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Abstract

The object of this note is to use PI-theory to simplify the results of Dicks and Lewin [4]
on the automorphisms of the free algebra F{X}, namely that if the Jacobian is invertible,
then every endomorphism is an epimorphism. We then show how the same proof applies to a
somewhat wider class of rings.
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1. Introduction and main results

The object of this note is to use PI-theory to simplify the results of Dicks and Lewin [4] on
the automorphisms of the free algebra F{X}, namely that if the Jacobian is invertible, then every
endomorphism is an epimorphism. We then show how the same proof applies to a somewhat wider
class of rings.

2. Hopfian rings

DEFINITION 1. An algebra R is Hopfian if every epimorphism (i.e., onto algebra homomor-
phism) R — R is an isomorphism.

Dicks and Lewin [4, Proposition 3.1] proved that an endomorphism of the free associative algebra
F{X} is an epimorphism iff its Jacobian matrix is invertible. In this way, they reduced the Jacobian
conjecture for F{X} to the question of whether F/{X} is Hopfian, and proved it for the free algebra
in two variables. In fact, this had already been resolved for any finite set of variables by Orzech
and Ribes [6], with a more direct proof given in [3]. Also see [9] for a treatment of the Jacobian
conjecture over a free algebra, and [1] for an overview of Yagzev’s method to attack the Jacobian
conjecture.

In this section we give a quick proof of the fact that the free associative algebra F'{X} is Hopfian,
relying on considerations of growth, with a generalization obtained from the proof. . Recall that
the Gelfand-Kirillov dimension GKdim(A) of an affine algebra A = F{ai,...,as} is

GKdim(A) := Iim log,, d, (1)
n—oo
where A, = > Fa;, ---a;, and d,, = dimp A,,.
The standard reference on Gelfand-Kirillov dimension is [5] Although the d,, depend on the
choice of the generating set aj,...,as, GKdim(A) is independent of the choice of the generating
set. We can tighten this fact a bit: Suppose that A’ = F{a},...,a,} and d, = dimp A;,. We say
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that the growth rate of the d,, is less than or equal to the growth rate of the d), if there are constants
¢,k such that d, < edg,. This defines an equivalence, and it is easy to see that the growth rate of
A with respect to any two sets of generators is the same.

LeEMMA 1. Suppose R is an affine algebra in which the growth of R/I is less than the growth
of R, for each ideal I of R. Then R is Hopfian.
In particular, if GKdim(R/I) < GKdim(R) for all ideals I of R, then R is Hopfian.

PRrROOF. For any epimorphism ¢ : R — R, one has ¢p(R) = R/kerp, but then ¢(R) and R have the
same growth rates, implying kerp = 0. O
The hypothesis of Lemma 1 holds for prime Pl-algebras, cf. [2, Theorem 11.2.12], so we have:

COROLLARY 1. Any prime affine Pl-algebra is Hopfian.

REMARK 1. R and R/I could have different growth rates even if GKdim(R/I) < GKdim(R).
For example, let R be the subalgebra of the free associative algebra generated by all subwords of uy
for any n, where u1 = xyx and uppq = 'O w20y u, 20" a prime algebra, of GKdim 2, and
I be the ideal generated by all words of degree 2 in y. Then GKdim(R/I) = 2, although the growth
rate of R/ is less than that of R. This example is not a Pl-algebra.

A T-ideal of an ideal R is an ideal invariant under all ring endomorphisms.

LEMMA 2. If 7 s a T-ideal of R, then any endomorphism ¢ of R clearly induces an
endomorphism of R/T.

PROOF. Define ¢ : R/Z — R/Z by ¢(a +I) = p(a) + Z. This is well-defined since ¢(Z) C Z by
hypothesis. O

THEOREM 1 ([6]). When X is a finite set of noncommuting indeterminates, the free associative
algebra F{X} is Hopfian.

PrOOF. Let ¢ : F{X} — F{X} be an epimorphism, with some nonzero polynomial f € ker(yp).
Let n = deg(f). Let Z,, be the T-ideal of identities of the algebra of generic n x n matrices. Then
¢ induces an endomorphism of A : F{X}/Z,, whose kernel does not contain f, since the easy part
of the Amitsur-Levitzki theorem says that the degree of any identity of n X n matrices is at least
2n > n. Thus the epimorphism induced by ¢ has non-zero kernel, contradicting Lemma 1. O

The same idea of proof yields a stronger result. We say that R is T-residually Hopfian if
the intersection of those T-ideals I of R for which R/I is Hopfian is 0. Examples include almost
Pl-algebras, and in particular the free algebra and all affine algebras of GKdim 2.

THEOREM 2 ([6]). Any T-residually Hopfian algebra is Hopfian.

PrROOF. Let ¢ : R — R be an epimorphism, with some nonzero polynomial f € ker(yp). By
hypothesis there is some T-ideal Z not containing r, but Lemma 2 implies that R/Z is not Hopfian,
a contradiction. O

Corollary 2.3 belongs to Alexei Kanel-Belov, his work was supported by the Russian Science
Foundation under grant 17-11-01377. Louis Rowen was supported by ISF grant N 1623/16.
Bar-Ilan University, Mipt, Shengeng University

Conclusions. In the paper we show that some ideas from PI-theory can be used for polynomial
authomorphisms. Note that many specialists in PI-theory got different results in this arrear.
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