐺;𝐺1, . . . , 𝐺𝑛) are cosets 𝑔𝐺𝑖 and a
colection 𝑆 = {𝑔𝑗𝐺𝑖}(𝑖,𝑗)∈𝐼 , for some 𝐼 ⊆ [𝑛]×𝐺, is a simplex of Δ(𝐺;𝐺1, . . . , 𝐺𝑚) if and only if⋂︁

(𝑖,𝑗)∈𝐼

𝑔𝑗𝐺𝑖 ̸= ∅ .

If 𝐺 = 𝑆𝑚 is the symmetric group and 𝐺𝑖 := {𝜋 ∈ 𝑆𝑚 | 𝜋(𝑖) = 𝑖} for 𝑖 = 1, . . . , 𝑛, the associated
Tits coset complex is the chessboard complex Δ𝑚,𝑛.

2.4. Chessboard complexes in discrete geometry

Chessboard complexes made their first appearance in discrete geometry in [40], in the context
of the so called colored Tverberg problem.

For illustration, an instance of the type B colored Tverberg theorem [35, 41] claims that for
each collection 𝐶 ⊂ R3 of fifteen points in the 3-space, evenly colored by three colors, there
exist three vertex disjoint triangles Δ1,Δ2,Δ3, formed by the points of different color, such that
Δ1 ∩Δ2 ∩Δ3 ̸= ∅.
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A general form of this result was deduced in [35] from a Borsuk-Ulam type result claiming that
each Z𝑟-equivariant map

(Δ𝑟,2𝑟−1)
*(𝑘+1) Z𝑟−→𝑊⊕(𝑑+1)

𝑟 (1)

must have a zero if 𝑟 ≤ 𝑑/(𝑑 − 𝑘) (this is a necessary condition), 𝑟 is a prime power, Δ𝑟,2𝑟−1 is a
chessboard complex, and 𝑊𝑟 = {𝑥 ∈ R𝑟 | 𝑥1 + · · ·+ 𝑥𝑟 = 0}.

The reader is referred to [41] for an overview of these and more recent results, as well as for a
more complete list of references.

3. Generalized chessboard complexes

Motivated primarily by applications to problems in discrete geometry, especially the problems
of Tverberg and Van Kampen-Flores type, more general chessboard complexes were introduced and
studied. Closely related complexes previously emerged in algebraic combinatorics [28, 38].

These complexes are also referred to as generalized chessboard complexes, since the set of vertices
remains the (𝑚 × 𝑛)-chessboard [𝑚] × [𝑛], but the criterion for 𝑆 ⊆ [𝑚] × [𝑛] to be a simplex
(“admissible rook placement”) may be quite different and vary from problem to problem.

The following definition includes most if not all of the currently studied examples and provides
a natural ecological niche for all these complexes and their relatives.

Definition 1. Suppose that 𝒦 = {𝐾𝑖}𝑛𝑖=1 and ℒ = {𝐿𝑗}𝑚𝑗=1 are two collections of simplicial
complexes where Vert(𝐾𝑖) = [𝑚] for each 𝑖 ∈ [𝑛] and Vert(𝐿𝑗) = [𝑛] for each 𝑗 ∈ [𝑚]. Define,

Δ𝒦,ℒ
𝑚,𝑛 = Δ𝑚,𝑛(𝒦,ℒ) (2)

as the complex of all subsets (rook-placements) 𝐴 ⊂ [𝑚]× [𝑛] such that {𝑖 ∈ [𝑚] | (𝑖, 𝑗) ∈ 𝐴} ∈ 𝐾𝑗

for each 𝑗 ∈ [𝑛] and {𝑗 ∈ [𝑛] | (𝑖, 𝑗) ∈ 𝐴} ∈ 𝐿𝑖 for each 𝑖 ∈ [𝑚].

Definition 1 can be specialized in many ways. Again, we focus on the special cases motivated
by intended applications to the generalized Tverberg problem.

Definition 2. Suppose that k = (𝑘𝑖)
𝑛
𝑖=1 and l = (𝑙𝑗)

𝑚
𝑗=1 are two sequences of non-negative

integers. Then the complex,

Δk,l
𝑚,𝑛 = Δ𝑘1,...,𝑘𝑛;𝑙1,...,𝑙𝑚

𝑚,𝑛 (3)

arises as the complex of all rook-placements 𝐴 ⊂ [𝑚]× [𝑛] such that at most 𝑘𝑖 rooks are allowed to
be in the 𝑖-th row (for 𝑖 = 1, . . . , 𝑛), and at most 𝑙𝑗 rooks are allowed to be in the 𝑗-th column (for
𝑗 = 1, . . . ,𝑚).

Remark 1. The complexes Δk,l
𝑚,𝑛 = Δ𝑘1,...,𝑘𝑛;𝑙1,...,𝑙𝑚

𝑚,𝑛 are sometimes referred to as the chessboard
complexes with multiplicities or multiple chessboard complexes. Closely related are “bounded degree
graph complexes”, studied in [28] and [38].

When 𝑘1 = · · · = 𝑘𝑛 = 𝑝 and 𝑙1 = · · · = 𝑙𝑚 = 𝑞, we obtain the complex Δ𝑝,𝑞
𝑚,𝑛. For the reasons

which will become clear in the following section of the paper, in our earlier papers [22, 23] we
focused to the case 𝑙1 = · · · = 𝑙𝑚 = 1, i.e. to the complexes,

Δ𝑘1,...,𝑘𝑛;1
𝑚,𝑛 := Δ𝑘1,...,𝑘𝑛;1,...,1

𝑚,𝑛 . (4)

In Section 6 of this paper we fill this “gap” and return to the case of general chessboard complexes
with multiplicities.
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3.1. 𝑛-fold 𝑗-wise deleted join

Joins and deleted joins of simplicial complexes, as well as their generalizations, have found
numerous applications in topological combinatorics, see [31, Section 6.3] for motivation and an
introduction.

For a simplicial complex 𝐾, the 𝑛-fold 𝑗-wise deleted join of 𝐾 is

𝐾*𝑛
Δ(𝑗) := {𝐴1 ⊎𝐴2 ⊎ · · · ⊎𝐴𝑛 ∈ 𝐾* | (𝐴1, 𝐴2, . . . , 𝐴𝑛) is 𝑗-wise disjoint} (5)

where an 𝑛-tuple (𝐴1, 𝐴2, . . . , 𝐴𝑛) is 𝑗-wise disjoint if every sub-collection {𝐴𝑘𝑖}
𝑗
𝑖=1, where

𝑘1 < 𝑘2 < · · · < 𝑘𝑗 , has an empty intersection.

