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Abstract

Relations between Gromov–Hausdorff distance and Discrete Optimisation problems are
discussed. We use the Gromov–Hausdorff distances to single-distance metric space for solving
the following problems: calculation of lengths of minimum spanning tree edges of a finite metric
space; generalised Borsuk problem; chromatic number and clique cover number of a simple
graph calculation problems.

Keywords: Gromov–Hausdorff distance, Minimum spanning tree, Borsuk problem, chromatic
number, clique covering, metric geometry, discrete optimisation

Bibliography: 26 titles.

For citation:
А. О. Ivanov, А. А. Tuzhilin, 2020, "Gromov–Hausdorff Distances to Simplexes and Some
Applications to Discrete Optimisation" , Chebyshevskii sbornik, vol. 21, no. 2, pp. 169–189.

1. Introduction

The aim of the paper is to demonstrate close connections between the geometry of Gromov–
Hausdorff distance and such popular Discrete Optimisation problems as minimum spanning tree
problem, Borsuk conjecture, estimation of chromatic number and clique cover number of a simple
graph. We start with a short informal review, all necessary formal definitions can be found below.

A general concept of distance is usually used to measure a difference between objects under
consideration. Distances have applications in almost all spheres of human activity, from Geography
to Linguistics, from Biology to Theology. A great number of beautiful examples can be found in [1].
A natural idea to compare subsets of a given metric space or, more generally, compare different
metric spaces using appropriate distances, leads to appearance of so-called hyperspaces, i.e., metric
spaces of some spaces, see, for example [2]. For subsets 𝐴 and 𝐵 of a fixed metric space 𝑋, a natural
distance function 𝑑𝐻 was defined by F. Hausdorff [4] as the infimum of positive numbers 𝑟 such
that 𝐴 is contained in the 𝑟-neighbourhood of 𝐵, and vice-versa. It is well-known that this function,
referred as the Hausdorff distance, is a metric on the family of all closed bounded subsets of the
metric space 𝑋, see for example [3]. The Hausdorff distance was generalised to the case of two
metric spaces 𝑋 and 𝑌 by D. Edwards [5] and independently by M. Gromov [6]. They suggested to
take the infimum of the values 𝑑𝐻

(︀
𝜙(𝑋), 𝜓(𝑌 )

)︀
over all possible isometrical embeddings 𝜙𝑋 → 𝑍
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and 𝜓𝑌 → 𝑍 into all possible metric spaces 𝑍. Now this value is referred as the Gromov–Hausdorff
distance between 𝑋 and 𝑌 . It is well-known that this distance function a metric on the family of
isometry classes of compact metric spaces. The corresponding hyperspace is usually denoted byℳ
and is referred as the Gromov–Hausdorff space.

The geometry of the Gromov–Hausdorff space is rather tricky and is intensively investigated
by many authors, see a review in [3]. Recently the technique of closed optimal correspondences
permitted to prove that the spaceℳ is geodesic [7], to describe some local and all global isometries
ofℳ, see [8] and [9]. Since finite metric spaces form an everywhere dense subset ofℳ, the distances
to such spaces and between such spaces play an important role in the research of geometry ofℳ.
Important classes of such spaces are formed by the ones all whose non-zero distances are the same
(so-called single-distance spaces or simplexes) and by the spaces whose non-zero distances take
only two different values (so-called two-distance spaces). The authors, together with S. Illiadis and
D. Grigor’ev, see [10], [11], calculated distances from any metric space to any simplex, and, as
a particular case, the distances between any simplex and any 2-distance space, see [12]. It turns
out that the Gromov–Hausdorff distance from a metric space 𝑋 to a simplex “feels” somehow a
geometry of partitions of the space 𝑋. The latter explains some relations between the Gromov–
Hausdorff distance and Discrete Optimisation problems.

Many Discrete Optimisation problems are related to Geometry, have a long history, and are
either unsolved yet, or solved only in some particular cases. Due to many natural applications and
total computerisation Discrete Optimisation is one of the most fast developing branch of modern
Mathematics. Describe shortly the problems considered in the paper. Start with a problem of metric
minimum spanning trees.

For a finite subset 𝑀 of a metric space 𝑋, consider the complete graph 𝐾(𝑀) with the vertex
set 𝑀 , endowed with the weight function whose value on an edge {𝑥, 𝑦} equals to the distance
|𝑥𝑦| between the points 𝑥 and 𝑦 in the space 𝑋. A minimum spanning tree on 𝑀 is a subtree of
𝐾(𝑀) with the same vertex set 𝑀 and the least possible total weight. It is well-known that such
a tree can be always constructed (even in a polynomial time) by a greedy algorithm such as the
Kruskal algorithm [13]. Generally speaking, a minimum spanning tree on a fixed subset 𝑀⊂𝑋 is
not defined uniquely, but the ordered list of the weights of edges is the same for all such trees.
This list is referred as an mst-spectrum of 𝑀 . It is shown, see Section 4.1 and paper [25], that the
mst-spectrum of 𝑀 can be calculated in terms of the Gromov–Hausdorff distance from 𝑀 to the
simplexes consisting of 𝑘 = 2, . . . ,#𝑀 points and such that there diameters are sufficiently large
(they has to be at least twice greater than the diameter of 𝑀).

Now, let us pass to Borsuk Problem. In 1933, a Polish mathematician Karol Borsuk asked the
following question: How many parts one needs to partition an arbitrary subset of the Euclidean
space into, to obtain pieces of smaller diameters? He made the following famous conjecture: Any
bounded non-single-point subset of R𝑛 can be partitioned into at most 𝑛+1 subsets, each of which
has smaller diameter than the initial subset. K. Borsuk himself proved it for 𝑛 = 2 and for a ball
in 3-dimensional space, [14] and [15]. Next, the conjecture was proved by J. Perkal (1947), and
independently, by H.G. Eggleston (1955) for 𝑛 = 3, then in 1946 by H. Hadwiger [18] and [19] for
convex subsets with smooth boundaries, then for central symmetric bodies by A. S. Riesling (1971),
and to this moment almost everybody believed that it is true. However, in 1993 the conjecture
was suddenly disproved in general case by J. Kahn, and G. Kalai, see [20]. They constructed a
counterexample in dimension 𝑛 = 1325, and also proved that the conjecture is not valid for all
𝑛 > 2014. This estimate was consistently improved by Raigorodskii, 𝑛 > 561, Hinrichs and Richter,
𝑛 > 298, Bondarenko, 𝑛 > 65, and Jenrich, 𝑛 > 64, see details in a review [21]. Notice that
all the examples are finite subsets of the corresponding spaces, and the best known results of
Bondarenko [22] and Jenrich [23] are the 2-distance subsets of the unit sphere.

On the other hand, Lusternik and Schnirelmann [16], and a bit later independently Borsuk [14]
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and [15], see also [17], have shown that the standard sphere and the standard ball in R𝑛, 𝑛 > 2,
cannot be partitioned into𝑚 6 𝑛 subsets having smaller diameters. Thus, the least possible number
of parts of smaller diameter, necessary to partition the sphere and the ball in R𝑛 equals 𝑛+ 1.

In the present paper we consider a generalized Borsuk problem, passing to an arbitrary bounded
metric space 𝑋 and its partitions of an arbitrary cardinality 𝑚 (not necessary finite). We give a
criterion solving the Borsuk problem in terms of the Gromov–Hausdorff distance. It is shown that
to verify the existence of an 𝑚-partition into subsets of smaller diameter it suffices to calculate the
Gromov–Hausdorff distance from the space 𝑋 to a simplex having the cardinality 𝑚 and a smaller
diameter than 𝑋, see Section 4.2. As a corollary, a solution to the Borsuk problem for a 2-distance
space 𝑋 with distances 𝑎 < 𝑏 is obtained in terms of the clique cover number of the simple graph
𝐺 with vertex set 𝑋, whose vertices 𝑥 and 𝑦 are connected by an edge iff |𝑥𝑦| = 𝑎.

Recall that a clique cover of a given simple graph is a cover of the vertex set of the graph by
subsets within which every two vertices are adjacent. Each such subset is called a clique and is a
vertex set of a complete subgraph that is also referred as a clique. The minimum 𝑘 for which a
𝑘-element clique cover exists is called the clique cover number of the given graph. Further, a graph
coloring is an assignment of labels traditionally called “colors” to vertices of a graph in such a way
that no two adjacent vertices are of the same color. The smallest number of colors needed to color
a graph is called its chromatic number. It is well-known that the clique cover can be considered
as a graph coloring of the dual graph, hence the clique cover number of a graph equals to the
chromatic number of the dual one. Calculation and estimation of these numbers are very hard
combinatorial problems related to many other problems of Discrete Optimisation, in particular, to
Borsuk conjecture, see a review in [24]. We calculate the clique cover number of a simple graph
and the chromatic number of a simple graph in terms of the Gromov–Hausdorff distance from an
appropriate simplex to the 2-distance spaces constructed by the graph, see Section 4.2.

The work is partly supported by RFBR, Project 19-01-00775-a, and by MGU Scientific Schools
Support program.

To conclude this short Introduction, the authors use the opportunity to congratulate our
Teacher, Anatoly Timofeevich Fomenko, on his 75th birthday and wish him good health, beautiful
results and many birthdays ahead. He stimulated us to become professional mathematicians, and
teaches us to work hard, to live in the World of Mathematics, and to be optimistic both in science
and in life. We are infinitely thankful for his deep influence, kind care, permanent support and
attention.

2. Preliminaries

Let 𝑋 be an arbitrary nonempty set. Recall that a function on 𝜌 𝑋×𝑋 → R is called a metric
if it is non-negative, non-degenerate, symmetric, and satisfies the triangle inequality. A set with a
metric is called a metric space. If such a function 𝜌 is permitted to take infinite values, then we
call 𝜌 a generalized metric. If we omit the non-degeneracy condition, i.e., permit 𝜌(𝑥, 𝑦) = 0 for
some distinct 𝑥 and 𝑦, then we change the term “metric” to pseudometric. If 𝜌 is only non-negative,
symmetric, and 𝜌(𝑥, 𝑥) = 0 for any 𝑥 ∈ 𝑋, then we call such 𝜌 a distance function, instead of metric
or pseudometric. As a rule, if it is not ambiguous, we write |𝑥𝑦| for 𝜌(𝑥, 𝑦).

