ЧЕБЫШЕВСКИЙ СБОРНИК

Том 20. Выпуск 2.

УДК 512.542

DOI 10.22405/2226-8383-2019-20-2-391-398

О дисперсивных по Оре \mathfrak{F} -гиперцентральных подгруппах конечных групп

В. И. Мурашко

Мурашко Вячеслав Игоревич — магистрант, Гомельский государственный университет им. Ф. Скорины (г. Гомель, Республика Беларусь). *e-mail: mvimath@yandex.ru*

Аннотация

Рассматриваются только конечные группы. Пусть A — группа автоморфмизмов группы G, содержащая все внутренние автоморфизмы, и F — максимальный внутренний локальных экран насыщенной формации \mathfrak{F} . A-композиционный фактор H/K группы G называется A- \mathfrak{F} -центральным, если $A/C_A(H/K) \in F(p)$ для всех $p \in \pi(H/K)$. A- \mathfrak{F} -гиперцентром G называется наибольшая A-допустимая подгруппа G, все A-композиционные факторы ниже которой A- \mathfrak{F} -центральны. Обозначается $Z_{\mathfrak{F}}(G,A)$.

Напомним, что группа G называется дисперсивной по Оре, если G имеет нормальную холлову $\{p_1,\ldots,p_i\}$ -подгруппу для $1\leq i\leq n$, где $p_1>\cdots>p_n$ — все простые делители |G|. Главным результатом работы является: Пусть \mathfrak{F} — наследственная насыщенная формация, F— её максимальный внутренний локальный экран и N— дисперсивная по Оре A-допустимая подгруппа группы G, где $\mathrm{Inn}G\leq A\leq \mathrm{Aut}G$. Тогда и только тогда $N\leq \mathrm{Z}_{\mathfrak{F}}(G,A)$, когда $N_A(P)/C_A(P)\in F(p)$ для любых силовской p-подгруппы P группы N и простого делителя p порядка N.

В качестве следствий были получены известные результаты Р. Бэра о нормальных подгруппах в сверхразрешимом гиперцентре и элементах гиперцентра.

Пусть G — группа. Напомним, что

$$L_n(G) = \{x \in G \mid [x, \alpha_1, \dots, \alpha_n] = 1 \ \forall \alpha_1, \dots, \alpha_n \in \operatorname{Aut}G\}$$

и G называется автонильпотентной, если $G = L_n(G)$ для некоторого натурального n. Из главного результата можно извлечь критерии автонильпотентности групп. В частности, группа G автонильпотентна тогда и только тогда, когда она является прямым произведением своих силовских подгрупп и группа автоморфизмов любой силовской p-подгруппы группы G является p-группой для любого простого делителя p порядка G. Приведены примеры автонильпотентных групп нечетного порядка.

Kлючевые слова: Конечная группа, нильпотентная группа, сверхразрешимая группа, автонильпотентная группа, A- \mathfrak{F} -гиперцентр группы, наследственная насыщенная формация.

Библиография: 25 названий.

Для цитирования:

В. И. Мурашко. О дисперсивных по Оре \mathfrak{F} -гиперцентральных подгруппах конечных групп // Чебышевский сборник, 2019, т. 20, вып. 2, с. 391–398.

CHEBYSHEVSKII SBORNIK

Vol. 20. No. 2.

UDC 512.542

DOI 10.22405/2226-8383-2019-20-2-391-398

On the \(\mathcal{F}\)-hypercentral subgroups with the sylow tower property of finite groups

V. I. Murashka

Murashka Viachaslau Igaravich — graduate student, Francisk Skorina Gomel State University (Gomel, Republic of Belarus).

e-mail: mvimath@yandex.ru

Abstract

Throughout this paper all groups are finite. Let A be a group of automorphisms of a group G that contains all inner automorphisms of G and F be the canonical local definition of a saturated formation \mathfrak{F} . An A-composition factor H/K of G is called A- \mathfrak{F} -central if $A/C_A(H/K) \in F(p)$ for all $p \in \pi(H/K)$. The A- \mathfrak{F} -hypercenter of G is the largest A-admissible subgroup of G such that all its A-composition factors are A- \mathfrak{F} -central. Denoted by $Z_{\mathfrak{F}}(G,A)$.