It immediately follows that 𝐾*𝑛
Δ(𝑗) ⊆ 𝐾*𝑛

Δ(𝑗+1) and that 𝐾*𝑛
Δ(𝑛+1) = 𝐾*𝑛 and 𝐾*𝑛

Δ(2) = 𝐾*𝑛
Δ are

respectively the 𝑛-fold join and the 𝑛-fold deleted join of the complex 𝐾.

A simple but very useful property of these operations is that they commute

(𝐾*𝑛
Δ(𝑗))

*𝑚
Δ(𝑘)
∼= (𝐾*𝑚

Δ(𝑘))
*𝑛
Δ(𝑗) .

For example if 𝐾 = 𝑝𝑡 is a one-point simplicial complex we obtain the isomorphsim

Δ𝑚,𝑛 = ((𝑝𝑡)*𝑚Δ )*𝑛Δ
∼= ((𝑝𝑡)*𝑛Δ )*𝑚Δ = Δ𝑛,𝑚 .

A single complex 𝐾 in equation (5) can be replaced by a collection 𝒦 = {𝐾𝑗}𝑛𝑗=1 of complexes

𝐾𝑗 ⊆ 2[𝑚] which leads to the definition of the 𝑗-wise deleted join of 𝒦,

𝒦Δ(𝑗) := {𝐴1 ⊎ · · · ⊎𝐴𝑛 ∈ 𝐾1 * · · · *𝐾𝑛 | (𝐴1, . . . , 𝐴𝑛) is 𝑗-wise disjoint} .

All simplicial complexes described in this section are generalized chessboard complexes in the
sense of Definition 1. For example if 𝐾 ⊆ 2[𝑚] then its 𝑛-fold 𝑗-wise deleted join is the complex

𝐾𝑛
Δ(𝑗)
∼= Δ𝒦,ℒ

𝑚,𝑛

where 𝐾1 = · · · = 𝐾𝑛 and 𝐿1 = · · · = 𝐿𝑚 =
(︀ [𝑚]
≤𝑗−1

)︀
is the collection of all subsets of [𝑚] of

cardinality strictly less than 𝑗.

3.2. Bier spheres as generalized chessboard complexes

Let 𝐾  2[𝑚] be a simplicial complex on the ground set [𝑚] (meaning that we allow {𝑗} /∈ 𝐾
for some 𝑗 ∈ [𝑚]). The Alexander dual of 𝐾 is the simplicial complex 𝐾∘ that consists of the
complements of all nonsimplices of 𝐾

𝐾∘ := {𝐴𝑐 | 𝐴 /∈ 𝐾} .

By definition the “Bier sphere” is the deleted join 𝐵𝑖𝑒𝑟(𝐾) := 𝐾 *Δ𝐾∘. (A face 𝐴1⊎𝐴2 ∈ 𝐵𝑖𝑒𝑟(𝐾)
is often denoted as a triple (𝐴1, 𝐴2;𝐵) where 𝐵 := [𝑚] ∖ (𝐴1 ∪𝐴2).)

It turns out that 𝐵𝑖𝑒𝑟(𝐾) is indeed a triangulation of an (𝑚 − 2)-dimensional sphere [4], see
[31] and [30] for different, very short and elegant proofs.

The Bier sphere 𝐵𝑖𝑒𝑟(𝐾) is also a generalized chessboard complex where 𝐾1 = 𝐾,𝐾2 = 𝐾∘

and 𝐿1 = · · · = 𝐿𝑚 = {∅, {1}, {2}} ⊂ 2[2].

Alexander 𝑟-tuples 𝒦 = {𝐾𝑖}𝑟𝑖=1 of simplicial complexes were introduced in [18] as a
generalization of pairs (𝐾,𝐾∘) of Alexander dual complexes. The associated generalized Bier
complexes, defined as the 𝑟-fold deleted joins 𝒦*𝑟

Δ of Alexander 𝑟-tuples are also generalized
chessboard complexes in the sense of Definition 1.
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4. Discrete Morse theory

A discrete Morse function on a simplicial complex 𝐾 ⊆ 2𝑉 is, by definition, an acyclic matching
on the Hasse diagram of the partially ordered set (𝐾,⊆). Here is a brief reminder of the basic facts
and definitions of discrete Morse theory.

Let 𝐾 be a simplicial complex. Its 𝑝-dimensional simplices (𝑝-simplices for short) are denoted
by 𝛼𝑝, 𝛼𝑝𝑖 , 𝛽

𝑝, 𝜎𝑝, etc. A discrete vector field is a set of pairs 𝐷 = {. . . , (𝛼𝑝, 𝛽𝑝+1), . . . } (called a
matching) such that:

(a) each simplex of the complex participates in at most one pair;
(b) in each pair (𝛼𝑝, 𝛽𝑝+1) ∈ 𝐷, the simplex 𝛼𝑝 is a facet of 𝛽𝑝+1;
(c) the empty set ∅ ∈ 𝐾 is not matched, i.e. if (𝛼𝑝, 𝛽𝑝+1) ∈ 𝐷 then 𝑝 ≥ 0.

The pair (𝛼𝑝, 𝛽𝑝+1) can be informally thought of as a vector in the vector field 𝐷. For this reason
it is occasionally denoted by 𝛼𝑝 → 𝛽𝑝+1 or 𝛼𝑝 ↗ 𝛽𝑝+1 (and in this case 𝛼𝑝 and 𝛽𝑝+1 are informally
referred to as the beginning and the end of the arrow 𝛼𝑝 → 𝛽𝑝+1).

Given a discrete vector field 𝐷, a gradient path in 𝐷 is a sequence of simplices (a zig-zag path)

𝛼𝑝0 ↗ 𝛽𝑝+1
0 ↘ 𝛼𝑝1 ↗ 𝛽𝑝+1

1 ↘ 𝛼𝑝2 ↗ 𝛽𝑝+1
2 ↘ · · · ↘ 𝛼𝑝𝑚 ↗ 𝛽𝑝+1

𝑚 ↘ 𝛼𝑝𝑚+1

satisfying the following conditions:

1.
(︀
𝛼𝑝𝑖 , 𝛽

𝑝+1
𝑖

)︀
is a pair in 𝐷 for each 𝑖;

2. for each 𝑖 = 0, . . . ,𝑚 the simplex 𝛼𝑝𝑖+1 is a facet of 𝛽
𝑝+1
𝑖 ;

3. for each 𝑖 = 0, . . . ,𝑚− 1, 𝛼𝑖 ̸= 𝛼𝑖+1.

A path is closed if 𝛼𝑝𝑚+1 = 𝛼𝑝0. A discrete Morse function (DMF for short) is a discrete vector
field without closed paths.

Assuming that a discrete Morse function is fixed, the critical simplices are those simplices of
the complex that are not matched. The Morse inequality [13] implies that critical simplices cannot
be completely avoided.

