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Abstract

On flat n-dimensional torus we study stochastic differential inclusions with mean derivatives,
for which the right-hand sides have, generally speaking, not convex (aspherical) values.
A subclass of such inclusions is distinguished for which there exists a sequence of e-approxi-
mations, converging point-wise to a Borel measurable selector. On this base a solution existence
theorem is obtained.
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1. Introduction

The concept of mean derivatives was introduced by E. Nelson in the 60-s years of 20th century
(see [1, 2, 3]) for the needs of the so-called stochastic mechanics constructed by him (a variant
of quantum mechanics). Then it turned out that equations and inclusions with mean derivatives
naturally arose in many branches of mathematical physics, economics and other sciences.

In this article, differential inclusions with mean derivatives, for which the right-hand sides are,
generally speaking, have non-convex values of points. These are mappings that are aspherical in
all dimensions from 1 to n — 1 (see exact definitions below). This class of mappings was the first
time described by A.D. Myshkis in 1954 in [4]. In [5] and in [6] for such mappings the topological
characteristics of the type of topological index and Lefschetz number were constructed. Later (in the
1980s) this class was independently rediscovered by the group of Polish mathematicians led by Lech
Gérniewicz, and named “mappings whose values at each point have the so-called uv*-property for
kE=1,...,n" (see, for example, [7]). It is important that for such upper semicontinuous mappings,
there exist the so-called e-approximations (a special case here is the well-known construction of
g-approximations for mappings with convex values).

Here we study e-approximations for such mappings from the point of view of existence of their
sequences with the property of point-wise convergence to a Borel-measurable selector of the set
valued mapping. For a subclass of mappings with this property on the flat n-dimensional torus an
existence of solution theorem is proved for differential inclusions with mean derivatives.

It should be pointed out, that no unform but only point-wise convergence of e-approximations of
the right-hand sides of the ordinary differential inclusion, gives nothing useful for the investigation
of those inclusions. But this paper shows that in the case of stochastic differential inclusions the
point-wise convergence of e-approximations of the right-hand sides is a powerful machinery for
proving the existence of solution theorems.

Preliminaries from the theory of set-valued mappings can be found in [8, 9, 10], and the necessary
information on stochastic analysis — in [11, 12].

The research is supported by the RFBR grant 18-01-00048.

2. A brief introduction to the theory of set-valued mappings

The set-valued mapping F' from the set X to the set Y is the rule that associates the nonempty
set F'(z) C Y to each point x € X; F(x) is called the value of F at x.

To distinguish the set-valued maps from the single-valued ones, we introduce notation
F: X — Y for the set-valued mapping F', acting from X to Y, and for single-valued mappings we
keep the standard notation f: X — Y.

If X and Y are metric spaces, for set-valued mappings there are several continuity analogues
that turn into ordinary continuity in the case of single-valued mappings (here we do not consider the
description of these properties for set-valued mappings of topological spaces, referring the reader,
for example, to [9]). In this article we use only upper semicontinuity.

DEFINITION 1. The set-valued mapping F is called upper semicontinuous at the point x € X if
for each € > 0 there is a neighborhood U(x) of the point x such that from x’ € U(x) it follows that
F(z") belongs to e -neighborhood of the set F(x). F is called upper semicontinuous if it is upper
semicontinuous ot each point of the set X.
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A set-valued mapping is called closed if its graph is a closed set in X x Y. It follows, e.g., from
[9, 1.2.29] that every upper semicontinuous mapping with bounded closed values of metric spaces
is closed.

An important technical role in the study of set-valued mappings play the single-valued mappings
approximating them in some sense.

DEFINITION 2. For a given € > 0 the continuous single-valued mapping f- : X — Y s called the
e-approximation of the set-valued mapping F : X —o Y if the graph of f as a set in X XY belongs
to the e-neighborhood of the graph of F.

For the following classes of upper semicontinuous set-valued mappings in finite-dimensional
spaces the existence of e-approximations for any € > 0 is shown:

— mappings with convex closed values;

— the so-called mappings that are aspherical in all dimensions from 1 to n — 1 and are slightly
aspherical in dimensions n (see the history of research and references in §1).

3. e-approximations for upper semicontinuous
mappings with aspherical values

We give an exact definition of set-valued mappings with aspherical values, following [4, 5, 6].

Everywhere below, we consider a set-valued upper semicontinuous mapping F': X —o FE from an
n -dimensional compact polyhedron X lying in some Euclidean space, to E or to the polyhedron X
itself. Assumption that X is a polyhedron does not restrict the generality. In particular, F': X — X
and F': EF — F can be considered as such mappings.

By the symbol O(A, r) we denote the r-neighborhood of the set A, the symbol d(A) means the
diameter of A.