Recall that a group G satisfies the Sylow tower property if G has a normal Hall $\{p_1, \ldots, p_i\}$ subgroup for all $1 \leq i \leq n$ where $p_1 > \cdots > p_n$ are all prime divisors of |G|. The main result
of this paper is: Let \mathfrak{F} be a hereditary saturated formation, F be its canonical local definition
and N be an A-admissible subgroup of a group G where $\operatorname{Inn} G \leq A \leq \operatorname{Aut} G$ that satisfies the
Sylow tower property. Then $N \leq Z_{\mathfrak{F}}(G,A)$ if and only if $N_A(P)/C_A(P) \in F(p)$ for all Sylow p-subgroups P of N and every prime divisor p of |N|.

As corollaries we obtained well known results of R. Baer about normal subgroups in the supersoluble hypercenter and elements in the hypercenter.

Let G be a group. Recall that $L_n(G) = \{x \in G \mid [x, \alpha_1, \ldots, \alpha_n] = 1 \ \forall \alpha_1, \ldots, \alpha_n \in \operatorname{Aut} G\}$ and G is called autonilpotent if $G = L_n(G)$ for some natural n. The criteria of autonilpotency of a group also follow from the main result. In particular, a group G is autonilpotent if and only if it is the direct product of its Sylow subgroups and the automorphism group of a Sylow p-subgroup of G is a p-group for all prime divisors p of |G|. Examples of odd order autonilpotent groups were given.

Keywords: Finite group, nilpotent group, supersoluble group, autonilpotent group, A-3-hypercenter of a group, hereditary saturated formation.

Bibliography: 25 titles.

For citation:

V. I. Murashka, 2019, "On the \(\mathcal{F}\)-hypercentral subgroups with the sylow tower property of finite groups", Chebyshevskii sbornik, vol. 20, no. 2, pp. 391–398.

1. Introduction and results

Throughout this paper all groups are finite and G always denotes a finite group. Recall that $\operatorname{Aut} G$ and $\operatorname{Inn} G$ are the groups of all and inner automorphisms of G respectively.

Let A be a group of automorphisms of G. Kaloujnine [1] and Hall [2] showed that if A stabilizes some chain of subgroups of G, then A is nilpotent. Huppert [3] and Shemetkov [4] showed that if G has has A-admissible series with prime indexes, then A is supersoluble. Shemetkov [4] and Schmid [5] obtained analogues results for a solubly saturated formation \mathfrak{F} . Note that the \mathfrak{F} -hypercenter of G with respect to A played an important role in their research.

Recall that $\pi(G)$ is the set of all prime divisors of |G|. A formation is a class \mathfrak{F} of groups with the following properties: (a) every homomorphic image of an \mathfrak{F} -group is an \mathfrak{F} -group, and (b) if G/M and G/N are \mathfrak{F} -groups, then $G/(M\cap N)\in \mathfrak{F}$. A formation \mathfrak{F} is said to be: saturated if $G\in \mathfrak{F}$ whenever $G/\Phi(G)\in \mathfrak{F}$ where $\Phi(G)$ is the Frattini's subgroup of G; hereditary if $H\in \mathfrak{F}$ whenever $H\leq G\in \mathfrak{F}$. A function of the form $f:\mathbb{P}\to \{formations\}$ is called a formation function. Recall [6, p. 356] that a formation \mathfrak{F} is called local if $\mathfrak{F}=(G|G/C_G(H/K)\in f(p))$ for every $p\in \pi(H/K)$ and every chief factor H/K of G) for some formation function f. In this case f is called a local definition of \mathfrak{F} . By the Gaschütz-Lubeseder-Schmid theorem, a formation is local if and only if it is non-empty and saturated. Recall that if \mathfrak{F} is a local formation, there exists a unique formation function F, defining \mathfrak{F} , such that $F(p)=\mathfrak{N}_pF(p)\subseteq \mathfrak{F}$ for every $p\in \mathbb{P}$ by Proposition 3.8 [6, p. 360]. In this case F is called the canonical local definition of \mathfrak{F} .