In what follows all metric spaces are endowed with the corresponding metric topology. We also
use the following notations. By #𝑋 we denote the cardinality of a set 𝑋. Let 𝑋 be a metric space.
The closure of a subset 𝐴⊂𝑋 is denoted by 𝐴. For its arbitrary nonempty subset 𝐴⊂𝑋 and point
𝑥 ∈ 𝑋 put |𝑥𝐴| = |𝐴𝑥| = inf

{︀
|𝑎𝑥| : 𝑎 ∈ 𝐴

}︀
. Further, for 𝑟 > 0 put

𝐵𝑟(𝑥) =
{︀
𝑦 ∈ 𝑋 : |𝑥𝑦| 6 𝑟

}︀
, and 𝑈𝑟(𝑥) =

{︀
𝑦 ∈ 𝑋 : |𝑥𝑦| < 𝑟

}︀
,
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and
𝐵𝑟(𝐴) =

{︀
𝑦 ∈ 𝑋 : |𝐴𝑦| 6 𝑟

}︀
, and 𝑈𝑟(𝐴) =

{︀
𝑦 ∈ 𝑋 : |𝐴𝑦| < 𝑟

}︀
.

2.1. Hausdorff distance

Recall the basic results concerning the Hausdorff distance. The details can be found in [3]. For
a set 𝑋, by 𝒫0(𝑋) we denote the collection of all nonempty subsets of 𝑋. Let 𝑋 be a metric space.
For any 𝐴,𝐵 ∈ 𝒫0(𝑋) we put

𝑑1𝐻(𝐴,𝐵) = max
(︁
sup
{︀
|𝑎𝐵| : 𝑎 ∈ 𝐴

}︀
, sup

{︀
|𝐴𝑏| : 𝑏 ∈ 𝐵

}︀)︁
, (1)

𝑑2𝐻(𝐴,𝐵) = inf
{︀
𝑟 ∈ [0,∞] : 𝐴⊂𝐵𝑟(𝐵) & 𝐵𝑟(𝐴)

𝐵
}︀
, (2)

𝑑3𝐻(𝐴,𝐵) = inf
{︀
𝑟 ∈ [0,∞] : 𝐴⊂𝑈𝑟(𝐵) & 𝑈𝑟(𝐴)

𝐵
}︀
. (3)

It is well-known that these three values coincide with each other, i.e., 𝑑1𝐻(𝐴,𝐵) = 𝑑2𝐻(𝐴𝐵) =
= 𝑑3𝐻(𝐴,𝐵) for any 𝐴,𝐵 ∈ 𝒫0(𝑋). The value 𝑑𝑖𝐻(𝐴,𝐵) is denoted by 𝑑𝐻(𝐴,𝐵). It is easy to see
that 𝑑𝐻 is non-negative, symmetric, and 𝑑𝐻(𝐴,𝐴) = 0 for any nonempty 𝐴⊂𝑋, thus, 𝑑𝐻 is a
generalized distance on the family 𝒫0(𝑋) of all nonempty subsets of a metric space 𝑋, moreover,
it is a generalized pseudometric on 𝒫0(𝑋), i.e., it satisfies the triangle inequality. The function 𝑑𝐻
is referred as Hausdorff distance.

Further, by ℋ(𝑋)⊂𝒫0(𝑋) we denote the set of all nonempty closed bounded subsets of a metric
space 𝑋. It is well-known that the Hausdorff distance 𝑑𝐻 is a metric on ℋ(𝑋).

In what follows, speaking about the distance in ℋ(𝑋) we will always mean the Hausdorff
distance. Notice that there are different notations for this hyperspace in the literature. We use the
notation ℋ(𝑋) by virtue of the fact that this is the largest natural set of subsets of a metric space
which the Hausdorff distance is a metric on.

Recall a few properties of the Hausdorff distance.

Proposition 1. Let 𝑋 be an arbitrary metric space.

1. The mapping 𝑓 𝑋 → 𝒫0(𝑋) given by the formula 𝑓 𝑥 ↦→ {𝑥} is an isometric embedding.

2. For any 𝐴,𝐵 ∈ 𝒫0(𝑋) we have 𝑑𝐻(𝐴,𝐵) = 𝑑𝐻(𝐴, �̄�) = 𝑑𝐻(𝐴,𝐵) = 𝑑𝐻(𝐴, �̄�).

3. For any 𝐴,𝐵 ∈ 𝒫0(𝑋) we have 𝑑𝐻(𝐴,𝐵) = 0 if and only if 𝐴 = �̄�.

4. If 𝑌⊂𝑋 is an 𝜀-net in 𝐴⊂𝑋, then 𝑑𝐻(𝐴, 𝑌 ) 6 𝜀.

2.2. Gromov–Hausdorff distance

Let 𝑋 and 𝑌 be metric spaces. A triple (𝑋 ′, 𝑌 ′, 𝑍) consisting of a metric space 𝑍 and its two
subsets 𝑋 ′ and 𝑌 ′ which are isometric respectively to 𝑋 and 𝑌 is be called a realization of the pair
(𝑋,𝑌 ). Put

𝑑𝐺𝐻(𝑋,𝑌 ) = inf
{︀
𝑟 ∈ R : ∃ a realization (𝑋 ′, 𝑌 ′, 𝑍) of (𝑋,𝑌 ) such that 𝑑𝐻(𝑋

′, 𝑌 ′) 6 𝑟
}︀
.

Remark 1. The value 𝑑𝐺𝐻(𝑋,𝑌 ) is evidently non-negative, symmetric, and 𝑑𝐺𝐻(𝑋,𝑋) = 0
for any metric space 𝑋. Thus, 𝑑𝐺𝐻 is a generalized distance function on each set of metric spaces.

Definition 1. The value 𝑑𝐺𝐻(𝑋,𝑌 ) is called the Gromov–Hausdorff distance between the
metric spaces 𝑋 and 𝑌 .



174 А. О. Иванов, А. А. Тужилин

It turns out that, to define the Gromov–Hausdorff distance, it suffices to consider only metric
spaces of the form (𝑋 ⊔𝑌, 𝜌), where 𝜌 extends the original metrics of 𝑋 and 𝑌 , i.e., the restrictions
of 𝜌 onto 𝑋 and 𝑌 coincide with the original metrics of these metric spaces. Such 𝜌 is called an
admissible metric for 𝑋 and 𝑌 , and the set of all admissible metrics for given 𝑋 and 𝑌 is denoted
by 𝒟(𝑋,𝑌 ).

Proposition 2. For any metric spaces 𝑋 and 𝑌 , we have

𝑑𝐺𝐻(𝑋,𝑌 ) = inf
{︀
𝜌𝐻(𝑋,𝑌 ) : 𝜌 ∈ 𝒟(𝑋,𝑌 )

}︀
. (4)

It is well-known that, on every set of metric spaces, the function 𝑑𝐺𝐻 is a generalized
pseudometric. If the diameters of all spaces in the family are bounded by the same number, then
𝑑𝐺𝐻 is a pseudometric. In general, 𝑑𝐺𝐻 is not a metric, it may equal zero for distinct metric spaces.
However, if we restrict ourselves to compact metric spaces considered up to an isometry, then 𝑑𝐺𝐻
is a metric.

For specific calculations of the Gromov–Hausdorff distance, other equivalent definitions of this
distance are useful.

Recall that a relation between sets 𝑋 and 𝑌 is defined as a subset of the Cartesian product
𝑋×𝑌 . Similarly to the case of mappings, for each 𝜎 ∈ 𝒫0(𝑋×𝑌 ) and for every 𝑥 ∈ 𝑋 and 𝑦 ∈ 𝑌 ,
there are defined the image 𝜎(𝑥) :=

{︀
𝑦 ∈ 𝑌 : (𝑥, 𝑦) ∈ 𝜎

}︀
of any 𝑥 ∈ 𝑋 and the pre-image

𝜎−1(𝑦) =
{︀
𝑥 ∈ 𝑋 : (𝑥, 𝑦) ∈ 𝜎

}︀
of any 𝑦 ∈ 𝑌 . Also, for 𝐴⊂𝑋 and 𝐵⊂𝑌 their image and pre-image

are defined as the union of the images and pre-images of their elements, respectively.
Let 𝜋𝑋 𝑋×𝑌 → 𝑋 and 𝜋𝑌 𝑋×𝑌 → 𝑌 be the canonical projections, i.e., 𝜋𝑋(𝑥, 𝑦) = 𝑥 and

𝜋𝑌 (𝑥, 𝑦) = 𝑦. The restrictions of these mappings to each relation 𝜎⊂𝑋×𝑌 are denoted in the
same way. A relation 𝑅 between 𝑋 and 𝑌 is called a correspondence if the restrictions of the
canonical projections 𝜋𝑋 and 𝜋𝑌 onto 𝑅 are surjective. In other words, for every 𝑥 ∈ 𝑋 there exists
𝑦 ∈ 𝑌 , and for every 𝑦 ∈ 𝑌 there exists 𝑥 ∈ 𝑋, such that (𝑥, 𝑦) ∈ 𝑅. Thus, the correspondence
can be considered as a surjective multivalued mapping. By ℛ(𝑋,𝑌 ) we denote Tthe set of all
correspondences between 𝑋 and 𝑌 .

If 𝑋 and 𝑌 are metric spaces, then for each relation 𝜎 ∈ 𝒫0(𝑋×𝑌 ) its distortion dis𝜎 as follows

dis𝜎 = sup
{︁⃒⃒
|𝑥𝑥′| − |𝑦𝑦′|

⃒⃒
: (𝑥, 𝑦), (𝑥′, 𝑦′) ∈ 𝜎

}︁
.

