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Let xo,X1,... be a sequence of points in [0,1)°. A subset S of [0,1)® is called a bounded
remainder set if there exist two real numbers a and C such that, for every integer N,

|card{n < N | x, € S} —aN| < C.

Let (xn)n>0 be an s—dimensional Halton-type sequence obtained from a global function
field, b > 2, v = (y1,..,7s), 7 € [0,1), with b-adic expansion v; = ;1671 + 72072 + ...,
i =1,...,s. In this paper, we prove that [0,71) X ... X [0,7s) is the bounded remainder set with
respect to the sequence (x,,),>¢ if and only if

i> - .
Dax max{j > 1|7, # 0} < o0

We also obtain the similar results for a generalized Niederreiter sequences, Xing-Niederreiter
sequences and Niederreiter-Xing sequences.
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1. Introduction

1.1. Bounded remainder sets. Let xg, X1, ... be a sequence of points in [0,1)*, S C [0,1)5,

where 1g(x) = 1, if x € S, and 1g(x) = 0, if x ¢ S. Here A(S) denotes the s-dimensional

Lebesgue-measure of S. We define the star discrepancy of an N-point set (xn)fgol as

D*((Xn>7]:[:_ol) = Sup0<y1,‘..,y5§1 |A([07 y)v (Xn)nN:_OI)/N|7

where [0,y) = [0,y1) X - -- x [0,ys). The sequence (x,,),>0 is said to be uniformly distributed in [0, 1)*
if Dy — 0. In 1954, Roth proved that limsupy_,.. N(In N)~2 D*((x,)Y=") > 0. According to the
well-known conjecture (see, e.g., [1, p.283]), this estimate can be improved to

lim sup y_,oo N(In N)~*D*((x,)N21) > 0. (1)

See [2] and [7] for results on this conjecture.

A sequence (xﬁf))nzo is of low discrepancy (abbreviated l.d.s.) if D((xﬁf))N_l) =O(N~}(InN)?®)

n=0
for N — oco. A sequence of point sets ((xfz\,)ﬁf:—ol)%:l is of low discrepancy (abbreviated 1.d.p.s.)

if D((xglsj\,)flv:_ol) = O(N~1(In N)*~1), for N — co. For examples of such a sequences, see, e.g., [1],
[3], and [11].

Definition 1. Let x¢, X1, ... be a sequence of points in [0,1)°. A subset S of [0,1)° is called a
bounded remainder set for (x,)n>0 if the discrepancy function A(S, (x,)N=") is bounded in N.

Let o be an irrational number, let I be an interval in [0,1) with length |I], let {na} be the
fractional part of na, n = 1,2,... . Hecke, Ostrowski and Kesten proved that A(S, ({na})?_,) is
bounded if and only if |I| = {ka} for some integer k (see references in [4]).
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The sets of bounded remainder for the classical s-dimensional Kronecker sequence studied by
Lev and Grepstad [4]. The case of Halton’s sequence was studied by Hellekalek [5].
Let b be a prime power, v = (71, ...,7s), % € (0,1) with b-adic expansion

Vi =Yiab g4, i=1,.,s,

and let (x;,)n>0 be a uniformly distributed digital Kronecker sequence. In [7], we proved the following
theorem:

Theorem A. The set [0,71) X ... X [0,75) is of bounded remainder with respect to (Xp)n>0 if
and only if

max max{j > 1|~;; # 0} < oo. (2)
1<i<s

In this paper, we prove similar results for digital sequences described in [3, Sec. 8]. Note that
according to Larcher’s conjecture [6, p.215], the assertion of Theorem A is true for all digital (¢, s)-
sequences in base b.

2. Definitions and auxiliary results.

2.1 (T, s) sequences. A subinterval E of [0,1)° of the form
S
E = [Jlaib™%, (a; + 1)b~%),
i=1

with a;,d; € Z, d; >0, 0 < a; < bdi, for 1 <17 < s is called an elementary interval in base b > 2.

Definition 2. Let 0 < t < m be integers. A (t,m, s)-net in base b is a point set Xq, ..., Xpm_1
in [0,1)* such that #{n € [0,b™ — 1]|z, € E} = b for every elementary interval E in base b with
vol(E) = b'=™,

Definition 3. Let t > 0 be an integer. A sequence X, X1, ... of points in [0,1)° is a (¢, s)-sequence
in base b if, for all integers k > 0 and m > t, the point set consisting of x,, with kb"™ <n < (k+1)b™
is a (t,m, s)-net in base b.

By [Ni, p. 56,60], (t,m, s) nets and (t, s) sequences are of low discrepancy. See reviews on (t,m, )
nets and (¢, s) sequences in [3| and [11].

Definition 4. ([3, Definition 4.30]) For a given dimension s > 1, an integer base b > 2, and a
function T : Ng — Ny with T(m) < m for all m € Ny, a sequence (xo,X1,...) of points in [0,1)° is
called a (T, s)-sequence in base b if for all integers m > 0 and k > 0, the point set consisting of the
POINES Tipm, .., Tppm pm—1 forms a (T(m), m, s)-net in base b.

Definition 5. ([3, Definition 4.47|) Let m,s > 1 be integers. Let CL™) .. CG™) e

m X m matrices over Fy. Now we construct b™ points in [0,1)°. For n = 0,1,...,0™ — 1, let

n= Z;nzfol aj(n)b’ be the b-adic expansion of n. Choose a bijection ¢ : Zp :={0,1,....0— 1} = F,
with ¢(0) = 0, the neutral element of addition in F,. We identify n with the row vector

n = (ag(n), ...,am-1(n)) € Fy* with a,(n) = ¢(ar(n)), r € [0,m). (3)

We map the vectors

D = (), D) == 00Ty = NG () € Fy, (4)
r=0
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to the real numbers

o0 =" a2l = ) (5)
j=1
to obtain the point
X, = (2, .., 2l®)) € [0,1)%. (6)

The point selt {xg,...,Xpm_1} is called a digital net (over Fp) (with generating matrices
(cm) - clsm)y)

For m = oo, we obtain a sequence Xq, X1, ... of points in [0,1)* which is called a digital sequence
(over Fy,) (with generating matrices (C(1L) ... C())),

We abbreviate Co™) as C®) for m € N and for m = oco.

2.2 Duality theory (see [3, Section 7]).

Let NV be an arbitrary Fy-linear subspace of F;™. Let H be a matrix over F, consisting of sm
columns such that the row-space of H is equal to A/. Then we define the dual space N+ C Fy™ of
N to be the null space of H (see [3, p. 244]). In other words, N'* is the orthogonal complement of
N relative to the standard inner product in Fj™,

Nt ={AeF™|B-A=0 forall BeNY}.