A discrete Morse function 𝐷 is perfect if the number of critical 𝑘-simplices equals the 𝑘-th Betty
number of the complex. It follows that 𝐷 is a perfect Morse function if and only if the number of
all critical simplices equals the sum of all Betty numbers of 𝐾.

A central idea of discrete Morse theory, as summarized in the following theorem of R. Forman, is
to contract all matched pairs of simplices and to reduce the simplicial complex 𝐾 to a cell complex
(where critical simplices correspond to the cells).

Theorem 1. [13] Assume that a discrete Morse function on a simplicial complex 𝐾 has a single
zero-dimensional critical simplex 𝜎0 and that all other critical simplices have the same dimension
𝑁 > 1. Then 𝐾 is homotopy equivalent to a wedge of 𝑁 -dimensional spheres.

More generally, if all critical simplices, aside from 𝜎0, have dimension ≥ 𝑁 , then the complex
𝐾 is (𝑁 − 1)-connected.

4.1. Discrete vector fields on Bier spheres

It is known that all Bier spheres are shellable, see [6] and [10]. A method of Chari [9] can be
used to turn this shelling into a perfect discrete Morse function (DMF). The construction of our
perfect DMF on a Bier sphere essentially follows this path, see [18] for more details. For the reader’s
convenience here we reproduce this construction since it will be needed in Section 5.

A perfect DMF on 𝐵𝑖𝑒𝑟(𝐾)

We construct a discrete vector field 𝐷1 on the Bier sphere 𝐵𝑖𝑒𝑟(𝐾) in two steps:
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(1) We match the simplices

𝛼 = (𝐴1, 𝐴2;𝐵 ∪ 𝑖) and 𝛽 = (𝐴1, 𝐴2 ∪ 𝑖;𝐵)

iff the following holds:

(i) 𝑖 < 𝐵, 𝑖 < 𝐴2

(that is, 𝑖 is smaller than all the entries of 𝐵 and 𝐴2).
(ii) 𝐴2 ∪ 𝑖 ∈ 𝐾∘.

Before we pass to step 2, let us observe that the non-matched simplices are labelled by (𝐴1, 𝐴2;𝐵∪𝑖)
such that 𝐴2 ∈ 𝐾∘, but 𝐴2 ∪ 𝑖 /∈ 𝐾∘. As a consequence, for non-matched simplices 𝐴1 ∪𝐵 ∈ 𝐾.

(2) In the second step we match together the simplices

𝛼 = (𝐴1, 𝐴2;𝐵 ∪ 𝑗) and 𝛽 = (𝐴1 ∪ 𝑗, 𝐴2;𝐵)

iff the following holds:

(a) None of the simplices 𝛼 and 𝛽 is matched in the first step.
(b) 𝑗 > 𝐵, 𝑗 > 𝐴1.
(c) 𝐴1 ∪ 𝑗 ∈ 𝐾.

Observe that the condition (c) always holds (provided that the condition (a) is satisfied), except
for the case 𝐵 = ∅.

Lemma 1. (see [18, Lemma 6.1]) The discrete vector field 𝐷1 is a discrete Morse function on
the Bier sphere 𝐵𝑖𝑒𝑟(𝐾).

Proof. Since 𝐷1 is (by construction) a discrete vector field, it remains to check that there are no
closed gradient paths. Observe that in each pair of simplices in the discrete vector field 𝐷1 there is
exactly one migrating element. More precisely, in the case (1) the element 𝑖 migrates to 𝐴2, and in
the case (2) the element 𝑗 migrates to 𝐴1.

The lemma follows from the observation that (along a gradient path) the values of the migrating
element that move to 𝐴2 strictly decreases. Similarly, the values of migrating elements that move
to 𝐴1 can only increase. This is certified through the following simple case analysis: (1) After a
first step pairing comes a splitting of 𝐴2. Then the gradient path terminates. (2) After a first step
pairing (with migrating element 𝑖) comes a splitting of 𝐴1. The gradient path proceeds only if the
splitted element is smaller than 𝑖. (2) After a second step pairing comes a splitting of 𝐴1. Then
the gradient path terminates. (2) After a second step pairing (with migrating element 𝑖) comes a
splitting of 𝐴2. The gradient path proceeds only if the splitted element is bigger than 𝑖.

Let us illustrate this observation by an example which captures the above case analysis. Assume
we have a fragment of a gradient path that contains two matchings of type 1. We have:

(𝐴1 ∪ 𝑘,𝐴2;𝐵 ∪ 𝑖)→ (𝐴1 ∪ 𝑘,𝐴2 ∪ 𝑖;𝐵)→

(𝐴1, 𝐴2 ∪ 𝑖;𝐵 ∪ 𝑘)→ (𝐴1, 𝐴2 ∪ 𝑘 ∪ 𝑖;𝐵)

The migrating elements here are 𝑖 and 𝑘. The definition of the matching 𝐷1 implies 𝑘 < 𝑖. Otherwise
(𝐴1, 𝐴2∪ 𝑖;𝐵∪𝑘) is matched with (𝐴1, 𝐴2;𝐵∪𝑘∪ 𝑖), and the path would terminate after its second
term.

It is not difficult to see that there are precisely two critical simplices in 𝐷1:
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1. An (𝑛− 2)-dimensional simplex,
(𝐴1, 𝐴2; 𝑖)

where 𝐴1 < 𝑖 < 𝐴2, (this condition describes this simplex uniquely, in light of the fact that
𝐴1 ∈ 𝐾 and 𝐴2 ∈ 𝐾∘),

2. and the 0-dimensional simplex,

(∅, {1}; {2, 3, 4, ..., 𝑛}).

(Here we make a simplifying assumption that {1} ∈ 𝐾∘, which can be always achieved by a re-
enumeration, except in the trivial case 𝐾∘ = {∅}.)

4.2. Discrete vector fields on generalized chessboard complexes

The construction of the discrete Morse function on the Bier sphere 𝐵𝑖𝑒𝑟(𝐾) illustrates the
fruitful idea which can be extended and further developed to cover the case of other generalized
chessboard complexes.

Examples of this construction can be found in [18] and [20], see also Section 6 for a construction
of such a discrete Morse function on the multiple chessboard complex Δ𝑘1,...,𝑘𝑛;𝑙1,...,𝑙𝑚

𝑚,𝑛 .

All these constructions of DMF share the same basic idea, for this reason we sometimes refer to
them as standard DMF on generalized chessboard complexes. Note that the proofs that they indeed
form an acyclic matching may vary from example to example and use some special properties of
the class under investigation.

5. Edmonds-Fulkerson bottleneck extrema

In this section we connect, via discrete Morse theory, the combinatorial topology of Bier spheres
with Edmonds-Fulkreson theorem on bottleneck extrema of pairs of dual clutters. We will show that
there is much more than meets the eye in the standard concise treatment of this classical result of
combinatorial optimization.

