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1. Retracts of linear finite-dimensional spaces

On the seminar “Differential geometry and applications” academician A. T. Fomenko proposed
the following question to the author of this paper. Under what assumption the image of a mapping
f:R* —» RF k > n,is a retract of the space R¥? An answer to this question is a result below
which provides a sufficient condition for f(R") to be a retract of R¥.

Let a number k£ > n and a mapping f : R® — R* be given.

THEOREM 1. Assume that f is continuous and injective. Then for the conditions
(a) f is coercive (i.e. if |x| — +oo then |f(x)| = +00),

(b) there exists a continuous left inverse mapping g : R¥ — R™ to the mapping f (i.e. g(f(z)) =
for every x € R™),

(c) f(R™) is a retract of R*,
the following implications take place: (a) < (b) = (c).

PROOF. Set Y := f(R™) and denote by h : ¥ — R™ a mapping which assigns to y € Y a
point x € R™ such that f(x) = y. The existence and uniqueness of this mapping follows from the
injectivity of f. Denote by h; a function which assigns to y € Y the i-th coordinate of h(y), i = 1,n,
ie. h(y) = (hi(y), ..., hn(y)) for every y € Y.

1) Prove (a) = (b). We first show that h is continuous. Take arbitrary y € Y, {y;} C Y such
that y; — y. The sequence {h(y;)} is bounded since otherwise there exists a subsequence {h(y;,)}
such that |h(y;,)| = oo and f(h(yj;)) = y;, = v, and this contradicts (a).

Show that the sequence {h(y;)} has at most one limit point. Indeed, since f is continuous and
f(h(yj)) = y; — y, for a limit point x € R" of the sequence {h(y;)} equality f(z) = y holds.
Injectivity of f implies that such a point x is unique.

Since the sequence {h(y;)} is bounded and has the only limit point, this sequence converges to
this limit point z € R™. Continuity of f implies that y; = f(h(y;)) — f(x). Hence, f(z) =y, thus
x = h(y). Continuity of h is proved.

Show that Y is closed. Take a sequence {y;} C Y and a point y € R¥ such that y; — y. The
sequence {h(y;)} is bounded, since otherwise it has a subsequence {h(y;,)} such that |h(y;,)| — oo
and f(h(y;,)) = y;, — y in contradiction to (a). Hence, the sequence {h(y;)} has at least one limit
point € R™. The continuity of f and the relation f(h(y;)) =y; — v imply f(x) = y. Hence, Y is
closed.

So, each function h; : Y — R, i = 1, n, is a continuous function and its domain is a closed subset
of R¥. The Tietze-Urysohn extension theorem (see, for instance, [1, Theorem 2.1.8]) implies that
for every i = 1,n there exists a continuous function g; : R¥ — R such that g;(y) = h;(y) for every
y € Y. Define a mapping g : R¥ — R" by formula g(y) := (91(y), ..., gx(%)), y € R¥. Obviously g is
continuous and g(f(z)) = h(f(x)) = = for every = € R™.

2) Prove (b) = (a). Assume the contrary, i.e. there exist a sequence {z;} C R" and a point
y € R¥ such that z; — oo and f(zj) — y as j — oo. Put y; := f(x;), j = 1,2,.... Then
g(y;) = x; — oo and the sequence {y;} converges, in contradiction to continuity of g.

3) Prove (b) = (c). It is obvious that y — f(g(y)), y € R*, is a retraction of R* onto Y. O

In the proof of the theorem it is shown that (a) implies that the image Y of f is closed. Let
us show that under the assumptions of continuity and injectivity of f the closedness of Y is not
sufficient for Y to be a retraction of R*.

EXAMPLE 1. Let S; C R? be a circle with radius one centered at the point y1 = (1,0) and
Sy C R? be a circle with radius one centered at the point yo = (—1,0). Define the mapping
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f:R = R? by formula
f(x) = y1 + (— cos(4arctgz), sin(4arctgz)), for x>0,

f(x) = y2 + (cos(4arctgz), sin(4arctgzr)), for x <O.

Obuviously, this mapping is continuous (in particular, at the point x = 0, the value of f and
the left-hand and the right-hand limits of f equal (0,0)) and injective. Moreover, f assigns to
nonnegative numbers the circle S1 and assigns to nonpositive numbers the circle Sa. Therefore, the
image Y = 51U Sy of f is closed. Since Y is bounded, f is not coercive.

Show that Y is not a retract of R2. Assume the contrary, i.e. there exists a retraction r : R? — Y.
Consider the mapping w : Y — S, w(y) =y for y € S1, w(y) = (0,0) for y € Sa. Obviously the
mapping y — w(r(y)), y € R%, is a retraction of R? onto Sy. Hence, a circle is a retract of a plane
which is impossible (see, for instance, [2, §3.4]). Therefore, Y is not a retract of R2.

