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AnHOTanusa

PaccmarpuBarorcst TOnbKO KOHEUHBIE TpynnbL. [IycTts A — rpymma aBTOMOPGMI3MOB IPYTITHI
G, comepxkainast Bce BHyTpeHHNE aBTOMOPGU3MbI, u F' — MakCHMa bHBIN BHYTPEHHUN JIOKAJb-
HBIX 9KPaH HACBILEHHOH Gopmanuu §. A-komnosunmonubiit pakrop H/K rpynnsl G Ha3biBa-
ercs A-F-uenrpanbubiM, eciu A/Ca(H/K) € F(p) ang Beex p € n(H/K). A-§-runeprieHTpom
G naspiBaercss Hambosibinas A-nomycrumas noarpynna GG, Bce A-KOMIIO3UIMOHHBIE (DAKTOPbI
HuKe KOTopoit A-F-nienrpanbusl. O6o3nataercs Zg (G, A).

Hanomunwm, uto rpynna G uHasbBaercsa aucmepcuBuoi mo Ope, eciiu G umeeT HOPMAJIBHYIO
XOJUIOBY {p1,...,p; }-noarpynny miug 1 < ¢ < n, rme p; > -+ > P, — BCE IPOCTHIE JEIUTE-
au |G|. TnaBubiM pesysbrarom paborbl gpasercs: [lycrb § — HacsiencTBeHHAs HaCHIIEHHAs
dopmanusa, F' — eé MakCHMAaJbHBIN BHYTPEHHUN JIOKAJbHBIN SKpaH u N — IUCIEPCUBHAS IO
Ope A-ponycrumas moarpynna rpynnesl G, rae InnG < A < AutG. Torma m TOIBKO TOTIA
N < Z3z(G, A), xorna Nao(P)/Cx(P) € F(p) ans ar00bIX CHIOBCKOW p-TMOATPYIIIBI P IpyIIIbI
N u mpocToro JeauTesisi p mopsaka V.

B kauectBe caemacTBumit ObLIM MOTYyYeHBI M3BECTHBIE pe3ynbTarbl P. Bapa o HOpMambHBIX
MOJIMPYIIIAX B CBEPXPA3PENIUMOM THIIEPIEHTPE U JEMEHTaX TUIEPIEHTPA.

IIycrs G — rpyuna. Hanomuum, 4o

L,(G)={2€ G| [z,a1,...,ap]) =1 Vaq,...,a, € AutG}

u G HA3BIBAETCA ABTOHUJIBIOTEHTHOMH, eciiu G = L, (G) mis HEKOTOPOro HATypaabHOro n. U3
[JIABHOIO PE3yJIbTaTa MOXKHO M3BJ€Yb KPUTEPUU ABTOHUJIBIOTEHTHOCTH Ipymil. B gacTHOCTH,
rpynna (G aBTOHMJIBIIOTEHTHA TOIA M TOJILKO TOrIA, KOIZA OHA SIBJISETCS IPAMbBIM IIPOU3BEIe-
HUEM CBOMX CHJIOBCKUX IOAIPYIII M IPYIa aBTOMOP(MHU3MOB 000 CUIOBCKON P-11OArPYIIIbI
rpynnbl G SIBISIETCST p-TPYIION [Jisi JIF0OOTO TPOCTOTO Jenutesist p nopsaka G. Ilpusemens
MIPUMEPHI ABTOHUJIBIIOTEHTHBIX IPYII HEYETHOTO MOPSIKA.

Karouesnie carosa: Kornednas rpynna, HUIBIIOTEHTHAS TPYIIA, CBEPXpa3pemnMas rPyIna,
ABTOHUJIBIIOTEHTHAS I'PyINa, A-§-rHIEepIeHTp TPYIIIIbl, HACIEJICTBEHHAS HACBHIIEHHAs (opma-
.
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Abstract

Throughout this paper all groups are finite. Let A be a group of automorphisms of a group G
that contains all inner automorphisms of G and F be the canonical local definition of a saturated
formation §. An A-composition factor H/K of G is called A-F-central if A/C4(H/K) € F(p)
for all p € n(H/K). The A-F-hypercenter of G is the largest A-admissible subgroup of G such
that all its A-composition factors are A-F-central. Denoted by Zz(G, A).

Recall that a group G satisfies the Sylow tower property if G has a normal Hall {py,...,p;}-
subgroup for all 1 < i < n where p; > -+ > p,, are all prime divisors of |G|. The main result
of this paper is: Let § be a hereditary saturated formation, F' be its canonical local definition
and N be an A-admissible subgroup of a group G where InnG < A < AutG that satisfies the
Sylow tower property. Then N < Zz(G, A) if and only if N4(P)/Ca(P) € F(p) for all Sylow
p-subgroups P of N and every prime divisor p of |N]|.