It is easy to see that from the definition of upper semicontinuity or closeness of the mapping F
it follows that for any e > 0 and 8 > 0 there exists a number «a(g, 3) such that in 5 -neighborhood
O(T,B) of an arbitrary set 7" with the diameter smaller than «, there exists a point xo called
satellite of the set T, such that O(F(x¢),e) D F(T).

DEFINITION 3. The map F : X —o X s called aspherical in dimension k, if in each neighborhood
O(F(x),e) of each value F(x) there exists a neighborhood of Q(z,e,k) containing § = 0(¢)
neighborhood F(x) (0 is independent from x) such that m,(Q) = 0, where w(Q) is the k-th homotopy
group of Q.

Everywhere below we assume that F' is aspherical in dimensions k£ = 0,1,..., n— 1. Recall that
m0(Q) = 0 means that @ is linearly connected. We describe the construction of ¢ -approximations
for such set-valued mappings F' that are upper semicontinuous and have closed values, by modifying
the approach of [5].

Let p be a real number such that O(F(z), u) lies in aspherical in dimension n — 1 neighborhood
of F(z), p is independent of . We construct a sequence

> Eopy1 > E9p > 0(g2n) > Eop—1 > -+ >3 > 0(e2) > € (1)
where d(g;) is the number defining the §(g;)-neighborhood of the value F'(x) that is contained in
i

n
() Q(z,e;, k). Then we construct the sequence {f; and the number ag such that
k=0

1
0< Bk < 1,819-5-1; Br + oo < ae2k+1 — €2k Bt1) (2)
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where a(e, ) is introduced above in this section. Obviously, such a sequence can be constructed by
starting with the largest indices.

Now we define a triangulation of X such that the diameter of each simplex would be less than
d < min(ag, a(e1, B1)). To each 0-dimensional simplex T} we associate a point f(T}) € F(T?). For
each 1 -dimensional simplex T} we get that d(T}!) < a(e1,31). Thus, for the satellite z} it holds
that =1 € O(T!, B1) and F(T}!) C O(F(x}),e1). Hence, the following inclusions

F(TE) U H(T3) € P(T)) € O(F (w7),€1) (3)

and
O(F(x}),e1) C O(F(x}),6(e2)) C Q(x;,€2,0) C O(F(}),e2) (4)

hold, where TZO1 and Tg are the edges of Til. Since @ is aspherical in dimension 0, f can be extended
on Ti1 as continuous mapping and

F(T) € Q(zj,2,0) C O(F(a}), e2). (5)

Let T? be a 2-dimensional simplex with 1-dimensional edges Tzll, T,}Q and Tils. Let acill, x}2 and

1

z;, be the satellites corresponding to these edges. They form the set Til for which

d(T}) < 281 + ap < aes — €2, Ba).
There is a satellite xf of the set Til such that,
@} € O(T},B2) and  F(T}) C O(F(7),2).

Taking into account (4) and (5) we derive

U A(T) cOF(T})),22) € O(F (), 2). (6)
j=1,2,3
By (1) we have inclusions
O(F(a7),e3) C O(F(27),8(c4)) C Q(a7,€4,1) C O(F (27, £4). (7)

Since m2Q (22, €4, 1) = 0, we can extend f from the boundary of the simplex T? to the whole simplex
as continuous mapping. In addition, we obtain that

f(TzQ) - Q({L‘?,&;, 1) - O(F(x%v&l) (8)

And so on. In the last step, we extend f from (n — 1)-skeleton of X to the entire X as a
continuous mapping. By the construction the graph of f lies in €9,41-neighborhood of the graph
of F.

THEOREM 1. For F as above there exists a sequence f*) of continuous e 1 -approzimations
of the type described above, €§n+1 — 0 for k — oo, such that for any point x of some countable
everywhere dense subset 2 C X there is an integer K such that for any k > K the inclusion
f®)(z) € F(x) and f&HD(z) = f®) () for any integer | > 0,

PrOOF. By the construction, for each x from O-dimensional skeleton of X for f constructed above,
we set the value of f(z) € F(x). Now consider the sequence of barycentric partitions of X. We
denote by X} the 0-dimensional skeleton of the k-th partitions. At each k + 1 -th step for x € Xk
we save the value f*D(z) = f®)(z) and introduce an arbitrary value f*+1(z) € F(z) for

x € Xék+1)\Xék). Then we construct continuous f**1) on all X in the same way, as above. The

limit set = in Xék) for k — oo is the desired set. O
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COROLLARY 1. In the notation of Theoreml the sequence &) on = converges point-wise to the
selector f of F so that for any © € = the values of f(k)(m) stabilize starting from some number
K (z). From the point-wise convergence it follows that f is Borel measurable on E.