Let ¢, ..., CH) e Fp°% be generating matrices of a digital sequence (x,(C))n>0 over Fp.
For any m € N, we denote the m x m left-upper sub-matrix of C by [C¥)],,. The matrices
[CW],,,, ..., [C™)],, are then the generating matrices of a digital net. We define the overall generating
matrix of this digital net by

[Clm = ([CVILICP ) [CW)],) € By (7)

for any m € N.
Let C,, denote the row space of the matrix [C],, i.e.,

Cm = {< cj7rar(n)>1<j<m i |0<n<b }
The dual space is then given by
C-={AecF"|B-A" =0 forall B€(,}.

Lemma A. ([3, Theorem 4.86]) Let b be a prime power. A strict digital (T, s)-sequence over Fy, is
uniformly distributed modulo one, if and only if liminf,, o (m — T(m)) = occ.

2.3 Admissible sequences.

For z = 2]21 z;b™, and y = 2321 y;b~7 where x;,y; € Zy := {0,1,.....,b
— 1}, we define the (b-adic) digital shifted point v by v = z &y = > ,5;v;677, where
v; = x; +y; (mod b) and v; € Zy. Let x = (M, ....2()) € [0,1)%, y = (yV),...,y)) € [0,1)*.
We define the (b-adic) digital shifted point v by v .= x @y = (¢ @ y®, ..., 26 @ y)). For
ni,n2 € [0,0™), we define ny ® ny :
= (n1/0™ @& n2)b™)b™.

For z = ZjZl x;b™", where x; € Zy, x; =0 (i = 1,...,k) and 1 # 0, we define the absolute
valuation |||, of z by ||z||, = b=*"1. Let |n||, = b* for n € [bF,bF+1).

Definition 6. A point set (Xxy,)o<n<pm in [0,1)° is d—admissible in base b if

S
- —m—d — (1)
ouin |%n © xpll, >0 where ||x||, := H Ha?] )
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A sequence (Xp)n>0 in [0,1)% is d—admissible in base b if inf,~p>0 |0 S k|, X ||xn © xx|, > b~
By [8], generalized Niederreiter’s sequences, Xing-Niederreiter’s sequences and Halton-type (¢, s)
sequences have d—admissible properties. In [8], we proved for all d—admissible digital (¢, s) sequences

(Xn)nzo
ND* > s
1<N Sbm ((en & Wosnan) 2 Km
with some w and K > 0. This result supports conjecture (1).

Definition 7. A sequence (x5,)n>0 i1 [0,1)° is weakly admissible in base b if

m = i n 0 Vm>1wh = H @ .
%, ocilin |%n © %k ||, > m > 1 where |x]|, £[1 @7,
Let m > 1, 7y, = [log,(km)] +m, w = (wD, .., w®), w = (wgi), ...,wg-il),
gw={A>1]af,; =w jell,nl, i€ls]} and gy #0 Yl €z, (8)

Theorem B. (see |9, Proposition|) Let (x,)n>0 be a uniformly distributed weakly admissible
digital (T, s)-sequence in base b, satisfying (8) for all m > mq. Then the set [0,71) X ... X [0,7s) is
of bounded remainder with respect to (xp)n>0 if and only if (2) is true.

2.4 Notation and terminology for algebraic function fields. For the theory of algebraic
function fields, we follow the notation and terminology in the books [14] and [13].

Let b be an arbitrary prime power, [, a finite field with b elements, Fy(z) the rational function
field over Fy, and Fy[z] the polynomial ring over Fy. For v = f/g, f, g € Fy[x], let

Voo(@r) = deg(g) — deg(f)

be the degree valuation of Fy(x). We define the field of Laurent series as
Fp((2)) := { Z a;x’ |meZ, a; € Fb}.

A finite extension field F' of Fy(x) is called an algebraic function field over Fy. Let Fj be
algebraically closed in F. We express this fact by simply saying that F'/Fy is an algebraic function
field. The genus of F/Fy is denoted by g.

A place P of F is, by definition, the maximal ideal of some valuation ring of F. We denote by
Op the valuation ring corresponding to P and we denote by Pr the set of places of F. For a place P
of F', we write vp for the normalized discrete valuation of F' corresponding to P, and any element
t € F with vp(t) =1 is called a local parameter (prime element) at P.

The field Fp := Op/P is called the residue field of F' with respect to P. The degree of a place
P is defined as deg(P) = [Fp : Fp]. We denote by Div(F) the set of divisors of F/Fy.

The completion of F with respect to vp will be denoted by F(P). Let t be a local parameter of P.
Then F(P) is isomorphic to Fp((t)) (see [13, Theorem 2.5.20]), and an arbitrary element o € F(*)
can be uniquely expanded as (see [13, p. 293])

a= Z S;t"  where Si:Si(t,oz)EFng(P).

i=vp ()

The derivative 9, or differentiation with respect to t, is defined by (see [13, Definition 9.3.1])

dt’
da > . i—
—dt = E ZSit 1. (9)

i=vp(a)



On a bounded a remainder set . .. 227

For an algebraic function field F/Fy, we define its set of differentials (or Hasse differentials, H-
differentials) as

Ap ={ydz |y € F, zis aseparating element for F//F}}
(see [14, Definition 4.1.7]).

Lemma B. ([14, Proposition 4.1.8] or [13, Theorem 9.3.13|) Let z € F be separating. Then
every differential v € Ap can be written uniquely as v =y dz for some y € F.
We define the order of a dg at P by

vp(a dB) == vp(a dB/dt), (10)

where ¢ is any local parameter for P (see [13, Definition 9.3.8]).

Let Qf be the set of all Weil differentials of F'/F,. There exists an F'—linear isomorphism of the
differential module Ag onto Qp (see [14, Theorem 4.3.2] or [13, Theorem 9.3.15|).

For 0 # w € Qp, there exists a uniquely determined divisor div(w) € Div(F'). Such a divisor
div(w) is called a canonical divisor of F/Fy. (see [14, Definition 1.5.11]). For a canonical divisor W,
we have (see [14, Corollary 1.5.16|)

deg(W)=2g—2 and ((W)=g. (11)

Let « df be a nonzero H-differential in F' and let w be the corresponding Weil differential. Then
(see [13, Theorem 9.3.17|, |14, ref. 4.35])

vp(div(w)) =vp(adf), forall P e Pp. (12)

Let a dB be an H-differential, ¢ a local parameter of P, and

adf= Y Stdte FP.

i=vp(a)
Then the residue of o df (see [13, Definition 9.3.10) is defined by
Resp(a dB) := Trg, /r, (S-1) € Fy.
Let
Resp (o) := Resp(adt).

