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Abstract
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1. Introduction

After Gromov’s 1980s papers, homogeneous sub-Finsler manifolds, in particular, sub-Rieman-
nian manifolds were actively studied [1], [15], [22], [26]. Their investigation is based on the
Rashevsky—Chow theorem which states that any two points of a connected manifold can be joined
by a piecewise smooth curve tangent to a given totally nonholonomic distribution [14], [20].

1) Every homogeneous manifold with intrinsic metric is the quotient space G/H of some
connected Lie group G by its compact subgroup H, equipped with G-invariant Finsler or sub-
Finsler metric d; in particular, it may be Riemannian or sub-Riemannian metric [3], [4], [5];

2) moreover, according to a form of metric d, there exists a left-invariant Finsler, sub-Finsler,
Riemannian or sub-Riemannian metric p on G such that the canonical projection (G, p) — (G/H, d)
is a submetry [5], [2], [18].

The search for geodesics of homogeneous (sub-)Finsler manifolds are reduced to the case of Lie
groups with left-invariant (sub-)Finsler metrics.

The shortest arcs on Lie groups with left-invariant (sub)-Finsler metrics are optimal trajectories
of the corresponding left-invariant time-optimal problem on Lie groups [3]. This permits to apply
the Pontryagin maximum principle (PMP) for their search [13]. By this method, in [7] are found all
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geodesics and shortest arcs of an arbitrary sub-Finsler metric on the three-dimensional Heisenberg
group.

In [8] is proposed a search method of normal geodesics on Lie groups with left-invariant sub-
Riemannian metrics. The method is applicable to Lie groups with left-invariant Riemannian metrics,
since all their geodesics are normal.

In this paper, to find geodesics of left-invariant (sub-)Finsler metrics on Lie groups and
corresponding locally optimal controls in (sub-)Riemannian case we use the geodesic vector field
method (Theorems 7, 8) and an improved version of method from [8], applying (co)adjoint
representations. The version is based on differential equations from Theorem 9 for controls, using
only the structure constants of Lie algebras of Lie groups.

An interesting feature of these two methods in (sub-)Riemannian case is that locally optimal
controls on Lie algebras of Lie groups for geodesics and corresponding geodesic vector fields on
Lie groups (their integral curves are geodesics, i.e., locally optimal trajectories) can be determined
independently of each other. Moreover, controls on different Lie algebras could be solutions of the
same mathematical pendulum equation (see sections 6-8).

Analogues of Theorems 4 and 7 (but for the last theorem is only along one geodesic) are
proved in the book [22| on the basis of more complicated concepts and apparatus. Apparently,
other researchers did not apply PMP for the time-optimal problem to find geodesics of left-invariant
metrics on Lie groups.

2. Preliminaries

The left and the right shifts [, : h € G = g-h,rg: h € G = h-g, g,h € G, of a Lie group
(G,-) by an element g are diffeomorphisms with the inverse shifts [,-1, 7,-1, and their differentials
(dlg)p : ThG — TynG and (drg)p : TG — TheG are linear isomorphisms of tangent vector spaces
to G at corresponding points.

There exist an open neighborhoods U of zero in the Lie algebra g = TG of the Lie group G and
W of unit e in G such that exp : U — W is a diffeomorphism. If dim G = n then after introduction
of arbitrary Cartesian coordinates (z1,...,x,) with zero origin 0 in g, it is naturally identified with
R™. Then exp ! : W — U C R” is a local chart (a coordinate system) on G in the neighborhood
W of the point e € G. This coordinate system in W is called a coordinate system of the first kind.

The group GL(n) = GL(n,R) of all nondegenerate real squared (n x n)-matrices is a Lie group
relative to the global map that associates to each matrix g € GL(n) its elements g;;,4,j = 1,...,n.
Obviously, for every g € G the mapping I(g) : G — G such that

I(g)(h)=g-h-g~" = (lgorg-1)(h) = (rg-101y)(h)
is an automorphism of the Lie group (G, ), I(g)(e) = e, and the differential
(dI(g))e :=dlgodry-— :T.G — T.G

is a nondegenerate linear map (i.e. an element of the Lie group GL(n) relative to some vector basis
in TG, if dim G = n), denoted with Ad(g). The calculation rule for the differential of composition
gives

Ad(g1 - g2) = (dI(g1 - g2))e = (d(I(g1) © I(g2)))e =

(dI(g1))e o (dI(g2))e = Ad(g1) o Ad(g2),

ie., Ad: G — GL(n) is a homomorphism of Lie groups, called the adjoint representation of the Lie
group G.
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3. Theoretical results
DEFINITION 1. Let (I, [-,]) be a Lie algebra; p,q C [ are nonzero vector subspaces. By definition,

[p,a] = {[v,w] : v € p,w c q}.
If dimp > 2 then by definition,

1 k+1

pl=p P =[pp", b =) 6"
k=1

The vector subspace p C | generates the Lie algebra (1, [-,-]), if [ = py, for some natural number m;
the smallest number m := s with such property is called the generation degree (of the algebra (I, -, ])
by the subspace p).

It is clear that subsets from Definition 1 are vector subspaces of [.
Let {e1,...,e,} be any basis of the vector subspace p C g, generating the Lie algebra (g, [, ])
of a Lie group (G, -). One can prove the following special case of the Rashevsky-Chow theorem.