Remark 2. For any 𝜎1, 𝜎2 ∈ 𝒫0(𝑋×𝑌 ) such that 𝜎1⊂𝜎2, we have dis𝜎1 6 dis𝜎2.

The next constructions establish a link between correspondences from ℛ(𝑋,𝑌 ) and admissible
metrics on 𝑋 ⊔ 𝑌 . At first, let 𝜌 ∈ 𝒟(𝑋,𝑌 ) be an arbitrary admissible metric for metric spaces
𝑋 and 𝑌 , and suppose that 𝜌𝐻(𝑋,𝑌 ) < ∞. Choose an arbitrary 𝑟 > 𝜌𝐻(𝑋,𝑌 ) such that the set
𝑅𝜌𝑟 = {(𝑥, 𝑦) : 𝜌(𝑥, 𝑦) 6 𝑟} is a correspondence between 𝑋 and 𝑌 (it is so for any 𝑟 > 𝜌𝐻(𝑋,𝑌 )).
Then dis𝑅𝜌𝑟 6 2𝑟.

Conversely, consider an arbitrary correspondence 𝑅 ∈ ℛ(𝑋,𝑌 ). Suppose that dis𝑅 <∞. Extend
the metrics of 𝑋 and 𝑌 up to a symmetric function 𝜌𝑅 defined on 𝑋 ⊔ 𝑌 as follows:

𝜌𝑅(𝑥, 𝑦) = 𝜌𝑅(𝑦, 𝑥) = inf
{︀
|𝑥𝑥′|+ |𝑦𝑦′|+ 1

2
dis𝑅 : (𝑥′, 𝑦′) ∈ 𝑅

}︀
.

If dis𝑅 > 0, then 𝜌𝑅 is an admissible metric, and 𝜌𝑅𝐻(𝑋,𝑌 ) = 1
2dis𝑅.

The key well-known result on the relation between the correspondences and the Gromov–
Hausdorff distance is the following Theorem.

Theorem 1. For any metric spaces 𝑋 and 𝑌 the equality

𝑑𝐺𝐻(𝑋,𝑌 ) =
1

2
inf
{︀
dis𝑅 : 𝑅 ∈ ℛ(𝑋,𝑌 )

}︀
holds.
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2.3. Irreducible correspondences

For arbitrary nonempty sets 𝑋 and 𝑌 , a correspondence 𝑅 ∈ ℛ(𝑋,𝑌 ) is called irreducible if it
is a minimal element of the set ℛ(𝑋,𝑌 ) with respect to the order given by the inclusion relation.
The set of all irreducible correspondences between 𝑋 and 𝑌 is denoted by ℛ0(𝑋,𝑌 ).

The following result is evident.

Proposition 3. A correspondence 𝑅 ∈ ℛ(𝑋,𝑌 ) is irreducible if and only if for any (𝑥, 𝑦) ∈ 𝑅
it holds

Res
{︀
#𝑅(𝑥),#𝑅−1(𝑦)

}︀
= 1.

Theorem 2. Let 𝑋, 𝑌 be arbitrary nonempty sets. Then for every 𝑅 ∈ ℛ(𝑋,𝑌 ) there exists
𝑅0 ∈ ℛ0(𝑋,𝑌 ) such that 𝑅0⊂𝑅. In particular, ℛ0(𝑋,𝑌 ) ̸= ∅.

Theorems 2 and 1, together with Remark 2, implies

Corollary 1. For any metric spaces 𝑋 and 𝑌 we have

𝑑𝐺𝐻(𝑋,𝑌 ) =
1

2
inf
{︀
dis𝑅 | 𝑅 ∈ ℛ0(𝑋,𝑌 )

}︀
.

Now we give another useful description of irreducible correspondences.

Proposition 4. For any nonempty sets 𝑋, 𝑌 , and each 𝑅 ∈ ℛ0(𝑋,𝑌 ), there exist and
unique partitions 𝑅𝑋 = {𝑋𝑖}𝑖∈𝐼 and 𝑅𝑌 = {𝑌𝑖}𝑖∈𝐼 of the sets 𝑋 and 𝑌 , respectively, such that
𝑅 = ∪𝑖∈𝐼𝑋𝑖×𝑌𝑖. Moreover, 𝑅𝑋 = ∪𝑦∈𝑌

{︀
𝑅−1(𝑦)

}︀
, 𝑅𝑌 := ∪𝑥∈𝑋

{︀
𝑅(𝑥)

}︀
,

{𝑋𝑖×𝑌𝑖}𝑖∈𝐼 = ∪(𝑥,𝑦)∈𝑅{𝑅−1(𝑦)×𝑅(𝑥)},

and for each 𝑖 it holds Res{#𝑋𝑖,#𝑌𝑖} = 1.
Conversely, each set 𝑅 = ∪𝑖∈𝐼𝑋𝑖×𝑌𝑖, where {𝑋𝑖}𝑖∈𝐼 and {𝑌𝑖}𝑖∈𝐼 are partitions of nonempty

sets 𝑋 and 𝑌 , respectively, such that for each 𝑖 it holds Res{#𝑋𝑖,#𝑌𝑖} = 1, is an irreducible
correspondence between 𝑋 and 𝑌 .

Let 𝑋 be an arbitrary set consisting of more than one point, and 𝑚 a cardinal number,
2 6 𝑚 6 #𝑋. By 𝒟𝑚(𝑋) we denote the family of all possible partitions of the set 𝑋 into 𝑚
nonempty subsets.

Now let 𝑋 be a metric space. Then for each 𝐷 = {𝑋𝑖}𝑖∈𝐼 ∈ 𝒟𝑚(𝑋) we put

diam𝐷 = sup
𝑖∈𝐼

diam𝑋𝑖.

Further, for any nonempty 𝐴,𝐵⊂𝑋, we put |𝐴𝐵| = inf
{︀
|𝑎𝑏| : (𝑎, 𝑏) ∈ 𝐴×𝐵

}︀
, and |𝐴𝐵|′ :=

sup
{︀
|𝑎𝑏| : (𝑎, 𝑏) ∈ 𝐴×𝐵

}︀
. Further, for each 𝐷 = {𝑋𝑖}𝑖∈𝐼 ∈ 𝒟𝑚(𝑋) we put

𝛼(𝐷) = inf
{︀
|𝑋𝑖𝑋𝑗 | : 𝑖 ̸= 𝑗

}︀
and 𝛽(𝐷) = sup

{︀
|𝑋𝑖𝑋𝑗 |′ : 𝑖 ̸= 𝑗

}︀
.

Also notice that |𝑋𝑖𝑋𝑖| = 0, |𝑋𝑖𝑋𝑖|′ = diam𝑋𝑖, and hence, diam𝐷 = sup𝑖∈𝐼 |𝑋𝑖𝑋𝑖|′.
The next result follows easily from the definition of distortion, as well as from Proposition 4.

Proposition 5. Let 𝑋 and 𝑌 be arbitrary metric spaces, 𝐷𝑋 = {𝑋𝑖}𝑖∈𝐼 , 𝐷𝑌 = {𝑌𝑖}𝑖∈𝐼 ,
#𝐼 > 2, be some partitions of the spaces 𝑋 and 𝑌 , respectively, and 𝑅 = ∪𝑖∈𝐼𝑋𝑖×𝑌𝑖 ∈ ℛ(𝑋,𝑌 ).
Then

dis𝑅 = sup
{︀
|𝑋𝑖𝑋𝑗 |′ − |𝑌𝑖𝑌𝑗 |, |𝑌𝑖𝑌𝑗 |′ − |𝑋𝑖𝑋𝑗 | : 𝑖, 𝑗 ∈ 𝐼

}︀
=

= sup
{︀
diam𝐷𝑋 , diam𝐷𝑌 , |𝑋𝑖𝑋𝑗 |′ − |𝑌𝑖𝑌𝑗 |, |𝑌𝑖𝑌𝑗 |′ − |𝑋𝑖𝑋𝑗 | : 𝑖, 𝑗 ∈ 𝐼, 𝑖 ̸= 𝑗

}︀
6

6 max
{︀
diam𝐷𝑋 , diam𝐷𝑌 , 𝛽(𝐷𝑋)− 𝛼(𝐷𝑌 ), 𝛽(𝐷𝑌 )− 𝛼(𝐷𝑋)

}︀
.
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It will also be convenient for us to represent a relation 𝜎 ∈ 𝒫0(𝑋×𝑌 ) as a bipartite graph. Then
the degree deg of each vertex is defined: deg𝜎(𝑥) = #𝜎(𝑥) and deg𝜎(𝑦) = #𝜎−1(𝑦).

Remark 3. Notice that if 𝑅 ∈ ℛ0(𝑋,𝑌 ), 𝑥 ∈ 𝑋, and deg𝑅(𝑥) > 1, then for each 𝑥′ ∈ 𝑋,
𝑥′ ̸= 𝑥, it holds 𝑅(𝑥) ∩𝑅(𝑥′) = ∅. Therefore, if #𝑋 > 2 and #𝑌 > 2, then for any 𝑅 ∈ ℛ0(𝑋,𝑌 )
there is no 𝑥 ∈ 𝑋 such that {𝑥}×𝑌⊂𝑅.

2.4. Some Examples and Estimates

Here we list several simple cases of exact calculation and estimate of the Gromov–Hausdorff
distance.

Example 1. Let 𝑌 be an arbitrary 𝜀-net of a metric space 𝑋. Then 𝑑𝐺𝐻(𝑋,𝑌 ) 6 𝑑𝐻(𝑋,𝑌 ) 6 𝜀.
Thus, every compact metric space is approximated (according to the Gromov-Hausdorff metric) with
any accuracy by finite metric spaces.

By Δ1 we denote a single-point metric space.

