ЧЕБЫШЕВСКИЙ СБОРНИК

Том 21. Выпуск 2.

УДК 515.126

DOI 10.22405/2226-8383-2020-21-2-139-143

О ретрактах линейных конечномерных пространств, порождённых коэрцитивными отображениями 1

С. Е. Жуковский

Жуковский Сергей Евгеньевич — доктор физико-математических наук, доцент, Институт проблем управления им. В. А. Трапезникова РАН (г. Москва). e-mail: s-e-zhuk@yandex.ru

Аннотация

Рассматриваются коэрцитивные непрерывные инъективные отображения, действующие из одного линейного конечномерного пространства в другое. Доказано, что образы этих отображений являются ретрактами линейных пространств.

Ключевые слова: ретракт, коэрцитивное отображение, равномерная регулярность.

Библиография: 4 названия.

Для цитирования:

С. Е. Жуковский. О ретрактах линейных конечномерных пространств, порождённых коэрцитивными отображениями // Чебышевский сборник, 2020, т. 21, вып. 2, с. 139–143.

CHEBYSHEVSKII SBORNIK

Vol. 21. No. 2.

UDC 515.126

DOI 10.22405/2226-8383-2020-21-2-139-143

On the retracts of finite-dimensional spaces, generated by coercive mappings

S. E. Zhukovskiy

Zhukovskiy Sergey Evgenevich — Doctor of Physics and Mathematics, associate professor, V. A. Trapeznikov Institute of Control Sciences of RAS (Moscow). e-mail: s-e-zhuk@yandex.ru

Abstract

Coercive continuous injective mappings acting from one linear finite-dimensional space to another are considered. It is proved that the images of these mappings are retracts of linear spaces.

Keywords: retract, coercive mapping, uniform regularity

Bibliography: 4 titles.

For citation:

S. E. Zhukovskiy, 2020, "On the retracts of finite-dimensional spaces, generated by coercive mappings", *Chebyshevskii sbornik*, vol. 21, no. 2, pp. 139–143.

¹Работа выполнена при поддержке гранта РФФИ (проект № 20-31-70013) и Volkswagen Foundation. Результаты §2 получены при поддержке гранта Российского научного фонда (проект N 17-11-01168).

1. Retracts of linear finite-dimensional spaces

On the seminar "Differential geometry and applications" academician A. T. Fomenko proposed the following question to the author of this paper. Under what assumption the image of a mapping $f: \mathbb{R}^n \to \mathbb{R}^k$, $k \geq n$, is a retract of the space \mathbb{R}^k ? An answer to this question is a result below which provides a sufficient condition for $f(\mathbb{R}^n)$ to be a retract of \mathbb{R}^k .

Let a number $k \geq n$ and a mapping $f: \mathbb{R}^n \to \mathbb{R}^k$ be given.

Theorem 1. Assume that f is continuous and injective. Then for the conditions

- (a) f is coercive (i.e. if $|x| \to +\infty$ then $|f(x)| \to +\infty$),
- (b) there exists a continuous left inverse mapping $g: \mathbb{R}^k \to \mathbb{R}^n$ to the mapping f (i.e. g(f(x)) = x for every $x \in \mathbb{R}^n$),
- (c) $f(\mathbb{R}^n)$ is a retract of \mathbb{R}^k ,

the following implications take place: $(a) \Leftrightarrow (b) \Rightarrow (c)$.

PROOF. Set $Y := f(\mathbb{R}^n)$ and denote by $h : Y \to \mathbb{R}^n$ a mapping which assigns to $y \in Y$ a point $x \in \mathbb{R}^n$ such that f(x) = y. The existence and uniqueness of this mapping follows from the injectivity of f. Denote by h_i a function which assigns to $y \in Y$ the i-th coordinate of h(y), $i = \overline{1, n}$, i.e. $h(y) = (h_1(y), ..., h_n(y))$ for every $y \in Y$.

1) Prove $(a) \Rightarrow (b)$. We first show that h is continuous. Take arbitrary $y \in Y$, $\{y_j\} \subset Y$ such that $y_j \to y$. The sequence $\{h(y_j)\}$ is bounded since otherwise there exists a subsequence $\{h(y_{j_i})\}$ such that $|h(y_{j_i})| \to \infty$ and $f(h(y_{j_i})) = y_{j_i} \to y$, and this contradicts (a).