For a divisor D of F/Fy, let £L(D) denote the Riemann-Roch space
L(D)={ye F\0]|div(y) +D > 0} U{0}. (13)

Then £(D) is a finite-dimensional vector space over F, and we denote its dimension by ¢(D). By
[14, Corollary 1.4.12],

D) ={0} for deg(D) <DO. (14)

Theorem C (Riemann-Roch Theorem). [14, Theorem 1.5.15, and 14, Theorem 1.5.17 | Let W
be a canonical divisor of F/Fy. Then for each divisor A € div(F), {(A) = deg(A)+1—g+{(W —A),

and

0(A) =deg(A)+1—g for deg(A)>2g—1.



228 Mordechay B. Levin

3. Statements of results.

3.1 Generalized Niederreiter sequence. In this subsection, we introduce a generalization
of the Niederreiter sequence due to Tezuka (see [3, Section 8.1.2]). By [3, Section 8.1], the Sobol’s
sequence, the Faure’s sequence and the original Niederreiter sequence are particular cases of a
generalized Niederreiter sequence.

Let b be a prime power and let pi,...,ps € Fp[z] be pairwise coprime polynomials over Fy.
Let e; = deg(p;) > 1 for 1 < i < s. For each j > 1 and 1 < i < s, the set of polynomials
{yijr(x) + 0 <k < e;} needs to be linearly independent (mod p;(x)) over Fy,. For integers
1<i<s,5>1and 0 <k < e;, consider the expansions

Yijoh () (@) (s —r-1
BV = E a\’(j, k,r)x
pi(z)? r>0

over the field of formal Laurent series Fy((z~1)). Then we define the matrix C(9) = (c§f2)j21,r20 by

&)= a(Q+1,kr)€F,  for  1<i<s, j>1,7>0,

where j — 1 = Qe; + k with integers Q = Q(i,7) and k = k(i, j) satisfying 0 < k < e;.
A digital sequence (xy,)n>0 over Fj, generated by the matrices cW,...,C® is called a generalized
Niederreiter sequence (see |3, p.266]).

Theorem D. (see |3, p.266| and |7, Theorem 1|) The generalized Niederreiter sequence (Xp)n>0
with generating matrices, defined as above, is a digital d—admissible (t, s)-sequence over Fy with
d=ey, t=ey—sandey=e1+ ...+ es.

In this paper, we will consider the case where (z,p;) = 1 for 1 < i < s. We will consider the
general case in [10].

Theorem 1. With the notations as above, the set [0,71) X ... X [0,7s) is of bounded remainder
with respect to (Xn)n>0 if and only if (2) is true.

3.2 Xing-Niederreiter sequence (see [3, Section 8.4 |). Let F//F, be an algebraic function
field with full constant field F, and genus g. Assume that F'/Fj has at least one rational place P,
and let G be a positive divisor of F//IF, with deg(G) = 2¢g and P ¢ supp(G). Let Py, ..., Ps be s
distinct places of F/Fy, with P; # Py for 1 <i < s. Put e; = deg(F;) for 1 < i < s.

By [3, p.279 |, we have that there exists a basis wo, w1, ..., wy of L(G) over Fy, such that

vp, (wy) =mn, for 0<u<yg,
where 0 = ng <ny < .... <nyg < 2g. For each 1 <14 < s, we consider the chain
L(G) C LG+ P) C LGH+2P) C ...

of vector spaces over Fy. By starting from the basis wo, w1, ..., wg of L(G) and successively adding
basis vectors at each step of the chain, we obtain for each n € N a basis
{wo, w1, ..., wy, /-cgi), kéi), s kﬁfe)l}

of L(G + nP;). We note that we then have

KV e LG+ ([(G—1)/ei +1)]P) for 1<i<s and j>1. (15)

Lemma C. ([3, Lemma 8.10|) The system {wo, w1, ..., wg} U {k‘y)}lgngl of elements of F is
linearly independent over Ty,
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Let z be an arbitrary local parameter at Py,. For r € Ng = NU {0}, we put

Toif
- {z if r & {no, n1,...,ng}, (16)

wy, if r =n, for some u € {0,1,...,g}.

Note that in this case vp_(z,) = rforall 7 € Ny. For 1 <i < sand j € N, we have /-c](-i) € LIG+nP)
for some n € N and also Py ¢ supp(G + nF;), hence VPOOUfJ(-i)) > 0. Thus we have the local

expansions

kj(i) = Zag?nzr for 1<i<s and jeN, (17)
r=0
where all coefficients aﬁ € Fy. Let Hy =Ny \ Ha = {h(0),h(1),...}, Ha

= {ng,n1,...,ng}.
For 1 <i < s and j € N, we now define the sequences

65?7)“ = a%(r)’ cg'Z) = (65'%705'33 ) = (ag?z)neNo\{no ..... ng} — (aé'fzb(r))TzO (18>
EPNONNG o0 NORQ) N
= (@m0 Vimot1r - Ty > Vg 11 SIS VARTC) AT o) €Ty

where the hat indicates that the corresponding term is deleted.
We define the matrices CV, ..., C®) e IFIEXN by

c =W e )T for 1<i<s, (19)

i.e., the vector cg-i) is the jth row vector of C() for 1 <i < s.

Theorem E (see [3, Theorem 8.11] and [7, Theorem 1|). With the above notations, we have
that the matrices CY,...,C) given by (19) are generating matrices of the Xing-Niederreiter
d—admissible digital (t,s)-sequence (Xp)n>0 withd =€+ ...+ es, t =g+e1+...+ €5 —s.

In order to obtain the bounded remainder set property, we will take a specific local parameter
z. Let Py € Pp, Py ¢ {P1,..., Ps, Pxo}, Py ¢ supp(G) and deg(Py) = ep. By the Riemann-Roch
theorem, there exists a local parameter z at Py, with

2 € L((29 + 1)Py — Poo) \ L((2g + 1)Py — 2P5). (20)

Theorem 2. With the notations as above, the set [0,71) X ... X [0,7s) is of bounded remainder
with respect to (Xp)n>0 if and only if (2) is true.

3.3 Generalized Halton-type sequences from global function fields.
Let ¢ > 2 be an integer

n= Zew(n)qj_l, eqj(n) € {0,1,...,¢ — 1}, and ¢4(n) = Z eqi(n)g.

i1 j>1

Van der Corput proved that (¢q(n))n>0 is a 1—dimensional l.d.s. Let

Hy(n) = (pg,(n),...,p4(n), n=0,1,2,..,

where ¢i,...,4s > 2 are pairwise coprime integers. Halton proved that (ﬁs(n))nzo is an
s—dimensional 1.d.s. (see [11]).
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Let @ = (q1,92,....) and Q; = q1¢2....qj, where ¢; > 2 (j =1,2,...) is a sequence of integers.
Every nonnegative integer n then has a unique @-adic representation of the form

o
n= miq--qi-1=n1+noq +n3qqa+ -,
j=1

where n; € {0,1,...,q; — 1}. We call this the Cantor expansion of n with respect to the base Q.
Consider Cantor’s expansion of z € [0,1) :

T = Z]oil zj/Qj, x; €{0,1,...,¢; —1}, x; # g; — 1 for infinitely many j.

