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Abstract

On flat 𝑛-dimensional torus we study stochastic differential inclusions with mean derivatives,
for which the right-hand sides have, generally speaking, not convex (aspherical) values.
A subclass of such inclusions is distinguished for which there exists a sequence of 𝜀-approxi-
mations, converging point-wise to a Borel measurable selector. On this base a solution existence
theorem is obtained.
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1. Introduction

The concept of mean derivatives was introduced by E. Nelson in the 60-s years of 20th century
(see [1, 2, 3]) for the needs of the so-called stochastic mechanics constructed by him (a variant
of quantum mechanics). Then it turned out that equations and inclusions with mean derivatives
naturally arose in many branches of mathematical physics, economics and other sciences.

In this article, differential inclusions with mean derivatives, for which the right-hand sides are,
generally speaking, have non-convex values of points. These are mappings that are aspherical in
all dimensions from 1 to 𝑛 − 1 (see exact definitions below). This class of mappings was the first
time described by A.D. Myshkis in 1954 in [4]. In [5] and in [6] for such mappings the topological
characteristics of the type of topological index and Lefschetz number were constructed. Later (in the
1980s) this class was independently rediscovered by the group of Polish mathematicians led by Lech
Górniewicz, and named “mappings whose values at each point have the so-called 𝑢𝑣𝑘-property for
𝑘 = 1, . . . , 𝑛” (see, for example, [7]). It is important that for such upper semicontinuous mappings,
there exist the so-called 𝜀-approximations (a special case here is the well-known construction of
𝜀-approximations for mappings with convex values).

Here we study 𝜀-approximations for such mappings from the point of view of existence of their
sequences with the property of point-wise convergence to a Borel-measurable selector of the set
valued mapping. For a subclass of mappings with this property on the flat 𝑛-dimensional torus an
existence of solution theorem is proved for differential inclusions with mean derivatives.

It should be pointed out, that no unform but only point-wise convergence of 𝜀-approximations of
the right-hand sides of the ordinary differential inclusion, gives nothing useful for the investigation
of those inclusions. But this paper shows that in the case of stochastic differential inclusions the
point-wise convergence of 𝜀-approximations of the right-hand sides is a powerful machinery for
proving the existence of solution theorems.

Preliminaries from the theory of set-valued mappings can be found in [8, 9, 10], and the necessary
information on stochastic analysis – in [11, 12].

The research is supported by the RFBR grant 18-01-00048.

2. A brief introduction to the theory of set-valued mappings

The set-valued mapping 𝐹 from the set 𝑋 to the set 𝑌 is the rule that associates the nonempty
set 𝐹 (𝑥) ⊂ 𝑌 to each point 𝑥 ∈ 𝑋; 𝐹 (𝑥) is called the value of 𝐹 at 𝑥.

To distinguish the set-valued maps from the single-valued ones, we introduce notation
𝐹 : 𝑋 ( 𝑌 for the set-valued mapping 𝐹 , acting from 𝑋 to 𝑌 , and for single-valued mappings we
keep the standard notation 𝑓 : 𝑋 → 𝑌 .

If 𝑋 and 𝑌 are metric spaces, for set-valued mappings there are several continuity analogues
that turn into ordinary continuity in the case of single-valued mappings (here we do not consider the
description of these properties for set-valued mappings of topological spaces, referring the reader,
for example, to [9]). In this article we use only upper semicontinuity.

Definition 1. The set-valued mapping 𝐹 is called upper semicontinuous at the point 𝑥 ∈ 𝑋 if
for each 𝜀 > 0 there is a neighborhood 𝑈(𝑥) of the point 𝑥 such that from 𝑥′ ∈ 𝑈(𝑥) it follows that
𝐹 (𝑥′) belongs to 𝜀 -neighborhood of the set 𝐹 (𝑥). 𝐹 is called upper semicontinuous if it is upper
semicontinuous at each point of the set 𝑋.
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A set-valued mapping is called closed if its graph is a closed set in 𝑋 × 𝑌 . It follows, e.g., from
[9, 1.2.29] that every upper semicontinuous mapping with bounded closed values of metric spaces
is closed.

An important technical role in the study of set-valued mappings play the single-valued mappings
approximating them in some sense.

