ЧЕБЫШЕВСКИЙ СБОРНИК

Том 20. Выпуск 3.

УДК 512

DOI 10.22405/2226-8383-2019-20-3-390-393

Гипотеза Якобиана для свободной ассоциативной алгебры (произвольной характеристики)

А. Белов-Канель, Л. Ровен, Цзе-Тай Юй

Белов-Канель Алексей Яковлевич — доктор физико-математических наук, федеральный профессор математики, профессор, университет Бар-Илана (г. Рамат-Ган, Израиль), Колледж математики и статистики, Шэньчжэньский университет, Шэньчжэнь, 518061, Китай. *e-mail: beloval@cs.biu.ac.il; kanelster@qmail.com*

Ровен Луи Хейл — факультет математики, университет Бар-Илан (Израиль).

e-mail: rowen@math.biu.ac.il

Цзе-Тай Юй — профессор, МФТИ, факультет математики, университет Сенгэн (Китай). *e-mail: jietai@hotmail.com*

Аннотация

Целью данной работы является использование PI-теории для упрощения результатов Дикса и Левина [4] об автоморфизмах свободной алгебры $F\{X\}$, а именно: если якобиан обратим, тогда каждый эндоморфизм является эпиморфизмом. Результаты переносятся на широкий класс колец.

Ключевые слова: Автоморфизмы, полиномиальные алгебры, свободные ассоциативные алгебры.

Библиография: 9 названий.

Для цитирования:

А. Белов-Канель, Л. Ровен, Цзе-Тай Юй. Гипотеза Якобиана для свободной ассоциативной алгебры (произвольной характеристики) // Чебышевский сборник, 2019, т. 20, вып. 3, с. 390-393.

CHEBYSHEVSKII SBORNIK

Vol. 20. No. 3.

UDC 512

DOI 10.22405/2226-8383-2019-20-3-390-393

The Jacobian Conjecture for the free associative algebra (of arbitrary characteristic)

A. Belov-Kanel, L. Rowen and Jie-Tai Yu

Belov-Kanel Alexei Yakovlevich — doctor of physical and mathematical sciences, federal professor, professor, Bar-Ilan University (Ramat Gan, Israel), College of Mathematics and Statistics, Shenzhen University, Shenzhen, 518061, China.

e-mail: beloval@cs.biu.ac.il; kanelster@qmail.com

Rowen Louis Haile — Department of Mathematics, Bar-Ilan University (Israel).

 $e ext{-}mail: rowen@math.biu.ac.il$

Jie-Tai Yu — professor, MIPT, Department of Mathematics, Sengeng University (China).

 $e ext{-}mail: jietai@hotmail.com$

Abstract

The object of this note is to use PI-theory to simplify the results of Dicks and Lewin [4] on the automorphisms of the free algebra $F\{X\}$, namely that if the Jacobian is invertible, then every endomorphism is an epimorphism. We then show how the same proof applies to a somewhat wider class of rings.

Keywords: Automorphisms, polynomial algebras, free associative algebras.

Bibliography: 9 titles.

For citation:

A. Belov-Kanel, L. Rowen and Jie-Tai Yu, 2019, "The Jacobian Conjecture for the free associative algebra (of arbitrary characteristic)", *Chebyshevskii sbornik*, vol. 20, no. 3, pp. 390–393.

1. Introduction and main results

The object of this note is to use PI-theory to simplify the results of Dicks and Lewin [4] on the automorphisms of the free algebra $F\{X\}$, namely that if the Jacobian is invertible, then every endomorphism is an epimorphism. We then show how the same proof applies to a somewhat wider class of rings.

2. Hopfian rings

Definition 1. An algebra R is **Hopfian** if every epimorphism (i.e., onto algebra homomorphism) $R \to R$ is an isomorphism.

Dicks and Lewin [4, Proposition 3.1] proved that an endomorphism of the free associative algebra $F\{X\}$ is an epimorphism iff its Jacobian matrix is invertible. In this way, they reduced the Jacobian conjecture for $F\{X\}$ to the question of whether $F\{X\}$ is Hopfian, and proved it for the free algebra in two variables. In fact, this had already been resolved for any finite set of variables by Orzech and Ribes [6], with a more direct proof given in [3]. Also see [9] for a treatment of the Jacobian conjecture over a free algebra, and [1] for an overview of Yagzev's method to attack the Jacobian conjecture.

In this section we give a quick proof of the fact that the free associative algebra $F\{X\}$ is Hopfian, relying on considerations of growth, with a generalization obtained from the proof. Recall that the **Gelfand-Kirillov dimension** GKdim(A) of an affine algebra $A = F\{a_1, \ldots, a_\ell\}$ is

$$GKdim(A) := \overline{\lim}_{n \to \infty} \log_n \tilde{d}_n, \tag{1}$$

where $A_n = \sum F a_{i_1} \cdots a_{i_n}$ and $d_n = \dim_F A_n$.

The standard reference on Gelfand-Kirillov dimension is [5] Although the d_n depend on the choice of the generating set a_1, \ldots, a_ℓ , GKdim(A) is independent of the choice of the generating set. We can tighten this fact a bit: Suppose that $A' = F\{a'_1, \ldots, a'_\ell\}$ and $d'_n = \dim_F A'_n$. We say

that the growth rate of the d_n is less than or equal to the growth rate of the d'_n if there are constants c, k such that $d'_n \leq cd_{kn}$. This defines an equivalence, and it is easy to see that the growth rate of A with respect to any two sets of generators is the same.