Let $\operatorname{Inn} G \leq A$ be a group of automorphisms of G and F be the canonical local definition of a local formation \mathfrak{F} . An A-composition factor H/K of G is called A- \mathfrak{F} -central if $A/C_A(H/K) \in F(p)$ for all $p \in \pi(H/K)$. The A- \mathfrak{F} -hypercenter of G is the largest A-admissible subgroup of G such that all its A-composition factors are A- \mathfrak{F} -central. This subgroup always exists by Lemma 6.4 [6, p. 387]. It is denoted by $Z_{\mathfrak{F}}(G,A)$. If $A = \operatorname{Inn} G$, then it is just the \mathfrak{F} -hypercenter $Z_{\mathfrak{F}}(G)$ of G. If $\mathfrak{F} = \mathfrak{N}$ is the class of all nilpotent groups, then we use $Z_{\infty}(G,A)$ to denote the A-hypercenter $Z_{\mathfrak{N}}(G,A)$ of G. Recently the subgroups of $Z_{\infty}(G,A)$ have been studied for example in [7, 8, 9, 10, 11].

Recall that $\operatorname{Syl}_p G$ is the set of all Sylow subgroups of G; G satisfies the Sylow tower property if G has a normal Hall $\{p_1, \ldots, p_i\}$ -subgroup for all $1 \leq i \leq n$ where $p_1 > \cdots > p_n$ are all prime divisors of |G|. It is well known that a supersoluble group satisfies the Sylow tower property. Recently series of hereditary saturated formations of groups that satisfy the Sylow tower property have been constructed (see, [12, 13, 14, 15]).

THEOREM 1. Let $\mathfrak F$ be a hereditary saturated formation, F be its canonical local definition and N be an A-admissible subgroup of G where $\mathrm{Inn} G \leq A \leq \mathrm{Aut} G$ that satisfies the Sylow tower property. Then $N \leq \mathrm{Z}_{\mathfrak F}(G,A)$ if and only if $N_A(P)/C_A(P) \in F(p)$ for all $P \in \mathrm{Syl}_p(N)$ and $p \in \pi(N)$.

Author obtained particular cases of this theorem for A = InnG and two formations of supersoluble type in [16, 17]. Recall that a group G is called strictly p-closed if $G/O_p(G)$ is abelian of exponent dividing p-1. We use \mathfrak{U} to denote the class of all supersoluble groups.

COROLLARY 1 (R. Baer [18]). Let N be a normal subgroup of G. Then $N \leq Z_{\mathfrak{U}}(G)$ if and only if N satisfies the Sylow tower property and $N_G(P)/C_G(P)$ is strictly p-closed for all $P \in \operatorname{Syl}_p(N)$ and $p \in \pi(N)$.

M. R. R. Moghaddam and M. A. Rostamyari (see [9]) introduced the concept of autonilpotent group. Let $L_n(G) = \{x \in G \mid [x, \alpha_1, \dots, \alpha_n] = 1 \ \forall \alpha_1, \dots, \alpha_n \in \text{Aut}G\}$. Then G is called autonilpotent if $G = L_n(G)$ for some natural n. Some properties of autonilpotent groups were studied in [9]. In [8] all abelian autonilpotent groups were described. In particular, abelian autonilpotent non-unit groups of odd order don't exist. It was shown that if a p-group G is autonilpotent, then AutG is a p-group (Theorem 2.2 [10]). In [11, p. 45] it was asked: "Does there exist any odd order autonilpotent group?"

Corollary 2. Let p be a prime. A p-group G is autonilpotent if and only if AutG is a p-group.

An example of a p-group G of order p^5 (p > 3) such that AutG is also a p-group was constructed in [19]. In the library of small groups of GAP [20] there are 30 groups of order 3^6 such that their automorphism groups are also 3-groups (for example groups [729, 31], [729, 41] and [729, 46]). Hence the answer on the question from [11] is positive. From Theorem 2.3 [9] and Lemma 2.9 [10] it follows that a group is autonilpotent iff it is the direct product of its autonilpotent Sylow subgroups.

COROLLARY 3. A group G is autonilpotent if and only if it is the direct product of its Sylow subgroups and the automorphism group of a Sylow p-subgroup of G is a p-group for all $p \in \pi(G)$.