Definition 2. For a given 𝜀 > 0 the continuous single-valued mapping 𝑓𝜀 : 𝑋 → 𝑌 is called the
𝜀-approximation of the set-valued mapping 𝐹 : 𝑋 ( 𝑌 if the graph of 𝑓 as a set in 𝑋 × 𝑌 belongs
to the 𝜀-neighborhood of the graph of 𝐹 .

For the following classes of upper semicontinuous set-valued mappings in finite-dimensional
spaces the existence of 𝜀-approximations for any 𝜀 > 0 is shown:

— mappings with convex closed values;
— the so-called mappings that are aspherical in all dimensions from 1 to 𝑛− 1 and are slightly

aspherical in dimensions 𝑛 (see the history of research and references in §1).

3. 𝜀-approximations for upper semicontinuous
mappings with aspherical values

We give an exact definition of set-valued mappings with aspherical values, following [4, 5, 6].
Everywhere below, we consider a set-valued upper semicontinuous mapping 𝐹 : 𝑋 ( 𝐸 from an

𝑛 -dimensional compact polyhedron 𝑋 lying in some Euclidean space, to 𝐸 or to the polyhedron 𝑋
itself. Assumption that 𝑋 is a polyhedron does not restrict the generality. In particular, 𝐹 : 𝑋 ( 𝑋
and 𝐹 : 𝐸 ( 𝐸 can be considered as such mappings.

By the symbol 𝑂(𝐴, 𝑟) we denote the 𝑟-neighborhood of the set 𝐴, the symbol 𝑑(𝐴) means the
diameter of 𝐴.

It is easy to see that from the definition of upper semicontinuity or closeness of the mapping 𝐹
it follows that for any 𝜀 > 0 and 𝛽 > 0 there exists a number 𝛼(𝜀, 𝛽) such that in 𝛽 -neighborhood
𝑂(𝑇, 𝛽) of an arbitrary set 𝑇 with the diameter smaller than 𝛼, there exists a point 𝑥0 called
satellite of the set 𝑇 , such that 𝑂(𝐹 (𝑥0), 𝜀) ⊃ 𝐹 (𝑇 ).

Definition 3. The map 𝐹 : 𝑋 ( 𝑋 is called aspherical in dimension 𝑘, if in each neighborhood
𝑂(𝐹 (𝑥), 𝜀) of each value 𝐹 (𝑥) there exists a neighborhood of 𝑄(𝑥, 𝜀, 𝑘) containing 𝛿 = 𝛿(𝜀)
neighborhood 𝐹 (𝑥) (𝛿 is independent from 𝑥) such that 𝜋𝑘(𝑄) = 0, where 𝜋𝑘(𝑄) is the 𝑘-th homotopy
group of 𝑄.

Everywhere below we assume that 𝐹 is aspherical in dimensions 𝑘 = 0, 1, . . . , 𝑛− 1. Recall that
𝜋0(𝑄) = 0 means that 𝑄 is linearly connected. We describe the construction of 𝜀 -approximations
for such set-valued mappings 𝐹 that are upper semicontinuous and have closed values, by modifying
the approach of [5].

Let 𝜇 be a real number such that 𝑂(𝐹 (𝑥), 𝜇) lies in aspherical in dimension 𝑛−1 neighborhood
of 𝐹 (𝑥), 𝜇 is independent of 𝑥. We construct a sequence

𝜇 > 𝜀2𝑛+1 > 𝜀2𝑛 > 𝛿(𝜀2𝑛) > 𝜀2𝑛−1 > · · · > 𝜀2 > 𝛿(𝜀2) > 𝜀1 (1)

where 𝛿(𝜀𝑖) is the number defining the 𝛿(𝜀𝑖)-neighborhood of the value 𝐹 (𝑥) that is contained in
𝑛⋂︀
𝑘=0

𝑄(𝑥, 𝜀𝑖, 𝑘). Then we construct the sequence {𝛽𝑖}𝑛+1
1 and the number 𝛼0 such that

0 < 𝛽𝑘 <
1

4
𝛽𝑘+1; 𝛽𝑘 + 𝛼0 < 𝛼(𝜀2𝑘+1 − 𝜀2𝑘, 𝛽𝑘+1) (2)
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where 𝛼(𝜀, 𝛽) is introduced above in this section. Obviously, such a sequence can be constructed by
starting with the largest indices.