Figure 2: Edmonds-Fulkerson bottleneck theorem

Figure 2 shows the abstract of the published version of [11], which originally appeared as a
RAND-corporation preprint AD 664879 in January of 1966.

This is a purely combinatorial result which is often referred to as the Edmonds-Fulkreson
bottleneck lemma (theorem). Minmax theorems are ubiquitous in mathematics, notably in
geometry, polyhedral combinatorics, critical point theory, game theory and other areas. One of
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early examples is the minimax theorem of John von Neumann (first proven and published in 1928)
which gives conditions on a function 𝑓 : 𝐶 ×𝐷 → R, defined on the product of two closed, convex
sets in R𝑛, to satisfy the minmax equality,

Res
𝑦∈𝐷

max
𝑥∈𝐶

𝑓(𝑥, 𝑦) = max
𝑥∈𝐶

Res
𝑦∈𝐷

𝑓(𝑥, 𝑦) . (6)

It is interesting to compare the Edmonds-Fulkerson minmax theorem with their geometric
counterparts. For example in a vicinity of a non-degenerate critical point a Morse function has
the form 𝑓(𝑥, 𝑦) = −|𝑥|2 + |𝑦|2 = −𝑥21 − · · · − 𝑥2𝑝 + 𝑦21 + · · · + 𝑦2𝑞 . Moreover, this function satisfies
the concave/convex condition of von Neumann’s minmax theorem and the relation (6) is valid.

There is a formal resemblance of these results, for example the 𝑥-sections (respectively 𝑦-
sections) of the convex sets 𝐶 × 𝐷 in (6) formally play the role of complementary clutters ℛ
and 𝒮 from the result of Edmonds and Fulkerson. At first sight it appears to be naive and hard to
expect a deeper connection between these results. Indeed, the clutter {𝐶 × {𝑦}}𝑦∈𝐷 of 𝑦-sections
is nowhere near to be the complementary clutter of the set {{𝑥} ×𝐷}𝑥∈𝐶 of all 𝑥-sections, which
is a consequence of the following lemma (see the property (3) on page 301 in [11]).

Lemma 2. The clutter 𝒮 ⊂ 2𝐸 is the complementary clutter of the clutter ℛ ⊂ 2𝐸, if and only
if for each partition 𝐸 = 𝐸0 ⊎𝐸1 of 𝐸 either an element of ℛ is contained in 𝐸0 or an element of
𝒮 is contained in 𝐸1, but not both.

In the next section we show that there does exist a geometric interpretation of the Edmonds-
Fulkerson bottleneck minmax equality, provided we are willing to replace the smooth by discrete
Morse theory.

5.1. Edmonds-Fulkerson minmax lemma revisited

Here we use the results from Section 4.1 to give a new proof and a new interpretation of
Edmonds-Fulkerson minmax lemma. As before (Figure 2) the clutters ℛ and 𝒮 are both subfamilies
of 2𝐸 .

Let ̂︀ℛ := {𝐴 ⊆ 𝐸 | (∃𝑋 ∈ ℛ)𝑋 ⊆ 𝐴} be the upper closure of the clutter ℛ and let 𝐾 := 2𝐸 ∖ ̂︀ℛ
be the complementary simplicial complex.

Lemma 3. Let 𝐾∘ be the Alexander dual of the simplicial complex 𝐾 := 2𝐸 ∖ ̂︀ℛ. Then
𝐾∘ = 2𝐸 ∖ ̂︀𝒮

is the complementary simplicial complex of the upper closure ̂︀𝒮 of the clutter 𝒮.

Proof. This is an immediate consequence of Lemma 2 since the pair of complexes (𝐾,𝐾∘) is also
characterized by the property that for each partition 𝐸 = 𝐸0 ⊎ 𝐸1 precisely one of the following
two relations 𝐸0 ∈ 𝐾, 𝐸1 ∈ 𝐾∘ is satisfied. �

Let 𝑓 : 𝐸 → R be a real function. We may assume that 𝑓 is 1-1. Moreover, we may replace 𝐸
by the set [𝑛] (where 𝑛 is the cardinality of 𝐸) and assume that 𝑓 = 𝑖𝑑 : [𝑛] → [𝑛] is the identity
function.

By construction and properties of the perfect DMF on the Bier sphere 𝐵𝑖𝑒𝑟(𝐾) = 𝐾 *Δ 𝐾∘,
constructed in Section 4.1, there is a unique (𝑛 − 2)-dimensional critical simplex (𝐴1, 𝐴2; 𝑖),
characterized by the conditions 𝐴1 < 𝑖 < 𝐴2, 𝐴1 ∈ 𝐾, 𝐴2 ∈ 𝐾∘. Let us show that

𝑎 := Res
𝐼∈ℛ

max
𝑥∈𝐼

𝑓(𝑥) = 𝑓(𝑖) = max
𝐽∈𝒮

Res
𝑥∈𝐽

𝑓(𝑥) =: 𝑏 . (7)
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Indeed, 𝐴1∪{𝑖} /∈ 𝐾 implies 𝐴1∪{𝑖} ∈ ℛ and from max𝑥∈𝐴1∪{𝑖} 𝑓(𝑥) = 𝑓(𝑖) we deduce the relation
𝑎 ≤ 𝑓(𝑖).

For the opposite inequality observe that if 𝐼 ∈ ℛ then 𝐼 ∩ (𝐴2 ∪ {𝑖}) ̸= ∅ (otherwise, since
𝐴2 ∪ {𝑖} ∈ 𝒮, Lemma 2 would be violated). Hence, max𝑥∈𝐼 𝑓(𝑥) ≥ 𝑓(𝑖) and 𝑎 ≥ 𝑓(𝑖).

The proof of the equality 𝑏 = 𝑓(𝑖) is similar. �

Remark 2. One of the consequences is that the (algorithmic) complexity of determining the
critical cell (𝐴1, 𝐴2; 𝑖) in the Bier sphere 𝐵𝑖𝑒𝑟(𝐾) is at least as big as the complexity of evaluating
the maxmin (minmax) of a function on a family of sets (clutter).

6. Discrete Morse theory for chessboard complexes
with multiplicities

Suppose that 𝑘1, . . . , 𝑘𝑛 and 𝑙1, . . . , 𝑙𝑚 are two sequences of non-negative integers. The
generalized chessboard complex Δ𝑘1,...,𝑘𝑛;𝑙1,...,𝑙𝑚

𝑚,𝑛 contains all rooks placements on [𝑛] × [𝑚] table
such that at most 𝑘𝑖 rooks are in the 𝑖-th row and at most 𝑙𝑗 rooks are in the 𝑗-th column. We use
Forman’s discrete Morse theory to obtain a generalization of Theorem 3.2 from [22].