Show that the sequence $\{h(y_j)\}$ has at most one limit point. Indeed, since f is continuous and $f(h(y_j)) = y_j \to y$, for a limit point $x \in \mathbb{R}^n$ of the sequence $\{h(y_j)\}$ equality f(x) = y holds. Injectivity of f implies that such a point x is unique.

Since the sequence $\{h(y_j)\}$ is bounded and has the only limit point, this sequence converges to this limit point $x \in \mathbb{R}^n$. Continuity of f implies that $y_j = f(h(y_j)) \to f(x)$. Hence, f(x) = y, thus x = h(y). Continuity of h is proved.

Show that Y is closed. Take a sequence $\{y_j\} \subset Y$ and a point $y \in \mathbb{R}^k$ such that $y_j \to y$. The sequence $\{h(y_j)\}$ is bounded, since otherwise it has a subsequence $\{h(y_{j_i})\}$ such that $|h(y_{j_i})| \to \infty$ and $f(h(y_{j_i})) = y_{j_i} \to y$ in contradiction to (a). Hence, the sequence $\{h(y_j)\}$ has at least one limit point $x \in \mathbb{R}^n$. The continuity of f and the relation $f(h(y_j)) = y_j \to y$ imply f(x) = y. Hence, Y is closed.

So, each function $h_i: Y \to \mathbb{R}$, $i = \overline{1, n}$, is a continuous function and its domain is a closed subset of \mathbb{R}^k . The Tietze-Urysohn extension theorem (see, for instance, [1, Theorem 2.1.8]) implies that for every $i = \overline{1, n}$ there exists a continuous function $g_i: \mathbb{R}^k \to \mathbb{R}$ such that $g_i(y) = h_i(y)$ for every $y \in Y$. Define a mapping $g: \mathbb{R}^k \to \mathbb{R}^n$ by formula $g(y) := (g_1(y), ..., g_k(y)), y \in \mathbb{R}^k$. Obviously g is continuous and g(f(x)) = h(f(x)) = x for every $x \in \mathbb{R}^n$.

- 2) Prove $(b) \Rightarrow (a)$. Assume the contrary, i.e. there exist a sequence $\{x_j\} \subset \mathbb{R}^n$ and a point $y \in \mathbb{R}^k$ such that $x_j \to \infty$ and $f(x_j) \to y$ as $j \to \infty$. Put $y_j := f(x_j), j = 1, 2, ...$. Then $g(y_j) = x_j \to \infty$ and the sequence $\{y_j\}$ converges, in contradiction to continuity of g.
 - 3) Prove $(b) \Rightarrow (c)$. It is obvious that $y \mapsto f(g(y)), y \in \mathbb{R}^k$, is a retraction of \mathbb{R}^k onto Y. \square

In the proof of the theorem it is shown that (a) implies that the image Y of f is closed. Let us show that under the assumptions of continuity and injectivity of f the closedness of Y is not sufficient for Y to be a retraction of \mathbb{R}^k .

EXAMPLE 1. Let $S_1 \subset \mathbb{R}^2$ be a circle with radius one centered at the point $y_1 = (1,0)$ and $S_2 \subset \mathbb{R}^2$ be a circle with radius one centered at the point $y_2 = (-1,0)$. Define the mapping

 $f: \mathbb{R} \to \mathbb{R}^2$ by formula

$$f(x) = y_1 + (-\cos(4\operatorname{arctg} x), \sin(4\operatorname{arctg} x)), \quad \text{for} \quad x \ge 0,$$

$$f(x) = y_2 + (\cos(4\arctan(x)), \sin(4\arctan(x))), \quad for \quad x < 0.$$

Obviously, this mapping is continuous (in particular, at the point x = 0, the value of f and the left-hand and the right-hand limits of f equal (0,0)) and injective. Moreover, f assigns to nonnegative numbers the circle S_1 and assigns to nonpositive numbers the circle S_2 . Therefore, the image $Y = S_1 \cup S_2$ of f is closed. Since Y is bounded, f is not coercive.