Now we define a triangulation of 𝑋 such that the diameter of each simplex would be less than
𝑑 < 𝑚𝑖𝑛(𝛼0, 𝛼(𝜀1, 𝛽1)). To each 0-dimensional simplex 𝑇 0

𝑖 we associate a point 𝑓(𝑇 0
𝑖 ) ∈ 𝐹 (𝑇 0

𝑖 ). For
each 1 -dimensional simplex 𝑇 1

𝑖 we get that 𝑑(𝑇 1
𝑖 ) < 𝛼(𝜀1, 𝛽1). Thus, for the satellite 𝑥1𝑖 it holds

that 𝑥1𝑖 ∈ 𝑂(𝑇 1
𝑖 , 𝛽1) and 𝐹 (𝑇

1
𝑖 ) ⊂ 𝑂(𝐹 (𝑥1𝑖 ), 𝜀1). Hence, the following inclusions

𝑓(𝑇 0
𝑖1) ∪ 𝑓(𝑇

0
𝑖2) ⊂ 𝐹 (𝑇

1
𝑖 ) ⊂ 𝑂(𝐹 (𝑥1𝑖 ), 𝜀1) (3)

and
𝑂(𝐹 (𝑥1𝑖 ), 𝜀1) ⊂ 𝑂(𝐹 (𝑥1𝑖 ), 𝛿(𝜀2)) ⊂ 𝑄(𝑥1𝑖 , 𝜀2, 0) ⊂ 𝑂(𝐹 (𝑥1𝑖 ), 𝜀2) (4)

hold, where 𝑇 0
𝑖1
and 𝑇 0

𝑖2
are the edges of 𝑇 1

𝑖 . Since 𝑄 is aspherical in dimension 0, 𝑓 can be extended
on 𝑇 1

𝑖 as continuous mapping and

𝑓(𝑇 1
𝑖 ) ⊂ 𝑄(𝑥1𝑖 , 𝜀2, 0) ⊂ 𝑂(𝐹 (𝑥1𝑖 ), 𝜀2). (5)

Let 𝑇 2
𝑖 be a 2-dimensional simplex with 1-dimensional edges 𝑇 1

𝑖1
, 𝑇 1

𝑖2
and 𝑇 1

𝑖3
. Let 𝑥1𝑖1 , 𝑥

1
𝑖2
and

𝑥1𝑖3 be the satellites corresponding to these edges. They form the set 𝑇 1
𝑖 for which

𝑑(𝑇 1
𝑖 ) < 2𝛽1 + 𝛼0 < 𝛼(𝜀3 − 𝜀2, 𝛽2).

There is a satellite 𝑥2𝑖 of the set 𝑇
1
𝑖 such that,

𝑥2𝑖 ∈ 𝑂(𝑇 1
𝑖 , 𝛽2) and 𝐹 (𝑇 1

𝑖 ) ⊂ 𝑂(𝐹 (𝑥2𝑖 ), 𝜀2).

Taking into account (4) and (5) we derive⋃︁
𝑗=1,2,3

𝑓(𝑇 1
𝑖𝑗 ) ⊂ 𝑂(𝐹 (𝑇 1

𝑖 ), 𝜀2) ⊂ 𝑂(𝐹 (𝑥2𝑖 ), 𝜀2). (6)

By (1) we have inclusions

𝑂(𝐹 (𝑥2𝑖 ), 𝜀3) ⊂ 𝑂(𝐹 (𝑥2𝑖 ), 𝛿(𝜀4)) ⊂ 𝑄(𝑥2𝑖 , 𝜀4, 1) ⊂ 𝑂(𝐹 (𝑥2𝑖 , 𝜀4). (7)

Since 𝜋2𝑄(𝑥2𝑖 , 𝜀4, 1) = 0, we can extend 𝑓 from the boundary of the simplex 𝑇 2
𝑖 to the whole simplex

as continuous mapping. In addition, we obtain that

𝑓(𝑇 2
𝑖 ) ⊂ 𝑄(𝑥2𝑖 , 𝜀4, 1) ⊂ 𝑂(𝐹 (𝑥2𝑖 ), 𝜀4). (8)

And so on. In the last step, we extend 𝑓 from (𝑛 − 1)-skeleton of 𝑋 to the entire 𝑋 as a
continuous mapping. By the construction the graph of 𝑓 lies in 𝜀2𝑛+1-neighborhood of the graph
of 𝐹 .