Example 2. Then for any metric space 𝑋 we have

𝑑𝐺𝐻(Δ1, 𝑋) =
1

2
diam𝑋.

Example 3. Let 𝑋 and 𝑌 be some metric spaces, and the diameter of one of them is finite.
Then

𝑑𝐺𝐻(𝑋,𝑌 ) >
1

2
|diam𝑋 − diam𝑌 |.

Example 4. Let 𝑋 and 𝑌 be some metric spaces, then

𝑑𝐺𝐻(𝑋,𝑌 ) 6
1

2
max{diam𝑋,diam𝑌 },

in particular, if 𝑋 and 𝑌 are bounded metric spaces, then 𝑑𝐺𝐻(𝑋,𝑌 ) <∞.

For an arbitrary metric space 𝑋 and a real 𝜆 > 0, by 𝜆𝑋 we denote the metric space obtained
from 𝑋 by multiplying all distances by 𝜆. For 𝜆 = 0 we set 𝜆𝑋 = Δ1.

Example 5. For any bounded metric space 𝑋 and any 𝜆 > 0, 𝜇 > 0, we have 𝑑𝐺𝐻(𝜆𝑋, 𝜇𝑋) =
= 1

2 |𝜆− 𝜇|diam𝑋, in particularly, for any 0 6 𝑎 < 𝑏 the curve 𝛾(𝑡) := 𝑡𝑋, 𝑡 ∈ [𝑎, 𝑏], is shortest.

Example 6. Let 𝑋 and 𝑌 be metric spaces, then for any 𝜆 > 0 we have 𝑑𝐺𝐻(𝜆𝑋, 𝜆𝑌 ) =
= 𝜆 𝑑𝐺𝐻(𝑋,𝑌 ). If, in addition, 𝑑𝐺𝐻(𝑋,𝑌 ) <∞, then the equality holds for all 𝜆 > 0.

3. Gromov–Hausdorff Distance to Simplexes

By simplex we call a metric space, all whose non-zero distances equal to each other. If 𝑚 is an
arbitrary cardinal number, then by Δ𝑚 we denote a simplex containing 𝑚 points and such that all
its non-zero distances equal 1. Thus, 𝜆Δ𝑚, 𝜆 > 0, is a simplex whose non-zero distances equal 𝜆.
Also, for arbitrary metric space 𝑋 and 𝜆 = 0, the space 𝜆𝑋 coincides with Δ1 by definitoon.
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3.1. The Case of Simplexes of Greater Cardinality

The next result generalizes Theorem 4.1 from [10].

Theorem 3. Let 𝑋 be an arbitrary metric space, 𝑚 > #𝑋 a cardinal number, and 𝜆 > 0, then

2𝑑𝐺𝐻(𝜆Δ𝑚, 𝑋) = max{𝜆,diam𝑋 − 𝜆}.

Proof. If 𝑋 is unbounded, then 2𝑑𝐺𝐻(𝜆Δ𝑚, 𝑋) = ∞ by Example 3, and the required equality
holds.

Now, let diam𝑋 <∞.
If #𝑋 = 1, then diam𝑋 = 0, and, by Example 2, we have

2𝑑𝐺𝐻(𝜆Δ, 𝑋) = diam𝜆Δ = 𝜆 = max{𝜆,diam𝑋 − 𝜆}.

If 𝜆 = 0, then, by Example 2, we have

2𝑑𝐺𝐻(Δ1, 𝑋) = diam𝑋 = max{𝜆,diam𝑋 − 𝜆}.

Let #𝑋 > 1 and 𝜆 > 0. Choose an arbitrary 𝑅 ∈ ℛ(𝜆Δ𝑚, 𝑋). Since #𝑋 < 𝑚 and 𝜆 > 0, then
there exists 𝑥 ∈ 𝑋 such that #𝑅−1(𝑥) > 2, thus, dis𝑅 > 𝜆 and 2𝑑𝐺𝐻(𝜆Δ𝑚, 𝑋) > 𝜆.

Consider an arbitrary sequence (𝑥𝑖, 𝑦𝑖) ∈ 𝑋×𝑋 such that |𝑥𝑖𝑦𝑖| → diam𝑋. If it contains a
subsequence (𝑥𝑖𝑘 , 𝑦𝑖𝑘) such that for each 𝑖𝑘 there exists 𝑧𝑘 ∈ 𝜆Δ, (𝑧𝑘, 𝑥𝑖𝑘) ∈ 𝑅, (𝑧𝑘, 𝑦𝑖𝑘) ∈ 𝑅, then
dis𝑅 > diam𝑋 and

2𝑑𝐺𝐻(𝜆Δ𝑚, 𝑋) > max{𝜆,diam𝑋} > max{𝜆,diam𝑋 − 𝜆}.

If such subsequence does not exist, then there exists a subsequence (𝑥𝑖𝑘 , 𝑦𝑖𝑘) such that for any
𝑖𝑘 there exist distinct 𝑧𝑘, 𝑤𝑘 ∈ 𝜆Δ𝑚, (𝑧𝑘, 𝑥𝑖𝑘) ∈ 𝑅, (𝑤𝑘, 𝑦𝑖𝑘) ∈ 𝑅, and, therefore,

2𝑑𝐺𝐻(𝜆Δ𝑚, 𝑋) > max
{︀
𝜆, |diam𝑋 − 𝜆|

}︀
> max{𝜆,diam𝑋 − 𝜆}.

Thus, in the both cases we have 2𝑑𝐺𝐻(𝜆Δ, 𝑋) > max
{︀
𝜆,diam𝑋 − 𝜆

}︀
.

Choose an arbitrary 𝑥0 ∈ 𝑋, then, by assumption, #𝑋 > 1, and, thus, the set 𝑋∖{𝑥0} is not
empty. Since #𝑋 < 𝑚, then 𝜆Δ𝑚 contains a subset 𝜆Δ′ of the same cardinality as 𝑋∖{𝑥0}. Let
𝑔 𝜆Δ′ → 𝑋∖{𝑥0} be an arbitrary bijection, and 𝜆Δ′′ = 𝜆Δ𝑚∖𝜆Δ′, then #𝜆Δ′′ > 1. Consider the
following correspondence

𝑅0 =
{︁(︀
𝑧′, 𝑔(𝑧′)

)︀
: 𝑧′ ∈ 𝜆Δ′

}︁
∪
(︀
𝜆Δ′′×{𝑥0}

)︀
and apply Proposition 5. So, we have:

dis𝑅0 = sup{𝜆, |𝑥1𝑥′1| −𝜆, 𝜆− |𝑥2𝑥′2| : 𝑥1, 𝑥′1, 𝑥2, 𝑥′2 ∈ 𝑋, 𝑥1 ̸= 𝑥′1, 𝑥2 ̸= 𝑥′2} = max{𝜆,diam𝑋 −𝜆},

therefore,

2𝑑𝐺𝐻(𝜆Δ, 𝑋) = max{𝜆,diam𝑋 − 𝜆},

what is required. 2
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3.2. The Case of Simplexes with at most the Same Cardinality

Let 𝑋 be an arbitrary set consisting of more than one point, 2 6 𝑚 6 #𝑋 a cardinal number,
and 𝜆 > 0. Under notations of Subsection 2.3, consider an arbitrary 𝐷 ∈ 𝒟𝑚(𝑋), any bijection
𝑔 𝜆Δ𝑚 → 𝐷, and construct the correspondence 𝑅𝐷 ∈ ℛ(𝜆Δ𝑚, 𝑋) in the following way:

𝑅𝐷 =
⋃︁

𝑧∈𝜆Δ𝑚

{𝑧}×𝑔(𝑧).

Clearly that the correspondence 𝑅𝐷 is irreducible. Apply Proposition 5 to calculate its distortion.

Proposition 6. Let 𝑋 ̸= Δ1 be an arbitrary metric space, 2 6 𝑚 6 #𝑋 a cardinal number,
and 𝜆 > 0. Then for any 𝐷 ∈ 𝒟𝑚(𝑋) it holds

dis𝑅𝐷 = max{diam𝐷, 𝜆− 𝛼(𝐷), 𝛽(𝐷)− 𝜆}.

Proof. If 𝑋 is unbounded, then dis𝑅 = ∞ for any 𝑅 ∈ ℛ(𝜆Δ𝑚, 𝑋). Since 𝑚 > 2, for any
𝐷 = {𝑋𝑖}𝑖∈𝐼 ∈ 𝒟𝑚(𝑋) we have either diam𝐷 = ∞, or 𝛽(𝐷) = ∞. Indeed, if diam𝐷 < ∞ and
𝛽(𝐷) < ∞ then for any 𝑥, 𝑦 ∈ 𝑋 either 𝑥, 𝑦 ∈ 𝑋𝑖, thus |𝑥𝑦| 6 diam𝐷, or 𝑥 ∈ 𝑋𝑖, 𝑦 ∈ 𝑋𝑗 , 𝑖 ̸= 𝑗,
and |𝑥𝑦| 6 |𝑋𝑖𝑋𝑗 |′ 6 𝛽(𝐷), therefore 𝑋 is bounded. Thus, for an unbounded 𝑋 the both sides of
the equality are infinite, thus we get what is required.

Now, let diam𝑋 <∞. By Proposition 5, we have

dis𝑅𝐷 = sup
{︀
diam𝐷, 𝜆−|𝑋𝑖𝑋𝑗 |, |𝑋𝑖𝑋𝑗 |′−𝜆 : 𝑖, 𝑗 ∈ 𝐼, 𝑖 ̸= 𝑗

}︀
= max{diam𝐷, 𝜆−𝛼(𝐷), 𝛽(𝐷)−𝜆},

that completes the proof. 2

Corollary 2. Let 𝑋 ̸= Δ1 be an arbitrary metric space, 2 6 𝑚 6 #𝑋 a cardinal number, and
𝜆 > 0. Then for any 𝐷 ∈ 𝒟𝑚(𝑋) it holds

dis𝑅𝐷 = max{diam𝐷, 𝜆− 𝛼(𝐷), diam𝑋 − 𝜆}.