The proof of Corollary 3 doesn't use results from [9, 10]. The following result gives the description of elements in $Z_{\infty}(G, A)$.

COROLLARY 4. Let g be a p-element of a group G and $\operatorname{Inn} G \leq A \leq \operatorname{Aut} G$. Then $g \in \mathbb{Z}_{\infty}(G,A)$ if and only if $g^{\alpha} = g$ for every p'-element α of A.

COROLLARY 5 (R. Baer [21]). Let p be a prime and G be a group. Then a p-element g of G belongs to $\mathbb{Z}_{\infty}(G)$ if and only if it permutes with all p'-elements of G.

COROLLARY 6. A group G is autonilpotent if and only if every automorphism α of G fixes all elements of G whose orders are coprime to the order of α .

According to Frobenius p-nilpotency criterion (see Theorem 5.26 [22, p. 171]) a group G is nilpotent if and only if $N_G(P)/C_G(P)$ is a p-group for every p-subgroup P of G and every $p \in \pi(G)$.

COROLLARY 7. A group G is autonilpotent if and only if $N_{AutG}(P)/C_{AutG}(P)$ is a p-group for every p-subgroup P of G and every $p \in \pi(G)$.

2. Proves of the results

LEMMA 1 (Lemma 3.6 [16]). Let P be a p-subgroup of a group G and R be a normal r-subgroup of G where $r \neq p$ are primes. Then $N_G(P)R/R = N_{G/R}(PR/R)$, $C_G(P)R/R = C_{G/R}(PR/R)$ and $N_G(P)/C_G(P) \simeq N_{G/R}(PR/R)/C_{G/R}(PR/R)$.

PROOF. [Proof of Theorem 1] Let prove Theorem 1 for $A = \operatorname{Inn}G$. In this case $Z_{\mathfrak{F}}(G,A) = Z_{\mathfrak{F}}(G)$. Sufficiency. Let N be a normal subgroup of $Z_{\mathfrak{F}}(G)$ with the Sylow tower property. So N has a normal Sylow q-subgroup Q. Note that $Q \subseteq G$ and $Q \subseteq Z_{\mathfrak{F}}(G)$.

Hence $G/C_G(Q) = N_G(Q)/C_G(Q) \in F(q)$ by Lemma 2.5 from [23]. If Q = N, then sufficiency is proven.

Let Q < N. From $N \leq \mathbf{Z}_{\mathfrak{F}}(G)$ it follows that $N/Q \leq \mathbf{Z}_{\mathfrak{F}}(G/Q)$. Using induction on the order of G, we may assume that $N_{G/Q}(PQ/Q)/C_{G/Q}(PQ/Q) \in F(p)$ for every $P \in \mathrm{Syl}_p N$ and $p \in \pi(N) \setminus \{q\}$. Hence $N_G(P)/C_G(P) \simeq N_{G/Q}(PQ/Q)/C_{G/Q}(PQ/Q) \in F(p)$ by Lemma 1. Thus sufficiency is proved.

Necessity. Let a group G be a minimal order counterexample with a normal subgroup $N \not\leq \operatorname{Z}_{\mathfrak{F}}(G)$ that satisfies the statement of Theorem 1 and p be the greatest prime divisor of |N|. Then a Sylow p-subgroup P of N is normal in G. Let H/K be a chief factor of G and $H \leq P$. Since $C_G(P) \leq C_G(H/K)$ and $G/C_G(P) = N_G(P)/C_G(P) \in F(p)$, $G/C_G(H/K) \in F(p)$. It means that $P \leq \operatorname{Z}_{\mathfrak{F}}(G)$. Note that $N_{G/P}(RP/P)/C_{G/P}(RP/P) \simeq N_G(R)/C_G(R) \in F(p)$ for every $R \in \operatorname{Syl}_r N$ and $r \in \pi(N) \setminus \{p\}$ by Lemma 1. From |G/P| < |G| it follows that $N/P \leq \operatorname{Z}_{\mathfrak{F}}(G/P)$. Thus $N \leq \operatorname{Z}_{\mathfrak{F}}(G)$, the contradiction.