THEOREM 1. Let (G,-) be a connected Lie group and a vector subspace p C g generates Lie
algebra (g, [-,-]). Then the control system

g:dlg(u)7 uEp, (1>
is controllable (attainable) by means of piecewise constant controls
u=u(t)ep, 0<t<T, (2)

where u(t) = *ej, j = 1,...,7, in the constancy segments of the control. In other words, for any
elements go, g1 € G there exists a piecewise constant control (2) of this type such that g(T) = g1 for
solution of the Cauchy problem

9(t) = dlgy(u(t)),  9(0) = go-

Every left-invariant (sub-)Finsler metric d = dp on a connected Lie group G with Lie algebra
(g,[,°]) is defined by a subspace p C g, generating g, and some norm F on p. A distance
d(g,h) for g,h € G is defined as the infimum of lengths fOT |g(t)|dt of piecewise smooth paths
g = g(t), 0 <t < T, such that dlyy-1(g(t)) € p and g(0) = g, g(T) = h; T is not fixed,
19(t)] = F(dlyp)-1(g(t))). The existence of such paths and, consequently, the finiteness of d are
guaranteed by Theorem 1. Obviously, all three metric properties for d are fulfilled. If p = g then d
is a left-invariant Finsler metric on G; if F\(v) = /(v,v), v € p, where (-,-) is some scalar product
on g, then d is a left-invariant sub-Riemannian metric on G, and d is a left-invariant Riemannian
metric, if additionally p = g.

The following statements were proved in [4]. The space (G, d) is a locally compact and complete.
Then in consequence of S.E. Cohn—Vossen theorem [12] the space (G, d) is a geodesic space, i.e. for
any elements g,h € G there exists a shortest arc ¢ = ¢(t), 0 <t < T, in (G, d), which joins them.
This means that ¢ is a continuous curve in G, whose length in the metric space (G, d) is equal
to d(g,h). Therefore we can assume that ¢ is parameterized by arc length, i.e. T' = d(g,h) and
d(c(ty),c(te)) =ta —t1 if 0 < t; <ty <d(g,h). Then ¢ =¢(t), 0 <t <d(g,h), is a Lipschitz curve
relative to the smooth structure of the Lie group G. Therefore this curve is absolutely continuous.
Then in consequence of well-known theorem from mathematical analysis, there exists a measurable,
almost everywhere defined derivative function ¢é(t), 0 < t < d(g,h), and c(t) = ¢(0) + f(f ¢(r)dr,
0<t<T.



TIMTI, (k0)upucoeMHEEHHOE PEACTABJICHHE . . . 47

THEOREM 2. [3] Every shortest arc g = g(t), 0 <t <T = d(go,91), in (G,d) with g(0) = go,
9(T) = g1, is a solution of the time-optimal problem for the control system (1) with compact control
region

U={uep: F(u) <1}

and indicated endpoints.

In consequence of Theorem 2, one can apply the Pontryagin maximum principle [13] for the
time-optimal problem from Theorem 2 and a covector function ¢ = 9 (t) € Tg*(t) to find shortest
arcs on the Lie group G with left-invariant sub-Finsler metric d. The function 1 can be considered
as a left-invariant 1-form on (G, -) and therefore it is natural to identify it with a covector function
Y(t) € g* = T)G. Then every optimal trajectory g(t), 0 <t < T, is determined by some mesurable
optimal control w = u(t) € U, 0 < t < T. Moreover, for some non-vanishing absolutely continuous
function ¢ = ¥(t), 0 <t < T, we have

H = H(g, ¥ u) = b(dly(u)) = b(u). Q
i=5 b= @
H(r) = H{g(r), (), (7)) = 6(r) (7)) = mah(r)(u) )

for almost all 7 € [0, 7.

DEFINITION 2. Later on, an extremal for the problem from Theorem 2 is called a parameterized
curve g = ¢(t), t € R, satisfying PMP for the time-optimal problem.

REMARK 1. For every estremal, H(t) = const := My >0, t € R, [1], [13].

DEFINITION 3. An extremal is called normal (abnormal), if My > 0 (My = 0). Every normal
extremal is parameterized by arc length; proportionally changing ¢ = ¥ (t), t € R, if it is necessary,
one can assume that Mo = 1. Every normal extremal for a left-invariant (sub-)Riemannian metric
on a Lie group is a geodesic, i.e. a locally shortest curve [23].

THEOREM 3. [8] The Hamiltonian system for the function H on the Lie group G = GL(n) with
the Lie algebra g = gl(n) has a form

gd=g-u geG, ueg, (6)

() =¢(u,v]), g€G, wveg. (7)

PrRoOF. Each element g € G = GL(n) C R™ is defined by its standard matrix coordinates g;;,
i,j =1,...,n, and 9 is defined by its components ;; = ¥ (e;;), i,j = 1,...,n, where ¢;; € g is a
matrix having 1 in the ¢th row and the jth column and 0 in all other places.

