94 . Torcansec, I1. Bonr, C. Yxkao

YEBBIINEBCKNIT CBOPHUK
Towm 21. Beimyck 2.

YAK 512.66+512.81+515.143 DOTI 10.22405/2226-8383-2020-21-2-94-108

Crentern orobparkeHuiit MeKJIy TOMOTOITUIECKIMI
IIPOCTPAHCTBEHHLIMU popMaMu’

. Toncansec, I1. Bour, Y. Crosuxn

Toucansec Jdauumbepr — nokTop Hayk, mpodeccop, JgenapraMenT maremaruku, UucruryTt mare-
marukn u crarucruku, Yuausepcurer Can-Iayry (r. Can-Ilayry, Bpasuaus).

e-mail: dlgoncal@ime.usp.br

Bour ITurep — j0kT0p Hayk, npodeccop, JenapraMeHT Maremaruku, Bairc-komenxk (r. JIbou-
cron, CIITA).

pwong@bates.edu

Croawku Yxkao — J0KTOp HAyK, mpodeccop, Maremarudeckuil (pakyasrer, CTOMUYIHBIN Te1aro-
rudeckuii yauepcurer ([lexun, Kurait).

zhaozve@mail.cnu.edu.cn

AuHOTanmusa

IIycts G — ceMefiCTBO HePUOIMYECKHX IPYII mepuoaa 2 mwian 4, a ™ — rOMOTOIHYecKas
m-mpocTpancTBerHas dbopma rae w1 (X™) € G. st m = 3 MBI W3y9aeM MHOMKECTBO CTereHei
orobpaxkennst D(X7", ¥5") u3 X7 B X5

Karouesnie caosa: F'omoTonmueckune cepruaecKne IpoCTPAHCTBEHHbIE (POPMBI, CTEIIeHb 0TO0-
paxKeHust

Bubauozpagrusn: 29 HazBanusi.
g nmmTupoBaHus:

M. Toncansec, 1. Borr, Y. Crosuxu. Crenenn orobparKeHuii MeK /1y TOMOTOIIMYECKUMHU IPOCTPAH-
creersbiMu popmamu // Hebbimesckuii c6oprauk, 2020, 1. 21, b, 2, ¢. 94-108.

!91a paboTa GbIIA HATATA BO BPEMS TIEPBOTO U BTOPOTO BU3MTA ABTOPOB B CTOJIMUHBIA T16aTOTHIECK I YHHBEPCH-
Ter ¢ 18 anpensa no 2 maga 2018 roga. ITepsoro asropa wactuuno nogaep:xkaa FAPESP Projeto Temético “Topologia
Algébrica, Geomsétrica e Diferencial” 2016/24707-4 (Bpasummsa). Tperuii aBrop 61 gactuano nogaepxan NSF of
China (11431009, 11961131004).



Crenern 0TOOpaKeHUN MEXK Y TOMOTOMUIECKUMH IPOCTPAHCTBEHHBIMU (DOPMAME 95

CHEBYSHEVSKII SBORNIK
Vol. 21. No. 2.

UDC 512.66+512.81+515.143 DOI 10.22405/2226-8383-2020-21-2-94-108

Mapping degrees between homotopy space forms?
D. Gongalves, P. Wong, X. Zhao

Gongalves Daciberg — Doctor of Sciences, Professor, Dept. de Matemdtica - IME - USP, Sao
Paulo (Sao Paulo, Brazil).

e-mail: dlgoncal@ime.usp.br

Wong Peter — Doctor of Sciences, Professor, Department of Mathematics, Bates College,
(Lewiston, U.S.A).

pwong@bates.edu

Zhao Xuezhi — Doctor of Sciences, Professor, Department of mathematics, Capital Normal
University (Beijing, China).

zhaozve @mail.cnu.edu.cn

Abstract

Let G be the family of periodic groups of period either 2 or 4, and ¥™ be a homotopy
m-space form where m(X™) € G. For m = 3, we study the set D(X1",%5") of degrees of the
maps from X7" to X357,
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1. Introduction

Let M and N be two closed connected n-manifolds. The study of mapping degrees of maps from
M to N is a classical problem in the classification of manifolds. When M and N are 3-manifolds
with spherical geometry, the set D(M, N) of mapping degrees from M to N has been determined in
[20]. It is natural to study the same problem when the spaces involved are orbit spaces of homotopy
spheres, i.e., homotopy spherical space forms.

A space 3™ is called a homotopy m-sphere, if "™ is a CW-complex which has the same homotopy
type of the sphere S™. If G is a finite group which acts freely on 3™ then the quotient ¥ /G of ¥™
by the free action of the finite group G is called a homotopy m-spherical space form, or alternatively
a homotopy m-space form, and it will be denoted by X™.