Show that Y is not a retract of \mathbb{R}^2 . Assume the contrary, i.e. there exists a retraction $r: \mathbb{R}^2 \to Y$. Consider the mapping $w: Y \to S_1$, w(y) = y for $y \in S_1$, w(y) = (0,0) for $y \in S_2$. Obviously the mapping $y \mapsto w(r(y))$, $y \in \mathbb{R}^2$, is a retraction of \mathbb{R}^2 onto S_1 . Hence, a circle is a retract of a plane which is impossible (see, for instance, [2, §3.4]). Therefore, Y is not a retract of \mathbb{R}^2 .

Remark 1. In connection with Theorem 1 there appears the following natural question. Is the implication $(c) \Rightarrow (a)$ true? The author does not know the answer to this question yet.

2. Images and preimages of retracts

Let us state a corollary of Theorem 1 which provides sufficient condition for an image of a retract to be a retract.

COROLLARY 1. Let f be continuous, injective and coercive, $U \subset \mathbb{R}^n$ be a retract of \mathbb{R}^n . Then f(U) is a retract of \mathbb{R}^k .

PROOF. Let $r: \mathbb{R}^n \to U$ be a retraction. By virtue of the proposition $(a) \Rightarrow (b)$ of Theorem 1 there exists a continuous mapping $g: \mathbb{R}^k \to \mathbb{R}^n$ such that g(f(x)) = x for every $x \in \mathbb{R}^n$. Show that the mapping $y \mapsto f(r(g(y))), y \in \mathbb{R}^k$, is a retraction onto f(U).

Since $g(\mathbb{R}^k) = \mathbb{R}^n$ and $r(\mathbb{R}^n) = U$, then $f(r(g(\mathbb{R}^k))) = f(U)$. Further, for every $y \in f(U)$ there exists $x \in U$ such that f(x) = y. The definition of g implies g(y) = g(f(x)) = x, the definition of r and the inclusion $x \in U$ implies r(x) = x, thus

$$f(r(q(y))) = f(r(x)) = f(x) = y.$$

Therefore, the mapping $f(r(g(\cdot)))$ is a retraction and its image coincide with f(U). \square

Let us now state conditions for preimage of a retract to be a retract.

Everywhere below we assume that the spaces \mathbb{R}^n and \mathbb{R}^k are equipped with Euclidian norms. For arbitrary linear operator $A: \mathbb{R}^k \to \mathbb{R}^n$ denote by A^* the adjoint operator, for arbitrary linear operator $A: \mathbb{R}^n \to \mathbb{R}^n$ denote by ||A|| the norm of A.

PROPOSITION 1. Let $U \subset \mathbb{R}^n$ be a retract of \mathbb{R}^n , a mapping $g : \mathbb{R}^k \to \mathbb{R}^n$ be twice continuously differentiable, the linear operator $\frac{\partial g}{\partial u}(y)$ be surjective for every $y \in \mathbb{R}^k$ and

$$\exists c \ge 0: \quad \left\| \frac{\partial g}{\partial y}(y)^* \left(\frac{\partial g}{\partial y}(y) \cdot \frac{\partial g}{\partial y}(y)^* \right)^{-1} \right\| \le c \quad \forall y \in \mathbb{R}^k.$$
 (1)

Then the set $g^{-1}(U) := \{ y \in \mathbb{R}^k : g(y) \in U \}$ is a retract of \mathbb{R}^n .

PROOF. Assume g(0) = 0, without loss of generality. Put $M := \{y \in \mathbb{R}^k : g(y) = 0\}$, and let $s : \mathbb{R}^n \to U$ be a retraction. By virtue of [3, Theorem 1] there exists a homeomorphism $F : M \times \mathbb{R}^n \to \mathbb{R}^k$ such that

$$g(F(\xi, x)) = x \quad \forall (\xi, x) \in M \times \mathbb{R}^n.$$
 (2)

Denote by $a: \mathbb{R}^k \to M$ and $b: \mathbb{R}^k \to \mathbb{R}^n$ the projections of F^{-1} onto M and \mathbb{R}^n , respectively, i.e.

$$F^{-1}(y) = (a(y), b(y)) \quad \forall y \in \mathbb{R}^k.$$

Show that b = g. Take arbitrary point $y \in \mathbb{R}^k$. We have $y = F(F^{-1}(y)) = F(a(y), b(y))$. Thus,

$$g(y) = g(F(a(y),b(y))) = b(y).$$

Here, the second equality follows from (2). Thus b = g. This identity implies that

$$F(a(y), g(y)) = F(a(y), b(y)) = F(F^{-1}(y)) = y \quad \forall y \in \mathbb{R}^k.$$
 (3)