In consequence of (3),

Z Vi (Z gu%) = > (g ). (8)

i,7=1 l,j=1

The variables g;;, 1;; must satisfy the Hamiltonian system of equations

oH
g;j aw 9,1/), Zgllulj = gu ijs (9)
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iy = @ = - Z YimUjm = —(ul ). (10)

The formula (9) is a special case of the formula (6). It is clear that
T;Z)( Z @Z}U (Z gzl”l]) .
i,j=1
On the ground of formulae (9) and (10) we get from here that

= 52 o (S + 35 (St -

t,j=1 t,j=1

- Z (Z wzmu]ngzlvlj> + Z 'szj Z FimUmiVij | =

,7=1 i,j=1 l,m=1

- Z by (Zgzl vu); ) + Z Vi <Zgﬂ uv) ) —

1,j=1 1,j=1
Z wij(g[ua U])ij = @ZJ([U,U]),
ij=1

which proves the formula (7). O

THEOREM 4. [8] The Hamiltonian system for the function H on a Lie group G with Lie algebra
g has a form

g=dly(u), geG, wuecyg, (11)
() =P([u,v]), ge€G, wveg. (12)

ProOOF. In consequence of Theorem 3, Theorem 4 holds for every matrix Lie group and for every Lie
group (G, -), because it is known that (G,-) is locally isomorphic to some connected Lie subgroup
(may be, virtual) of the Lie group GL(n) C R". O

It follows from Theorem 4, especially from (12), and Remark 1 that

THEOREM 5. If dim G = 3, dimp > 2 in Theorem 2 then every extremal of the problem from
Theorem 2 is normal.

The following lemma holds.

LeEmMMA 1. [16] Let g = g(t), t € (a,b), be a smooth path in the Lie group G. Then

ProOF. Differentiating the identity g(t)g(t)~! = e by ¢, we get

0= (g(t)g(t)™") =g ®)g(t)"" + g(t)(g(t) "),

whence the equality (13) follows immediately. O
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THEOREM 6. [16] Let ¢ € g* = T;G be a covector,

Ad*Y(g) := (Adg)* () = o Ad(g), g€G,

an action of the coadjoint representation of the Lie group G on 1. Then

(d(Ad™9)(w))(v) = ((Ad go)" () ([u, v]),

wv g, w=dlg(u)eTyG, gocd.
ProOF. In the case of a matrix Lie group G,
Ad(g)(v) = gvg™1, dly(u) =gu, uwveg, ged.

We choose a smooth path g = g(t), t € (—e,¢), in the Lie group G such that ¢g(0) = go, ¢'(0) = w.
Then by Lemma 1,

(d(Ad* ¥)(w))(v) = (P(g(t)vg(t) ™)) (0) = »((g(t)vg(t)~")'(0)) =

U(g'(0)vgy " + gov(g(t) 1) (0)) = ¥(gouvgy ' — gov(gy g’ (0)gs 1)) =
P(gouvgy " — gov(gy "gougy ) = ¥(gouvgy " — govugy ) =
¥(go[u,v]gy ") = ((Ad go)* (¥))([u, v]),

as required. O
It follows from Theorems 4 and 6 that

THEOREM 7. 1. Any normal extremal g = g(t) : R — G (parameterized by arc length and with
origin e € G), of left-invariant (sub-)Finsler metric d on a Lie group G, defined by a norm F on
the subspace p C g with closed unit ball U, is a Lipschitz integral curve of the following vector field

v(g) = dlg(u(g)), u(g) = vo(Ad(g)(w(g)))w(g), wlg) e,

Yo(Ad(g)(w(g))) = max Yo(Ad(g)(w)),

where g € g* is some fized covector with max,cy Yo(v) = 1.
2. (Conservation law) In addition, (t)(g(t)" g’ (t)) = 1 for all t € R, where ¥(t) =
(Adg(t))* ()

REMARK 2. Every extremal with origin go is obtained by the left shift ly, from some extremal
with origin e.

REMARK 3. In (sub-)Riemannian case, the vector u(g) is characterized by condition (u(g),v) =
= Yo(Ad(g)(v)) for all v € p. In Riemannian case, every extremal is a normal geodesic, and we
can assume that 1o is an unit vector in (p = g, (-,-)), setting o(v) = (Yo,v), v € g. Moreover,

9(0) = .

THEOREM 8. If v(go) # 0, go € G, then an integral curve of the vector field v(g),g9 € G, with
origin go is a normal extremal parameterized proportionally to arc length with the proportionality

factor \dlga1(v(go))\.
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ProOF. Let g(t), t € R, be an integral curve under consideration and set v = (t) = g; *g(t),
t € R. Then + is an integral curve of vector field dlga1(v(g)), g € G, with origin e. Hence

V() = dly=1(4(t) = dl - (dlgy (u(g(t)))) = dly (ulg(?)))- (14)
In addition,
Ad(g(t))" = Ad(go - 7(1))" = Ad(¥(#))" o Ad(g0)"- (15)
By definition,
u(g(t)) = Ad(g(t))" (¥o)(w(g(t))w(g(t)),
Ad(g(t))" (v0)(w(g(t))) = max Ad(g(t))" (vo)(w),

wel
that by (15) can be rewriten as

u(g(t)) = Ad(y(£))" (v5) (w(g(t))),
Ad(v(1)" (o) (w(g(1))) = max Ad(v())" (v) (w),
where ) = Ad(go)*(¢0). As a result of this and (14), we see that u(g(t)) plays a role of u(y(t))

for constant covector ¢y, (instead of ¢9). Due to point 2 of Theorem 7 the curve () is a normal
extremal parameterized proportionally to arc length with the proportionality factor |dlgo-1 (v(go0))]-

Then its left shift g(¢) = go - v(¢) also has this property. O

REMARK 4. Theorem 8 holds for left-invariant Riemannian metrics on (connected) Lie groups.
In this case, v(gg) # 0 for all gg € G.