We recall the classification of the homotopy types of the homotopy m-space forms as well as
the set of self-homotopy equivalences of each homotopy space form. In what follows, we will not
distinguish the homotopy type of the space form ©™ = ¥ /G whether the homotopy sphere ™ is
a finite CW-complex, an infinite CW-complex, or the sphere itself.

The following is well known:

2This work was initiated during the first and second authors’ visit to Capital Normal University April 18 to May
2, 2018. The first author was supported in part by FAPESP Projeto Tematico “Topologia Algébrica, Geométrica
e Diferencial” 2016/24707-4 (Brazil). The third author was supported in part by the NSF of China (11431009,
11961131004).
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PROPOSITION 1. Let G be a finite group acting freely on a homotopy m-sphere ™.

1. If m is even and G is non-trivial then G is isomorphic to Zo. Furthermore H™(X™,Z) = 7
and H™(X™ /G, Z) = Zs.

2. If m is odd then G is a finite periodic group. Furthermore H™(X™ /G, Z) = Z.

Given two homotopy m-space forms £7%, 7' which are the orbit spaces of X7, $35°, respectively,
we have the notion of degree of a map, as a result of the Proposition 1. More precisely, if the
cohomology of the domain is Z then the degree is an integer otherwise it is an element of Zs.
Therefore for m odd it is always an element of Z and for m even it is an element of Zs, except in
the case where the domain is a homotopy sphere, in which case it is again an element of Z.

For a given finite periodic group G of period an even positive integer n and an odd positive
integer m such that n divides m 4+ 1, the classification of the homotopy types of the homotopy
m-space forms is described in [27, Theorem 1.8], which in turn refers to the earlier references [5]
and [23]. More precisely, the set of homotopy classes of homotopy m-space forms is in one-to-one
correspondence with the equivalence classes of the invertible elements of the cyclic group Z g,
where two invertible elements ki, ko are related if and only if there is an automorphism ¢ : G — G
such that the induced automorphism ¢#™ : H™(G,7Z) — H™(G,Z) satisfies either ¢ (k1) = ko
or ¢7™ (k1) = —ko. This correspondence was later established using two-stage Postnikov tower, see
[6], which is the approach we use in this work.

The classification of finite groups which act freely in a homotopy sphere was obtained by Suzuki-
Zassenhaus. (Table I in Section 3)

1.1. Even dimensional homotopy space forms

In the case of an even dimensional space form %2 we have only two possibilities, namely, either
¥2m has the homotopy type of the 2m-sphere or it is the quotient of an even dimensional homotopy
sphere by a free action of the group Zs. In the former case we have H?"™(¥2™ 7) = Z and in the
latter case H?™(%%™,7) = Zy. Now we can easily describe the possible degrees for even dimensional
homotopy space forms.

(I) Tf 3™, 322m are homotopy spheres then this reduces to the classical case.

(IT) If £2™ is a homotopy space form for G = Zy and ¥3™ is a homotopy sphere then
Hom(Z2,{1}) contains only the trivial homomorphism. So in this case the degree will lie in
H?m(33m 7)) = Zy and using Hopf’s theorem about the correspondence between this latter group
and [X?2™, 5?™], both elements of Zy can be realized as the degree of maps.

(III) If 2™ is a homotopy sphere and ¥2™ is a homotopy space form for G = Zs, then
Hom({1},Z3) contains only the trivial homomorphism. So in this case the degree will lie in
H?m (33 7) = Z and the ones which are realizable are all the even integers. It is because
H?"($3™ 7) = 7, where Z is the orientation local coefficient system, H?"(%3™,Z) = Z and
any map f : ¥2™ — 32m factors through Yo, the universal covering of ¥3™. Then we use the
formula (1) given in the next section.

(IV) If £2™ and 3™ are homotopy space forms for G = Zy then Hom(Zg,Zs) contains two
homomorphisms, the identity and the trivial homomorphism. In case of the identity, the degree is an
integer and the one’s which are realizable are congruent to 1 (mod 2) since a homotopy equivalence
realizes this degree 1. In case the homomorphism is the trivial homomorphism, the degree lies in
Zs and it is 0 which can be realized by the constant map.
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2. The sets D(X, ¥7") and [27, 27

Let X7, ¥ be two homotopy m-spherical space forms. From now on we will consider only
those values of m that are odd. The works of P. Olum [22], [23] can be used to describe the possible
degrees that can be realized by maps and to describe the set of homotopy classes of maps between
two such space forms. We will first discuss the degree.