Theorem 2. If

𝑙1 + 𝑙2 + · · ·+ 𝑙𝑚 > 𝑘1 + 𝑘2 + · · ·+ 𝑘𝑛 + 𝑛− 1 (*)

then Δ𝑘1,...,𝑘𝑛;𝑙1,...,𝑙𝑚
𝑚,𝑛 is (𝑘1 + 𝑘2 + · · ·+ 𝑘𝑛 − 2)-connected.

Proof. A column (or a row) is called full if it contains the maximal allowed number of rooks.
Otherwise, it is called free.

We now define a Morse matching for Δ = Δ𝑘1,...,𝑘𝑛;𝑙1,...,𝑙𝑚
𝑚,𝑛 . For a given face 𝑅 we describe a face

𝑅′ that is paired with 𝑅, or we recognize that 𝑅 is a critical face. Let us do it stepwise.

Step 1.
Take the minimal 𝑎1 such that either (1) there is a rook positioned at (1, 𝑎1), or (2) the 𝑎1

column is free.
In the first case (there is a rook at (1, 𝑎1)), we match 𝑅 and 𝑅′ = 𝑅 ∖ {(1, 𝑎1)}.
This is always possible except for the unique exception, when 𝑅 contains exactly one rook at

(1, 1).
In the second case we match 𝑅 and 𝑅′ = 𝑅∪{(1, 𝑎1)} provided that 𝑅′ belongs to Δ. The latter

condition means that the first row in 𝑅 is not full.
Clearly, after Step 1 the unmatched simplices are those with full first row, empty (1, 𝑎1), and a

free column 𝑎1.

Step 2. We match some of the simplices that are unpaired on the first step.

1. If there is a rook at (2, 𝑎1), set 𝑎2 := 𝑎1 and match 𝑅 and 𝑅′ = 𝑅 ∖ {(2, 𝑎2)}.
2. If

(a) there is no rook at (2, 𝑎1), and
(b) the number of rooks in column 𝑎1 is smaller than 𝑙𝑎1 − 1,

set 𝑎2 := 𝑎1 and match 𝑅 and 𝑅′ = 𝑅 ∪ {(2, 𝑎2)} provided that 𝑅′ belongs to Δ. The latter
condition means that the second row in 𝑅 is not full.

Introduce also 𝑇 (𝑅) := 2. Its meaning is "the column 𝑎1 = 𝑎2 has been used twice".
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3. If none of the above cases holds, set 𝑎2 > 𝑎1 to be the minimal number such that either (1)
there is a rook positioned at (2, 𝑎2), or (2) the 𝑎2 column is free.

The condition (*) guarantees that 𝑎2 is well-defined.
If there is a rook at (2, 𝑎2), we match 𝑅 and 𝑅′ = 𝑅 ∖ {(2, 𝑎2)}.
Otherwise, we match 𝑅 and 𝑅′ = 𝑅 ∪ {(2, 𝑎2)} provided that 𝑅′ belongs to Δ. The latter
condition means that the second row in 𝑅 is free.

In this case we set 𝑇 (𝑅) := 1, since the column 𝑎2 has been used once.

Clearly, after Step 2 the unmatched simplices are those with full first and second rows, empty
(2, 𝑎2), and a free column 𝑎2.

We proceed in the same manner. During the first 𝑘 − 1 steps, some of the simplices become
matched. Unmatched simplices have first 𝑘 − 1 rows full. They also have no rook at (𝑘 − 1, 𝑎𝑘−1).
Each unmatched simplex 𝑅 is associated a number 𝑇 (𝑅).

This is how a generic step looks like:
Step k.

1. If there is a rook at (𝑘, 𝑎𝑘−1), then match 𝑅 and 𝑅′ = 𝑅 ∖ {(𝑘, 𝑎𝑘)}.
2. If

(a) there is no rook at (𝑘, 𝑎𝑘−1), and
(b) the number of rooks in column 𝑎𝑘−1 is smaller than 𝑙𝑎𝑘−1

− 𝑇 (𝑅),

set 𝑎𝑘 := 𝑎𝑘−1 and match 𝑅 and 𝑅′ = 𝑅∪{(𝑘, 𝑎𝑘)} provided that 𝑅′ belongs to Δ. The latter
condition means that the 𝑘-th row in 𝑅 is free.

Set 𝑇 (𝑅) := 𝑇 (𝑅) + 1; this means that “now the column 𝑎𝑘 = 𝑎𝑘−1 has been used 𝑇 (𝑅)
times”.

3. Otherwise, set 𝑎𝑘 > 𝑎𝑘−1 to be the minimal number such that either (1) there is a rook
positioned at (𝑘, 𝑎𝑘), or (2) the 𝑎𝑘 column is free.

Next, we match 𝑅 and 𝑅′ = 𝑅 ∖ {(2, 𝑎2)} or 𝑅′ = 𝑅 ∪ {(2, 𝑎2)} provided that 𝑅′ belongs to
Δ.

If 𝑅 is not matched, set 𝑇 (𝑅) := 1.

Remark. If 𝑘 < 𝑛, then (*) guarantees that 𝑎𝑘 is well-defined. For the last row 𝑎𝑛 is ill-defined
if and only if (*) is an equality and 𝑅 has all the rows full.

Eventually we have all the rows full for non-matched simplices (except for the unique zero-
dimensional simplex).

Now let us prove that the above defined matching is acyclic. Take a directed path

𝑅1 ↗ 𝑄1 ↘ 𝑅2 ↗ 𝑄2 ↘ · · · .

Recall that 𝑅𝑖 ↗ 𝑄𝑖 if and only if 𝑄𝑖 = 𝑅𝑖 ∪ {(𝑠𝑖, 𝑎𝑠𝑖)} , the first 𝑠𝑖 − 1 rows of 𝑅𝑖 are full, and 𝑎𝑠𝑖
is the first free column after 𝑎𝑠𝑖−1.

Let us prove that (𝑠𝑖, 𝑎𝑠𝑖) strictly decreases along the path wrt lexicographic order. This will
imply the acyclicity.

For 𝑄𝑖 ↘ 𝑅𝑖+1, we have 𝑅𝑖+1 = 𝑄𝑖 ∖ {(𝑝𝑖, 𝑞𝑖)} for some (𝑝𝑖, 𝑞𝑖) ∈ 𝑄𝑖 (there are no conditions
when we remove a rook from 𝑄𝑖). It suffices to consider the first two steps in our directed path:

𝑅1 ↗ 𝑄1 = 𝑅1 ∪ {(𝑠1, 𝑎𝑠1)} ↘ 𝑅2 = 𝑄1 ∖ {(𝑝2, 𝑞2)}.
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� If 𝑝2 > 𝑠1 or 𝑝2 = 𝑠1 and 𝑎𝑠1 < 𝑞2 (the removed rook is below or right on (𝑠1, 𝑎𝑠1), the added
rook at the first step) our path stop, because 𝑅2 is paired with 𝑅2 ∖ {(𝑠1, 𝑎𝑠1)}.