Theorem 1. For 𝐹 as above there exists a sequence 𝑓 (𝑘) of continuous 𝜀𝑘2𝑛+1-approximations
of the type described above, 𝜀𝑘2𝑛+1 → 0 for 𝑘 → ∞, such that for any point 𝑥 of some countable
everywhere dense subset Ξ ⊂ 𝑋 there is an integer 𝐾 such that for any 𝑘 > 𝐾 the inclusion
𝑓 (𝑘)(𝑥) ∈ 𝐹 (𝑥) and 𝑓 (𝑘+𝑙)(𝑥) = 𝑓 (𝑘)(𝑥) for any integer 𝑙 > 0.

Proof. By the construction, for each 𝑥 from 0-dimensional skeleton of 𝑋 for 𝑓 constructed above,
we set the value of 𝑓(𝑥) ∈ 𝐹 (𝑥). Now consider the sequence of barycentric partitions of 𝑋. We
denote by 𝑋𝑘

0 the 0-dimensional skeleton of the 𝑘-th partitions. At each 𝑘 + 1 -th step for 𝑥 ∈ 𝑋𝑘
0

we save the value 𝑓 (𝑘+1)(𝑥) = 𝑓 (𝑘)(𝑥) and introduce an arbitrary value 𝑓 (𝑘+1)(𝑥) ∈ 𝐹 (𝑥) for

𝑥 ∈ 𝑋(𝑘+1)
0 ∖𝑋(𝑘)

0 . Then we construct continuous 𝑓 (𝑘+1) on all 𝑋 in the same way, as above. The

limit set Ξ in 𝑋(𝑘)
0 for 𝑘 →∞ is the desired set. 2
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Corollary 1. In the notation of Theorem1 the sequence 𝑓 (𝑘) on Ξ converges point-wise to the
selector 𝑓 of 𝐹 so that for any 𝑥 ∈ Ξ the values of 𝑓 (𝑘)(𝑥) stabilize starting from some number
𝐾(𝑥). From the point-wise convergence it follows that 𝑓 is Borel measurable on Ξ.

Among the set-valued mappings with aspherical values there is a subclass of mappings that
have sequences of 𝜀-approximations that converge point-wise to some Borel selector on the whole
polyhedron. For example, this includes upper semicontinuous mappings with values aspherical in
dimensions 𝑘 = 0, 1, . . . , 𝑛 − 1 only at a finite number points (which we include in the number of
vertices of simplexes), and in the rest points the value are closed and convex. Existence of point-wise
convergent 𝜀-approximations for upper semicontinuous set-valued mappings with convex values in
two different cases are proved in [13, 14].

For the convenience of references in the text, we write down the property of those mappings,
which we will consider below.

Condition 1. We assume that the considered mappings with aspherical values have sequences
of 𝜀-approximations, which converge point-wise to a certain Borel selector on the whole polyhedron.

4. Preliminary Information on Mean Derivatives

Consider a stochastic process 𝜉(𝑡) in R𝑛, 𝑡 ∈ [0, 𝑇 ] defined on some probability space (Ω,ℱ ,P)
and such that 𝜉(𝑡) is 𝐿1-random element for all 𝑡. Denote by 𝒩 𝜉

𝑡 the completed with sets of measure
0 𝜎-subalgebra of 𝜎-algebra ℱ generated by the preimages of Borel sets in R𝑛 under the map 𝜉(𝑡)
(following Nelson, see, for example, [1, 2, 3], we call 𝒩 𝜉

𝑡 the “present” for the process 𝜉(𝑡)). For
convenience, we denote the conditional expectation of 𝜉(𝑡) relative to 𝒩 𝜉