Assume now that $\operatorname{Inn} G \leq A \leq \operatorname{Aut} G$. Let $\Gamma = G \rtimes A$. From $\operatorname{Inn} G \leq A$ it follows that groups of automorphisms that are induced by A and Γ on a given section of G are isomorphic. It means that $N_A(H/K)/C_A(H/K) \simeq N_\Gamma(H/K)/C_\Gamma(H/K)$ for a given section H/K of G. In particular, every A-composition A- \mathfrak{F} -central factor of G is an \mathfrak{F} -central chief factor of Γ .

It means that A-admissible subgroup N of G that satisfies the Sylow tower property lies in $Z_{\mathfrak{F}}(G,A)$ if and only if $N \leq Z_{\mathfrak{F}}(\Gamma)$. The later is equivalent to $N_{\Gamma}(P)/C_{\Gamma}(P) \simeq N_{A}(P)/C_{A}(P) \in F(p)$ for every $P \in \operatorname{Syl}_{p}N$ and $p \in \pi(N)$. \square

PROOF. [Proof of Corollary 1] Recall that \mathfrak{U} has the canonical local definition F where F(p) is the class of all strictly p-closed groups, every subgroup of $Z_{\mathfrak{U}}(G)$ is supersoluble and every supersoluble group satisfies the Sylow tower property. Thus Corollary 1 directly follows from Theorem 1. \square

PROPOSITION 3. A group G is autonilpotent if and only if $G = \mathbb{Z}_{\infty}(G, \operatorname{Aut} G)$.

PROOF. [Proof] Recall that the canonical local definition of \mathfrak{N} is $F(p) = \mathfrak{N}_p$ where \mathfrak{N}_p is the class of all p-groups. Note that $\operatorname{Aut}G/C_{\operatorname{Aut}G}(L_i(G)/L_{i-1}(G)) \simeq 1 \in F(p)$ for all prime p. Hence every $\operatorname{Aut}G$ -composition factor of G between $L_{i-1}(G)$ and $L_i(G)$ is $\operatorname{Aut}G$ - \mathfrak{N} -central. It means that $L_i(G) \leq \mathbb{Z}_{\infty}(G, \operatorname{Aut}G)$ for every i. So if G is autonilpotent group, then $G = \mathbb{Z}_{\infty}(G, \operatorname{Aut}G)$.

Assume that $G = \mathbb{Z}_{\infty}(G, \operatorname{Aut}G)$. Hence there exists an $\operatorname{Aut}G$ -composition series

$$1 = G_0 \le \dots \le G_n = G$$

with $\operatorname{Aut} G$ - \mathfrak{N} -central chief factors. Let $\Gamma = G \rtimes \operatorname{Aut} G$. Note that

$$\operatorname{Aut} G/C_{\operatorname{Aut} G}(G_i/G_{i-1}) \simeq \Gamma/C_{\Gamma}(G_i/G_{i-1}) \in \mathfrak{N}_p$$

for every $p \in \pi(G_i/G_{i-1})$ by analogy with the proof of Theorem 1. Note that $\Gamma/C_{\Gamma}(G_i/G_{i-1})$ does not have non-trivial p-subgroups for all $p \in \pi(G_i/G_{i-1})$ by Lemma 3.9 [24, p. 26]. So $\operatorname{Aut}G = C_{\operatorname{Aut}G}(G_i/G_{i-1})$. Hence $[G_i, \operatorname{Aut}G] \leq G_{i-1}$. It means that $[x, \alpha_1, \ldots, \alpha_n] = 1$ for all $x \in G$ and $\alpha_1, \ldots, \alpha_n \in \operatorname{Aut}G$. Thus $G = L_n(G)$ and G is autonilpotent. \square

PROOF. [Proof of Corollary 3] Note that every nilpotent group satisfies the Sylow tower property and every autonilpotent group is nilpotent.