Let us choose a basis {e1, ..., e,} in g, assuming that {ej, ..., e,} is an orthonormal basis for the
scalar product (-,-) on p in case of left-invariant (sub-)Riemannian metric. Define a scalar product
(-,-) on g, considering {ej,...,e,} as its orthonormal basis. Then each covector i) € g* can be

considered as a vector in g, setting ¥(v) = (¢, v) for every v € g. If o = >0 | hies, v =" 1, vkep,
then 1 (v) = v - v, where ¥ and v are corresponding vector-row and vector-column, - is the matrix
multiplication. If [ : g — g is a linear map, then we denote by (1) its matrix in the basis {e1,...,en}.
If g(t), t € R, is a normal geodesic of a left-invariant (sub-)Riemannian metric d on a Lie group
G, then u(g(t)) is the orthogonal projection onto p of the vector (Ad g(t))*(¢) in the notation of
Theorem 7 for the scalar product (-,-) introduced above on g. This fact and formula (12) imply

THEOREM 9. Ewvery normal parameterized by arc length geodesic of left-invariant (sub-)
Riemannian metric on a Lie group G issued from the unit is a solution of the following system
of differential equations

g(t) = dlygp (ult sz Jei, [u(0)] =1, 4;(t) ZZcmwz ()¢ (t) (16)

k=1 i=1
wherej =1,...,n, f] are structure constants of Lie algebra g in its basis {e1, ..., en }. In Riemannian
case, r = n.
COROLLARY 1.

lg(t)] = Ju(t)| =1, teR. (17)
PROOF. The first equality in (17) is a consequence of the first equality in (16) and left invariance
of the scalar product. Therefore, due to the equality |u(0)] = 1, it suffices to prove that
%<u(t),u(t)> = 0. Now by (16),

), u(t) = | S u2) —22% 00 =3 3 s ),
j=1

k=11,7=1

which is zero by the skew symmetry of cij with respect to subscripts. O
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REMARK 5. In fact, the same equations for 1;(t) from (16) in a different interpretation were
obtained in [21] as “normal equations”. Their derivation there uses more complicated concepts and
techniques.

4. Lie groups all of whose left-invariant Riemannian metrics have
constant negative curvature

The only Lie groups which do not admit left-invariant sub-Finsler metrics are commutative
Lie groups and Lie groups G,, n > 2, consisting of parallel translations and homotheties (without
rotations) of Euclidean space E"~! [5], [17]. Up to isomorphisms, Lie groups G,, can be described as
connected Lie groups every whose left-invariant Riemannian metric has constant negative sectional
curvature [24].

The group G, n > 2, is isomorphic to the group of real block matrices

o=t (), (18)

where E,,_; is unit matrix of order n — 1, y” is a transposed (n — 1)—vector-row vy, 0 is a zero
(n — 1)—vector-row, x > 0.
It is clear that in vector notation the group operations have a form

(y1,71) - (y2, 22) = 1(y2, 22) + (11,0),  (y,2)~' =2~ (—y,1). (19)

Let Ejj, i, =1,...,n, be a (n X n)-matrix having 1 in the ith row and the jth column and 0
in all other places. Matrices

n—1
ei=FEip, i=1,...,n—1, en:ZEkk (20)
k=1

constitute a basis of Lie algebra g, of the Lie group G,,. In addition,

lei,e;] =0, 6,5=1,...,n—1; [en, &) =€, i=1,....,n—1,
so all nonzero structure constants in the basis {e1,...,e,} are equal to
di=—c =1, i=1,...,n—1. (21)
Let (-,-) be a scalar product on g, with the orthonormal basis ej,...,e,. Then we get left-

invariant Riemannian metric d on the Lie group G, of constant sectional curvature —1 [24].
On the ground of Theorem 9 and (21), ¥; = ¥;(t), i = 1,...,n, are solutions of the Cauchy
problem

. n—1
n =1 (22)
i(0) =i, i=1,...,n, Y @}=1
i=1

It follows from (22) that

@Z’n(t) = _2wn(t) Z w?(t) = 2¢n(t)¢’n(t) = (wi) (t)>
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whence on the ground of initial data of the Cauchy problem (22), it follows that

1/}71(75) = lﬁ%(t) -1, 1/}71(0) = Pn-
Solving this Cauchy problem, we find that

ncosht —sinht
wn(t) = i

cosht — ¢, sinht’

Then on the base of (22), fori=1,...,n — 1,

t

h 7 — sinh
In|y(t)] = / Pn COSAT s¥n Tdr +1n lpil = —In|cosht — ¢, sinht| + In|y;],
cosh 7 — ¢, sinh T
if ; # 0, so
Pi
(1) = 1 -1
vilt) cosht — ¢, sinht’ et
and these formulae are true also when ¢; = 0.
Consequently, on the ground of (16),
1 n—1
t) = i€ ht —sinht .
u(t) cosht — @y, sinht (; pici + (ipn cos sinh) e")
n
If g € G,, is defined by formula (18), u = > u;e; € gy, then
i=1
qu = < (xunz)Enq 8 > s ov= (U, 2Up_1)T.