As corollaries we obtained well known results of R. Baer about normal subgroups in the
supersoluble hypercenter and elements in the hypercenter.

Let G be a group. Recall that L,(G) = {z € G | [z,01,...,a,] = 1 Vaq,...,a, € AwtG}
and G is called autonilpotent if G = L, (G) for some natural n. The criteria of autonilpotency
of a group also follow from the main result. In particular, a group G is autonilpotent if and
only if it is the direct product of its Sylow subgroups and the automorphism group of a Sylow
p-subgroup of G is a p-group for all prime divisors p of |G|. Examples of odd order autonilpotent
groups were given.
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1. Introduction and results

Throughout this paper all groups are finite and G always denotes a finite group. Recall that
AutG and InnG are the groups of all and inner automorphisms of G respectively.

Let A be a group of automorphisms of G. Kaloujnine [1] and Hall [2] showed that if A stabilizes
some chain of subgroups of G, then A is nilpotent. Huppert [3] and Shemetkov [4] showed that if G
has has A-admissible series with prime indexes, then A is supersoluble. Shemetkov [4] and Schmid
[5] obtained analogues results for a solubly saturated formation §. Note that the F-hypercenter of
G with respect to A played an important role in their research.
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Recall that 7(G) is the set of all prime divisors of |G|. A formation is a class § of groups with
the following properties: (a) every homomorphic image of an §-group is an §-group, and (b) if G/M
and G/N are §-groups, then G/(M N N) € §. A formation § is said to be: saturated if G € §
whenever G/®(G) € § where ®(G) is the Frattini’s subgroup of G; hereditary if H € § whenever
H < G € §. A function of the form f : P — {formations} is called a formation function. Recall
[6, p. 356] that a formation § is called local if § = (G |G/Cq(H/K) € f(p) for every p € n(H/K)
and every chief factor H/K of G) for some formation function f. In this case f is called a local
definition of §. By the Gaschiitz-Lubeseder-Schmid theorem, a formation is local if and only if it
is non-empty and saturated. Recall that if § is a local formation, there exists a unique formation
function F, defining §, such that F'(p) = M, F(p) C § for every p € P by Proposition 3.8 [6, p. 360].
In this case F is called the canonical local definition of §.

Let InnG < A be a group of automorphisms of G and F be the canonical local definition of a
local formation §. An A-composition factor H/K of G is called A-§-central if A/Ca(H/K) € F(p)
for all p € 7(H/K). The A-§-hypercenter of G is the largest A-admissible subgroup of G such that
all its A-composition factors are A-F-central. This subgroup always exists by Lemma 6.4 [6, p. 387].
It is denoted by Zz(G, A). If A = InnG, then it is just the F-hypercenter Zz(G) of G. If § = N is
the class of all nilpotent groups, then we use Zo (G, A) to denote the A-hypercenter Zn(G, A) of
G. Recently the subgroups of Zy, (G, A) have been studied for example in |7, 8, 9, 10, 11].

Recall that Syl,G is the set of all Sylow subgroups of G; G satisfies the Sylow tower property if G
has a normal Hall {p1,...,p;}-subgroup for all 1 <i < n where p; > --- > p, are all prime divisors
of |G|. Tt is well known that a supersoluble group satisfies the Sylow tower property. Recently
series of hereditary saturated formations of groups that satisfy the Sylow tower property have been
constructed (see, [12, 13, 14, 15]).

THEOREM 1. Let § be a hereditary saturated formation, F be its canonical local definition and N
be an A-admissible subgroup of G where InnG < A < AutG that satisfies the Sylow tower property.

Then N < Zg(G, A) if and only if Na(P)/Ca(P) € F(p) for all P € Syl,(N) and p € w(N).

Author obtained particular cases of this theorem for A = InnG and two formations of
supersoluble type in [16, 17]. Recall that a group G is called strictly p-closed if G/O,(G) is abelian
of exponent dividing p — 1. We use U to denote the class of all supersoluble groups.

COROLLARY 1 (R. Baer [18]). Let N be a normal subgroup of G. Then N < Zy(G) if and only
if N satisfies the Sylow tower property and Ng(P)/Cq(P) is strictly p-closed for all P € Syl,(N)
and p € m(N).

M. R. R. Moghaddam and M. A. Rostamyari (see |9]) introduced the concept of autonilpotent
group. Let L,(G) = {z € G| [z,01,...,0n)] = 1Vay,...,a, € AutG}. Then G is called
autonilpotent if G = L,(G) for some natural n. Some properties of autonilpotent groups were
studied in [9]. In [8] all abelian autonilpotent groups were described. In particular, abelian
autonilpotent non-unit groups of odd order don’t exist. It was shown that if a p-group G is
autonilpotent, then AutG is a p-group (Theorem 2.2 [10]). In [11, p. 45] it was asked: “Does there
exist any odd order autonilpotent group?”