Proof. For unbounded 𝑋 the equation evidently holds.
Consider now the case of bounded 𝑋. Notice that diam𝐷 6 diam𝑋 and 𝛽(𝐷) 6 diam𝑋. In

addition, if diam𝐷 < diam𝑋, and (𝑥𝑖, 𝑦𝑖) ∈ 𝑋×𝑋 is a sequence such that |𝑥𝑖𝑦𝑖| → diam𝑋, then,
starting from some 𝑖, the points 𝑥𝑖 and 𝑦𝑖 belong to different elements of 𝐷, therefore, in this case
we have 𝛽(𝐷) = diam𝑋, and the formula is proved.

Now, let diam𝐷 = diam𝑋, then 𝛽(𝐷)− 𝜆 6 diam𝑋 and diam𝑋 − 𝜆 6 diam𝑋, thus

max{diam𝐷, 𝜆−𝛼(𝐷), 𝛽(𝐷)−𝜆}=max{diam𝑋, 𝜆−𝛼(𝐷)}=max{diam𝐷, 𝜆−𝛼(𝐷), diam𝑋−𝜆},

that completes the proof. 2

Proposition 7. Let 𝑋 ̸= Δ1 be an arbitrary metric space, and 2 6 𝑚 6 #𝑋 a cardinal
number, and 𝜆 > 0. Then

2𝑑𝐺𝐻(𝜆Δ𝑚, 𝑋) = inf
𝐷∈𝒟𝑚(𝑋)

dis𝑅𝐷.

Proof. The case of unbounded 𝑋 is trivial, so, let 𝑋 be bounded. By Corollary 1,

2𝑑𝐺𝐻(𝜆Δ𝑚, 𝑋) = inf
𝑅∈ℛ0(𝜆Δ𝑚,𝑋)

dis𝑅,

thus, it suffices to prove that for any irreducible correspondence 𝑅 ∈ ℛ0(𝜆Δ𝑚, 𝑋) there exists
𝐷 ∈ 𝒟𝑚(𝑋) such that dis𝑅𝐷 6 dis𝑅.
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Let us choose an arbitrary 𝑅 ∈ ℛ0(𝜆Δ𝑚, 𝑋) such that it cannot be represented in the form
𝑅𝐷, then the partition 𝐷𝑅

𝜆Δ𝑚
is not pointwise, i.e., there exists 𝑥 ∈ 𝑋 such that #𝑅−1(𝑥) > 2,

therefore, dis𝑅 > 𝜆.
Define a metric on the set 𝐷𝑅

𝜆Δ𝑚
to be equal 𝜆 between any its distinct elements, then this

metric space is isometric to a simplex 𝜆Δ′
𝑛, 𝑛 6 𝑚. The correspondence 𝑅 generates naturally a

correspondence 𝑅′ ∈ ℛ(𝜆Δ′
𝑛, 𝑋), namely, if 𝐷𝑅

𝜆Δ𝑚
= {Δ𝑗}𝑗∈𝐽 , and 𝑓𝑅𝐷𝑅

𝜆Δ𝑚
→ 𝐷𝑅

𝑋 is the bijection
generated by 𝑅, then

𝑅′ =
⋃︁
𝑗∈𝐽
{Δ𝑗}×𝑓𝑅(Δ𝑗).

It is easy to see that dis𝑅 = max{𝜆, dis𝑅′}. Moreover, 𝑅′ is generated by the partition 𝐷′ = 𝐷𝑅
𝑋 ,

i.e., 𝑅′ = 𝑅𝐷′ , thus, by Corollary 2, we have

dis𝑅′ = max{diam𝐷′, 𝜆− 𝛼(𝐷′), diam𝑋 − 𝜆},

and hence,

dis𝑅 = max{𝜆,diam𝐷′, 𝜆− 𝛼(𝐷′), diam𝑋 − 𝜆} = max{𝜆, diam𝐷′, diam𝑋 − 𝜆}.

Since 𝑛 6 𝑚, the partition 𝐷′ has a subpartition 𝐷 ∈ 𝒟𝑚(𝑋). Clearly, diam𝐷 6 diam𝐷′, therefore,

dis𝑅𝐷 = max{diam𝐷, 𝜆− 𝛼(𝐷), diam𝑋 − 𝜆} 6 max{diam𝐷′, 𝜆, diam𝑋 − 𝜆} = dis𝑅,

q.e.d. 2

Considering separately the trivial case of 𝜆 = 0, we get the following result.

Corollary 3. Let 𝑋 ̸= Δ1 be an arbitrary metric space, 2 6 𝑚 6 #𝑋 a cardinal number, and
𝜆 > 0. Then

2𝑑𝐺𝐻(𝜆Δ𝑚, 𝑋) = inf
𝐷∈𝒟𝑚(𝑋)

max{diam𝐷, 𝜆− 𝛼(𝐷), diam𝑋 − 𝜆}.

For any metric space 𝑋 put

𝜀(𝑋) = inf
{︀
|𝑥𝑦| : 𝑥, 𝑦 ∈ 𝑋, 𝑥 ̸= 𝑦

}︀
.

Notice that 𝜀(𝑋) 6 diam𝑋, and for a bounded 𝑋 the equality holds if and only if 𝑋 is a simplex.
Corollary 3 immediately implies the following result that is proved in [10].

Theorem 4 ([10]). Let 𝑋 ̸= Δ1 be a finite metric space, 𝑚 = #𝑋, and 𝜆 > 0, then

2𝑑𝐺𝐻(𝜆Δ𝑚, 𝑋) = max
{︀
𝜆− 𝜀(𝑋), diam𝑋 − 𝜆

}︀
.

4. Some Applications

In this section we apply the previous results to some well-known discrete optimisation problems
from Metric Geometry and Graph Theory.

4.1. Calculation mst-spectrum

The first application deals with optimal graphs, so we start from some preliminaries for the
Graph Theory.
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4.1.1. Elements of Graph Theory

Here we consider simple graphs only, so in what follows by a graph we mean a pair 𝐺 = (𝑉,𝐸)
consisting of two sets 𝑉 and 𝐸 referred as the vertex set and the edge set of the graph 𝐺 ,
respectively; elements of 𝑉 are called vertices, and the ones of 𝐸 are called edges of the graph
𝐺. The set 𝐸 is a subset of the family of two-element subsets of 𝑉 . If 𝑉 and 𝐸 are finite sets then
the graph 𝐺 is called finite.

It is convenient to use the following notations:

� If {𝑣, 𝑤} ∈ 𝐸 is an edge of the graph 𝐺, then we write it just as 𝑣𝑤 or 𝑤𝑣; further one says
that an edge 𝑣𝑤 connects the vertices 𝑣 and 𝑤, and that 𝑣 and 𝑤 are the vertices of the edge
𝑣𝑤;

� We write 𝑉 (𝐺) and 𝐸(𝐺) for the vertex set and the edge set of a graph 𝐺 to underline which
graph is under consideration.

Graphs 𝐺 = (𝑉,𝐸) and 𝐻 = (𝑊,𝐹 ) are called isomorphic if there exists a bijective map
𝑓 𝑉 →𝑊 such that 𝑢𝑣 ∈ 𝐸 if and only if 𝑓(𝑢)𝑓(𝑣) ∈ 𝐹 . Such a mapping 𝑓 is called an isomorphism
of the graphs 𝐺 and 𝐻. Isomorphic graphs are often identified and, therefore, are not distinguished.

Two vertices 𝑣, 𝑤 ∈ 𝑉 (𝐺) are called adjacent if 𝑣𝑤 ∈ 𝐸(𝐺). Two different edges 𝑒1, 𝑒2 ∈ 𝐸(𝐺)
are called adjacent if they have a common vertex, i.e., if 𝑒1 ∩ 𝑒2 ̸= ∅. Each edge 𝑣𝑤 ∈ 𝐸(𝑉 ) and its
vertex, i.e., 𝑣 or 𝑤, are said to be incident to each other. The set of vertices of a graph 𝐺 adjacent
to a vertex 𝑣 ∈ 𝑉 is called the neighbourhood of the vertex 𝑣 and denoted by 𝑁𝑣. The cardinal
number of edges incident to a vertex 𝑣 is called the degree of the vertex 𝑣 and is denoted by deg 𝑣,
so deg 𝑣 = #𝑁𝑣.

A subgraph of a graph 𝐺 = (𝑉,𝐸) is each graph 𝐻 = (𝑊,𝐹 ) provided that 𝑊⊂𝑉 and 𝐹⊂𝐸.
The fact that a graph 𝐻 is a subgraph of a graph 𝐺 is denoted as 𝐻⊂𝐺. If 𝑊 = 𝑉 then the
subgraph 𝐻⊂𝐺 is called spanning.

On the set of all graphs, whose vertex sets lie in a given set 𝑉 , the inclusion relation ⊂ of being
a subgraph defines a partial order. The smallest element in this order is the empty graph (∅, ∅); the
greatest one is called the complete graph on 𝑉 and is denoted by 𝐾(𝑉 ). This partial order induces
the one on the set of all subgraphs of a graph 𝐺 = (𝑉,𝐸): now the smallest element is again the
empty graph (∅, ∅), but the greatest one is the graph 𝐺 itself.

We also need some set-theoretical operations on graphs. They are usually defined in an intuitively
clear way in terms of vertex and edge sets. For example, if 𝐺1 = (𝑉1, 𝐸1) and 𝐺2 = (𝑉2, 𝐸2) are
graphs, then put 𝐺1∪𝐺2 = (𝑉1∪𝑉2, 𝐸1∪𝐸2). Also, if 𝐺 = (𝑉,𝐸) is a graph, and 𝑒 is a two-element
subset of 𝑉 , then 𝐺 ∪ 𝑒 =

(︀
𝑉,𝐸 ∪ {𝑒}

)︀
; similarly for 𝑒 ∈ 𝐸 put 𝐺∖𝑒 =

(︀
𝑉,𝐸∖{𝑒}

)︀
.