It follows from [22] and [23] that we have the following:

PROPOSITION 2. Let £7* and £5* be two homotopy m-space forms with G1 = m(37") and
Go = 11 (25Y). Then

1. Given any homomorphism ¢ : G1 — Ga, there is a map f : X7 — L5 such that fa = .

2. If two maps f,g: X7 — S5 induce the same homomorphism ¢ : G1 — Ga, then their degree
are congruent module |Ga|.

3. If f : X7 — S 4s a map, then there is a map of degree d for any integer d with d = deg(f)
mod |Gal.

4. Two maps from T to T are homotopic if and only if fiz = fou and they have the same
degree.

The above results show that in order to find all possible degrees between the two space forms it
suffices to find for a given homomorphism ¢ : G; — Ga, the degree of one map which induces ¢ on
the fundamental group. We write deg(y) € Z)G,|- The goal of this section is to provide a method
to compute such degree for a given homomorphism ¢.

Let G be a finite group which acts freely on a homotopy m-sphere ™. Then the orbit space
E™ = %™ /G can be assigned an invertible element k € Z g = H™ (G, Z), which is the Postnikov
invariant determining the fibration

K(Z,m) = E — K(G,1) 5 K(Z,m +1).

LEMMA 1. (Fundamental Lemma) Let Y™ and X be two homotopy m-space forms with
G1 = m (X)) and G = m(E8). If ¢ : G1 — Ga is a homomorphism, then the degree deg(yp) is
determined by

d|Go| = |Gi|deg(p) € Z, dky = *(k2) € Zjg, = H™H(G1,2), (1)
where ki1, ky are respectively the Postnikov invariants determining $7° and 25°.

PrOOF. For i = 1,2, from the theory of Postnikov tower, the space F; is a total space of a fibration
K(Z,m) — E; — K(G;,1) having as fibre K(Z,m) and the base K(G;,1). Such a fibration is
classified by ki € H™"Y (G4, Z) = Z,| = [K(Gi,1),K(Z,m +1)]. Let f : ¥7" — 55" be a map
such that the induced homomorphism by f on the fundamental group of the spaces is ¢. We have
following commutative diagram:

K(Z,m) —) . k7, m) (2)
i1 2
FE; / E5
p1 p2

K(Gy,1) ——= K(Ga,1)

kl k?

K(Z,m+1) L~ K(Z,m +1).
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Consider the induced commutative diagram in H™*!, we have

H™ (K (G, 1)) H™ (K (G, 1))

1%

H™ L (K(Z,m + 1)) <— H™Y(K(Z,m+1)).

Since H™*Y(K(Z,m + 1)) = Z, we may write f* as multiplication by d. It follows that
Q(f)*: H™(K(Z,m)) — H™(K(Z,m)) is also multiplication by d. Note that X" has the homotopy
type of S™. By the construction of Postnikov tower, the space E; can be obtained from E_Jgn by
attaching some cells with dimension at least m + 2. Thus, H™(E;) = H™(Z). Consider the
cohomology spectral sequence of the fibration K(Z,m) — E; — K(G;,1). Then

H™(E;) = ®ptq=mEB! = ®prg=mEr 5 = ker dyy1 @ coker dy, 1.

Observe that dpy1 : H™(K(Z,m)) — H™(K(G41)) = Zg,. Since H™(E;) = Z, the
differential d,,+1 must be surjective and therefore its kernel is Z. It follows that the inclusion
ti + K(Z,m) — E; induces a homomorphism ¢}, which is actually multiplication by |G;|. Using
the induced homomorphism on H™ of (2), we obtain that d|Gs| = |G1|deg(f) € Z. (Note all
cohomologies involved here are integral.) O

COROLLARY 1. Let G be a finite group which acts freely on a homotopy m-sphere X" If
¢ : G — G is an endomorphism, then the degree deg(p) = deg(yp* : H™(G,Z) — H™TY(G,7)).

~ COROLLARY 2. Let G be a finite group which acts freely on a homotopy m-sphere X7", X5". Then
deg(id) = k:l_lk:z, where ki, ko are respectively the Postnikov invariants of X1"/G and ¥5'/G.

These corollaries tell us that the degree deg(y) coming from self-map is independent of the
choice of space form ™. The degrees of maps from X7"/G to ¥5'/G coincide with the degrees
for self-maps by multiplying an invertible element £, 'ky. Thus, we have obtained all degrees for
¢ : G1 — G2 as long as both G; and G2 are the fundamental groups of 3-dimensional spherical
manifolds, by using [20].

3. Groups of period either 2 or 4

Let G be the family of all finite periodic groups of period 2 or 4. In this section we summarize
the description of the groups G € G.