� If 𝑝2 < 𝑠1 or 𝑝2 = 𝑠1 and 𝑎𝑠1 > 𝑞2 (the removed rook is above or left (𝑠1, 𝑎𝑠1)), then we have
that 𝑠2 < 𝑠1 or 𝑠2 = 𝑠1 and 𝑎𝑠2 < 𝑎𝑠1 .

Summarizing, all critical faces (except for the unique zero-dimensional one) have all the rows
full. Therefore Δ𝑘1,...,𝑘𝑛;𝑙1,...,𝑙𝑚

𝑚,𝑛 is (𝑘1 + 𝑘2 + · · ·+ 𝑘𝑛 − 2)-connected. �

7. Tverberg-Van Kampen-Flores type results for 𝑗-wise disjoint
partitions of a simplex

Recall that a coloring of a set 𝑆 ⊂ R𝑑 is a partition 𝑆 = 𝑆1 ⊎ · · · ⊎ 𝑆𝑘, where 𝑆𝑖 are the
corresponding monochromatic sets. By definition a subset 𝐶 ⊆ 𝑆 is a rainbow set if it contains at
most 1 point from each of the color classes 𝑆𝑖.

Theorem 3. Let 𝑟 be a prime power and 𝑗 ≥ 1. Suppose that {𝑆𝑖}𝑘𝑖=1 is a collection of 𝑘 finite
sets of points in R𝑑 (called colors). Assume that the cardinalities 𝑚𝑖 = |𝑆𝑖| satisfy the inequality
𝑗𝑚𝑖−1 ≤ 𝑟 for each 𝑖 = 1, ..., 𝑘. If (𝑟−1)(𝑑+1) ≤ (𝑗−1)𝑚−1, where 𝑚 := 𝑚1 · · ·+𝑚𝑘, then it is
possible to partition the set 𝑆 = 𝑆1 ⊎ · · · ⊎𝑆𝑘 into 𝑟 rainbow, 𝑗-wise disjoint sets 𝑆 = 𝐶1 ⊎ · · · ⊎𝐶𝑟,
so that their convex hulls intersect,

conv(𝐶1) ∩ · · · ∩ conv(𝐶𝑟) ̸= ∅ .

Proof. The rainbow sets span the multicolored simplices which are encoded as the simplices of
the simplicial complex ([𝑝𝑡]

*(𝑚1)
Δ(2) ) * · · · * ([𝑝𝑡]*(𝑚𝑘)

Δ(2) ). Indeed these are precisely the simplices which
are allowed to have at most 1 vertex in each of 𝑘 different colors. The configuration space of all
𝑟-tuples of 𝑗-wise disjoint multicolored simplices is the simplicial complex,

𝐾 = (([𝑝𝑡]
*(𝑚1)
Δ(2) ) * · · · * ([𝑝𝑡]*(𝑚𝑘)

Δ(2) ))*𝑟Δ(𝑗)

Since the join and deleted join commute, this complex is isomorphic to,

𝐾 = ([𝑝𝑡]
*(𝑚1)
Δ(2) )*𝑟Δ(𝑗) * · · · * ([𝑝𝑡]

*(𝑚𝑘)
Δ(2) )*𝑟Δ(𝑗)

where 𝑝𝑡 is a one-point simplicial complex.
If we suppose, contrary to the statement of the theorem, that the intersection of images of any

𝑟, 𝑗-wise disjoint multicolored simplices is empty, the associated mapping 𝐹 : 𝐾 → (R𝑑)*𝑟 would
miss the diagonal 𝐷 ⊂ (R𝑑)*𝑟. By composing this map with the orthogonal projection to 𝐷⊥, and
after the radial projection to the unit sphere in 𝐷⊥, we obtain a (Z/𝑝)𝛼-equivariant mapping,

𝐹 : 𝐾 → 𝑆(𝑟−1)(𝑑+1)−1.

The complex ([𝑝𝑡]
*(𝑚𝑖)
Δ(2) )

*𝑟
Δ(𝑗) is a multiple chessboard complex Δ1,𝑗−1

𝑚𝑖,𝑟 . Since by assumption
𝑗𝑚𝑖 − 1 ≤ 𝑟, this complex is (𝑚𝑖(𝑗 − 1) − 2)-connected by the main result from [22]. Hence the
complex 𝐾 is (𝑚(𝑗 − 1)− 2)-connected. By our assumption 𝑚(𝑗 − 1)− 2 ≥ (𝑟 − 1)(𝑑+ 1)− 1, so
in light of Volovikov’s theorem [34] such a mapping 𝐹 does not exist. �

The following obvious corollary of Theorem 2 is more suitable for applications in the rest of the
section.
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Corollary 1. By interchanging the rows and the columns of the multiple chessboard complex
in Theorem 2, we obtain that the complex Δ𝑘1,...,𝑘𝑛;𝑙1,...,𝑙𝑚

𝑚,𝑛 is (𝑙1 + · · · + 𝑙𝑚 − 2)-connected if
𝑙1 + · · ·+ 𝑙𝑚 ≤ 𝑘1 + · · ·+ 𝑘𝑛 −𝑚+ 1.

Theorem 4. Let 𝑟 be a prime power. Assume that positive integers 𝑘, 𝑟,𝑁, 𝑗 and 𝑑 satisfy the
inequalities (𝑘 + 1)𝑟 + 𝑟 − 1 ≤ (𝑁 + 1)(𝑗 − 1) and (𝑟 − 1)(𝑑 + 1) + 1 ≤ 𝑟(𝑘 + 1). Then for every
continuous map 𝑓 : Δ𝑁 → R𝑑 there exist 𝑟, 𝑗-wise disjoint faces of the simplex Δ𝑁 of dimension
at most 𝑘, whose images have a nonempty intersection.

Proof. The faces of dimension at most 𝑘 form the 𝑘-skeleton (Δ𝑁 )(𝑘) = [𝑝𝑡]
*(𝑁+1)
Δ(𝑘+2). The

configuration space of all 𝑟-tuples of 𝑗-wise disjoint 𝑘-dimensional faces of this skeleton is the
simplicial complex,

𝐾 = ([𝑝𝑡]
*(𝑁+1)
Δ(𝑘+2))

*𝑟
Δ(𝑗).