For each 𝑊⊂𝑉 the subgraph 𝐺(𝑊 ) of the graph 𝐺 generated by 𝑊 is defined as the graph with
the vertex set 𝑊 , whose edge set consists of all 𝑒 ∈ 𝐸 that connects vertices from 𝑊 . In other
words, 𝐺(𝑊 ) is maximal among subgraphs of 𝐺, whose vertex sets coincides with 𝑊 .

We also need a similar construction for an edges set. Namely, for 𝐹⊂𝐸 the subgraph 𝐺(𝐹 ) of
the graph 𝐺 generated by 𝐹 is defined as the graph with the edge set 𝐹 , whose vertex set is the
collection of all vertices of 𝐺 incident to edges from 𝐹 .

A finite sequence 𝛾 = (𝑣0 = 𝑣, 𝑣1, . . . , 𝑣𝑘 = 𝑤) of vertices of a graph 𝐺 is called a walk of
length 𝑘 connecting 𝑣 and 𝑤 if for every 𝑖 = 1, . . . , 𝑘 the vertices 𝑣𝑖−1 and 𝑣𝑖 are adjacent, and the
edges 𝑒𝑖 = 𝑣𝑖−1𝑣𝑖 are called the edges of the walk 𝛾. A walk containing at least one edge is called
non-degenerate, and the walk containing no edges, i.e., with 𝑘 = 0, is called degenerate. The walk
is called closed if 𝑣0 = 𝑣𝑛, and it is called open otherwise. A trail is a walk with no repeated edges,
a path is an open trail with no repeated vertices. A circuit is a closed trail, and a cycle is a circuit
with no repeated vertices.
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A graph 𝐺 is called connected if each pair of its vertices are connected by a walk. Maximal (by
inclusion) connected subgraphs of a graph 𝐺 are called components of 𝐺. A graph without cycles
is called a forest, and a connected forest is called a tree.

A weighted graph is a graph 𝐺 = (𝑉,𝐸) equipped with a weight function 𝜔 𝐸 → [0,∞)
(sometimes it is useful to consider more general weight functions, for instance, the ones taking
negative or/and negative values also). A weighted graph is denoted by (𝑉,𝐸, 𝜔) or (𝐺,𝜔).
The weight 𝜔(𝐻) of a subgraph 𝐻⊂𝐺 is the sum of the weights of all the edges from this
subgraph: 𝜔(𝐻) =

∑︀
𝑒∈𝐸(𝐻) 𝜔(𝑒). This definition can be extended to trails, in particular, to

paths, circuits and cycles, considered as the corresponding subgraphs of 𝐺. In the case of a walk
𝛾 = (𝑣0 = 𝑣, 𝑣1, . . . , 𝑣𝑘 = 𝑤), its weight is defined as the sum of weights of all its consecutive edges:
𝜔(𝛾) =

∑︀𝑛
𝑖=1 ∈ (𝑣𝑖−1𝑣𝑖). For graphs without weight functions these notions are defined as well by

assigning the weight 1 to each edge by default.

Remark 4. As in the case of metric spaces, we sometimes won’t denote the weight function
explicitly. Instead of that, speaking about a weighted graph 𝐺, we denote the weight of an object 𝑥
just by |𝑥|. For example, for 𝑒 ∈ 𝐸 by |𝑒| we mean the weight of this edge, and for a subgraph 𝐻⊂𝐺
by |𝐻| we denote the weight of 𝐻, etc.

4.1.2. Minimum Spanning Tree Problem

Let 𝑀 be a metric space. We consider 𝑀 as a weighted complete graph 𝐾(𝑀) whose weight
function equals to the distance between the corresponding edges. By 𝒯 (𝑀) we denote the set of all
spanning trees in 𝐾(𝑀). Put

mst(𝑀) = inf
𝑇∈𝒯 (𝑀)

|𝑇 |

and call this value by the length of minimum spanning tree on 𝑀 . Each 𝑇 ∈ 𝒯 (𝑀) with
|𝑇 | = mst(𝑀) is call a minimum spanning tree on 𝑀 . The set of all minimum spanning trees
on 𝑀 is denoted by MST(𝑀).

Remark 5. If 𝑀 is finite, them MST(𝑀) ̸= ∅. For infinite 𝑀 the situation is rather more
difficult, see [26].

Example 7. If all nonzero distances in 𝑀 are the same, then every spanning tree in 𝐾(𝑀) is
minimum, so MST(𝑀) = 𝒯 (𝑀).

If #𝑀 = 3, then each minimum spanning tree is obtained from the complete graph 𝐾(𝑀) by
deleting the longest edge (any of them if there are several).

4.1.3. The mst-spectrum

In this Section we consider only finite metric spaces 𝑀 , i.e., #𝑀 <∞.
Notice that a minimum spanning tree, generally speaking, is not uniquely defined. For

𝐺 ∈ MST(𝑀), by 𝜎(𝐺) we denote the vector whose elements are the lengths of the edges of
the tree 𝐺 sorted in descending order. The following result is well-known, however, we present its
proof for completeness.

Proposition 8. For any 𝐺1, 𝐺2 ∈ MST(𝑀) the equality 𝜎(𝐺1) = 𝜎(𝐺2) holds.

Proof. Recall the standard algorithm for converting one minimum spanning tree to another [13].
Let 𝐺1 ̸= 𝐺2, 𝐺𝑖 = (𝑀,𝐸𝑖), then 𝐸1 ̸= 𝐸2 and #𝐸1 = #𝐸2, therefore, there exists 𝑒 ∈ 𝐸2∖𝐸1.

The graph 𝐺1 ∪ 𝑒 has a cycle 𝐶 containing the edge 𝑒, and the cycle 𝐶 does not contain an edge
longer than 𝑒, because 𝐺1 ̸∈ MST(𝑀) otherwise. The forest 𝐺2∖𝑒 consists of two trees whose vertex
sets we denote by 𝑉 ′ and 𝑉 ′′. Clearly,𝑀 = 𝑉 ′⊔𝑉 ′′. The cycle 𝐶 contains an edge 𝑒′ ̸= 𝑒 connecting
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a vertex from 𝑉 ′ with a vertex from 𝑉 ′′. This edge does not lie in 𝐸2, otherwise 𝐺2 would contain
a cycle. Therefore, 𝑒′ ∈ 𝐸1∖𝐸2.

The graph 𝐺2 ∪ 𝑒′ also contains some cycle 𝐶 ′. By the choice of 𝑒′, the cycle 𝐶 ′ also has the
edge 𝑒. Similarly to the above, the length of the edge 𝑒 is less than or equal to the length of the
edge 𝑒′, otherwise 𝐺2 ̸∈ MST(𝑀). Therefore, |𝑒| = |𝑒′|.

Replacing the edge 𝑒′ in 𝐺1 with 𝑒, we get a tree 𝐺′
1 of the same length, i.e., it is a minimum

spanning tree as well, and 𝐺′
1 and 𝐺2 have one common edge more than the trees 𝐺1 and 𝐺2. Thus,

in a finite number of steps, we rebuild the tree 𝐺1 into the tree 𝐺2, passing through minimum
spanning trees. It remains to notice that 𝜎(𝐺′

1) = 𝜎(𝐺1), therefore, 𝜎(𝐺1) = 𝜎(𝐺2). 2

Proposition 8 motivates the following definition.

Definition 2. For any finite metric space 𝑀 , by 𝜎(𝑀) we denote 𝜎(𝐺) for an arbitrary
𝐺 ∈ MST(𝑀) and call it the mst-spectrum of the space 𝑀 .

Theorem 5. Let 𝑀 be a finite metric space and 𝜎(𝑀) = (𝜎1, . . . , 𝜎𝑛−1). Then

𝜎𝑘 = max
{︀
𝛼(𝐷) : 𝐷 ∈ 𝒟𝑘+1(𝑀)

}︀
.

Proof. Let 𝐺 = (𝑀,𝐸) ∈ MST(𝑀) and the set 𝐸 be ordered so that |𝑒𝑖| = 𝜎𝑖. Denote by
𝐷 = {𝑀1, . . . ,𝑀𝑘+1} the partition of the set 𝑀 into the sets of vertices of the trees forming the
forest 𝐺∖{𝑒𝑖}𝑘𝑖=1.

Lemma 1. We have 𝛼(𝐷) = |𝑒𝑘|.

Proof. Indeed, choose arbitrary 𝑀𝑖 and 𝑀𝑗 , 𝑖 ̸= 𝑗, take arbitrary points 𝑎𝑖 and 𝑎𝑗 in them,
respectively, and let 𝛾 be the unique path in 𝐺, connecting 𝑎𝑖 and 𝑎𝑗 . Then 𝛾 contains some edge
𝑒𝑝, 1 6 𝑝 6 𝑘. However, due to the minimality of the tree 𝐺, we have

|𝑎𝑖𝑎𝑗 | > |𝑒𝑝| > Res
16𝑖6𝑘

|𝑒𝑖| = |𝑒𝑘|,

thus |𝑀𝑖𝑀𝑗 | > |𝑒𝑘|, so 𝛼(𝐷) > |𝑒𝑘|. On the other hand, the edge 𝑒𝑘 connects some 𝑀𝑝 and 𝑀𝑞,
then we get 𝛼(𝐷) 6 |𝑀𝑝𝑀𝑞| = |𝑒𝑘|. 2

Now consider an arbitrary partition 𝐷′ = {𝑀 ′
1, . . . ,𝑀

′
𝑘+1}.

Lemma 2. We have 𝛼(𝐷′) 6 𝛼(𝐷).