Recall from [1, p. 154] we have the table below which provides the Suzuki-Zassenhaus
classification of all finite periodic groups.

| Family | Definition \ Conditions |
1) Za X T (a,b) =1
(10 Za %p (Zy x Qy:) (a,b) = (ab,2) =1
(T1T) Lo ¥ (Zgy x T;) (a,b) = (ab,6) =1
(IV) Lo X7 (Zp x OF) (a,b) = (ab,6) =
(V) | (Za %0 Zy) x SLy(F,) (a,0) = (a,p(p* — 1)) =
(V1) | Zq %, (Zy x TLo(Fp)) | (a,b) = (ab,p(p® —1)) =1 p#2
Table I

For the definition of a periodic group, a period and the period of G, see [1, Chapter IV, section 6
Definition 6.1]. The only finite group which has least period 1 is the trivial group. We will consider
only non-trivial groups. The following result is well known.
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LeMMA 2. The only finite groups which have least period 2 are the non-trivial finite cyclic
groups. These groups appear in the family (I) of Table 1.

A proof of Lemma 2 can be obtained by describing the least period of the elements of the table
above.

Let us recall the following result about period of a semi-direct product of two finite periodic
groups.

PROPOSITION 3. ([8, Proposition 2.1]) Let Z, be a cyclic group, G a finite group, a : G — (Zq)*
an action and (|G|,a) = 1, where |G| denotes the order of G. If G is periodic with period (the least
period) 2d then the semi-direct product Zq X G is also a periodic finite group with period (the least

period) 2[0(a),d] =2 -l.cm.(¢(«),d). Here, {(a) = lcem.{|a(g)| | g € G}.

Now we consider the groups which have period 4. First let us consider the groups G in Table II
below:

group | condition presentation normal form

Loy, {c| =1} c®, 0<s<n

D3, 2|n {b,a|a®=b" = (ab)?, a* = 1} b*, b%a, 0<s<2n

Ojg {b,a]a®=1b>= (ab)? a* =1}

Iy {b,a]a®=0b3= (ab)®,a* =1}

T} 54 {ba,wla® =t = (ab)*,a" =w™ =1, biw', baw’, 0<s<4, 0<t<3
wa = bw, wb = abw}

D! oy | 2 g>1 | {u,w|u” =w? =1, uwu = w} usw! 0<s<n, 0<t<2?

Table 11

REMARK 1. The only groups in Table II which are not the fundamental groups of any closed

3-manifold are the Dihedral groups D§(2n+1)'

Consider all groups of the form (Z/m %, Z/n) x G and Z,, X, G where G belongs to Table
I1. Each pair (m,n), (m,|G]|) and (n,|G|) consists of relatively prime integers, and the image of
a: G — Aut(Zy,) is either the trivial subgroup or the subgroup {£+Id}. This follows by analyzing
the Suzuki-Zassenhaus classification, Table II, and Proposition 3. Observe that the families (I) -
(VI) given by Table I are not mutually disjoint. But whenever two such subfamilies have non-empty
intersection, we have enough information about the intersection which helps to the study of our
problem.

LEMMA 3. Let G belong to the family (1). Then it has period 4 if and only if the order of « is
two.

PrOOF. This follows immediately from Proposition 3. O

Observe that the direct product of two finite cyclic groups of relatively prime orders is again a
cyclic group. Now we consider the family (V). Recall from [1, Chapter IV, page 149] that SLy(F})
is isomorphic to

1. the symmetric group on 3 letters for p = 2;

2. the semi-direct product of Qg by Zs with the action ¢ — j,j — k, k — ¢ (which is the binary
tetrahedral group) for p = 3;

3. the binary icosahedral group I* of order 120 for p = 5. It has a presentation given by
(r,s|r? = 5% = (rs)%), (see [1, page 151]).

LEMMA 4. Let G belong to the family (V). For G = SLy(F},), where p is a prime, the period
of G is 4 if and only if p is either 2,3 or 5. Furthermore, the group (Zq X o Zy) x SLo(Fp) where
(a,b) = (a,p(p? — 1)) = 1 has period 4 if and only if p is either 2,3 or 5 and f(a) =2 if a # 1.
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ProOOF. The first part follows from the comment after [10, Theorem 1.2] which says that the period
of these groups are the l.c.m. of 4 and p—1. Therefore we have only three values of p such that l.c.m.
of 4 and p — 1 is 4, which are p = 2,3, 5. For the second part, since the period of SLy(F},) cannot
be 2, it is necessary to have period 4. The rest of the proof follows from Lemma 3 and Proposition
3. O

REMARK 2. As we can see the only new groups in this family (V) of period 4 with respect to
the previous families, are I and the direct product of I* with a group of period either 2 or 4 of the

family (1).