COROLLARY 2. Let p be a prime. A p-group G is autonilpotent if and only if AutG 1s a p-group.

An example of a p-group G of order p° (p > 3) such that AutG is also a p-group was constructed
in [19]. In the library of small groups of GAP [20] there are 30 groups of order 3% such that their
automorphism groups are also 3-groups (for example groups [729, 31|, [729, 41] and 729, 46]). Hence
the answer on the question from [11] is positive. From Theorem 2.3 [9] and Lemma 2.9 [10] it follows
that a group is autonilpotent iff it is the direct product of its autonilpotent Sylow subgroups.
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COROLLARY 3. A group G s autonilpotent if and only if it is the direct product of its Sylow
subgroups and the automorphism group of a Sylow p-subgroup of G is a p-group for all p € w(G).

The proof of Corollary 3 doesn’t use results from [9, 10]. The following result gives the description
of elements in Zy (G, A).

COROLLARY 4. Let g be a p-element of a group G and InnG < A < AwtG. Then g € Z(G, A)
if and only if g® = g for every p'-element o of A.

COROLLARY 5 (R. Baer [21]). Let p be a prime and G be a group. Then a p-element g of G
belongs to Zoo(G) if and only if it permutes with all p'-elements of G.

COROLLARY 6. A group G is autonilpotent if and only if every automorphism o of G fizes all
elements of G whose orders are coprime to the order of a.

According to Frobenius p-nilpotency criterion (see Theorem 5.26 [22, p. 171]) a group G is
nilpotent if and only if Ng(P)/Cq(P) is a p-group for every p-subgroup P of G and every p € 7(G).

COROLLARY 7. A group G is autonilpotent if and only if Nawg(P)/Cawtc(P) is a p-group for
every p-subgroup P of G and every p € n(G).

2. Proves of the results

LeEmMMA 1 (Lemma 3.6 [16]). Let P be a p-subgroup of a group G and R be a normal r-subgroup
of G where r # p are primes. Then Ng(P)R/R = Ng/r(PR/R), Cq(P)R/R = Cq/r(PR/R) and
Ng(P)/Cq(P) =~ Ng/r(PR/R)/Cq/r(PR/R).

PROOF. |Proof of Theorem 1| Let prove Theorem 1 for A = InnG. In this case Zz(G, A) = Zz(G).

Sufficiency. Let N be a normal subgroup of Zz(G) with the Sylow tower property. So N has a
normal Sylow g-subgroup ). Note that Q < G and Q < Zz(G).

Hence G/Cq(Q) = Ng(Q)/Ca(Q) € F(q) by Lemma 2.5 from [23]. If @ = N, then sufficiency
is proven.

Let @ < N.From N < Zz(G) it follows that N/Q < Zz(G/Q). Using induction on the order of G,
we may assume that Ng,o(PQ/Q)/Cq/q(PQ/Q) € F(p) for every P € Syl,N and p € w(N) \ {q}.
Hence Ng(P)/Cq(P) ~ Ng)o(PQ/Q)/Cq/o(PQ/Q) € F(p) by Lemma 1. Thus sufficiency is
proved.

Necessity. Let a group G be a minimal order counterexample with a normal subgroup N € Zz(G)
that satisfies the statement of Theorem 1 and p be the greatest prime divisor of |N|. Then a
Sylow p-subgroup P of N is normal in G. Let H/K be a chief factor of G and H < P. Since
Cq(P) < Cq(H/K) and G/Cq(P) = Ng(P)/Cq(P) € F(p), G/Cq(H/K) € F(p). It means that
P < 73(G). Note that Ng,p(RP/P)/Cq/p(RP/P) =~ Ng(R)/Cc(R) € F(p) for every R € Syl,N
and r € ©(N) \ {p} by Lemma 1. From |G/P| < |G| it follows that N/P < Zz(G/P). Thus
N < Zz(G), the contradiction.

Assume now that InnG < A < AutG. Let I' = G x A. From InnG < A it follows that groups of
automorphisms that are induced by A and I" on a given section of G are isomorphic. It means that
NA(H/K)/Ca(H/K) ~ Nr(H/K)/Cr(H/K) for a given section H/K of G. In particular, every
A-composition A-F-central factor of G is an §-central chief factor of I'.