This is a generalized chessboard complex 𝐾 = Δ𝑘+1;𝑗−1
𝑁+1,𝑟 . Since by our assumption (𝑘 + 1)𝑟 ≤

≤ (𝑁 + 1)(𝑗 − 1)− 𝑟 + 1, this complex 𝐾 is by Corollary 1 ((𝑘 + 1)𝑟 − 2)-connected.
If we suppose, contrary to the statement of the theorem, that the intersection of images of any

𝑟, 𝑗-wise disjoint 𝑘-dimensional faces is empty, the associated mapping 𝐹 : 𝐾 → (R𝑑)*𝑟 would miss
the diagonal 𝐷.

As in the proof of the previous theorem we obtain a (Z/𝑝)𝛼-equivariant mapping,

𝐹 : 𝐾 → 𝑆(𝑟−1)(𝑑+1)−1.

We have already observed that 𝐾 is ((𝑘 + 1)𝑟 − 2)-connected, and by our assumption
𝑟(𝑘 + 1) − 2 ≥ (𝑟 − 1)(𝑑 + 1) − 1, so in light of Volovikov’s theorem [34] such a mapping 𝐹
does not exist. �

Theorem 5. Let 𝑟 be a prime power. Suppose that 𝑞, 𝑟, 𝑗 and 𝑑 are positive integers and let
{𝑆𝑖}𝑘𝑖=1 ⊆ R𝑑 is a collection of colored points where all color classes 𝑆𝑖 are of the same cardinality
𝑚. Then if 𝑞𝑟 ≤ 𝑚(𝑗−1)− 𝑟+1 and (𝑟−1)(𝑑+1)+1 ≤ 𝑞𝑟𝑘, then it is always possible to partition
the set 𝑆 := ∪𝑘𝑖=1𝑆𝑖 into 𝑟 𝑗-wise disjoint sets containing at most 𝑞 points of each color, so that
their convex hulls conv(𝑆𝑖) have a non-empty intersection.

Proof. The sets containing at most 𝑞 points of each color span the multicolored simplices which
are encoded as the simplices of the simplicial complex ([𝑝𝑡]*𝑚Δ(𝑞+1))

*𝑘. Indeed, these are precisely the
simplices which are allowed to have at most 𝑞 vertices in each of 𝑘 different colors. The configuration
space of all 𝑟-tuples of 𝑗-wise disjoint multicolored simplices is the simplicial complex,

𝐾 = (([𝑝𝑡]*𝑚Δ(𝑞+1))
*𝑘)*𝑟Δ(𝑗).

Since the join and deleted join commute, this complex is isomorphic to,

𝐾 = (([𝑝𝑡]*𝑚Δ(𝑞+1))
*𝑟
Δ(𝑗))

*𝑘.

If we suppose, contrary to the statement of the theorem, that the intersection of images of any
𝑟, 𝑗-wise disjoint multicolored simplices is empty, the associated mapping 𝐹 : 𝐾 → (R𝑑)*𝑟 would
miss the diagonal 𝐷. As before, by composing this map with the orthogonal projection to 𝐷⊥, and
after the radial projection to the unit sphere in 𝐷⊥, we obtain a (Z/𝑝)𝛼-equivariant mapping,

𝐹 : 𝐾 → 𝑆(𝑟−1)(𝑑+1)−1.
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The complex ([𝑝𝑡]*𝑚Δ(𝑞+1))
*𝑟
Δ(𝑗) is a multiple chessboard complex Δ𝑞,𝑗−1

𝑚,𝑟 . Since we assumed
𝑞𝑟 ≤ (𝑗 − 1)𝑚 − 𝑟 + 1, this complex is (𝑞𝑟 − 2)-connected by Corollary 1. Hence the complex
𝐾 is (𝑞𝑟𝑘 − 2)-connected. By our assumption 𝑞𝑟𝑘 ≥ (𝑟 − 1)(𝑑 + 1) + 1, so in light of Volovikov’s
theorem [34] such a mapping 𝐹 does not exist. �

Theorem 6. Let 𝑟 be a prime power. Suppose that 𝑞, 𝑟, 𝑗 and 𝑑 are positive integers and let
{𝑆𝑖}𝑘𝑖=1 ⊆ R𝑑 is a collection of colored points where all color classes 𝑆𝑖 are of the same cardinality
𝑚. If 𝑗𝑚 − 1 ≤ 𝑞𝑟 and (𝑟 − 1)(𝑑 + 1) + 1 ≤ (𝑗 − 1)𝑚𝑘, then it is possible to divide all points in
𝑟, 𝑗-wise disjoint sets containing at most 𝑞 points of each color, so that their convex hulls conv(𝑆𝑖)
have a non-empty intersection.

Proof. As before the sets containing at most 𝑞 points of each color span the multicolored simplices
which are encoded as the simplices of the simplicial complex ([𝑝𝑡]*𝑚Δ(𝑞+1))

*𝑘. Indeed these are precisely
the simplices which are allowed to have at most 𝑞 vertices in each of 𝑘 different colors. The
configuration space of all 𝑟-tuples of 𝑗-wise disjoint multicolored simplices is the simplicial complex,

𝐾 = (([𝑝𝑡]*𝑚Δ(𝑞+1))
*𝑘)*𝑟Δ(𝑗).

Since the join and deleted join commute, this complex is isomorphic to,

𝐾 = (([𝑝𝑡]*𝑚Δ(𝑞+1))
*𝑟
Δ(𝑗))

*𝑘.

If we suppose, contrary to the statement of the theorem, that the intersection of images of any 𝑟,
𝑗-wise disjoint multicolored simplices is empty, the associated mapping 𝐹 : 𝐾 → (R𝑑)*𝑟 would miss
the diagonal 𝐷. As before, from here by an equivariant deformation we obtain a (Z/𝑝)𝛼-equivariant
mapping,

𝐹 : 𝐾 → 𝑆(𝑟−1)(𝑑+1)−1 .

The complex ([𝑝𝑡]*𝑚Δ(𝑞+1))
*𝑟
Δ(𝑗) is the multiple chessboard complex Δ𝑞,𝑗−1

𝑚,𝑟 . Since we assumed
(𝑗−1)𝑚 ≤ 𝑞𝑟−𝑚+1, this complex is ((𝑗−1)𝑚−2)-connected by Corollary 1. Hence the complex
𝐾 is ((𝑗 − 1)𝑚𝑘− 2)-connected. By our assumption (𝑗 − 1)𝑚𝑘 ≥ (𝑟− 1)(𝑑+ 1)+ 1, and again this
is in contradiction with Volovikov’s theorem [34]. �

For illustration let us consider a very special case of this theorem 𝑞 = 1 and 𝑗 = 2.