The (Q—adic representation of z is then unique. We define the radical inverse function

o)

> -
(PQ(anQl"'Qj—l> ZZ &
j=1

j:1 qlqj

_ Let pij > 2 be integers (s > i > 1,j > 1), g.cd.(pik,pju) = 1 for i # j, Po = 1,

Pij=1li<k<jpin: i €18, j =1, Pi = (pi1,pi2, ) P = (P1,..., Ps).
In [5], Hellecaleq proposed the following generalisation of the Halton sequence:

Hp = (¢p,(n), .., o7, ())70- (21)

In [Te|, Tezuka introduced a polynomial arithmetic analogue of the Halton sequence :
Let p(z) be an arbitrary nonconstant polynomial over Fy, e = deg(p),

n=ap(n)+ar(n)b+ -+ am(n)b™.

We fix a bijection ¢ : Z, — F, with ¢(0) = 0. Denote v, (z) = ag(n) + ar(n)x + - - + a@m(n)a™,
where a,(n) = ¢(ar-(n)), r = 0,1,...,m. Then v,(x) can be represented in terms of p(z) in the
following way:

vn(x) = ro(z) + r1(x)p(x) 4+ - - + ri(p(x)*, with k= [m/e].

We define the radical inverse function ¢, : Fy[z] — Fy(z) as follows

o) (n (@) = ro(2) /p(2) +r1(2) /9 (2) + -+ i/ (p(2))* L.

Let p1(x), ..., ps(x) be pairwise coprime. Then Tezuka’s sequence is defined as follows

Xnp = (01 (@pl(x) (n))7 R 708(90195(90) (n)))zo:m

where each 0; is a mapping from F to the real field defined by 0;(3_ >, ajxl) = > jsw ¢ L(a;)b7.
By [Te], (xn)n>0 is a (%, s) sequence in base b.

In 2010, Levin [7] and in 2013, Niederreiter and Yeo [12]| generalized Tezuka’s construction to
the case of arbitrary algebraic function fields F'. The construction of [12] is follows:

Let F'/Fy, be an algebraic function field with full constant field Fj and genus g. We assume that
F/Fy, has at least one rational place, that is, a place of degree 1. Given a dimension s > 1, we
choose s+ 1 distinct places P,...,Ps, Py of F' with deg(Ps) = 1. The degrees of the places Pi,...,Ps
are arbitrary and we put e; = deg(P;) for 1 < i < s. Denote by Op the holomorphy ring given
by O = ﬂp?époo Op, where the intersection is extended over all places P # P, of F', and Op
is the valuation ring of P. We arrange the elements of O into a sequence by using the fact that
Or = U,,>0 £L(mPx). The terms of this sequence are denoted by fy, fi,... and they are obtained as
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follows. Consider the chain £(0) C L(Px) C L(2Px) C --- of vector spaces over Fy. At each step
of this chain, the dimension either remains the same or increases by 1. From a certain point on, the
dimension always increases by 1 according to the Riemann-Roch theorem. Thus we can construct
a sequence v, v1, ... of elements of Op such that {vg, vy, ..., vg(mPSJrl),l} is a Fy-basis of L(mPsy1).
We fix a bijection ¢ : Zj — Fp with ¢(0) = 0. Then we define

fo= Zdr(n)vr € Op with a.(n) =¢(ar(n)) for n= Zar(n)br

Note that the sum above is finite since for each n € N. We have a,(n) = 0 for all sufficiently large
r. By the Riemann-Roch theorem, we have

{f|feﬁ((m—i—g—l)PSH)}:{fn\nE[O,bm)} for m>g.

For each i = 1,..., s, let p; be the maximal ideal of Op corresponding to P;. Then the residue class
field Fip, := Op/p; has order b (see [14, Proposition 3.2.9]). We fix a bijection op, : Fp, — Zpe;.
For each ¢ = 1, ..., s, we can obtain a local parameter t; € O at g;, by applying the Riemann-Roch
theorem and choosing t; € L(kPx — P;) \ L(kPx — 2P;) for a suitably large integer k. We have a
local expansion of f, at p; of the form

Fo= Y041 withall £ € Fp, n=0,1,...
7>0

We define the map £ : Op — [0,1)° by

(Zapl fr(u) ) ZUPS w ()™ 1)

Now we define the sequence xg, X1, ... of points in [0, 1]° by x,, = &(f,) for
n=0,1,.... From [12, Theorem 1|, we get the following theorem :

Theorem F. With the notation as above, we have that (X,)n>0 s a (t, s)-sequence over Fy, with

t=g+e +..+es—s.

The construction of Levin [7] is similar, but more complicated than in [12|. However in [7], we
can use arbitrary pairwise coprime divisors D1, ..., Dy instead of places Py, ..., Ps.

In this paper, we introduce the Hellecalek-like generalisation (21) of the above construction:
Let Pp := {P|P be a place of F'/Fy}, Py, Px, € Pp, deg(Px) = 1, deg(Fp)
=eg, Py 7& Py, PiJ' € Ppforl< 73,1 <1 < s, Pil;jl 75 P,L'QJQ for 7 75 12, P,L'J 75 Py, f)i,j 75 P, for
all 4, j, nij = deg(Py;), ni; = deg(Pi;), Poj = Fy,

Pio=1,Pij= [ Pk nij=deg(Pij) = nij1+inij,nio=0. (22)
1<k<j

Let i € [0, s]. We will construct a basis (wj(»i)) ;>0 of Op in the following way. Let

Lij = L((nij +29 — 1)Px) = L(Aij), Aij = (nij +29 —1)Px, (23)
i = E((nm' + 2g — 1)Poo — ’Pi,j) = E(Bi,j), Bi,j = (nm + 2g — 1)Poo — ’Pi,j,
ZLij=L((nij+29—1)Pec —Pij-1), Bij=nij+29—1)Px—Pij-1.

)
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Using the Riemann-Roch theorem, we obtain

deg(A4; ;) =n;; +2g—1, dim(L;;) =n;; +9g, deg(B;;)=2g—1, (24)
dim(Si,j) =g, deg(Bi,j) = ’fl@j + 29 — 1, dim(‘iﬂi’j) = ’I;Lz"j + g.