Among the set-valued mappings with aspherical values there is a subclass of mappings that
have sequences of e-approximations that converge point-wise to some Borel selector on the whole
polyhedron. For example, this includes upper semicontinuous mappings with values aspherical in
dimensions k = 0,1,..., n — 1 only at a finite number points (which we include in the number of
vertices of simplexes), and in the rest points the value are closed and convex. Existence of point-wise
convergent e-approximations for upper semicontinuous set-valued mappings with convex values in
two different cases are proved in [13, 14].

For the convenience of references in the text, we write down the property of those mappings,
which we will consider below.

CoONDITION 1. We assume that the considered mappings with aspherical values have sequences
of e-approximations, which converge point-wise to a certain Borel selector on the whole polyhedron.

4. Preliminary Information on Mean Derivatives

Consider a stochastic process () in R”, t € [0, T] defined on some probability space (€2, F,P)
and such that £(t) is Li-random element for all ¢. Denote by /\ft£ the completed with sets of measure
0 o-subalgebra of o-algebra F generated by the preimages of Borel sets in R™ under the map &£(t)
(following Nelson, see, for example, [1, 2, 3], we call J\/f the “present” for the process £(t)). For
convenience, we denote the conditional expectation of £(t) relative to J\/tf by Ef()

The usual (“unconditional”) mathematical expectation we denote by E.

Strictly speaking, almost sure (a.s.) the sample trajectories of £(t) are not differentiable for
almost all t. So, the classic derivatives £(t) exist only in the sense of generalized functions. To avoid
using generalized functions, by following Nelson (see, for example, |1, 2, 3]) we give

DEFINITION 4. The forward mean derivative DE(t) of the process £(t) at time instant t is an
Li-random element of the form
§(t+ At) — &(t)

De(t) = gl S =) )

where the limit is assumed to exist in L1(Q, F,P), and At — +0 means that At tends to 0 At > 0.

From the properties of conditional mathematical expectation (see [11]) it follows that DE(t) can
be represented as a superposition of £(t) swith the Borel measurable vector field (regression)

L §(t+ At) —€(t)
alt z) = A%I—ISFOE( At

on R™. This means that D{(t) = a(t,&(t)).
Following [15] (see also [12]), we introduce the mean derivative Dy of the process £(¢) by the
following formula

£(t) = x) (10)

(E(t+ ) — §(t)£§(t + At) — é‘(t))*)’ (11)

where (£(t+ At) — &(t)) is considered as a column (vector in R™) and ({(t + At) —&(t))* - as a row
(transposed or conjugate vector). As above, the limit exists in L1 (Q, F,P).
DEFINITION 5. Ds s called the quadratic mean derivative.

It is shown that the quadratic mean derivative takes values in the space of symmetric positive
semi-definite (n x n) matrices S4(n).
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5. Differential inclusions with aspherical right-hand sides

In this section we consider differential inclusions with mean derivatives on the flat n-dimensional
torus T™. On the one hand, T is a compact polyhedron, i.e. on it the constructions from §3 are
well-defined. On the other hand, Riemannian metric on T" is inherited from R" on factorizing with
respect to integer lattice. This makes possible applying the technique developed for R™.

Consider on T™ a set-valued vector field a(¢, x) and a set-valued (2, 0)-tensor field (¢, x) having
closed uniformly bounded values, aspherical in dimensions k = 0,1,..., n — 1 values and satisfy
Condition 1. In addition, for a(t,z) we assume that it takes values in symmetric positive definite
bilinear forms ((2,0) tensors). The differential inclusion with those fields is the system of the form

DE(t) € a(t, &(t)),
{ Do¢(t) € a(t, £(1)). (12)

DEFINITION 6. The inclusion (12) has a solution with the initial condition § € T™ if there
exists a probability space and a random process &(t) given on it and taking values in T™, such that

£(0) =& and a.s. £(t) satisfies inclusion (12).
For simplicity, we deal only with determinate initial conditions.

THEOREM 2. Under the assumptions made above, for any initial condition £(0) € T™ inclusion
(12) has a solution.

Proor. Choose a sequence of positive numbers €, — 0 such that the corresponding continuous eg-
approximations of ay(t,z) and of ay(t,x) converge point-wise to Borel selectors a(t,z) and a(t, x)
of set-valued fields a(t,z) and «(t,z), respectively. Moreover, it is easy to see that ay(t,x) are
symmetric and positive definite. Then by [12, Lemma 8.40] there exist continuous matrix fields
Aj(t,x) such that ay(t,z) = Ap(t,x)AL(t,x), where Aj(t,x) is the transposed matrix A(¢,z). In
this case, the sequence Ag(t,z) converges point-wise to the matrix field A(¢, x).