(23)

(24)

Therefore on the base of Theorem 9 and (23) in the notation (18), the corresponding
parameterized by arc length normal geodesic g = g(t), t € R, of the space (G,,,d) with g(0) = e is

a solution of the Cauchy problem

. n cosh ¢—sinh ¢ . . ,
B(t) = g a2 (t), Ui(t) = G eame(®), i=1,...,n—1,
z(0)=1, %(0)=0,i=1,...,n—1

Solving the problem, we find

t
1 idt @; sinh t
(1) yilt) = / : -
0

~ cosht — ©p sinht’ cosht — pp, sinht)?2  cosht — g, sinht’

This implies that
z(t) =€, yt)=0, i=1,...,n—1, if ¢, ==+l

Let @2 < 1. Let us show that for any ¢ € R, the equality

n—1

n—1
Z(yi(t) —a;)? +23(t) = Z a? +1
=1

i=1

(25)

(26)

(27)
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holds, where a;, ¢ = 1,...,n — 1, are real numbers such that

n—1
> aipi = on. (29)
i=1

n—1 n—1
We introduce a function f(¢) = 3 (yi(t)—a;)?+22(t). Due to initial data (25), f(0) = Y a?+1.
i=1

i=1
On the ground of (25), (26) and last equation in (22), we get

n—1 n—1 sin
31100 = Y (0) — ain(®) + )it = X (o 2t ) ot

i1 “— \cosh? — @psinh?

n—1
sinh ¢ 2 1)+ ppcosht -
o cosht — sinht (Z; vi ) on nzl
cosht — ¢, sinht cosht — ¢, sinht — i
n—1
®n — Z a;P; = 0.
i=1

Consequently, f(t) = f(0) and the equality (28) is proved.
It is easy to check that the equality (29) holds for

1
1— @2

n—1
ai = @ipn/(1 —¢2), i=1,...,n—1; moreover Za? +1= (30)
i=1

These numbers a; are obtained as halves of sums of limits y;(¢) when ¢ — +o00 and ¢t — —o0o, which
are equal to ¢;/(1 — ¢,) and —p;/(1 + ¢,) respectively.

Formulae (19) show that the group G, is a simply transitive isometry group of the famous
Poincare’s model of the Lobachevsky space L™ in the half space R’} with metric ds? =
= (Spztdy? + da?) a2,

The above results, including formulae (26), (27), (30), show that geodesics of the space L™ in
this model, passing through the point (0,...,0,1), are semi-straights or semi-circles (with centers
(a1,...,a,-1,0) and radii 1/4/1 — @2, (30)), orthogonal to the hyperplane R"~! x {0}. Since all
other geodesics are obtained by left shifts on the group, in other words, by indicated parallel
translations and homotheties of this model, then also all straights and semi-circles, orthogonal to
the hyperplane R"~! x {0}, are geodesics of the space L™.

We got a well-known description of geodesics in this Poincare’s model.

Now let us look what the vector field method gives us for the problem.
Every vector ¢ € g,, can be considered as a covector g*, setting ¢ (v) = (¥, v) for v € g,,. Then
any (co)vector 1o from Theorem 7 has a form

n n
vo =Y wiei, Y ¢i=1
=1 =1

n
Let w = > wie; € gn, g € Gy, is defined by formula (18). It is easy to see that
i=1

n—1

Ad(g)(w) = gwg_l = Z(wlm - wnyi)ei + wpén,
1=1
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n—1 n—1 n—1
(0, Ad(g)(w)) = Y (Wi — wayi) @i + wntpn =T Y _ Piw; + («pn -y soiyz') Wy,
=1 =1 =1

It is clear that

n—1 n—1
u(g) =« Z piei + (SOn - Z %‘%) €n;
i=1 i=1
n n—1 n—1
og) = gul) = 23 s — 23 e 4 o (% S @y>
i=1 i=1 i=1

Thus geodesic g = g(t), t € R, with g(0) = e is a solution of the Cauchy problem

x(t) = <90n - ji @i?/i(ﬂ) x(t)a yz(t) = @i$2(t)7 i=1,...,n—1, (31)
z(0)=1, %(0)=0,i=1,...,n—1.

Dividing the first equation in (31) by x(¢), we get on the left hand side the derivative of the function
Inz(t) := z(t). Differentiating both sides of the resulting equation and using the second equation

n
in (31) and the equality > ¢? =1, we get
i=1

n—1
5(t) = =3 @Pa?(t) = —(1— ¢2)e® 0, 2(0) =0, £(0) = pn.
=1

If ¢, = £1 then Z(t) = 0 and due to the initial data and the second equation in (31), we get
2(t) =+t z(t) = et y; (1) =0,i=1,...,n — 1.
Let 0 < 2 < 1. Let us multiply both sides of the resulting equation by 22. Then
2:5 = —(1—@2)e?*2z, d(2)? = —(1 — p2)e??d(2z2), 2% =—(1—p2)e** +C.

Taking into account the initial conditions for z(t), we get C' = 1 and 2(t)? = 1 — (1 — 2)e?*®). The
expression on the right is positive for ¢ sufficiently close to zero. Therefore, with these t, we get

A(t) = j:\/l — (1 — ¢2)e2t)

where the sign coincides with the sign of ¢,, if ¢, # 0. Separating variables, we get

+dz +dz

TVI—(-a ei-a e T - -1
:Fd(e_z/\/m) = Fd (cosh_1 <6_2>> )

dt

V(eZ/(1—92) -1 V1-¢2

. 1
teosh™ [ - )| =¢— t, c¢=cosh™! —— |-
V 1_’¢% Vv 1__¢n

The applying cosh to the left and right sides of the resulting equality gives

e =) cosht — sinh ¢
= coshccosht — sinh esinh ¢ = P

V1—¢2 V1—¢2

Consequently, when t is sufficiently close to zero,

1

t) =e*® = .
w(t) =e cosht — ¢, sinht
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Since the right sides of the system of differential equations (31) are real analytic, this equality is
true for all ¢ € R. We obtain from this and the second system in (31) the same solutions y;(t),
teR,i=1,...,n—1, as in (26).