Proof. Due to Lemma 1, it suffices to show that 𝛼(𝐷′) 6 |𝑒𝑘|. Denote by 𝐸′ the set consisting
of all edges 𝑒𝑝 ∈ 𝐸, each of which connects some 𝑀 ′

𝑖 and 𝑀
′
𝑗 , 𝑖 ̸= 𝑗. Since 𝐺 is connected, then the

set 𝐸′ consists of at least 𝑘 edges. On the other hand, if some 𝑀 ′
𝑖 and 𝑀

′
𝑗 , 𝑖 ̸= 𝑗, are connected by

an edge 𝑒′ ∈ 𝐸′, then |𝑀 ′
𝑖𝑀

′
𝑗 | 6 |𝑒′|, hence 𝛼(𝐷′) = Res |𝑀 ′

𝑖𝑀
′
𝑗 | 6 Res𝑒′∈𝐸′ |𝑒′| 6 |𝑒𝑘|. 2

Lemma 2 completes the proof. 2

4.1.4. Calculating mst-spectrum by Means of Gromov–Hausdorff Distances

In the present section we show that the mst-spectrum of an arbitrary 𝑛-point metric space 𝑋
can be represented as a linear function on the Gromov–Hausdorff distances from this space to the
𝜆Δ2, . . . , 𝜆Δ𝑛 for 𝜆 > 2diam𝑋.

Theorem 6. Let 𝑋 be a finite metric space, 𝜎(𝑋) = (𝜎1, . . . , 𝜎𝑛−1), 𝜆 > 2diam𝑋. Then

𝜎𝑘 = 𝜆− 2𝑑𝐺𝐻(𝜆Δ𝑘+1, 𝑋).
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Proof. Choose any 1 6 𝑘 6 𝑛 − 1 and arbitrary irreducible correspondence 𝑅 ∈ ℛ0(𝜆Δ𝑘+1, 𝑋).
By Proposition 4, there exists partitions 𝑅𝜆Δ𝑘+1

= {𝑍𝑖}𝑝𝑖=1 and 𝑅𝑋 = {𝑋𝑖}𝑝𝑖=1 of 𝜆Δ𝑘+1 and 𝑋,
respectively, such that 𝑅 = ∪𝑝𝑖=1𝑍𝑖×𝑋𝑖, and Res{#𝑍𝑖,#𝑋𝑖} = 1 for all 𝑖. By Proposition 5,
it holds dis𝑅 > max{diam𝑅𝜆Δ𝑘+1

, diam𝑅𝑋}. Thus, if for some 𝑖 we have #𝑍𝑖 > 1, then
dis𝑅 > 𝜆 > 2diam𝑋. Since 𝑘 + 1 6 𝑛, there exists 𝑅 such that #𝑍𝑖 = 1 for all 𝑖. For such
𝑅, again by Proposition 5, we have dis𝑅 6 diam𝑋. Therefore, inf𝑅∈ℛ0(𝜆Δ𝑘+1,𝑋) dis𝑅 is achieved
on a correspondences of the latter type. By ℛ we denote the set of such correspondences.

Now, if 𝑅 ∈ ℛ, then it consists of 𝑝 = 𝑘 + 1 elements, and 𝑅𝑋 ∈ 𝒟𝑘+1(𝑋). By Proposition 5,
we have

dis𝑅 = sup
{︀
diam𝑅𝑋 , |𝑋𝑖𝑋𝑗 |′ − 𝜆, 𝜆− |𝑋𝑖𝑋𝑗 | : 1 6 𝑖 < 𝑗 6 𝑘 + 1

}︀
=

= sup
{︀
𝜆− |𝑋𝑖𝑋𝑗 | : 1 6 𝑖 < 𝑗 6 𝑘 + 1

}︀
= 𝜆− 𝛼(𝑅𝑋),

where the second equality holds because for 𝜆 chosen the estimate

max
{︀
|𝑋𝑖𝑋𝑗 |′ − 𝜆, diam𝑅𝑋

}︀
6 diam𝑋 6 𝜆− diam𝑋 6 𝜆− |𝑋𝑖𝑋𝑗 |

holds for any 1 6 𝑖 < 𝑗 6 𝑘 + 1. Corollary 1, together with above considerations, gives us

2𝑑𝐺𝐻(𝜆Δ𝑘+1, 𝑋) = Res
𝑅∈ℛ

dis𝑅 = Res
𝑅∈ℛ

(︀
𝜆− 𝛼(𝑅𝑋)

)︀
= 𝜆− max

𝐷∈𝒟𝑘+1(𝑋)
𝛼(𝐷),

where the last equality holds because each 𝐷 generates some 𝑅 ∈ ℛ. It remains to apply Theorem 5
saying that max

{︀
𝛼(𝐷) : 𝐷 ∈ 𝒟𝑘+1(𝑋)

}︀
= 𝜎𝑘, thus, 2𝑑𝐺𝐻(𝜆Δ𝑘+1, 𝑋) = 𝜆− 𝜎𝑘. 2

Corollary 4. Let 𝑋 be a finite metric space and 𝜆 > 2diam𝑋, then

mst𝑋 = 𝜆(#𝑋 − 1)− 2

#𝑋−1∑︁
𝑘=1

𝑑𝐺𝐻(𝜆Δ𝑘+1, 𝑋).

4.2. Generalized Borsuk Problem

Classical Borsuk Problem deals with partitions of subsets of Euclidean space into parts having
smaller diameters. We generalize the Borsuk problem to arbitrary bounded metric spaces and
partitions of arbitrary cardinality. Let 𝑋 be a bounded metric space, 𝑚 a cardinal number such
that 2 6 𝑚 6 #𝑋, and 𝐷 = {𝑋𝑖}𝑖∈𝐼 ∈ 𝒟𝑚(𝑋). We say that 𝐷 is a partition of 𝑋 into subsets
having strictly smaller diameters, if there exists 𝜀 > 0 such that diam𝑋𝑖 6 diam𝑋 − 𝜀 for all 𝑖 ∈ 𝐼.

The Generalized Borsuk Problem: Is it possible to partition a bounded metric space 𝑋 into a
given, probably infinite, number of subsets, each of which has a strictly smaller diameter than 𝑋?

We give a solution to this Problem in terms of the Gromov–Hausdorff distance.

Theorem 7. Let 𝑋 be an arbitrary bounded metric space and 𝑚 a cardinal number such that
2 6 𝑚 6 #𝑋. Choose an arbitrary number 0 < 𝜆 < diam𝑋, then 𝑋 can be partitioned into
𝑚 subsets having strictly smaller diameters if and only if 2𝑑𝐺𝐻(𝜆Δ𝑚, 𝑋) < diam𝑋. If not, then
2𝑑𝐺𝐻(𝜆Δ𝑚, 𝑋) = diam𝑋.

Proof. Due Corollary 3, for the 𝜆 chosen the inequality 2𝑑𝐺𝐻(𝜆Δ𝑚, 𝑋) 6 diam𝑋 is valid, and
the equality holds if and only if for each 𝐷 ∈ 𝒟𝑚(𝑋) we have diam𝐷 = diam𝑋. The latter means
that there is no partition of the space 𝑋 into 𝑚 parts having strictly smaller diameters. 2

Corollary 5. Let 𝑑 > 0 be a real number, and 𝑚 6 𝑛 cardinal numbers. By ℳ𝑛 we denote
the set of isometry classes of bounded metric spaces of cardinality at most 𝑛, endowed with the
Gromov–Hausdorff distance. Choose an arbitrary 0 < 𝜆 < 𝑑. Then the intersection

𝑆𝑑/2(Δ1) ∩ 𝑆𝑑/2(𝜆Δ𝑚)
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of the spheres (here the the spheres are considered as spheres inℳ𝑛) does not contain spaces, whose
cardinality is less than 𝑚, and consists exactly of all metric spaces fromℳ𝑛, whose diameters are
equal to 𝑑 and that cannot be partitioned into 𝑚 subsets of strictly smaller diameters.

Proof. Let 𝑋 belong to the intersection of the spheres, then diam𝑋 = 𝑑 in accordance with
Example 2. If 𝑚 > #𝑋, then, due to Theorem 3, we have

2𝑑𝐺𝐻(𝜆Δ𝑚, 𝑋) = max{𝜆, diam𝑋 − 𝜆} < 𝑑,

therefore 𝑋 ̸∈ 𝑆𝑑/2(𝜆Δ𝑚), that proves the first statement of Corollary.
Now let 𝑚 6 #𝑋. Since diam𝑋 = 𝑑 and 2𝑑𝐺𝐻(𝜆Δ𝑚, 𝑋) = 𝑑, then, due to Theorem 7, the

space 𝑋 cannot be partitioned into 𝑚 subsets of strictly smaller diameters.
Conversely, each 𝑋 of the diameter 𝑑, such that 𝑚 6 #𝑋 and 𝑋 cannot be partitioned into 𝑚

subsets of strictly smaller diameter, lies in the intersection of the spheres by Theorem 7. 2

4.3. Clique Cover Number and Chromatic Number of a Simple Graph

Recall that a subgraph of an arbitrary simple graph 𝐺 is called a clique, if any its two vertices
are connected by an edge, i.e., the clique is a subgraph which is a complete graph itself. Notice that
each single-vertex subgraph is a single-vertex clique. For convenience, the vertex set of a clique is
also referred as a clique.

On the set of all cliques, an ordering with respect to inclusion is naturally defined, and hence,
due to the above remarks, a family of maximal cliques is uniquely defined; this family forms a
covering of the graph 𝐺 in the following sense: the union of all vertex sets of all maximal cliques
coincides with the vertex set 𝑉 (𝐺) of the graph 𝐺.

If one does not restrict himself by maximal cliques only, then, generally speaking, one can find
other families of cliques covering the graph 𝐺. One of the classical problems of Graph Theory is
to calculate the minimal possible number of cliques covering a given finite simple graph 𝐺. This
number is referred as the clique cover number and is often denoted by 𝜃(𝐺). It is easy to see that
the value 𝜃(𝐺) also equals the least number of cliques whose vertex sets form a partition of 𝑉 (𝐺).