Now we consider the family (VI). In the Table I, the case p = 2 for this family is not considered.
The reason is that if we perform the construction of T'SLy(F),) given in [1| we have an extension

1— SLQ(FQ) — TSLQ(FQ) — Lo — 1,

where SLy(F5) = Sz and consequently T'SLo(F),) has order 12. There are 5 groups of order 12
where 3 of them are not abelian. They are: the dyclic D}, (which is already in the family (II)); the
!~

alternating group Ay; the dihedral group D}, = Zs3 x Z4 (which is already in the family (I)). But
Ay does not contain S as a normal subgroup.

LEMMA 5. Let G belong to the family (VI). The group T'SLa(F,) has period 4 if and only if
p equals 3. Furthermore, the group Zq X, (Zy x TLa(Fy)) where (a,b) = (ab,p(p? — 1)) =1, p # 2
has period 4 if and only if p is 3 and p(a) =2 if a # 1.

PrROOF. The first part follows from [11, Corollary 2.3|, since p — 1 cannot be greater than 3. For
the second part, we use Proposition 3. O

REMARK 3. By [1, Chapter IV] the group T'SLa(F3) is isomorphic to O*. Therefore the groups
of period 4 which belong to the family (V1) already appear in a previous family.

For the remaining 3 families, we have the following result.

LEMMA 6. If G belongs to one of the families family (II),(III) or (IV), then the group
Lo Xg (Zp x G) has period 4 if and only if £(0) =2 if a # 1.

ProOOF. Again we use Proposition 3 and the fact that the groups Q,:, T; and O] already have
period 4 O

REMARK 4. We should point out that the groups of period 4 that appear in Lemma 6 cannot be
the fundamental group of any spherical 3-manifold.

4. Integral cohomology ring of the periodic groups of period 4

For G = Z,, the cyclic group of order n, we have that G has period 2 and its integral cohomology
ring H*(G,Z) = Z[x2]/{nx2) is the quotient of the polynomial ring over Z in one generator xg of
dimension 2 module the ideal generated by nxo (see e.g. [2, p.114]). Note that H is Z and not Z,.

Next, we describe the integral cohomology ring of periodic groups with least period 4. The
additive group structure of H*(G,Z) is quite straightforward. Since G is a group of period 4 we
have HY(G,Z) = Z, H(G,Z) = H}G,Z) = 0, H2(G,Z) = H\(G,Z) = Ga , and HY(G,Z) = Zqy.
Because of the periodicity, it follows that H°(G,Z) = Z, H'**(G,2) = H3T*(G,Z) = 0,
H?*t* (G, Z) = Ga , and H*(G,Z) = Z)- Furthermore, the cup product with a generator of
Zig = H*(G,Z) defines an isomorphism H™(G,Z) — H™ (G, Z) if m # 0. Therefore to compute
the cup product of any two elements, it suffices to compute the cup product of any two elements
of H?.
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REMARK 5. Due to periodicity, the task of finding the mapping degree for spherical space forms
of dimension 4n + 3, for groups of period 4, should follow easily from the case of space forms of
dimension 3.

(I) Let G be in the family (I) of the form Z, Xy Zp where (1) has order 2 if a # 1. We will
use [13, Proposition 3.1] and [8]. So we obtain

HY(G,7) =7, H"(G,7) = 0 for n odd, H*>***(G,Z) = Zy k > 0, H*(G,Z) = Zap, k > 0. If 13,
Lap are generators of Zy, Zgp, respectively, then we have: by, = 0 and Lg = aigp. In this family we
have included the Dihedral groups D)., where n is odd.

(II) For the family (II), observe that the group is of the form Qi or Z, xg Qyi. The integral
cohomology of Qy: is given by H%(Qyi,Z) = Zo @ Zo and H*(Qqi,Z) = Zsyi. One should get the
multiplicative structure from [1] or from [8], or from [29]. From [29, Theorem 3.7| we have:

PROPOSITION 4. The cohomology ring H*(Quan;Z) has the following presentation:

L2, v, ] /(272 = 294 = dnau, v = 0,727 = 5 = 2now),  if n=4m

Zlh, aa) /(4% = 0 = dnau, 75 = now) ifn=4m+1
Zlv2, vy, 4]/ (272 = 294 = dnoy, 73 = 0 = 75,7275 = 2nay)  if n.=4m +2
L[y, a4l /(49 = 0 = dnay, 75 = 3nay), ifn=dm+3

(IIT) The tetrahedral groups (|29, Theorem 4.4]). The ring structure of the group cohomology
is given by
H*(T34,Z) = Z[y2, 4]/ (73 = 8cu, 372 = 0 = 24ay).