Using formulae (19) and (26) for = x(t), v; = yi(t), we shall find a formula for distances
d between group elements, or, which is the same, between points of the Lobachevsky space in
Poincare’s model under consideration. We obtain from (26)

cosht + ppsinht  cosht + ¢y, sinht
cosh?t — p2sinh®t 1+ (1 — 2)sinh?¢’

1
— =cosht — ¢, sinht, =z =
x

n—1

n—1
> (yi/x)? =sinh®t Y @f = (1 — }) sinh’t,
i =1

=1

SN

n—1 n—1
cosht—l—gpnsinht:a;<x2+2yi2>: <x2+2y§),
X i=1 i=1
1 n—1
_ - 2 2
cosht = 5 <1+$ +Zyz> )
=1
1 n—1
12 201,

Now by (19), the last formula, and left-invariance of metric d,

d((0,1), (y,z)) = cosh™!

(y1,21) " (y2, 22) = 7 (—y1, 1) (y2, 72) = (27 (2 — 1), 27 '22),

d((y1, 21), (Y2, 22)) = d((0,1), (27" (y2 — 31), 27 "a2)) =
T x2 1 !
h—l 1 1 2 i — i2 —
cos [2.@2 ( + TU% + 7:1:% ;:1 (3/2, Y, )

(sc% +aj+ i(yz,i - yl,»?)] = d((y1, 1), (y2, 22))- (32)

=1

cosh™!
[2m1x2

5. The three—dimensional Heisenberg group

This Heisenberg group is a nilpotent Lie group of upper—triangular matrices

1
H={h=| 0 , T,y,2 € R. (33)
0

o = K
— W

It is easy to compute that

Al=10 1 —y . (34)

Clearly, H is naturally diffeomorphic to R? and H is a connected Lie group with respect to this
differential structure. Matrices

(35)

€1

Il
O O O
O O =
S O O

o

N

Il
o O O
O O O
O = O

o

o

Il
S O O
o O O
S O =
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constitute a basis of Lie algebra h of Heisenberg group H. In addition,
[61, 62] = €19 — €91 — €3.

Hence the vector subspace p C h with basis {e1, ea} generates b.

Thus the triple (H, b, p) satisfies all conditions of Theorems 1 and 2.

Let us search for all geodesics of the problem from Theorem 2. They are all normal by Theorem
5, and we can use Theorem 7.

Let us define a scalar product (-,-) on h with orthonormal basis {e1, e2, e3}. Then each vector
¥ € b can be considered as a covector from bh*, if we set (v) = (¢, v) for v € . Then any (co)vector
1o from Theorem 7 has a form

¢0 = COS 561 + sin 562 + ﬁ€3a 57 B eR. (36)
Let
2 0 v1 O
szvkek: 0 0 wo |, vep, v eR, kE=1,2.
k=1 0 0 O

Using formulae (33), (34), we get

0 vi —yvi+zv2
Ad(h)(v) =hvh™' =1 0 0 vy ,
0 0 0

(v, Ad(h)(v)) = cos&vy +sinéwvy + B(—yv1 + zv2) =

(cos§ — By)vr + (sin + Sr)v.

It is clear that
u(h) = (cos§ — By)er + (sin€ + Br)es

and so a geodesic is an integral curve of the vector field
v(h) = hu(h) = (cos& — By)e1 + (siné + Bz)ex + x(sin & + fz)es.

Therefore h(t) is a solution of the Cauchy problem

i = cos& — By,
j =sin€ + fr, (37)
5= a(sing + Ba)(= xj)

with initial data z(0) = y(0) = 2(0) = 0.
Let us turn to the coordinate system Z,4, Z of the first kind on the Lie group H :

0 z =z 1 =z z+(zy)/2
exp| 0 0 vy | =1 0 1 Y
0 0 O 0 0 1

Hence z =z, y=vy, 2=z — (zy)/2.
It is easy to see that for 8 =0 we get

x(t) =tcos&, y(t) =tsing, z(t) = t;cosﬁsinﬁ, Z(t) =0, t e R,
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and geodesic is a 1-parameter subgroup
g(t) = exp(t(cosey +sinfes)), t € R.
If B # 0, the calculations are more difficult:

i=—By=—P(sing + fz) = —f*x — Bsin¢,

x(t) = Cy cos Bt + Cysin ft — sigﬁ'
Since x(0) =0, #(0) = cos¢, then C; = (sin¢)/S, C2 = (cos &)/,
z(t) = ;(sinfcos Bt + cos&sin ft —siné) = ;(sin(f + ft) —sin&); (38)
ij = Bi = B(cos€ — By) = —f% + B eos§,
y(t) = C1 cos St + Cysin Pt + CO;?
Since y(O) = 07 y(O) = Siné? then Cl = 7(0085)/57 CQ = (Slné)/ﬂv
y(t) = ;(— cos £ cos ft + sin sin ft 4 cos§) = ;(— cos(§ + fBt) + cos§), (39)
=z = Oy Syt i) = e~ ) =
216[(sin(£ + pt) —sin &) sin(§ + Bt) — cos(§ + Bt)(— cos(§ + ft) + cosé)| =
215[1 — (sin¢&sin(§ + Bt) + cos(& + Bt) cos )] = 215(1 —cosfit) = 7.
Since 2(0) = 0 then '
(t) = 215 <t - Smﬁﬁt> , teR. (40)

It follows from equalities (38), (39), (40) that the projection of geodesic g = g(t) onto the
plane x,y is a circle with radius 1/|5| and center (1/5)(—siné&, cos§), T = 2n/|B| is a circulation
period, while 2(t), t € R, does not depend on the parameter . Therefore, if we fix § # 0 then for
different & all geodesic segments g(3,&,t),0 <t < 27/|f], start at e and finish at the same point. It
follows from the existence of the shortest arcs, Theorem 2, PMP and our calculations that if 8 =0
(respectively, 8 # 0) then every segment (respectively, of the length less or equal to T' = 27 /|53]|) of
these geodesics is a shortest arc. There is no other geodesic or shortest arc except indicated above
and their left shifts.