REMARK 1. In connection with Theorem 1 there appears the following natural question. Is the
implication (¢) = (a) true? The author does not know the answer to this question yet.

2. Images and preimages of retracts

Let us state a corollary of Theorem 1 which provides sufficient condition for an image of a
retract to be a retract.

COROLLARY 1. Let f be continuous, injective and coercive, U C R™ be a retract of R™. Then
f(U) is a retract of R,

PrROOF. Let r : R® — U be a retraction. By virtue of the proposition (a) = (b) of Theorem 1
there exists a continuous mapping g : R¥ — R” such that g(f(z)) = z for every € R". Show that
the mapping y — f(r(g(y))), y € R¥, is a retraction onto f(U).

Since g(R¥) = R™ and r(R™) = U, then f(r(g(R¥))) = f(U). Further, for every y € f(U) there
exists € U such that f(x) = y. The definition of g implies g(y) = g(f(x)) = x, the definition of r
and the inclusion = € U implies r(x) = x, thus

f(r(g(y))) = f(r(z) = f(z) = y.

Therefore, the mapping f(r(g(-))) is a retraction and its image coincide with f(U). O

Let us now state conditions for preimage of a retract to be a retract.

Everywhere below we assume that the spaces R™ and R* are equipped with Euclidian norms.
For arbitrary linear operator A : R¥ — R™ denote by A* the adjoint operator, for arbitrary linear
operator A : R™ — R™ denote by ||A|| the norm of A.

PROPOSITION 1. Let U C R™ be a retract of R™, a mapping g : RF — R" be twice continuosly

differentiable, the linear operator —g(y) be surjective for every y € R and

dy

dg

320 Hgg@f(ay(w.gg@f)l <c VyeR: 1)

Then the set g~ (U) := {y € R¥ : g(y) € U} is a retract of R™.

PROOF. Assume g(0) = 0, without loss of generality. Put M := {y € RF : g(y) = 0}, and
let s : R™ — U be a retraction. By virtue of [3, Theorem 1| there exists a homeomorphism
F: M x R" — RF such that

g(F(&x) =2 VY({x)e M xR". (2)
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Denote by a : R¥ — M and b : R¥ — R" the projections of F~1 onto M and R™, respectively, i.e.

F~'(y) = (a(y),b(y)) VYyeR"

Show that b = g. Take arbitrary point y € R*. We have y = F(F~!(y)) = F(a(y),b(y)). Thus,

Here, the second equality follows from (2). Thus b = g. This identity implies that

F(a(y),9(y)) = F(a(y),b(y)) = F(F'(y)) =y VYyeR" (3)

Define a mapping 7 : R¥ — ¢~1(U) by formula

r(y) = F(a(y),s(g(y))), yeR"

Show that it is well defined, i.e. r(R¥) ¢ ¢g~!}(U). For arbitrary y € R, we have s(g(y)) € U by
virtue of the definition of s. Thus, (2) implies

So, the mapping r is well defined.
Show that r is a retraction. Take arbitrary y € ¢~ '(U). Put z := g(y). Obviously = € U. We
have

r(y) = F(a(y), s(g(y))) = F(a(y),s(z)) = F(a(y), z).

Here, the last equality follows from the inclusion z € U since s : R™ — U is a retraction. Further,

F(a(y), =) = F(a(y),9(y)) = y-
Here, the last equality follows from (3). So, 7 is a retraction and ¢~!(U) is a retract. O

REMARK 2. The assumption of nondegeneracy of the derivatives in Proposition 1 is essential.
Indeed, let g : R = R, g(y) = 3%, y € R, U = {1}. The set U is obviously a retract of R, however
the set g~ (U) = {—1,1} is not a retract of R since g~ (U) is not connected.

The uniform reqularity assumption (1) is also essential. Indeed, let g : R — R, g(y) = e, y € R,
U = R is obviously a retract of R, however the set g~ (U) = (0, +00) is not a retract of R since
g1 (U) is not closed.

In case n = k, Proposition 1 is a corollary of Hadamard’s global homeomorphism theorem (see,
for instance, [4, Theorem 5.3.10]). Indeed, if n = k the surjectivity of linear operators ggg/(y),

y € RF, is equivalent to there invertability and uniform reqularity condition (1) takes the following

form:
e |(30)"

So, g satisfies the assumptions of Hadamard’s theorem. Thus, g is a homeomorphism. Hence, if U
is a retract, then g~ 1(U) is a retract.

<c¢ VyeRk

Author expresses his sincere thanks to Academician A.T. Fomenko for the statement of the
problem and useful discussions.
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