Define a mapping $r: \mathbb{R}^k \to g^{-1}(U)$ by formula

$$r(y) := F(a(y), s(g(y))), \quad y \in \mathbb{R}^k.$$

Show that it is well defined, i.e. $r(\mathbb{R}^k) \subset g^{-1}(U)$. For arbitrary $y \in \mathbb{R}^k$, we have $s(g(y)) \in U$ by virtue of the definition of s. Thus, (2) implies

$$g(F(a(y), s(g(y)))) = s(g(y)) \in U.$$

So, the mapping r is well defined.

Show that r is a retraction. Take arbitrary $y \in g^{-1}(U)$. Put x := g(y). Obviously $x \in U$. We have

$$r(y) = F(a(y), s(g(y))) = F(a(y), s(x)) = F(a(y), x).$$

Here, the last equality follows from the inclusion $x \in U$ since $s : \mathbb{R}^n \to U$ is a retraction. Further,

$$F(a(y), x) = F(a(y), g(y)) = y.$$

Here, the last equality follows from (3). So, r is a retraction and $g^{-1}(U)$ is a retract. \square

Remark 2. The assumption of nondegeneracy of the derivatives in Proposition 1 is essential. Indeed, let $g: \mathbb{R} \to \mathbb{R}$, $g(y) = y^2$, $y \in \mathbb{R}$, $U = \{1\}$. The set U is obviously a retract of \mathbb{R} , however the set $g^{-1}(U) = \{-1, 1\}$ is not a retract of \mathbb{R} since $g^{-1}(U)$ is not connected.

The uniform regularity assumption (1) is also essential. Indeed, let $g : \mathbb{R} \to \mathbb{R}$, $g(y) = e^y$, $y \in \mathbb{R}$, $U = \mathbb{R}$ is obviously a retract of \mathbb{R} , however the set $g^{-1}(U) = (0, +\infty)$ is not a retract of \mathbb{R} since $g^{-1}(U)$ is not closed.

In case n=k, Proposition 1 is a corollary of Hadamard's global homeomorphism theorem (see, for instance, [4, Theorem 5.3.10]). Indeed, if n=k the surjectivity of linear operators $\frac{\partial g}{\partial y}(y)$, $y \in \mathbb{R}^k$, is equivalent to there invertability and uniform regularity condition (1) takes the following form:

$$\exists c \ge 0: \quad \left\| \left(\frac{\partial g}{\partial y}(y) \right)^{-1} \right\| \le c \quad \forall y \in \mathbb{R}^k.$$

So, g satisfies the assumptions of Hadamard's theorem. Thus, g is a homeomorphism. Hence, if U is a retract, then $g^{-1}(U)$ is a retract.

Author expresses his sincere thanks to Academician A.T. Fomenko for the statement of the problem and useful discussions.

СПИСОК ЦИТИРОВАННОЙ ЛИТЕРАТУРЫ

- 1. Р. Энгелькинг, Общая топология, М.: Мир, 1986.
- 2. А. Т. Фоменко, Д. Б. Фукс, Курс гомотопической топологии, М.: Наука, 1989.
- 3. А. В. Арутюнов, С. Е. Жуковский, Применение методов обыкновенных дифференциальных уравнений для глобальных теорем об обратной функции, Дифф. уравнения, 2019, т. 55, N 4, с. 452–463.
- 4. Дж. Ортега, В. Рейнболдт, Итерационные методы решения нелинейных систем уравнений со многими неизвестными, М.: Мир, 1975.

REFERENCES

- 1. Engelking, R. 1986, General topology, Mir, Moscow (in Russian).
- 2. Fomenko, A. T., Fuks, D. B. 1989, A course in homotopic topology, Nauka, Moscow.
- 3. Arutyunov A. V., Zhukovskiy S. E., 2019, "Application of Methods of Ordinary Differential Equations to Global Inverse Function Theorems", *Differential Equations*, vol. 55, no. 4, pp. 437–448.
- 4. Ortega J., Reinboldt V., 1975, Iterative methods for solving nonlinear systems of equations with many variables, Mir Publ., Moscow.

Получено 28.11.2019 г.

Принято в печать 11.03.2020 г.