Another popular problem is to find the least possible number of colors that is necessary to color
the vertices of a simple finite graph 𝐺 in such a way that adjacent vertices have different colors.
This number is denoted by 𝛾(𝐺) and is referred as the chromatic number of the graph 𝐺.

For a simple graph 𝐺, by 𝐺′ we denote its dual graph, i.e., the graph with the same vertex set
and the complementary set of edges (two vertices of 𝐺′ are adjacent if and only if they are not
adjacent in 𝐺). It is not difficult to verify, that for any simple finite graph 𝐺 it holds 𝜃(𝐺) = 𝛾(𝐺′).

Let 𝐺 = (𝑉,𝐸) be an arbitrary finite graph. Fix two real numbers 𝑎 < 𝑏 6 2𝑎 and define a
metric on 𝑉 as follows: the distance between adjacent vertices equals 𝑎, and the distance between
nonadjacent vertices equals 𝑏. Then a subset 𝑉 ′⊂𝑉 has diameter 𝑎 if and only if 𝐺(𝑉 ′)⊂𝐺 is
a clique. This implies that the clique cover number of 𝐺 equals the least possible cardinality of
partitions of the metric space 𝑉 into subsets of (strictly) smaller diameter. However, this number
was calculated in Theorem 7. Thus, we get the following result.

Corollary 6. Let 𝐺 = (𝑉,𝐸) be an arbitrary finite graph. Fix two real numbers 𝑎 < 𝑏 6 2𝑎
and define a metric on 𝑉 as follows: the distance between adjacent vertices equals 𝑎, and the
distance between nonadjacent ones equals 𝑏. Let 𝑚 be the greatest positive integer 𝑘 such that
2𝑑𝐺𝐻(𝑎Δ𝑘, 𝑉 ) = 𝑏 (in the case when there is no such 𝑘, we put 𝑚 = 0). Then 𝜃(𝐺) = 𝑚+ 1.

Because of the duality between clique cover and chromatic numbers, we get the following dual
result.
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Corollary 7. Let 𝐺 = (𝑉,𝐸) be an arbitrary finite graph. Fix two real numbers 𝑎 < 𝑏 6 2𝑎
and define a metric on 𝑉 as follows: the distance between adjacent vertices equals 𝑏, and the
distance between nonadjacent ones equals 𝑎. Let 𝑚 be the greatest positive integer 𝑘 such that
2𝑑𝐺𝐻(𝑎Δ𝑘, 𝑉 ) = 𝑏 (in the case when there is no such 𝑘, we put 𝑚 = 0). Then 𝛾(𝐺) = 𝑚+ 1.

4.4. Examples

In conclusion we give several examples demonstrating how the above Corollaries can be applied.

4.4.1. An Empty Graph and a Complete Graph

Let 𝐺 = (𝑉,𝐸) be an empty graph, i.e., 𝐸 = ∅. Put 𝑛 = #𝑉 , then 𝜃(𝐺) = 𝑛. Now, let us
calculate 𝜃(𝐺) by means of Corollary 6.

The metric space 𝑉 constructed in Corollary 6 coincides with 𝑏Δ𝑛, then for 𝑘 < 𝑛 we have
2𝑑𝐺𝐻(𝑎Δ𝑘, 𝑉 ) = 2𝑑𝐺𝐻(𝑎Δ𝑘, 𝑏Δ𝑛) = 𝑏 because for any 𝑅 ∈ ℛ(𝑎Δ𝑘, 𝑏Δ𝑛) there exists 𝑥 ∈ 𝑎Δ𝑘 such
that #𝑅(𝑥) > 2, thus dis𝑅 = 𝑏. For 𝑘 > 𝑛 we have 2𝑑𝐺𝐻(𝑎Δ𝑘, 𝑏Δ𝑛) 6 max{𝑎, 𝑏 − 𝑎}. Indeed, for
𝑘 = 𝑛 we can consider a bijection 𝑅 with dis𝑅 = 𝑏 − 𝑎. For 𝑘 > 𝑛 we can define 𝑅 as follows:
take some 𝑥 ∈ 𝑏Δ𝑛, and let 𝑅−1(𝑥) consists of arbitrary 𝑘 − 𝑛 + 1 points of 𝑎Δ𝑘; for remaining
points let 𝑅 be a bijection. Then dis𝑅 = max{𝑎, 𝑏 − 𝑎}. Thus, according to Corollary 6, we also
have 𝜃(𝐺) = 𝑛.

Now, let 𝐺 = (𝑉,𝐸) be a complete graph, i.e., any two its vertices are adjacent. In this case
𝜃(𝐺) = 1. Now, let us calculate 𝜃(𝐺) by means of Corollary 6.

In this case the metric space 𝑉 from Corollary 6 coincides with 𝑎Δ𝑛, therefore 2𝑑𝐺𝐻(𝑎Δ𝑘, 𝑉 ) =
= 2𝑑𝐺𝐻(𝑎Δ𝑘, 𝑎Δ𝑛) 6 max

{︀
diam(𝑎Δ𝑘),diam(𝑎Δ𝑛)

}︀
< 𝑏, due to Example 4, therefore 𝜃(𝐺) = 1

according to Corollary 6.

4.4.2. Bipartite Graphs

Let 𝐺 = (𝑉,𝐸) be a complete bipartite graph, i.e., its vertex set is partitioned in two non-empty
non-intersecting subsets 𝑉1 and 𝑉2, and its edge set 𝐸 consists of all pairs 𝑣1𝑣2, 𝑣𝑖 ∈ 𝑉𝑖, 𝑖 = 1, 2.
In this case 𝛾(𝐺) = 2. Now, let us calculate 𝛾(𝐺) by means of Corollary 7.

The metric space 𝑉 constructed in Corollary 7 is a 2-distance space such that the distances
between the points belonging to the same subset 𝑉𝑖 equals 𝑎, and the distance between the points
belonging to distinct 𝑉𝑖 equals 𝑏, where 0 < 𝑎 < 𝑏 6 2𝑎. Then diam𝑉 = 𝑏, so 𝑑𝐺𝐻(𝑎Δ1, 𝑉 ) = 𝑏.
Further, for 𝑎Δ𝑘, 𝑘 > 2, let us partition the vertex set of Δ𝑘 in two non-empty sets 𝐷1 and 𝐷2, and
put 𝑅 = (𝐷1 × 𝑉1) ∪ (𝐷2 × 𝑉2). Then 𝑑𝐺𝐻(𝑎Δ𝑘, 𝑉 ) 6 dist𝑅 = max{𝑎, 𝑏 − 𝑎} 6 𝑎 < 𝑏. Therefore
𝛾(𝐺) = 2 in accordance with Corollary 7.

If 𝐺 = (𝑉,𝐸) is a bipartite graph, i.e., its vertex set is partitioned in two non-empty non-
intersecting subsets 𝑉1 and 𝑉2 again, but its edge set 𝐸 is nonempty and is contained in the edge
set of the corresponding complete bipartite graph, then 𝛾(𝐺) = 2, and similar reasoning can be
used to calculate it by means of Corollary 7.

4.4.3. Distance from Simplexes to Balls and Spheres

As it is mentioned in Introduction, Lusternik and Schnirelmann [16], and a bit later
independently Borsuk [14] and [15], have shown that the least possible number of parts of smaller
diameter necessary to partition a sphere and a ball in R𝑛 equals 𝑛 + 1. Then Theorem 7 implies
the following result.

Corollary 8. Let 𝑋 be either the standard unit sphere 𝑆𝑛−1 or the standard unit ball 𝐵𝑛 in the
Euclidean space R𝑛, and 0 < 𝜆 < 2. Then 𝑑𝐺𝐻(𝜆Δ𝑘, 𝑋) < 1 for 𝑘 > 𝑛+ 1, and 𝑑𝐺𝐻(𝜆Δ𝑘, 𝑋) = 1
for 𝑘 6 𝑛.



186 А. О. Иванов, А. А. Тужилин

4.4.4. Cycles and Wheel Graph

Recall that the cycle 𝐶𝑛 with 𝑛 > 3 vertices is a connected simple graph with 𝑛 vertices and 𝑛
edges, such that all the vertices have degree 2. The graphs 𝐶2𝑘 are evidently bipartite, 𝛾(𝐶2𝑘) = 2,
and 𝛾(𝐶2𝑘+1) = 3.

Let 𝑋 be a finite 2-distance space with non-zero distances 0 < 𝑎 < 𝑏. Construct a finite graph
𝐺𝑋 with vertex set 𝑋 connecting two vertices by an edge iff the distance between them equals 𝑏.
This graph is referred as the greater distance graph of 𝑋.

Corollary 9. Let 𝑋 be a finite 𝑛-point 2-distance metric space with non-zero distances
𝑎 < 𝑏 6 2𝑎, such that its greater distance graph is 𝐶2𝑘+1. Then 2𝑑𝐺𝐻(𝑎Δ𝑚, 𝑋) = 𝑏 for 𝑚 = 1, 2.

Recall that the wheel graph 𝑊𝑛 with 𝑛 vertices is obtained from the cycle 𝐶𝑛−1 by adding a
single vertex and 𝑛 − 1 edges connecting this vertex with all the remaining ones. It is well-known
that 𝛾(𝑊2𝑘) = 4 and 𝛾(𝑊2𝑘+1) = 3.

Corollary 10. Let 𝑋 be a finite 𝑛-point 2-distance metric space with non-zero distances
𝑎 < 𝑏 6 2𝑎, such that its greater distance graph is 𝑊𝑛. If 𝑛 = 2𝑘 + 1, then 2𝑑𝐺𝐻(𝑎Δ𝑚, 𝑋) = 𝑏 for
𝑚 = 1, 2, and if 𝑛 = 2𝑘, then 2𝑑𝐺𝐻(𝑎Δ𝑚, 𝑋) = 𝑏 for 𝑚 = 1, 2, 3.
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