The general case Ty, ... The ring structure is given by (but [29] only gives the additive structure):

8.3k"
H* (T 3, Z) = Z[yo, 4] /(73 = 8, 3¥y5 = 0 = 8 - 3¥awy).

(IV) The octahedral group [29, Thorem 4.10]. The ring structure of the group cohomology is
given by
H*(Ojg,Z) = Z[y2, 4]/ (73 = 240, 272 = 0 = 480y).

(V) The only case to be considered is I*, see [29, Theorem 4.17|. In this case H™(I*,Z) is Z
for m = 0, Zq99 for m = 4k with £ € N > 0, and zero otherwise. So the cohomology ring is a
polynomial algebra on a generator of dimension 4. On the other hand there is no group of the form
G X I™ with « of order 2. This follows because there is no epimorphism I* — Zs since besides the
trivial group and the entire group the only normal subgroup of I'* is Zsg, which is the center.

There is no need for the case (VI) since the groups already belong to the previous families.

4.1. The cohomology ring of GG, the space forms of dimensions 2k + 1 and 4k + 3,
and degree

Let G € G. If G has period 2 then it is cyclic and we have homotopy 2k + 1-space forms for
all positive k. For the remaining groups in G, which are the ones with period 4, we have homotopy
4n + 3-space forms. The description of the cohomology ring of the space forms X271 = 320+l /@G
which for n even include the cases of period 4, are quite simple. The additive group structure
is HY(X*"1 7)) = HY(G,Z) for 0 < i < 2n, H>"(E20+1 7)) = Z, and HY(Z* L Z) = 0
for ¢ > 2n + 1. The ring structure follows promptly from the ring structure of the cohomology
ring H*(G,Z) and dimensional reason. The ring structure of the cohomology ring H*(G,Z) was
given in the previous section. Now comes the main useful result which relates the degree with the
homomorphism induced in cohomology.

For G € G we have:



102 . Toncansec, I1. Bonr, C. Y:xao

PROPOSITION 5. Let g be the period of G. If the induced homomorphism on {{q(G,Z) s multi-
plication by d, then the degree obtained among all maps from X1(kd+d —1) to ¥o(kd+d — 1) are
all the integers congruente to d**1 mod the cardinality of Go, as in Olum.

PRrOOF. This follows from the comparison of the cohomology of the group and that of the homotopy
space form. O

5. Classification of the maps between homotopy space forms 3, 33
for groups in G

We first consider homotopy space forms where the associated fundamental groups belong to the
Table II. Following [20], we will focus on surjective homomorphisms between two groups and at
least one of the groups is of the form D for n odd, i.e. we consider surjective homomorphisms
¢ : G — D), (Dihedral group) and ¢ : D), — G. Such a homomorphism induces a homomorphism
in cohomology at dimension 4, i.e. a homomorphism ¢* : Zgy, — Z)g and a homomorphism
¢* : Z\g) — ZLam, respectively, which we must compute in order to determine the degrees. The case
where ¢ is an isomorphism has been computed, see [§].

Now we will describe all surjective homomorphisms which are either in Hom(G, D},,) or in
Hom(Ds,,,G), and m is odd. If G = D5, then a surjective homomorphisms is an isomorphism and
this case is known (see [8]). Thus, we divide into three cases: a) Hom(Daam,, Doam,), for mi, ma
odd, m; > mg and ¢ > 1; b) Hom(Day,, G) for G not dihedral; c) Hom(G, Dayy,) for G not dihedral.

LEMMA 7. Let ¢ be a surjective homomorphism from G to D), with G in Table IT and m odd.
Then G = Dy, or D!, o, and ¢ = n'ym", where " € Aut(G) and n' € Aut(D5,,). Moreover,

1. if G = Dj,,, then m|n and v is given by b— u, a — w;
2. if G = D!, ,,, then m|m' and ¢ is given by v’ — u, w' — w.

PrROOF. The results in [20, Sec. 4] about quotient groups in Table II tell us that there are two
possibilities: either G = Dy}, with m|n or G = D) , 5, with m|m/. In the first case, the corresponding
normal subgroup of D} is (b"). We have our 1. The second case follows from |20, Theorem 4.12],
where the argument still works in the situation ¢ =1. O

LEMMA 8. Let ¢ be a surjective homomorphism from Db, to G with G in Table I1 and m odd.
Then G = Zy or D), _,, and ¢ = n'yn”, where " € Aut(D5,,) and o/ € Aut(G). Moreover,

2m

1. ifG="7y={(c|c=1), then v is given by u s 1, w > ¢;
2. if G=D), ,, then m'|m and 1 is given by u— v, w — w'.