𝑡 by 𝐸𝜉𝑡 (·).
The usual (“unconditional”) mathematical expectation we denote by 𝐸.
Strictly speaking, almost sure (a.s.) the sample trajectories of 𝜉(𝑡) are not differentiable for

almost all 𝑡. So, the classic derivatives 𝜉(𝑡) exist only in the sense of generalized functions. To avoid
using generalized functions, by following Nelson (see, for example, [1, 2, 3]) we give

Definition 4. The forward mean derivative 𝐷𝜉(𝑡) of the process 𝜉(𝑡) at time instant 𝑡 is an
𝐿1-random element of the form

𝐷𝜉(𝑡) = lim
Δ𝑡→+0

𝐸𝜉𝑡 (
𝜉(𝑡+Δ𝑡)− 𝜉(𝑡)

Δ𝑡
) (9)

where the limit is assumed to exist in 𝐿1(Ω,ℱ ,P), and Δ𝑡→ +0 means that Δ𝑡 tends to 0 Δ𝑡 > 0.

From the properties of conditional mathematical expectation (see [11]) it follows that 𝐷𝜉(𝑡) can
be represented as a superposition of 𝜉(𝑡) swith the Borel measurable vector field (regression)

𝑎(𝑡, 𝑥) = lim
Δ𝑡→+0

𝐸(
𝜉(𝑡+Δ𝑡)− 𝜉(𝑡)

Δ𝑡
|𝜉(𝑡) = 𝑥) (10)

on R𝑛. This means that 𝐷𝜉(𝑡) = 𝑎(𝑡, 𝜉(𝑡)).
Following [15] (see also [12]), we introduce the mean derivative 𝐷2 of the process 𝜉(𝑡) by the

following formula

𝐷2𝜉(𝑡) = lim
△𝑡→+0

𝐸𝜉𝑡

(︂
(𝜉(𝑡+△𝑡)− 𝜉(𝑡))(𝜉(𝑡+△𝑡)− 𝜉(𝑡))*

△𝑡

)︂
, (11)

where (𝜉(𝑡+△𝑡)− 𝜉(𝑡)) is considered as a column (vector in R𝑛) and (𝜉(𝑡+△𝑡)− 𝜉(𝑡))* - as a row
(transposed or conjugate vector). As above, the limit exists in 𝐿1(Ω,ℱ ,P).

Definition 5. 𝐷2 is called the quadratic mean derivative.

It is shown that the quadratic mean derivative takes values in the space of symmetric positive
semi-definite (𝑛× 𝑛) matrices 𝑆+(𝑛).
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5. Differential inclusions with aspherical right-hand sides

In this section we consider differential inclusions with mean derivatives on the flat 𝑛-dimensional
torus T𝑛. On the one hand, 𝑇𝑛 is a compact polyhedron, i.e. on it the constructions from §3 are
well-defined. On the other hand, Riemannian metric on T𝑛 is inherited from R𝑛 on factorizing with
respect to integer lattice. This makes possible applying the technique developed for R𝑛.

Consider on T𝑛 a set-valued vector field a(𝑡, 𝑥) and a set-valued (2, 0)-tensor field 𝛼(𝑡, 𝑥) having
closed uniformly bounded values, aspherical in dimensions 𝑘 = 0, 1, . . . , 𝑛 − 1 values and satisfy
Condition 1. In addition, for 𝛼(𝑡, 𝑥) we assume that it takes values in symmetric positive definite
bilinear forms ((2, 0) tensors). The differential inclusion with those fields is the system of the form{︂

𝐷𝜉(𝑡) ∈ a(𝑡, 𝜉(𝑡)),
𝐷2𝜉(𝑡) ∈ 𝛼(𝑡, 𝜉(𝑡)).

(12)

Definition 6. The inclusion (12) has a solution with the initial condition 𝜉0 ∈ T𝑛 if there
exists a probability space and a random process 𝜉(𝑡) given on it and taking values in T𝑛, such that
𝜉(0) = 𝜉0 and a.s. 𝜉(𝑡) satisfies inclusion (12).

For simplicity, we deal only with determinate initial conditions.

Theorem 2. Under the assumptions made above, for any initial condition 𝜉(0) ∈ T𝑛 inclusion
(12) has a solution.