Consider the sequence of stochastic differential equations in Tto form

t

Eult) = 0 + / ax (s, €x(s))ds + / A5, 4(5))du(s). (13)
0

0

Since the coefficients in (13) are continuous and also, by construction, are uniformly bounded, by
[16, Theorem III.2.4] all these equations have weak solutions £ (t). The corresponding measures p
on the space (C°([0,T],T"), €), where € is the o-algebra of cylindrical sets, are weakly compact by
[16, Corollary to Lemma II1.2.2], hence we can choose a subsequence that weakly converges to some
measure y. For convenience, we assume that the sequence py itself converges weakly to p. We shall
show that the coordinate process £(t) on the probability space (C°([0,T],T"), €, i) is the solution
we are looking for. Recall that the coordinate process is defined by the equality £(¢, z(-)) = =(t).
Denote by A the normalized Lebesgue measure on [0, 7).
Since a;(t, z(+)) point-wise converges as i — oo to a(t, z(+)), this convergence takes place a.s. for
each measure A x p5. Choose 6 > 0. By the Egorov theorem (see, e.g. , [17]) for any k there is a subset
K C[0,T] x C°([0, T], T") such that (A x pg)(K%) > 1— 4, and the sequence a;(t,z(-)) converges
(0.9}

to a(t,z(-)) uniformly on K¥. We introduce K; = |J K¥. The sequence a;(t,z(-)) converges to
i=0

a(t, z(-)) uniformly on Kj and (A x v3,)(Ks) >1—éd forall k=0,...,oco.

Note that a(t, z(-)) is continuous on the set of full measure Ax u on [0, T]x C°([0, T], T"). Indeed,
consider the sequence ¢ — 0 and the corresponding sequence f((sk from the Egorov theorem. From
the above construction it follows that a(t,z(-)) is the uniform limit of the sequence of continuous
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- - noo_
functions on each Kj, . Thus it is continuous on every K, and so on every final union (J Kj,. It is
i=1

obvious that lim (A x ,,L)(Q &5) = (A x w)([0,T] x CO([0, T], T™).

Let g;(2(-)) be bounded (set |g;(x(-))] < © for all z(-) € C°([0,T],T") and continuous, NF-
measurable function on C°([0, T], T"), where ./\/'f is the “present” of the coordinate process, see

§4).
From uniform convergence (see above) to Ky for all & and the boundedness of g; it follows that
for sufficiently large k

H/K </:+At(ak<“ () = am(-)))cﬁ) g (2 (")) dpu

Since (A x ) (Ks) > 1 —6 for all k, |lax(t,z(-)) — a(t,z(-)) < Q for all k and |g;(x(-))] < © (see
above), we obtain

From the fact that ¢ is an arbitrary positive number, it follows that

t+At t+At
lim ( [ sty — [t x<~>>df) 0o () = 0.
k—o0 C([0,T],T™) t t

From the weak convergence of ui to p it follows that

klggo / (/HN (7, 2( d7’> gt(z(-))duy =

< 0.

t+At
( |t - a(m(-)))w) ge(2())dpue]| < 2006,

/;0([0’1—‘} ’T")\ks

CO([0.T],T")
t+At
/ ( | atra dr> gu(x())dp. (14)
0([0,7],T"
It’s obvious that
zllglo / (x(t + At) — z(t))dpr = / (x(t + At) — x(t))dp. (15)
CO([O,T],T”) CO([O,T},T")
Note that
t+At
/ . ([w +a)—a)] - [ akv,m(-))ch) ge(x())dpu, = 0 (16)
[ late+ A0~ eOlatedm = Bl + 50 - 6o,
C0([0,7],T™)
t+At t+AL
[ ([ ataoar) st =B[( [ o e ) st
Co([0,1],T™) ! ¢

and & (t) is a solution (13).
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Formulae (14), (15) and (16) yield the equality

t+At
/ [at + At) — ()] - / a(s, 2(-))ds | gu(@())dp = 0.
Co([0,1],T™) t

Since g¢ is an arbitrary continuous bounded function, measurable with respect to ./\/f, the latter
relation is equivalent to

t+At
B | [et+an - ew) - / a(s,€())ds | = 0. (17)
So from (17) it follows that
Dg(t) = a(t, &(+)) € a(t,£(1))- (18)

Now we turn to Ag(t,z(-)). Recall that ay(t,z(-)) = Ax(t, z(-)) A (t, z(-)) point-wise converges
to a(t,z(-)), a Borel measurable selector of a(t,z(-)). Absolutely similar to the above arguments,
it is easy to show that

t+At
(a(t+ A0) = @) alt + a0 = 2(0)] = [ als.o()ds | gila(Ndu=0  (19)
Co([0,1],T™) t
with the same ¢; as above. Relation (19) is equivalent to
t+At

B | [t + 80— nete+ a0 )] - [ atsigeds | =0

which obviously implies that
Dag(t) = a(t,£()) € ex(t, (). (20)
Equalities (18) and (20) complete the proof. O
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