PROOF. By [20, Lemma 2.11], the quotient group of D5 is either Zy or D, , with m/|m. If G = Zs,
then the commutator (u) must be sent to 1. Hence, we obtain the first case. The second case is
obtained by |20, Theorem 4.12]. The Theorems in |20, Sec. 4] show that there is no more. O

Now we proceed to compute the induced homomorphisms on H? for all the homomorphisms
described above. Using the functor EXT or the abelianization, one may determine the induced
homomorphism on H? for a homomorphism between two groups. Using certain short exact
sequences associated to the groups Gip,Ge, for a given homomorphism ¢ : G; — G2 such that
the homomorphism induces a homomorphism of short exact sequence, we will consider the map
induced between the spectral sequences associated to the correspondents short exact sequence.
This approach will be used to determine the induced homomorphism on H*.

First consider the following well known example. Let ¢ : Z,, — Z, be a surjective
homomorphism which send the generator ¢, to ki, where k is relatively prime with n (for example
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k = 1) and n divides m. Then the induced homomorphism ¢* : H*(Z,,,Z) = Zy, — H*(Zn,Z) = L,
send the generator ¢, to (km/n)iy, (in particular if & = 1 then ¢, is mapped to (m/n)ty,. Now the
induced ¢* : H*(Zp,7) = Zy, — H*(Zpm,7) = Z, is the square, i.e. t, to (km/n)?u,. In order
to compute the induced homomorphisms on H* for other homomorphisms between two groups we
need the following two lemmas.

Let us consider abelian groups of the form Z,, ® Z,, with m and n relatively prime. Call ¢y, tp,
generators of Zy,, Zy, respectively. Let ¢y, denote one generator of the cyclic group Zy,,. We identify
the two groups by the isomorphism ¢ : Z, ®Z,, — Ly defined by ¢ (1) = Nty and ¢(1n) = Mimn.

LemMMA 9. Consider the groups Zay,, ® Ly, with (mi,n;) = 1 for i = 1,2. Call tym,, tn,,tm;n;
generators of Ly, Ly,;, Lmn,;respectively. Denote by @; : Ly, DLy, — Linn, the isomorphism defined
by ¢Z(Lmz) = Nilmyn; and ¢2(Ln,) = Milm;n;, Jori=1,2. Let ¢ = (‘Pla 902) : Zml @an — ng @an
be a homomorphism where @; is multiplication by d; for ¢ = 1,2. The homomorphism ¢ =
=¢popod ™t Zminy = Lmgny is multiplication by d = (nady + mads)(my +nq) L.

PROOF. The element m;@n; is invertible in Z,,, ®Z,,. Since ¢((n1+m1)tmyn, ) = (dina+dama)tmqn,
the result follows. O

Let G = A x B where the orders of A and B are relatively prime, and p is a period of all three
groups A, B, A x B.

LEMMA  10. Let G; = A; x B; where A;, B; have orders relatively prime, for i = 1,2,
and 0 : G1 — Go a homomorphism such that (A1) C Az, and denote by 0 the induced
homomorphism on the quotient G1/A1 — Ga/As. If A;, B; and G; have period p, for i = 1,2
and the induced homomorphisms on cohomology G\ﬁl : HP(A2,Z) = Zya, — HP(A1,Z) = Zya,),;
and 0% : HP(By,7) = Zip, — HP(B1,Z) = Zp,|, are multiplication by dy,d2, respectively,
then the homomorphism induced on cohomology 07 : HP(Ga,7Z) = gy — HP(G1,Z) = L)
is multiplication by d = (d1|Bi| + d2|A1|)(|As| + |B2|) 7.

ProOOF. Consider the homomorphism of short exact sequences:

1 Ay G By 1 (3)
ieu1 ia \LH
1 A2 G2 B2 1.

The Lyndon-Hochschild-Serre spectral sequence associated to these short exact sequences are
very simple since the groups (subgroup and quotient of a given short exact sequence) have order
relatively prime. Namely the Es page of the spectral sequence in cohomology have all terms E5? = 0
if pg # 0. The spectral sequence collapse and EZY = H"(B;,Z), EY = HO(B;, H*(A;,Z)). For
r=s=pwe have E%’ = HP(B;,Z) = Zp, and Eo’ = H(B;, HP(A;,Z)) = Z) 4, since p is the
period and the action of the local coefficient system is trivial. So we have a short exact sequence