Proof. Choose a sequence of positive numbers 𝜀𝑘 → 0 such that the corresponding continuous 𝜀𝑘-
approximations of 𝑎𝑘(𝑡, 𝑥) and of 𝛼𝑘(𝑡, 𝑥) converge point-wise to Borel selectors 𝑎(𝑡, 𝑥) and 𝛼(𝑡, 𝑥)
of set-valued fields a(𝑡, 𝑥) and 𝛼(𝑡, 𝑥), respectively. Moreover, it is easy to see that 𝛼𝑘(𝑡, 𝑥) are
symmetric and positive definite. Then by [12, Lemma 8.40] there exist continuous matrix fields
𝐴𝑘(𝑡, 𝑥) such that 𝛼𝑘(𝑡, 𝑥) = 𝐴𝑘(𝑡, 𝑥)𝐴

*
𝑘(𝑡, 𝑥), where 𝐴

*
𝑘(𝑡, 𝑥) is the transposed matrix 𝐴(𝑡, 𝑥). In

this case, the sequence 𝐴𝑘(𝑡, 𝑥) converges point-wise to the matrix field 𝐴(𝑡, 𝑥).
Consider the sequence of stochastic differential equations in Ito form

𝜉𝑘(𝑡) = 𝜉0 +

𝑡∫︁
0

𝑎𝑘(𝑠, 𝜉𝑘(𝑠))𝑑𝑠+

𝑡∫︁
0

𝐴𝑘(𝑠, 𝜉𝑘(𝑠))𝑑𝑤(𝑠). (13)

Since the coefficients in (13) are continuous and also, by construction, are uniformly bounded, by
[16, Theorem III.2.4] all these equations have weak solutions 𝜉𝑘(𝑡). The corresponding measures 𝜇𝑘
on the space (𝐶0([0, 𝑇 ],T𝑛),C), where C is the 𝜎-algebra of cylindrical sets, are weakly compact by
[16, Corollary to Lemma III.2.2], hence we can choose a subsequence that weakly converges to some
measure 𝜇. For convenience, we assume that the sequence 𝜇𝑘 itself converges weakly to 𝜇. We shall
show that the coordinate process 𝜉(𝑡) on the probability space (𝐶0([0, 𝑇 ],T𝑛),C, 𝜇) is the solution
we are looking for. Recall that the coordinate process is defined by the equality 𝜉(𝑡, 𝑥(·)) = 𝑥(𝑡).

Denote by 𝜆 the normalized Lebesgue measure on [0, 𝑇 ].
Since 𝑎𝑖(𝑡, 𝑥(·)) point-wise converges as 𝑖→∞ to 𝑎(𝑡, 𝑥(·)), this convergence takes place a.s. for

each measure 𝜆×𝜇𝑘. Choose 𝛿 > 0. By the Egorov theorem (see, e.g. , [17]) for any 𝑘 there is a subset
𝐾̃𝑘
𝛿 ⊂ [0, 𝑇 ]×𝐶0([0, 𝑇 ],T𝑛) such that (𝜆× 𝜇𝑘)(𝐾̃𝑘

𝛿 ) > 1− 𝛿, and the sequence 𝑎𝑖(𝑡, 𝑥(·)) converges

to 𝑎(𝑡, 𝑥(·)) uniformly on 𝐾̃𝑘
𝛿 . We introduce 𝐾̃𝛿 =

∞⋃︀
𝑖=0

𝐾̃𝑘
𝛿 . The sequence 𝑎𝑖(𝑡, 𝑥(·)) converges to

𝑎(𝑡, 𝑥(·)) uniformly on 𝐾̃𝛿 and (𝜆× 𝜈𝑘)(𝐾̃𝛿) > 1− 𝛿 for all 𝑘 = 0, . . . ,∞.
Note that 𝑎(𝑡, 𝑥(·)) is continuous on the set of full measure 𝜆×𝜇 on [0, 𝑇 ]×𝐶0([0, 𝑇 ],T𝑛). Indeed,

consider the sequence 𝛿𝑘 → 0 and the corresponding sequence 𝐾̃𝛿𝑘 from the Egorov theorem. From
the above construction it follows that 𝑎(𝑡, 𝑥(·)) is the uniform limit of the sequence of continuous
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functions on each 𝐾̃𝛿𝑘 . Thus it is continuous on every 𝐾̃𝛿𝑘 and so on every final union
𝑛⋃︀
𝑖=1

𝐾̃𝛿𝑖 . It is

obvious that lim
𝑛→∞

(𝜆× 𝜇)(
𝑛⋃︀
𝑖=1

𝐾̃𝛿𝑖) = (𝜆× 𝜇)([0, 𝑇 ]× 𝐶0([0, 𝑇 ],T𝑛).