It means that A-admissible subgroup N of G that satisfies the Sylow tower property lies in
Zz(G, A) ifand only if N < Zz(T"). The later is equivalent to Np(P)/Cr(P) ~ Na(P)/Ca(P) € F(p)
for every P € Syl,N and p € 7(N). O
PROOF. |Proof of Corollary 1] Recall that 4l has the canonical local definition F' where F'(p) is the
class of all strictly p-closed groups, every subgroup of Zy(G) is supersoluble and every supersoluble
group satisfies the Sylow tower property. Thus Corollary 1 directly follows from Theorem 1. O
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PROPOSITION 3. A group G is autonilpotent if and only if G = Zoo(G, AutG).

PROOF. [Proof] Recall that the canonical local definition of 9 is F(p) = N, where N, is the

class of all p-groups. Note that AutG/Cawg(Li(G)/Li—1(G)) ~ 1 € F(p) for all prime p. Hence

every AutG-composition factor of G between L;_1(G) and L;(G) is AutG-9t-central. It means that

Li(G) < Zo (G, AutG) for every i. So if G is autonilpotent group, then G = Zo (G, AutG).
Assume that G = Z (G, AutG). Hence there exists an AutG-composition series

1=Go<--- <G, =G
with AutG-9-central chief factors. Let I' = G x AutG. Note that
AutG/CAut(;(Gi/Gi_l) ~ F/CF(GL/Gz_l) S 9”(,,

for every p € w(Gi/Gi-1) by analogy with the proof of Theorem 1. Note that I'/Cr(G;i/Gi-1)
does not have non-trivial p-subgroups for all p € #(G;/G;—1) by Lemma 3.9 [24, p. 26]. So
AutG = Cawc(Gi/Gi-1). Hence [G;, AutG] < G;_1. It means that [z,a1,...,a,] = 1 for all
x € Gand aq,...,a, € AutG. Thus G = L,(G) and G is autonilpotent. O
PROOF. [Proof of Corollary 3] Note that every nilpotent group satisfies the Sylow tower property
and every autonilpotent group is nilpotent.

So a nilpotent group is autonilpotent if and only if Nawg(P)/Cawa(P) € M, for every
P € Syl,G and p € 7(G) by Proposition 3 and Theorem 1. The automorphism group of a direct
product of groups was described in [25]. In particular, if G = P x H, where P is a Sylow subgroup
of G, then AutG = AutP x AutH and Nawg(P)/Cawg(P) ~ AutP. O
PROOF. |Proof of Corollary 2] Directly follows from Corollary 3. O
PROOF. [Proof of Corollary 4] From InnG < A it follows that Zoo (G, A) < Zso(G) is nilpotent.
Hence every Sylow subgroup of Zy, (G, A) is A-admissible. So

Na(P)/Ca(P) = A/Ca(P) €M,

for every P € Syl,Z(G, A) and p € 7(Zxo(G, A)) by Theorem 1. It means that if g is a p-element
of Zoo (G, A), then g* = g for every p’-element « of A.

Let Gy, be the set of all elements of G such that g® = g for every p’-element « of A and every
g € G,. Note that if z,y € Gy, then zy € G). Hence G, is a subgroup of G. Let g € G, o, B € A

and 8 be a p/-element. Then 8% is a p/-element too. Hence (g™)P = gobaTla — gﬁa_lo‘ =g~ It
means that ¢* € Gp. Thus G, is an A-admissible subgroup of G. Let z be a p'-element of Gp. From
InnG < A it follows that ay : g — ¢” is a p’-element of A. Hence it acts trivially on G,. It means
that © < Z(Gp). Let P € Syl,G,. Then P < Gy So all p-elements of G, form a subgroup P. Note
that P is A-admissible and Na(P)/Cs(P) € 9,. Therefore P < Zo(G, A) by Theorem 1. O
PROOF. [Proof of Corollary 5| Let g be a p-element of G. Note that xg = gz is equivalent to g* = ¢
and {ay : g — g% |z is a p’-element of G} is the set of all p’-elements of InnG. Now Corollary 5
directly follows from Corollary 4. O

PROOF. [Proof of Corollary 6| Directly follows from Proposition 3 and Corollary 4. O

PROOF. |Proof of Corollary 7] Assume that G is autonilpotent. Then

NAutG(P)/CAutG(P) € mp

for every p-subgroup P of G and p € w(G) by Corollary 6.

Assume now that Naua(P)/Cauta(P) € Ny, for every p-subgroup P of G and p € 7(G). Suppose
that G is non-nilpotent. So there is a Schmidt subgroup S of G. Then S has a normal g-subgroup @
for some prime ¢ and there is a ¢’-element z of S with x & Cg(Q) (see Theorem 26.1 [24, p. 243]).
Since o, : g — ¢* is a non-identity inner automorphism of G of ¢’-order, Nawa(Q)/Cauwtc(Q) € Ny,
a contradiction.

Thus G is nilpotent. Hence G is autonilpotent by Proposition 3 and Theorem 1. O
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