6. Controls for left-invariant sub-Riemannian metrics on SO(3)

It is well known that every two-dimensional vector subspace p of Lie algebra (so(3),[-,]) of
the Lie group SO(3) generates s0(3). Moreover, there exists a basis {e1,e2} of the space p such
that [e2,e3] = e1, [e3,e1] = ez for the vector es = [e1,e2]. Let (+,-) be a scalar product on so(3)
with orthonormal basis {e1, e2, e3}. Then if a scalar product (-,-) on p defines a left-invariant sub-
Riemannian metric d on the Lie group G = SO(3), then there exists a basis {v,w} in p that is
orthonormal relative to (-,-), orthogonal relative to (-,-), and such that (v,v) = a® < b? = (w,w),
[v,w] = (ab)es, where 0 < a < b. Let v, w be new vectors ej, ea. Then

[e1, ea] = (ab)es, [es,e1] = (b/a)ea, [ea,e3] = (a/b)er, 0 < a <b. (41)
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It follows from (41) that all nonzero structure constants are
6?2 = _Cgl = aba Cgl - _0%3 = b/a, C%g = —CéQ = a/b

Let g(t), t € R, be a geodesic of the space (SO(3), d), parameterized by arc length, and ¢(0) = e.
On the ground of Theorem 9,

g'(t) = g(thu(t), u(t)=¢1(t)er + a(t)es,

where )
a —

2
YD) = —aba()us(), Uh(0) = abtn(s(D), Wh(0) = Sl (42)
Since |u(t)| = 1 then 11 (t) = cos{(t), ¥o(t) = sin&(t) and (42) is written as

—sin€()é(t) = —absin€(t)is(t), cosE(DE(t) = abeos E(1)us(t),

a? — b?

Pi(t) = " cos&(t) sin&(t).

Then v3(t) = L¢/(t) and € = £(t) is a solution of the differential equation

CL2 _ b2
§'(t) = ——5— sin2€(0). (43)

If @ = b then £"(t) =0, &'(t) = const = B. Then geodesics are obtained from geodesics in the
case of a = b = 1 with the change the parameter s by the parameter ¢t = s/a. Geodesics, shortest
arcs, the distance d, the cut locus and conjugate sets for geodesics in the case of a = b = 1 are
found in papers [9] and [10].

The case 0 < a < b is reduced to the case a®> — b*> = —1 by proportional change of the metric d.
Then the variable w(t) := 2£(t) allows us to rewrite the equation as the mathematical pendulum
equation

W' (t) = —sinw(t). (44)

In [11], I.Yu. Beschastnyi and Yu.L. Sachkov studied geodesics of left-invariant sub-Riemannian
metrics on the Lie group SO(3) and gave estimates for the cut time and the metric diameter. Under
replacement b? — a? by a? and ¢ by 1, the equation (43) coincides with the equation (2.4) from
their paper, obtained by another method.

7. To search for geodesics of a sub-Riemannian metric on SH(2)

The Lie group SH(2) consists of all matrices of a form

(A v\ [ coshy sinhgp [z 9
g—<0 1)’ A_<sinh<p cosh<p>’ U_<y>ER‘ (4)
It is not difficult to see that
-1
A v AL —Aly
—1 _ _
g _(0 1> _<0 1 > (46)
Clearly, matrices
010 0 01 000
er=| 10 0], e2e=10001], es=10 01 (47)
000 0 00 000
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constitute a basis of Lie algebra sh(2). In addition,
le1,e2] = €3, [ea,e3] =0, [e1,e3] = ea. (48)

Let us define a scalar product (-,-) on sh(2) with orthonormal basis {ej, ea, es} and the
subspace p with orthonormal basis {e;, ea} generating Lie algebra sh(2). Thus a left-invariant
sub-Riemannian metric d is defined on the Lie group SH(2).

Let us take a (co)vector 1y = cos ae; + sin aeg + fes € sh(2). We calculate

Yg(w) = (1hg, w) = (Yo, gwg™ ") g€ SH(2), w =wyer + waez € p.

coshp sinhy =z 0 w; wo coshy —sinhy —zcoshy + ysinhp
gwg~l = | sinhy coshyp y wp 0 0 —sinh¢ coshy  xsinhyp —ycoshyp
0 0 1 0 0 0 0 0 1

= wie; + (—w1y + we cosh p)es + (—wix + wy sinh p)es,
hg(v) = wi cosa + (—wiy + wa cosh ) sina + (—wix + we sinh ) =
wi(cosa — ysina — fz) + wa(cosh psina + Fsinh p).

Therefore,

u(g) = (cosa — ysina — Bx)e; + (sinacosh p + Ssinh p)ea, v(g) = gu(g) =

coshyp sinhep = 0 cosa —ysina — Bz sinacosh ¢ + Ssinh ¢
sinhy coshy y cosa —ysina — Bz 0 0 =
0 0 1 0 0 0

sinh p(cosa — ysina — fz) coshp(cosa — ysina — fz) cosh p(sin acosh ¢ + S sinh @)
cosh p(cosa — ysina — fz) sinhg(cosa — ysina — fx)  sinh ¢(sin a cosh ¢ + [sinh ¢)
0 0 0

Hence integral curves of vector field v(g), g € SH(2), satisfy the system of differential equations

p =cosa — ysina — Sz,
& = cosh p(sin @ cosh ¢ + [sinh ), (49)
¢ = sinh @(sin a cosh ¢ + §sinh ).