So a nilpotent group is autonilpotent if and only if $N_{\mathrm{Aut}G}(P)/C_{\mathrm{Aut}G}(P) \in \mathfrak{N}_p$ for every $P \in \mathrm{Syl}_p G$ and $p \in \pi(G)$ by Proposition 3 and Theorem 1. The automorphism group of a direct product of groups was described in [25]. In particular, if $G = P \times H$, where P is a Sylow subgroup of G, then $\mathrm{Aut}G = \mathrm{Aut}P \times \mathrm{Aut}H$ and $N_{\mathrm{Aut}G}(P)/C_{\mathrm{Aut}G}(P) \simeq \mathrm{Aut}P$. \square

PROOF. [Proof of Corollary 2] Directly follows from Corollary 3. □

PROOF. [Proof of Corollary 4] From Inn $G \leq A$ it follows that $Z_{\infty}(G, A) \leq Z_{\infty}(G)$ is nilpotent. Hence every Sylow subgroup of $Z_{\infty}(G, A)$ is A-admissible. So

$$N_A(P)/C_A(P) = A/C_A(P) \in \mathfrak{N}_p$$

for every $P \in \operatorname{Syl}_p \mathbb{Z}_\infty(G, A)$ and $p \in \pi(\mathbb{Z}_\infty(G, A))$ by Theorem 1. It means that if g is a p-element of $\mathbb{Z}_\infty(G, A)$, then $g^{\alpha} = g$ for every p'-element α of A.

Let G_p be the set of all elements of G such that $g^{\alpha} = g$ for every p'-element α of A and every $g \in G_p$. Note that if $x, y \in G_p$, then $xy \in G_p$. Hence G_p is a subgroup of G. Let $g \in G_p$, $\alpha, \beta \in A$ and β be a p'-element. Then $\beta^{\alpha^{-1}}$ is a p'-element too. Hence $(g^{\alpha})^{\beta} = g^{\alpha\beta\alpha^{-1}\alpha} = g^{\beta^{\alpha^{-1}}\alpha} = g^{\alpha}$. It means that $g^{\alpha} \in G_p$. Thus G_p is an A-admissible subgroup of G. Let x be a p'-element of G_p . From $\text{Inn} G \leq A$ it follows that $\alpha_x : g \to g^x$ is a p'-element of A. Hence it acts trivially on G_p . It means that $x \leq Z(G_p)$. Let $P \in \text{Syl}_p G_p$. Then $P \subseteq G_p$. So all p-elements of G_p form a subgroup P. Note that P is A-admissible and $N_A(P)/C_A(P) \in \mathfrak{N}_p$. Therefore $P \leq Z_{\infty}(G, A)$ by Theorem 1. \square

PROOF. [Proof of Corollary 5] Let g be a p-element of G. Note that xg = gx is equivalent to $g^x = g$ and $\{\alpha_x : g \to g^x \mid x \text{ is a } p'\text{-element of } G\}$ is the set of all p'-elements of InnG. Now Corollary 5 directly follows from Corollary 4. \square

PROOF. [Proof of Corollary 6] Directly follows from Proposition 3 and Corollary 4. \Box

PROOF. [Proof of Corollary 7] Assume that G is autonilpotent. Then

$$N_{\operatorname{Aut}G}(P)/C_{\operatorname{Aut}G}(P) \in \mathfrak{N}_p$$

for every p-subgroup P of G and $p \in \pi(G)$ by Corollary 6.

Assume now that $N_{\operatorname{Aut}G}(P)/C_{\operatorname{Aut}G}(P) \in \mathfrak{N}_p$ for every p-subgroup P of G and $p \in \pi(G)$. Suppose that G is non-nilpotent. So there is a Schmidt subgroup S of G. Then S has a normal q-subgroup Q for some prime q and there is a q'-element x of S with $x \notin C_S(Q)$ (see Theorem 26.1 [24, p. 243]). Since $\alpha_x : g \to g^x$ is a non-identity inner automorphism of G of q'-order, $N_{\operatorname{Aut}G}(Q)/C_{\operatorname{Aut}G}(Q) \notin \mathfrak{N}_q$, a contradiction.

Thus G is nilpotent. Hence G is autonilpotent by Proposition 3 and Theorem 1. \square

Acknowledgments

I am grateful to A. F. Vasil'ev for helpful discussions.