Let (u ())u 1 be a Fy linear basis of £; ;. By (23) and (24), we get that the basis (u(z) )9_, can be

Ujn . Ju
extended to a basis (v](q, e ,U](?T” ugq, . 5;) of & ;.
Bearing in mind that (u§ L)M 1 is a [y linear basis of £;;, we obtain that vju ¢ £;; for
ne [1,7'%7]']. So
UJ(’ZL S ]L'i,j = ogi,j \si,j for n e [1,T'Li’j]. (25)
Let
Vig i= o | 1€t iy 1<k <G U{ull) | p= 1,9}, (26)

We claim that vectors from V; ; are Iy, linear independent. Suppose the opposite. Assume that there
exists b,(;L € IFy, such that

nz k g ) )
U+ 1 =0, where @ = Zwk, wy, = Zbk kau’ = Z b(()ILuyL (27)
k=1 p=1 pn=1

Let w; # 0 for some [ € [1,7] and let wy, = 0 for all k € [1,1).
Using (23) - (25), we get

wp € Ly =L((nig+29 —1)Ps — Piy—1) \ L((nig + 29 — 1)Po — Piy).
Applying definition (13) of the Riemann-Roch space, we obtain
wp € L((nij+29 — 1)Pog — Pig—1) \ L((ni; +29 — 1)Ps — Pi1).
But from (27), (22) and (25), we have

l J
—wlIiL—i-ﬁ—Zwk: Z wk+u'eﬁ((ni,j+2g—1)Poo—Pi,l).
k=1 k=Il+1

We have a contradiction. Hence vectors from V; ; are [y linear independent.
By (23) - (26), we have V; ; C L; ; and
J
card(V;, ank—kg—nm—i—g—dlm( ij)-
k=1
Hence vectors from V; ; are the [y linear basis of L; ;.

Now we will find a basis of L; j_o,. We claim that u(z) ¢ Li;_o4 for p € [1,g]. Suppose the
opposite. By (23) and (24), we get

ugfl S Lm_Qg N Qm’ = ﬁ((nm_gg + 29 — 1)POO) N E((nm + 29 — 1)Poo — ’Pi,j)
= E((nm_gg +29—1)Ps — Pi’j) = [:(T).

By (22), deg(T') = nij j—29+29—1—mn;; <0. Hence L(T') = {0}. We have a contradiction. Bearing
in mind that V; ; is IF, linear basis of L; j, we obtain that a basis of L; j_2, can be chosen from the
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i (@) (@) (@
set (vgz)l, ST vjfl, s vj?%i’j)

=Vi;\ {uj,u | p=1,...,9}. From (23) - (25), we get

v,(:L €Lk CLijog for pell,ngg) and 1 <k <j—2g.
Hence vectors
(4)

(4) (1) (4) (4) ~(1) ~(1) : ~(1) _

vlfl, ”'7vll,m,1’ ...,vjl_QgJ, ”ﬂ”jl—Qg,m,j,zg’ jfl, ...71)]-?9 with vjfu =g

1 <pu<g, for some p € [1,n;;] and k € (j — 2g, j] are an F, linear basis of L; j_a4 (0 < i < s).
Therefore (1),?L)1<M<nZ wr>y 15 the Fy linear basis of O = U;>1L; ;. We put in order the basis

—="",R,k=Z

7
(’U](ﬁ,L)1<“<nl L k>1 as follows

Py S v
’

wl =0l with nig=0,1<p < 0<i<s, (28)

So we proved the following lemma :

Lemma 1. For all i € [0, s] there exists a sequence (w@)jzo such that (w§i))j20 is a By linear

J . .
basis of O and for all j > 1 a Iy linear basis of L; j can be chosen from the set {w((]l), oy w® }.

N j+2g—1

Bearing in mind that ( ]@)j>0 is the Iy, linear basis of Op, we obtain for all 7 € [1,s] and r > 0

()

that there exists ¢; . € Fy and integers l( ) such that

cg?j)_l =1, and cg?T) =0forj—1#nr. (29)
Let n =" 50ar(n)b". We fix a bijection ¢ : Zj — F, with ¢(0) = 0. Then we define

fn= Zar ) € O with a,(n) = ¢(a,(n)) for n=0,1,.... (30)
By (29), we have for i € [0, s]

fo= 3 an(m) Yoy =3 wly Y a(n Zyw wi? (31)

where y(i)- = ZTZO dr(n)cg'?- € Iy, yfloj) = C_ljfl(n)-

n?]
We map the vectors

D = ) (32)
to the real numbers
=S "o )/
j>1
to obtain the point
x, = (21, .., 2l8)) € [0,1)°. (33)

Theorem 3. With the notations as above, the set [0,71) X ... X [0,7s) is of bounded remainder
with respect to (Xp)n>0 if and only if (2) is true.
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Remark. It is easy to verify that Hellekalek’s sequence and our generalized Halton-type
sequence (Xp)n>o are l.d.s if

lim supm™*° ZS: ilog(piyj) < oo and limsupm™° i: ideg(Pm) < o0.

m—00 i=1 =1 m—»00 =1 j—1

3.4 Niederreiter-Xing sequence (see [3, Section 8.3 |). Let F//F, be an algebraic function
field with full constant field Fj, and genus g. Assume that F/F, has at least s + 1 rational places.
Let P, ..., Ps11 be s+ 1 distinct rational places of F. Let G, = m(P1+ ...+ Ps) — (m—g+1)Ps11,
and let ¢; be a local parameter at P;, 1 <i < s+ 1. For any f € £L(G,,) we have vp,(f) > —m, and
so the local expansion of f at P; has the form

o0
f=Y fijtl, with fi;€F, j>-m, 1<i<s.

j=—m

For 1 <i <'s, we define the Fy-linear map ,,; : L£(Gnn) — F}* by

Ymi(f) = (fi—1, s fi—m) € Fy', for fe L(Gn).

Let
My = M (Pr, ..., Ps; Gi) = {(wm,l(f)v a@Z’m,S(f)) eFy” | f € L(Gm)}-

Let C,....C0) ¢ F;°*>° be the generating matrices of a digital sequence x,(C)n>0, and let
(Cm)m>1 be the associated sequence of row spaces of overall generating matrices [Cl,,, m = 1,2, ...

(see (7)).

Theorem G. (see [3, Theorem 7.26 and Theorem 8.9]) There exist matrices CV, ..., C®) such
that (x,(C))n>0 is a digital (t,s)-sequence with t = g and Cry = My (P, ..., Ps; G form > g+1,
s> 2.

In [8, p.24], we proposed the following way to get x,(C)n>0 :

We consider the H-differential dtsy;. Let w be the corresponding Weil differential, div(w) the
divisor of w, and W := div(dtsy1) = div(w). By (9)-(11), we have deg(W) = 2g — 2. We consider a
sequence g, U1, ... of elements of F' such that {90, 01, ..., D((m—g+1)P, .1 +W)—1} is an Fy, linear basis
of Ly, :=L((m — g+ 1)Psy1 + W) and

Up € Lyy1 \ Ly, vp,(0p) =-1"+9g—2,7r>g, and Uppy0-g=1, 0 ; =0 (34)
for 2<j <r+2—g, where

Uy 1= Z @r,jt;ij-l for ©,; €, and r > g.
J<r—g+2

According to Lemma B, we have that there exists 7, € F (1 < ¢ < s) such that
dt3+1 = Tidti, for 1 < 1 < s.
Bearing in mind (10), (12) and (34), we get

Vp, (i)jTi> = I/P,L.(T'JjTidti) = VPL-(T')jdts—i-l) > vp, (diV(dt5+1) — W) = 0, j > 0.