LEMMA 1. Suppose R is an affine algebra in which the growth of R/I is less than the growth of R, for each ideal I of R. Then R is Hopfian.

In particular, if GKdim(R/I) < GKdim(R) for all ideals I of R, then R is Hopfian.

PROOF. For any epimorphism $\varphi: R \to R$, one has $\varphi(R) \cong R/\ker \varphi$, but then $\varphi(R)$ and R have the same growth rates, implying $\ker \varphi = 0$. \square

The hypothesis of Lemma 1 holds for prime PI-algebras, cf. [2, Theorem 11.2.12], so we have:

COROLLARY 1. Any prime affine PI-algebra is Hopfian.

Remark 1. R and R/I could have different growth rates even if GKdim(R/I) < GKdim(R). For example, let R be the subalgebra of the free associative algebra generated by all subwords of u_n for any n, where $u_1 = xyx$ and $u_{n+1} = x^{10^n}u^nx^{10^n}yx^{10^n}u_nx^{10^n}$, a prime algebra, of $GKdim\ 2$, and I be the ideal generated by all words of degree 2 in y. Then GKdim(R/I) = 2, although the growth rate of R/I is less than that of R. This example is not a PI-algebra.

A T-ideal of an ideal R is an ideal invariant under all ring endomorphisms.

Lemma 2. If \mathcal{I} is a T-ideal of R, then any endomorphism φ of R clearly induces an endomorphism of R/\mathcal{I} .

PROOF. Define $\varphi: R/\mathcal{I} \to R/\mathcal{I}$ by $\varphi(a+\mathcal{I}) = \varphi(a) + \mathcal{I}$. This is well-defined since $\varphi(\mathcal{I}) \subseteq \mathcal{I}$ by hypothesis. \square

Theorem 1 ([6]). When X is a finite set of noncommuting indeterminates, the free associative algebra $F\{X\}$ is Hopfian.

PROOF. Let $\varphi: F\{X\} \to F\{X\}$ be an epimorphism, with some nonzero polynomial $f \in \ker(\varphi)$. Let $n = \deg(f)$. Let \mathcal{I}_n be the T-ideal of identities of the algebra of generic $n \times n$ matrices. Then φ induces an endomorphism of $A: F\{X\}/\mathcal{I}_n$, whose kernel does not contain f, since the easy part of the Amitsur-Levitzki theorem says that the degree of any identity of $n \times n$ matrices is at least 2n > n. Thus the epimorphism induced by φ has non-zero kernel, contradicting Lemma 1. \square

The same idea of proof yields a stronger result. We say that R is T-residually Hopfian if the intersection of those T-ideals I of R for which R/I is Hopfian is 0. Examples include almost PI-algebras, and in particular the free algebra and all affine algebras of GKdim 2.

Theorem 2 ([6]). Any T-residually Hopfian algebra is Hopfian.

PROOF. Let $\varphi: R \to R$ be an epimorphism, with some nonzero polynomial $f \in \ker(\varphi)$. By hypothesis there is some T-ideal \mathcal{I} not containing r, but Lemma 2 implies that R/\mathcal{I} is not Hopfian, a contradiction. \square

Corollary 2.3 belongs to Alexei Kanel-Belov, his work was supported by the Russian Science Foundation under grant 17-11-01377. Louis Rowen was supported by ISF grant N 1623/16.

Bar-Ilan University, Mipt, Shengeng University

Conclusions. In the paper we show that some ideas from PI-theory can be used for polynomial authomorphisms. Note that many specialists in PI-theory got different results in this arrear.

REFERENCES

- Belov, A., Bokut, L., Rowen, L., and Yu, J.-T., The Jacobian Conjecture, together with Specht and Burnside-type problems, Automorphisms in Birational and Affine Geometry (Bellavista Relax Hotel, Levico Terme -Trento, October 29th - November 3rd, 2012, Italy), Springer Proceedings in Mathematics & Statistics, 79, Springer Verlag, 2014, 249–285, ISBN 978-3-319-05681-4, http://link.springer.com/chapter/10.1007/978-3-319-05681-4_15, arXiv: 1308.0674
- 2. Belov, A. and Rowen, L.H. Computational Aspects of Polynomial Identities, Research Notes in Mathematics 9, AK Peters, 2005.
- 3. Cohn, P.M., Free Ideal Rings and Localization
- 4. Dicks, W. and Lewin, J., A jacobian conjecture for free associative algebras, Communications in Algebra 10:12 (1982) 1285-1306.
- 5. Krause, G.R., and Lenagan, T.H., Growth of Algebras and Gelfand-Kirillov Dimension, Amer. Math. Soc. Graduate Studies in Mathematics 22 (2000).
- 6. Orzech, M. and Ribes, L., Residual Finiteness and the Hopf Property in Rings, Journal of Algebra 15 (1970), 81–88.
- 7. Orzech, M., Onto endomorphisms are isomorphosms, Amer. Math. Monthly 78 (1971), 357–362.
- 8. Rowen, L.H. and Small, L., Representable rings and GK dimension (2015).
- 9. Schofield, A., Representations of rings over skew fields, LMS Lecture note series **92** 1985, 223 pages.

Получено 16.10.2019 г.

Принято в печать 12.11.2019 г.