Theorem 7. Let 𝑟 be a prime power. Given 𝑘 finite sets of points in R𝑑 (called colors), of 𝑚
points each, so that 2𝑚− 1 ≤ 𝑟 and (𝑟− 1)(𝑑+ 1) + 1 ≤ 𝑚𝑘, it is possible to divide the points in 𝑟
pairwise disjoint sets containing at most 1 point of each color, so that their convex hulls intersect.

Remark 3. It is easy to see that the assumptions on the total number of points is the best
possible, since the set of (𝑟 − 1)(𝑑 + 1) points in the general position could not be divided in 𝑟
disjoint sets whose convex hulls intersect.

7.1. A comparison with known results

It is interesting to compare results from the previous section with similar results from [7]
(Section 9). Note that the proof methods are quite different. We use high connectivity of the
multiple chessboard complex, established in Section 6, while the authors of [7] use the ‘constraint
method’, relying on the ‘optimal colored Tverberg theorem’ from [8], as a ‘black box’ result.

For illustration, let us compare our Theorem 7 to Theorem 9.1 from [7].
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Let us choose 𝑘 ≥ 2(𝑑 + 1) in Theorem 7 and select the smallest 𝑚 satisfying the inequality
(𝑟 − 1)(𝑑+ 1) + 1 ≤ 𝑚𝑘, meaning that we are allowed to assume

(𝑚− 1)𝑘 < (𝑟 − 1)(𝑑+ 1) + 1 ≤ 𝑚𝑘 .

From here we immediately deduce the inequality 2𝑚− 1 ≤ 𝑟 and, as a consequence of Theorem 7,
we have the following result.

Corollary 2. Let 𝑟 be a prime power. Assume 𝑘 ≥ 2(𝑑 + 1) and choose 𝑚 satisfying the
inequality (𝑟 − 1)(𝑑+ 1) + 1 ≤ 𝑚𝑘. Suppose that 𝑆 ⊂ R𝑑 is a set of cardinality 𝑚𝑘, evenly colored
by 𝑘 colors (meaning that 𝑆 = ∪𝑘𝑖=1 𝑆𝑖 where |𝑆𝑖| = 𝑚 for each 𝑖). Then it is possible to select 𝑟
pairwise disjoint subsets 𝐶𝑖 ⊂ 𝑆, containing at most 1 point of each color, so that ∩𝑟𝑖=1conv(𝐶𝑖) ̸= ∅.

This result clearly follows from Theorem 9.1 if we assume that 𝑟 is a prime. Corollary 2 illustrates
the phenomenon that there exist instances of the ‘optimal colored Tverberg theorem’ (Theorem 9.1
in [7]) which remain valid if the condition on 𝑟 being a prime is relaxed to 𝑟 is a prime power.

7.2. A remark on Tverberg A-P conjecture

In this section we briefly discuss the problem whether each admissible r-tuple is Tverberg
prescribable. This problem, as formulated in [7], will be referred to as the Tverberg A-P problem
or the Tverberg A-P conjecture.

Definition 3. For 𝑑 ≥ 1 and 𝑟 ≥ 2, an 𝑟-tuple 𝑑 = (𝑑1, ..., 𝑑𝑟) of integers is admissible if,
[𝑑2 ] ≤ 𝑑𝑖 ≤ 𝑑 for all 𝑖, and

∑︀𝑟
𝑖=1(𝑑− 𝑑𝑖) ≤ 𝑑. An admissible r-tuple is Tverberg prescribable if there

is an 𝑁 such that for every continuous map 𝑓 : Δ𝑁 → R𝑑 there is a Tverberg partition {𝜎1, ..., 𝜎𝑟}
for 𝑓 with dim(𝜎𝑖) = 𝑑𝑖.

Question. (Tverberg A-P problem; [7] (Question 6.9.)) Is every admissible 𝑟-tuple Tverberg
prescribable?

As shown in [14], (Theorem 2.8.), the answer to the above question is negative. It was also
demonstrated that a more realistic conjecture arises if the condition [𝑑2 ] ≤ 𝑑𝑖 ≤ 𝑑, in the definition

of admissible 𝑟-tuple, is replaced by a stronger requirement (𝑟−1)
𝑟 (𝑑− 1) ≤ 𝑑𝑖 ≤ 𝑑 for all 𝑖.

Here we remark that a positive answer to the modified question is quite straightforward in the
case 𝑟 ≥ 𝑑. Indeed, in this case we have for all 𝑖

𝑑𝑖 ≥
(𝑟 − 1)

𝑟
(𝑑− 1) ≥ 𝑑− 1− (𝑑− 1)

𝑟
> 𝑑− 2.

So, in this case each 𝑑𝑖 is equal to either 𝑑−1 or 𝑑, and the A-P conjecture reduces to the ‘balanced
case’, established in [23].
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24. D. Jojić, S.T. Vrećica, R.T. Živaljević. Topology and combinatorics of unavoidable complexes,
arXiv:1603.08472v1 [math.AT], (unpublished prepreint).

25. J. Jonsson. Simplicial Complexes of Graphs. Lecture Notes in Mathematics, Vol. 1928. Springer
2008.

26. J. Jonsson. Exact sequences for the homology of the matching complex. Journal of Combina-
torial Theory, Series A 115 (2008), no. 8, 1504–1526.

27. J. Jonsson. On the 3-torsion part of the homology of the chessboard complex. Annals of
Combinatorics, 2010, (14) 4, 487–505.

28. D.B. Karaguezian, V. Reiner, M.L. Wachs. Matching Complexes, Bounded Degree Graph
Complexes, and Weight Spaces of GL -Complexes. J. Algebra 239:77–92, 2001.

29. D. Kozlov. Combinatorial Algebraic Topology, Algorithms and Computation in Mathematics,
Springer 2008.

30. M. de Longueville. Bier spheres and barycentric subdivision, J. Comb. Theory Ser. A 105 (2004),
355–357.
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42. R. Živaljević. User’s guide to equivariant methods in combinatorics, I and II. Publ. Inst. Math.
(Beograd) (N.S.), (I) 59(73):114–130, 1996 and (II) 64(78):107–132, 1998.

REFERENCES

1. Athanasiadis, C.A. 2004, “Decompositions and connectivity of matching and chessboard
complexes”, Discrete Comput. Geom., vol. 31, pp. 395–403.

2. Ault, S. & Fiedorowicz, Z. 2007, “Symmetric homology of algebras”, Algebr. Geom. Topol., vol.
10, no 4, pp. 2343–2408. Available at: arXiv:0708.1575v54 [math.AT] 5 Nov 2007.

3. Ault, S. 2010, “Symmetric homology of algebras”, Algebr. Geom. Topol., vol. 10, no. 4, pp.
2343–2408.

4. Bier, T. 1992, A remark on Alexander duality and the disjunct join, Unpublished preprint.
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