REFERENCES

- 1. Kaloujnine L. 1953, "Über gewisse Beziehungen zwischen einer Gruppe und ihren Automorphismen", Berliner Mathematische Tagung, Berlin, pp. 164–172.
- 2. Hall P. 1958, "Some sufficient conditions for a group to be nilpotent", Illinois J. Math., vol. 2, no. 4, pp. 787–801.
- 3. Huppert B. 1954, "Normalteiler und maximale Untergruppen endlicher Gruppen", Math. Z., vol. 60, no. 4, pp. 409–434.
- 4. Semetkov L. A. 1974, "Graduated formations of groups", Mathematics of the USSR-Sbornik, vol. 23, no. 4, pp. 593-611.
- 5. Schmid P. 1974, "Lokale Formationen endlicher Gruppen", Math. Z., vol. 137, no. 1, pp. 31–48.
- 6. Doerk K., Hawkes T. 1992, Finite soluble groups, Walter de Gruyter, Berlin-New York, 891 p.
- 7. Hegarty P. V. 1994, "The absolute center of a group", J. Algebra, vol. 169, pp. 929–935.
- 8. Nasrabadi M. M., Gholamiam A. 2014, "On A-nilpotent abelian groups", Proc. Indian Acad. Sci. (Math. Sci.), vol. 124, no. 4, pp. 517–525.
- 9. Davoudirad S., Moghaddam M. R. R., Rostamyari M. A. 2016, "Autonilpotent groups and their properties", Asian-European J. Math., vol. 9, no. 2, 1650056 (7 pages).
- 10. Hoseini S., Moghaddam M. R. R., Tajnia S. 2015, "On Auto-nipoltent groups", Southeast Asian Bull. Math., vol. 39, pp. 219–224.
- 11. Arora H., Karan R. 2018, "On Autonilpotent and Autosoluble Groups", Note Mat., vol. 38, no. 1, pp. 35–45.
- 12. Vasil'ev A. F., Vasil'eva T. I., Tyutyanov V. N. 2010, "On the finite groups of supersoluble type", Sib. Math. J., vol. 51, no. 6, pp. 1004–1012.
- 13. Monakhov V. S., Kniahina V. N. 2013, "Finite groups with P-subnormal subgroups", Ricerche mat., vol. 62, pp. 307–322.
- 14. Zimmermann I. 1989, "Submodular subgroups in finite groups", Math. Z., vol. 202, pp. 545–557.
- 15. Vasilyev V. A. 2015, "Finite groups with submodular Sylow subgroups", Siberian Math. J., vol. 56, no. 6, pp. 1019–1027.
- 16. Murashka V. I. 2018, "On analogues of Baer's theorems for widely supersoluble hypercenter of finite groups", Asian-European J. Math., vol. 11, no. 3, 1850043 (8 pages).
- 17. Murashka V. I. 2014, "Properties of the class of finite groups with P-subnormal cyclic primary subgroups", Dokl. NAN Belarusi, vol. 58, no. 1, pp. 5–8. (In Russian)
- 18. Baer R. 1959, "Supersoluble immersion", Canad. J. Math., vol. 11, pp. 353–369.
- 19. Curran M. J. 1988, "Automorphisms of certain p-groups (p odd)", Bull. Austral. Math. Soc., vol. 38, pp. 299-305.

- 20. Groups, Algorithms, and Programming (GAP), Version 4.9.1 (2018). Available at http://www.gap-system.org (accessed 10 June 2018).
- 21. Baer R. 1953, "Group Elements of Prime Power Index", Trans. Amer. Math Soc., vol. 75, no. 1, pp. 20–47.
- 22. Isaacs I. M. 2008, Finite group theory, Graduate studies in mathematics, vol. 92, Providence, American Mathematical Society, 350 p.
- 23. Skiba A. N. 2012, "On the \(\mathcal{F}\)-hypercenter and the intersection of all \(\mathcal{F}\)-maximal subgroups of a finite group", J. Pure Appl. Algebra, vol. 216, no. 4, pp. 789–799.
- 24. Shemetkov L. A. 1978, Formations of finite groups, Nauka, Moscow, 272 p. (In Russian)
- 25. Bidwell J. N. S., Curran M. J., McCaughan D. J. 2006, "Automorphisms of direct products of finite groups", Arch. Math., vol. 86, pp. 481–489.