We consider the following local expansions

€F,, 1<i<s, j>1. (35)

oo
VpT; = Zc'gfltg_l, where all 0'52
7j=1
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Now let C(1) = (C'g'fl)j—l,rzoa 1 <4 <s,and let (C#L)mzl be the associated sequence of row spaces

of overall generating matrices [C],,, m = 1,2, ... (see (7)).

Theorem H (see [8, Theorem 5]). With the above notations, (xn(C))n>0 4s a digital
d—admissible (t,s) sequence with d = g+s, t = g, and C;z = M, (Pi, ..., Ps; Gy) for allm > g+ 1.

We note that condition (34) is required in the proof of Theorem H only in order to get the
discrepancy lower bound. While the equality C;5 = M., (P, ..., Ps; Gp) is true for arbitrary sequence
09, U1, ... of elements of Iy, such that for all m > 1

{00,901, s Vo((m—g+1)Poyr+w)—1} 18 @ Iy linear basis of Ly,. (36)

In order to obtain the bounded remainder property, in this paper, we will construct from (05, )n>0
a special basis (Up)n>0 as follows:

Let Py € Pp, Py # P; (i=1,...,s+ 1), and let ¢y be a local parameter of Py. For simplicity, we
suppose that deg(FPy) = 1. Let

Lyp=L({(m—g+1)Ps1+ W), ZLn=L(M4+2)Psi1+W —mB),
L =L(Mm+2)Psi1 + W — (m+1)F). (37)

It is easy to verify that

deg(gm) = 2g, dlm(jm) =g+1, deg(gm) =29—1, dlm(gm) =9,
form >0, deg(Ly,) =m+g—1, dim(L,,) =m, form >g. (38)

Using the Riemann-Roch theorem, we have that there exists
Wi € L\ Ly, and Wiy, € Lipyggya, m=0,1,.... (39)

According to Lemma B, we have that there exists 79 € F', such that dtsy1 = mpdtg.
Let u € Ly, = L((m — g+ 1)Ps1 + W) with m > 0. Bearing in mind (10), (12), (37)-(39) and
the Riemann-Roch theorem, we get

vp,(uty) = vp,(urpdty) = vp,(udtsy1) = vp,(div(u) + W) > 0 (40)

and
vpy(wmm0) = vpy (div(wy,) + W) =m for m=0,1,.... (41)

We consider the sequence (9;);>0 (34). By (36), (bj)?:f)l is an Fy linear basis of L,,. Let

j—1
Vi ={0; + ];)bki)k | by € Fy, k€10,7)}, a(y) = iréz%/)]( vp, (vT0). (42)

It is easy to verify that a(j) # a(j) for ¢ # j. We construct a sequence (¥;);>0 as follows :
Vg = Vg, i}j S {1) € VJ | VPO(UT()) = Oé(])}, j=12,... (43)

It is easy to see that (9;);>0 satisfy the condition (36). Bearing in mind (40)-(42) and that ¢; € Ly,
for j < m, we get

vp, (V570) # vp, (Ur10) for j # k, and vp, (¥;70) = a(j) >0, 5> 0. (44)
Hence, for all f € L,,, we have

vp,(f10) € {a(0),(1),...} =: H.
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Taking into account (41) and (44), we obtain
H={n|n>0}=N,. (45)

Suppose that «(j) > j+g. By (36) - (38), ¥; € Ljy1 = L((j — g+ 2)Ps1 + W). Hence 9; € L(X),
with X = —g+2)Psp1+W—-(+9g+1)P.

Bearing in mind that deg(Fy) = deg(Ps+1) = 1 and deg(W) = 2g — 2, we get deg(X) = —1.
Therefore £(X) = {0} and we have a contradiction. Hence

a(j) <j+g. (46)

By (45), we have that for every integer k& > 0 there exists 7 > 0 with «(r) = k. Therefore the map
a: Ny — Ny is an isomorphism. Hence there exist integers (k) > 0 such that

B(k) = a~Y(k), a(B(k)) = k and B(a(k)) =k for k =0, 1, ... (47)
From (46), we get for j = A(k)
k=a(Bk) =a(j) <j+g=pBk)+g. (48)
Let
Bj={r=0]ar) <j} (49)
Taking r = B(k), we get a(r) = k and

B; ={p(0),8(1),....8(j — 1)} for j=>1. (50)

Suppose j ¢ Bjyg+1 for some j, then j = (j+ g +1) for some [ > 1. Using (48) with k = j +g+1,
we obtain

JHl=0G+g+)—g<pl+g+1) =17

We have a contradiction. Hence
J € Bjygq1 forall j>0.

We consider the local expansion (35), applied to i =0 :

Vel j>1, O =), 1,50 (51)

)

o
. . .(0),5—1 .(
VpTo = E Cj,rtO , where ¢
j=1

Let (xi?)(c'*@)))nzo be the digital sequence generated by the matrix C'(©),

Now we consider the matrix C) = (c‘ﬁ)j,LQo, obtained from equation (35) and (51), where
we take ¥, instead of 0, (i =0,1,...,s). Using Theorem H, we obtain that (:CS))(C’(O)), %, (C))n>0 is
the digital (¢, s + 1)-sequence with t = g. Therefore we have proved the following lemma :

Lemma 2. There exists a sequence (V;)j>0 such that (:cgo)(é(o)),xn(é))nzo is the digital
(t,s + 1)-sequence with t = g and {0,1,...,m — 1} C Byy44.

In §4.4, we will prove

Theorem 4. With the notations as above, the set [0,71) X ... X [0,7s) is of bounded remainder

with respect to (xn,(C))n>0 if and only if (2) is true.
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4. Proof

Consider the following condition

lim inf(m — T(m)) = occ. (52)
m—r0o0
We will prove (52) for the generalized Halton sequence in §4.3. For other considered sequences,
assertion (52) follows from Theorem D, Theorem E and Theorem H.
The sufficient part of all considered theorems follows from Definition 2 and (52). Therefore we
need only consider the case of necessity.