Let 𝑔𝑡(𝑥(·)) be bounded (set |𝑔𝑡(𝑥(·))| < Θ for all 𝑥(·) ∈ 𝐶0([0, 𝑇 ],T𝑛) and continuous, 𝒩 𝜉
𝑡 -

measurable function on 𝐶0([0, 𝑇 ],T𝑛), where 𝒩 𝜉
𝑡 is the “present” of the coordinate process, see

§4).
From uniform convergence (see above) to 𝐾̃𝛿 for all 𝑘 and the boundedness of 𝑔𝑡 it follows that

for sufficiently large 𝑘⃦⃦⃦⃦∫︁
𝐾̃𝛿

(︂∫︁ 𝑡+Δ𝑡

𝑡
(𝑎𝑘(𝜏, 𝑥(·))− 𝑎(𝜏, 𝑥(·)))𝑑𝜏

)︂
𝑔𝑡(𝑥(·))𝑑𝜇𝑘

⃦⃦⃦⃦
< 𝛿.

Since (𝜆 × 𝜇𝑘)(𝐾̃𝛿) > 1 − 𝛿 for all 𝑘, ‖𝑎𝑘(𝑡, 𝑥(·)) − 𝑎(𝑡, 𝑥(·)) < 𝑄 for all 𝑘 and |𝑔𝑡(𝑥(·))| < Θ (see
above), we obtain⃦⃦⃦⃦

⃦
∫︁
𝐶0([0,𝑇 ],T𝑛)∖𝐾̃𝛿

(︂∫︁ 𝑡+Δ𝑡

𝑡
(𝑎𝑘(𝜏, 𝑥(·))− 𝑎(𝜏, 𝑥(·)))𝑑𝜏

)︂
𝑔𝑡(𝑥(·))𝑑𝜇𝑘

⃦⃦⃦⃦
⃦ < 2𝑄Θ𝛿.

From the fact that 𝛿 is an arbitrary positive number, it follows that

lim
𝑘→∞

∫︁
𝐶0([0,𝑇 ],T𝑛)

(︂∫︁ 𝑡+Δ𝑡

𝑡
𝑎𝑘(𝜏, 𝑥(·))𝑑𝜏 −

∫︁ 𝑡+Δ𝑡

𝑡
𝑎(𝜏, 𝑥(·))𝑑𝜏

)︂
𝑔𝑡(𝑥(·))𝑑𝜇𝑘 = 0.

From the weak convergence of 𝜇𝑘 to 𝜇 it follows that

lim
𝑘→∞

∫︁
𝐶0([0,𝑇 ],T𝑛)

(︂∫︁ 𝑡+Δ𝑡

𝑡
𝑎(𝜏, 𝑥(·))𝑑𝜏

)︂
𝑔𝑡(𝑥(·))𝑑𝜇𝑘 =

∫︁
𝐶0([0,𝑇 ],T𝑛)

(︂∫︁ 𝑡+Δ𝑡

𝑡
𝑎(𝜏, 𝑥(·))𝑑𝜏

)︂
𝑔𝑡(𝑥(·))𝑑𝜇. (14)

It’s obvious that

lim
𝑖→∞

∫︁
𝐶0([0,𝑇 ],T𝑛)

(𝑥(𝑡+Δ𝑡)− 𝑥(𝑡))𝑑𝜇𝑘 =
∫︁

𝐶0([0,𝑇 ],T𝑛)

(𝑥(𝑡+Δ𝑡)− 𝑥(𝑡))𝑑𝜇. (15)

Note that ∫︁
𝐶0([0,𝑇 ],T𝑛)