СПИСОК ЦИТИРОВАННОЙ ЛИТЕРАТУРЫ

- 1. Kaloujnine L. Über gewisse Beziehungen zwischen einer Gruppe und ihren Auto- morphismen // Berliner Mathematische Tagung, Berlin, 1953, P. 164–172.
- 2. Hall P. Some sufficient conditions for a group to be nilpotent // Illinois J. Math. 1958. V. 2, N_2 4. P. 787–801.
- 3. Huppert B. Normalteiler und maximale Untergruppen endlicher Gruppen // Math. Z. 1954. V. 60, № 4. P. 409–434.
- 4. Шеметков Л. А. Ступенчатые формации групп // Матем. сб. 1974. Т. 94(136), № 4(8), С. 628–648.
- 5. Schmid P. Lokale Formationen endlicher Gruppen // Math. Z. 1974. V. 137, № 1. P. 31–48.
- 6. Doerk K., Hawkes T. Finite soluble groups. Berlin–New York: Walter de Gruyter, 1992. 891 p.
- 7. Hegarty P. V. The absolute center of a group // J. Algebra. 1994. V. 169. P. 929–935.
- 8. Nasrabadi M. M., Gholamiam A. On A-nilpotent abelian groups // Proc. Indian Acad. Sci. (Math. Sci.). 2014. V. 124, № 4. P. 517–525.
- 9. Davoudirad S., Moghaddam M.R.R., Rostamyari M.A. Autonilpotent groups and their properties // Asian-European J. Math. 2016. V. 9, № 2. 1650056 (7 pages).
- Hoseini S., Moghaddam M. R. R., Tajnia S. On Auto-nipoltent groups // Southeast Asian Bull. Math. 2015. V. 39. P. 219–224.
- 11. Arora H., Karan R. On Autonilpotent and Autosoluble Groups // Note Mat. 2018. V. 38, № 1. P. 35–45.
- 12. Васильев А.Ф., Васильева Т.И., Тютянов В.Н. О конечных группах сверхразрешимого типа // Сиб. мат. журн. 2010. Т. 51, № 6. С. 1270–1281.
- 13. Monakhov V. S., Kniahina V. N. Finite groups with P-subnormal subgroups // Ricerche mat. 2013. V. 62, P. 307–322.
- 14. Zimmermann I. Submodular subgroups in finite groups // Math. Z. 1989. V. 202. P. 545–557.

- 15. Васильев В. А. Конечные группы с субмодулярными силовскими подгруппами // Сиб. мат. журн. 2015. Т. 56, № 6. С. 1277–1288.
- 16. Murashka V. I. On analogues of Baer's theorems for widely supersoluble hypercenter of finite groups // Asian-European J. Math. 2018. V. 11, № 3. 1850043 (8 pages).
- 17. Мурашко, В. И. Свойстав класса конечных групп с Р-субнормальными циклическими примарными подгруппами // Докл. НАН Беларуси. 2014. Т. 58, № 1. С. 5–8.
- 18. Baer R. Supersoluble immersion // Canad. J. Math. 1959. V. 11. P. 353–369.
- 19. Curran M. J. Automorphisms of certain p-groups (p odd) // Bull. Austral. Math. Soc. 1988. V. 38. P. 299–305.
- 20. Groups, Algorithms, and Programming (GAP), Version 4.9.1. [Электронный ресурс] // URL: http://www.gap-system.org (дата обращения 10.06.2018).
- 21. Baer R. Group Elements of Prime Power Index // Trans. Amer. Math Soc. 1953. V. 75, N 1. P. 20–47.
- 22. Isaacs I. M. Finite group theory. Graduate studies in mathematics, V. 92. Providence: American Mathematical Society, 2008. 350 p.
- 23. Skiba A. N. On the 𝔻-hypercenter and the intersection of all 𝔻-maximal subgroups of a finite group // J. Pure Appl. Algebra. 2012. V. 216, № 4. P. 789–799.
- 24. Шеметков Л. А. Формации конечных групп. М.: Наука, 1978. 272 с.
- 25. Bidwell J. N. S., Curran M. J., McCaughan D. J. Automorphisms of direct products of finite groups // Arch. Math. 2006. V. 86. P. 481–489.

Получено 15.06.2018 г.

Принято в печать 12.07.2019 г.