4.1 Generalized Niederreiter sequence. Proof of Theorem 1.

From Theorem D, we have that (x,)n>0 is the uniformly distributed digital weakly admissible
(t,s)-sequence in base b. By Theorem B, in order to prove Theorem 1, we need only to check
condition (8). By ( 8, p.26, ref 4.6 ), we get

-1

@) . Yik(i,5)(2) — _ r+2\ Yik(i,5) ()
i = Poli(;bfl( pi(z)! — ar(n)z ) N Polj,isil( pi(z)! n(:z:)) (53)
m—1 ' '
with I = Q(i,j) + 1, n(z) = aj(n)x ™ and a;(n) = PRes 1(n(:c)a:‘”‘l).
i=0 et

We take 9, jx(x) = 2™y, jx(x) instead of y; j 1 (x). Now using Theorem D, we obtain from (53),

(4) - (6) that (Xp)g<p<pn is a (t,70, s) net for 1 = s7,, +t with a:iL)J qﬁ_l(yx)]) a:l(ﬂ,)mj Bearing

in mind that %X, = xpm,, we obtain (8). Hence Theorem 1 is proved. =

4.2 Xing-Niederreiter sequence. Proof of Theorem 2.

By Theorem B and Theorem E, in order to prove Theorem 2, we need only to check condition
(8).
From (3) - (6), we get that in order to obtain (8), it suffices to prove that
#{n e [0,6M) |y =l j e [1,7,] forie[l,s], and aj_1(n) = u”
j€ll,m]} >0, with M = s7, + (m + 29)(2g9 + 1)eg + mo, (54)

m0:2g+2+61+-~~+es,forallug-i)EIFb.
Let

5(F) = {1, if T is true,

0, otherwise.

Let k) = zx) = 2"0) for j € Hy with Hy = No\ Hy = {h(0),h(1),...}, Ha = {no,n1,...,ng}.
From (17), we have
oV =§(j-1=reH) j>L

Let C(O) = al })L( By (4), (5) and (20), we get

\_/

O =5 -1=hr), 4= @) = a; 10, (55)

20 =3 apgnym)/p and K =200 € L(a(j - 1)(29+ DR), j > 1.
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So, we obtain a digital s + 1-dimensional sequence (:U%O),xn)nzo.
Let n = Zi\/[o ar(n)b" and let

i= Y anb, =Y a b, U={nne0,bM)},U = {in € [0,6)}.
reHy reHs
By (4), (18) and (55), we get

by = D ar(mel = 3 @+ 3 ar(mel) = il + i,

r>0 reH; reHs

. 0 _ 0 .
i€ (L8], Yy =Yp, = an-1)(n), yf”) =0, j=1

We fix 71 € U. Let

Aug={n € [0,6M) [y =ul j e [L,7m), i € [1,3],

0 0 . .
yy(w)'zug-),‘]E[l,m], n=n}. (56)
It is easy to verify that statement (54) follows from the next assertion
#Awi >0 Vi) eF,, ael. (57)

Taking into account that yff)] = yff)] + y,(;)], we get

Awi={neU|yh =al, je L), ieLs), yy)=ul”, jel,m]},
where ﬂ§ Q- u( D _ yé)]
According to (4), (18) and (55), in order to prove (57) , it suffices to show that the vectors
mar(el?) = (), el ) € B, with 1<j<d;, 0<i<s, (58)

di = T, 1 <1 < s and dy = m, are linearly independent over Fy.
To prove this statement, we closely follow [3, p.282]. Suppose that we have

m

S 07l +ZZ]’ (y—0eFM
7j=1 i=1 j=1
for some f1” € Fy with Y271 |67 (£17)] + X5, 7 1o (£7)] > 0.
We put fr(o) = 0 for r > m. Hence

Zf(o +ZZf ) =0 for rel0,M).
i=1 j=1
By (18) and (55), we obtain ¢/} = al)  for 1 <i < sand ¢} =4(j —1
= h(r)). Therefore

S

0= 7% —1=nh(r +22f a0 <0>+1+22f“ ) (59)

7j=1 =1 j=1 =1 j=1
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for r € [0, M).
Now consider the element o € Fy, given by a = a1 + ag, where

th(r +1Zh(7’ Q2 = sz( sz Zav Ny Wy (60)

i=1 j=1 i=1 j=1 u=0

Using (17), we get

ZZf”(Z%m o) = 3 (3000

=1 j=1 u=0 reH; =1 j=1

From (18), (59) and (60), we obtain

D IHNED I LT EED WIS 3 ST R

r>0 =1 j=1 i=1 j=1

Hence
vp,.(a) > M. (61)

Furthermore, (15), (16), (20), (55) and (60) yield

s

a1 € L((m+29)(29 + VR, a2 € £(G+ Y (Irnfei] +1)P). (62)
i=1

Combining (61) and (62), we obtain

o€ L'(G + i([Tm/ei] + )P+ (m+29)(2g+1)Py — MPOO>.
i=1

But from (54), we have

s

deg (G + Z([Tm/ei] + )P+ (m+29)(29g+1)Py — MPOO>
i=1

S
=29+ Y ([rm/ei] + Ve + (m +29) (29 + )eo — M
=1
<29+ st +er+--+es+ (m+2g9)(29 + 1)eg — M < 0.

Hence .
E(G + 3 ([rm/ei] + ) Pi + (m +2g)(2g + 1) Py — MPOO> — {0}
i=1
by (14) and therefore we have oo = 0.

y (15), we have ypo(k:](z)) > 0 and vp,(w,) > 0 for all 4,7, u. According to (60), we get
vp,(a2) > 0. Suppose that a; # 0. Taking into account that zp = z,, = wo # Zp(ry for r >0,
we obtain from (60) that upo(al) < 0. We have a contradiction. Hence a; = 0 and a2 = 0. From
Lemma C, we conclude that f = 0 for all 7, j. Hence the system (58) is linearly independent over
F.

Thus (54) is true and (xp)n>0 satisfies the condition (8). By Theorem E, (x;)n,>0 is the
d—admissible uniformly distributed digital (¢, s)-sequence in base b. Applying Theorem B, we get
the assertion of Theorem 2. m
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4.3 Generalized Halton-type sequence. Proof of Theorem 3.
Lemma 3. The sequence (Xp)n>0 is uniformly distributed in [0, 1)°

Proof. By Lemma A, in order to prove Lemma 3, it suffices to show that m — T'(m) — oo
for m — oo. Let Ry = maxi<i<s ik, k = 1,2,... . We define j;; from the following condition
Mijiy, 2 B > nij 1. Let Rp =350 iy,

We consider the definition of (¢,m, s) net. Suppose that for all

S
E= H[aib—div (ai + 1)b d 7 with a; = Zal] B a Qg5 S Zba dz > Oa
=1

1<1<s,dy+---+ds = Ri, we have

#{n € [0,6™) | 2 € B} = #{n € [0,5™) | o) =, j € [L.di),i € [1, ]}

= vt where m > Ry, + (39 + 3)eo, Ugi) = ¢ '(aiy) € Fy, (63)

jell,dl, iell,s].