The geodesic ¢g(t), t € R, with g(0) = e is a solution of this system with initial data
©(0) = 2(0) = y(0) = 0. In this case, |u(g(t))| =1, i.e.

g(t) € My = {(sinacosh + Bsinh p)? + (cosa — ysina — Bx)* = 1} € SH(2). (50)
Therefore there exists a differentiable function v = ~y(¢) such that

cos — = sin «cosh ¢ + [ sinh ¢, sin% =cosa — ysina — fz. (51)

2
Since ¢(0) = z(0) = y(0) = 0, then we can assume that v(0) = 7 — 2a.

On the ground of (51) the sistem (49) is written in the form
¢ =sin 3,
& = cos 5 cosh ¢, (52)

y = cos 3 sinh .
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Differentiating the first and the second equalities in (51) and using (52), we get

—% sin% = (sinasinh ¢ 4+ Scoshp)p = sin% (sinasinh ¢ + B cosh p) ,

%COS% = —ysina — Bz = —cos%(sinasinhgp—i—ﬁcoshcp),

whence
4 = —2(sinasinh ¢ + Bcosh ), F(0) = —24.

Consequently, on the ground of the first equality in (51) and (52)

4 = —2(sin acosh ¢ + B sinh ) = —2 cos % sin% = —sin~.

We got the mathematical pendulum equation. In paper [19] this equation together with equations
(52) are obtained by another method replacing ¢ with z.

8. To search for geodesics of a sub-Riemannian metric on SE(2)

The Lie group SFE(2) is isomorphic to the group of matrices of a form

A v L A= cosp —sing L w= T\ cp2 (53)
0 1 sing cosp Y

The same formula (46) is true.
It is clear that matrices

0 -1 0 0 01 000
ee=(1 0 0], ee=[0001], es=|0 01 (54)
0 0 0 000 000
constitute a basis of Lie algebra se(2). In addition,
[e1,e2] = €3, [e1,e3] = —e2, [e2,e3] = 0. (55)

Let us define a scalar product (-, -) on se(2) with orthonormal basis {e1, e2, e3} and the subspace
p with orthonormal basis {e1, e2} generating Lie algebra se(2). Thus a left-invariant sub-Riemannian
metric d is defined on the Lie group SE(2) (see [6], [25], [27] and other papers).

Let us take a (co)vector 1y = cos ae; + sin aeg + fBes € se(2). We calculate

¢g(w) = <wg7w> - <1/)07gwg_1>7 g c SH(2)7 w = wieq +'LU2€2 S P

. cosg —sing 0 —w; wo cgsgp sinp —x F:osgp —ysinp
quwg ~ = 0 0 1 wq 0 0 —sing cosy xsing — ycosy =
0 0 0 0 0 1

wier + (w1y + wa cos p)es + (—wix + w sin p)es,
hg(w) = wy cos a + (w1y + wa cos ) sina + (—wix + wasing)f =
wi(cos o + ysina — Bx) + wa(sinacos ¢ + Bsinp).

Consequently,

u(g) = (cosa + ysina — Bx)e; + (sinacos p + Bsinp)es, v(g) = gu(g) =
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cosp —singy =« 0 —cosa —ysina + Bz sinacosp + [sinp
sinp cose Yy cosa + ysina — fx 0 0 =
0 0 1 0 0 0

sin p(fxr —cosa — ysina) cosp(fr — cosa — ysina) cos p(sinacos g + Fsin @)
cosp(cosa+ysina — fzx) sinp(fxr —cosa — ysina)  sin p(sin acos ¢ + [sin @)
0 0 0

Hence integral curves of vector field v(g), g € SE(2), satisfy the system of differential equations

$ =cosa+ ysina — Sz,
& = cos @(sin acos ¢ + [sin @), (56)
¥ = sin p(sin a cos ¢ + fsin p).

The geodesic ¢(t), t € R, with ¢g(0) = e is a solution of this system with initial data
©(0) = z(0) = y(0) = 0. In this case, |u(g(t))| =1, i.e.

g(t) € My = {(sinacos ¢ + Bsinp)? + (cosa + ysina — fz)* = 1} € SE(2). (57)
Therefore there exist differentiable functions w = w(t) = 2£(t) such that

t t
sinw;) = sin acos ¢ + [ sin p, COSw;) = cosa + ysina — fx. (58)

Given the equality ¢(0) = z(0) = y(0) = 0, we can assume that w(0) = 2£(0) = 2a.
On the ground of formula (58) the system (56) is written in a form

¢ = cos 3,

T =sin g cos g, (59)

Y = sin § sin .

Differentiating the first and the second equalities in (58) and using (59), we get
%cos% = — (sinasinp — fcosp) p = —cos% (sinasinp — S cosp),
—% sin% =ysina — i = sing (sinasinp — fcos @),

whence .
w=2(fcosp—sinsiny), w(0)=2£(0)=25. (60)
Differentiating the last equality, we get in view of formulae (58) and (59)

W= —2(fsinp +sinacosp)p = —2sin % cosg = —sinw. (61)

We get again the mathematical pendulum equation.
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