(︂[︁
𝑥(𝑡+Δ𝑡)− 𝑥(𝑡)

]︁
−
∫︁ 𝑡+Δ𝑡

𝑡
𝑎𝑘(𝜏, 𝑥(·))𝑑𝜏

)︂
𝑔𝑡(𝑥(·))𝑑𝜇𝑘 = 0 (16)

since ∫︁
𝐶0([0,𝑇 ],T𝑛)

[𝑥(𝑡+Δ𝑡)− 𝑥(𝑡)]𝑔𝑡(𝑥(·))𝑑𝜇𝑘 = 𝐸 [(𝜉𝑘(𝑡+Δ𝑡)− 𝜉𝑘(𝑡))𝑔𝑡(𝜉𝑘(𝑡))] ,

∫︁
𝐶0([0,𝑇 ],T𝑛)

(︂∫︁ 𝑡+Δ𝑡

𝑡
𝑎𝑘(𝜏, 𝑥(·))𝑑𝜏

)︂
𝑔𝑡(𝑥(·))𝑑𝜇𝑘 = 𝐸

[︁(︂∫︁ 𝑡+Δ𝑡

𝑡
𝑎𝑘(𝜏, 𝜉𝑘(𝜏))𝑑𝜏

)︂
𝑔𝑡(𝜉𝑘(𝑡))

]︁
and 𝜉𝑘(𝑡) is a solution (13).
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Formulae (14), (15) and (16) yield the equality

∫︁
𝐶0([0,𝑇 ],T𝑛)

⎛⎝[︁𝑥(𝑡+Δ𝑡)− 𝑥(𝑡)
]︁
−

𝑡+Δ𝑡∫︁
𝑡

𝑎(𝑠, 𝑥(·))𝑑𝑠

⎞⎠ 𝑔𝑡(𝑥(·))𝑑𝜇 = 0.

Since 𝑔𝑡 is an arbitrary continuous bounded function, measurable with respect to 𝒩 𝜉
𝑡 , the latter

relation is equivalent to

𝐸𝜉𝑡

⎛⎝[︁𝜉(𝑡+Δ𝑡)− 𝜉(𝑡)
]︁
−

𝑡+Δ𝑡∫︁
𝑡

𝑎(𝑠, 𝜉(·))𝑑𝑠

⎞⎠ = 0. (17)

So from (17) it follows that
𝐷𝜉(𝑡) = 𝑎(𝑡, 𝜉(·)) ∈ a(𝑡, 𝜉(·)). (18)

Now we turn to 𝐴𝑘(𝑡, 𝑥(·)). Recall that 𝛼𝑘(𝑡, 𝑥(·)) = 𝐴𝑘(𝑡, 𝑥(·))𝐴*
𝑘(𝑡, 𝑥(·)) point-wise converges

to 𝛼(𝑡, 𝑥(·)), a Borel measurable selector of 𝛼(𝑡, 𝑥(·)). Absolutely similar to the above arguments,
it is easy to show that

∫︁
𝐶0([0,𝑇 ],T𝑛)

⎛⎝[︁(𝑥(𝑡+Δ𝑡)− 𝑥(𝑡))(𝑥(𝑡+Δ𝑡)− 𝑥(𝑡))*
]︁
−

𝑡+Δ𝑡∫︁
𝑡

𝛼(𝑠, 𝑥(·))𝑑𝑠

⎞⎠ 𝑔𝑡(𝑥(·))𝑑𝜇 = 0 (19)

with the same 𝑔𝑡 as above. Relation (19) is equivalent to

𝐸𝜉𝑡

⎛⎝[︁(𝜉(𝑡+Δ𝑡)− 𝜉(𝑡))(𝜉(𝑡+Δ𝑡)− 𝜉(𝑡))*
]︁
−

𝑡+Δ𝑡∫︁
𝑡

𝛼(𝑠, 𝜉(·)))𝑑𝑠

⎞⎠ = 0

which obviously implies that
𝐷2𝜉(𝑡) = 𝛼(𝑡, 𝜉(·)) ∈ 𝛼(𝑡, 𝜉(·)). (20)

Equalities (18) and (20) complete the proof. 2
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