1— Z|Bz\ — Z\Gz| — ZlAzl — 1,

as well a homomorphism of short exact sequence induced by the homomorphism 6. Then we apply
Lemma 10. O
Now we make use of Lemmas 7, 8, 9 and 10 above to compute all the induced homomorphisms
on H* of the above homomorphisms. The homomorphisms are divided in the following three cases.
Degree for Case I: Consider the homomorphism ¢ € Hom(Db,, , Dy, ) defined by u; — us,

w; — wy, where w; has order 29, wy has order 2, w; has order m;, ¢ = 1,2. Then we get a
homomorphism of short exact sequences:
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1 ——[Dayn, s Doapy, | = Ly, 9am, Ziga 1 (4)
| ]
| — (D), Db, | =7 / z 1
2mo? 2mao ma2 2mo 2 .

Now we can apply Lemma 10 for the diagram above. Since the induced map on the quotient
Zioq — Zs is the homomorphism sending wy to ws, the induced in dimension on H? is multiplication
by 2971 and on H* is multiplication by 22472, which is degree 0 except when ¢ = 1, which is degree
1. The degree of the homomorphisms on H* when restricted to the kernels of the examples above is
multiplication by (mgz/m1)?. Therefore the induced homomorphism H*(D,, ,Z) — H*(Db,,, ,Z)
is multiplication by 22972(mg/m1)2. This complete the calculation.

Degree for Case II: Consider the unique surjective homomorphism D) — Zs which is
the Abelianization. The induced homomorphism H?(Zq,Z) — H?(D},,7Z) = 7Zs is the identity.
Therefore the induced homomorphism on H?* is the homomorphism which sends the generator
13 € H*(Z2,7) to the square of the generator of H?(D),,7) which is n.y, using the ring structure
from section 4. This complete the calculation.

Degree for Case III: Consider the homomorphism ¢ : D}, — D5, defined by a — w, b — w.
Then we decompose Dj, . as Z; x QQ2r where [ is odd, so » > 3. We also have the decomposition
D, = Zmy % Ly and we have a homomorphism of short exact sequences:

ok
1 ng D,ng > ZQ e 1

Using the same strategy as in Case I, we have a homomorphism induced on the spectral sequences
of the corresponding short exact sequences. It remains to determine the induced homomorphism
of the surjective homomorphism @2 — Zo in cohomology. In dimension 2, this is an inclusion
of Zy — Zy ® Zy. Now we should identify the image of the generator 1y € H?(Z3,Z) in
H?(Q2ar,Z) = Zso[Ya] © Za[7h], where 9,75 are given by Proposition 4 and 79,74 are the projection
on the abelianization of 73, 75. From the proof of Proposition 4 follows that the image of ¢ is 75. So
it suffices to take the square of this element using the ring structure and the result follows. Again
from Propositon 4 we have two cases. The first case is for m = 41. Then we will see that the degree
will be multiplication by 2m. The case for m = 4l + 2, the square of any element of H? is trivial.
So follows that the degree is 0, and this complete the proof of the result.

6. Degree from space forms associated to two arbitrary groups of
period 4

In this section we show how to compute the mapping degree between two space forms where
the fundamental groups of the space forms are of the form Z,,, X, G1 and Z,,, X, G2, where G;
belong to the Table II, and «; is either trivial or the image «;(G;) is isomorphic to Zy. We will
assume that m; is relatively prime to |G;].

Given a surjective homomorphism ¢ : Z;,, Xq, G1 = Zm, Xa, G2 the calculation of the degree
of this general case can be reduced to the case given by the Lemma 10 above.

LEMMA 11. Given a surjective homomorphism ¢ : Zpm, Xy G1 = Lmy Xay, G2, let Hy = ¢(Zoy,)
and Hy = ¢(G1). Then we have:

1. H;y is a normal subgroups of Zp, Xa, G2;
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2. the subgroup (Hi, Ho) = Zmy Xa, G2;
3. HHNHy = {1},

4. Lmy Ny G2 = Hy x Hy, where Hy is cyclic and Hy belong to the Table 11.

PRrOOF. Note that the image of a cyclic group is again cyclic. The image of a group G is isomorphic

to

a quotient of G1 by a normal subgroup which in turn is also periodic. By inspection we see that

the image of G is again in Table II. O

Now we can state the main result:

THEOREM 1. Given a surjective homomorphism ¢ : Zm, Xa, G1 = Zmy Xay, G2, the degree is

the product of the degrees of 1 = ¢z, with the degree of g2 = ¢|c, -

Proor. Follows from the Lemma 10 and Lemma 11. O
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