By Definition 2, we get that (x,)n>0 is a (7, s)-sequence in base b with m — R(k) > T'(m) for
m > Ry, + (3¢ + 3)eg. Bearing in mind that R(k) — oo for k — oo, we obtain the assertion of
Lemma 4.

Taking into account that d; < Ry < n;j,, for 1 <i <'s, we get that in order to prove (63), it
suffices to verify that

#n e [0,6) |yl =l j e [Lniy,,), i€ [L,s]} = b (64)

J )

for all ul” € Fy, with j € [1,n;,,], i € [1,5].

Let M = (mpeg + 29 — 1) Pso with mg = [m/eg] — 29 — 1.

By Lemma 1, we obtain that there exist sets H; and Hy such that H; U Hy = {0,1,....m — 1},
HiNHy, =0, (wT )rem, is the Fy linear basis of £(M) and #Hy = m — mpeg — g =: g1, with
g1 —eo(2g+1) — g € 0,e0). Let n = 3" a,(n)b" and let

=Y a )b, =Y a ()", U={nne[0,b™}, U= {iin € [0,b™).

reH, rcHo

So

LM) < n=mn, forne|0,b").

Il
ﬁMi
§I

We fix 71 € U. Let

Aug = {n e [0,0™) |y =, je Lniy,, ), i€ 18], iv=n}.

It is easy to see that statement (64) follows from the next assertion
#Auz = b7 Vu()er, nel. (65)

Taking into account that yff)] = yff)] + y.(_i). we get

n,3’

Aua={ne Uy =4l jellniy,l il s),
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(D) _ - (0) (@)
where 4" = ;" —yg . Let

N 1 S S R
J0) = Gt ethtlh, ) € FR.

We consider the map ¢ : £(M) — Ff’“ defined by
O(f) == (fn) where L(M)> f=f, withsomen eU.

Note that QZ is a linear transformation between vector spaces over Fy. It is clear that in order to
prove (65), it suffices to verify that ¢ is surjective. To prove this, it is enough to show that

dim (E(M)/ker(i)) = Ry, (66)

Using (23), (25) and (28), we get that wl(i) =0 (mod P; ;) for

[ > nij,,. By (23), (25), (28), and (31), we derive that y. s = 0 for all j € [1,n;,,] if and only if
f=fun= 0(mod Pijii) for i € [1,s].

From the definition of @E it is clear that

ker(P) = L(H), with H=M-Y P;

i=1

ni,]’i_’k :

Using Riemann-Roch’s theorem, we obtain that dim(M) = mgeg + g = m — g1, where
deg(M) = mpep +2g — 1 and

S
deg(H) = moeg +2g — 1 —Znihji’k =m+g—1—g — Ry
i=1

Hence dim(ker()) = m—Ry—g1 > (3g+3)eo—g1 > (39+3)eo—(2g+2)eg—g > 1, dim(M) = m—g;

)

and (66) follows. So 1 is indeed surjective. Therefore (65) and Lemma 3 are proved. m

Lemma 4. The sequence (Xn)n>0 satisfies condition (8).

Proof. Let

s

M = ([Ml/eo] + Sg + ]‘)607 Ml = Zni7ji,7n Where nji,m 2 Tm > nji,m_l (67)
=0
for i € [1, 5], noj,.,, = ([m/eo] + 1)eo jom = [m/eo] + 1.
Bearing in mind that yg); =a;—1(n), (j =1,2,...), we get from (32) - (33), that in order to obtain
(8), it suffices to prove that

#{n e 0,6M) |y =l jellngy,,] for ie0,s]} >0 (68)

for all u € Fy. Let M = (([Mifeo] + 1)eg + 29 — 1)P. By (22), deg(Px) = 1. Hence
deg(M) = ([M1/eo] + 1)eg 4+ 29 — 1. Using Riemann-Roch’s theorem, we obtain that

dlm(./\/l) = ([Ml/e[)] + 1)60 +g9g=Mi+¢g1+g with g¢g;:= ([Ml/eo] + 1)60 — M. (69)

By Lemma 1, we get that an Fy, linear basis of £(M) can be chosen from the set {wéo), vy wg\g)_l

with M = ([M1/eo] + 39 + 1)eo = no (a1, /eo)+3g+1-
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Let n = M P an(n)b” and let f, = Zfiﬁl &T(n)wgo). We get that for all f € £(M) there
exists n € [0,b6M) such that f = f,.
From (31), we have

fn = Zys,)jwj('i_)p 0<i1<s. (70)
j=1
Let o
V() = Ot o8t ) €, (1)

Consider the map ¢ : L£(M) — Fp"* defined by
O(f) :==¢(fn) where f=f, withsomen e [0,bM).

We see that in order to obtain (68), it suffices to verify that Y is surjective.
To prove this, it suffices to show that

dim (L(M)/ker(¢))) = M. (72)

Using (23), (25) and (28), we get that w,(:) = 0 (mod Py, ,,) for k > n; . From (70), (23),
(25) and (28), we derive that yff’)j =0 for all j € [1,n;,,,] if and only if f, = 0 (mod P, ) for
i€ |0,s]. '

From the definition of 1 it is clear that
ker(y)) = L(H), with H=M-Y P
=0

7j7l,m’
Using (67), (69), (22) and Riemann-Roch’s theorem, we obtain that

s
deg(H) = M1 + a0 +2g -1 Zn@ji,m =01 +2g -1
=0

and dim(ker(v))) = g1 + g. By (69), dim(M) = M; + g1 + g. Hence dim (ﬁ(/\/l)/ker(@[})) = M.
Therefore (72) is true. So 9 is indeed surjective and (68) follows. Therefore Lemma 4 is proved. =

Lemma 5. The sequence (xp)n>0 is weakly admissible.

Proof. Suppose that 2 = J,‘](j) for some 4, n, k. From (71) and (32)-(33), we get that yff)] = y,(:z
for j > 1.
Using (70), we have
fn = nyf)](n)wg(lzl
Jj=1

(0)

Hence f, = fi. Taking into account that (wy, ’)r>0 is an Fy linear basis of Op, we obtain from (30),
that n = k. By Definition 7, Lemma 5 is proved. m

Applying Theorem B, we get the assertion of Theorem 3. m

4.4 Niederreiter-Xing sequence. Proof of Theorem 4.

Similarly to the proof of Lemma 5, we get that (x,)n>0 is weakly admissible. By Lemma 2,
(xn)n>0 is the digital uniformly distributed sequence.

According to (4), (5), (8) and Theorem B, in order to prove Theorem 4, it is enough to verify
that

#{n € 0,0y =ul?, j € [1,7l,i € [1,5], aj(n) = 0 for j € [0,m)} >0 (73)
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for all ugi) € Fy, where M = s7,, +m + 29 + 2.

Bearing in mind that by Lemma 2 (x%o),xn)nzo is a (g, s + 1) sequence, we obtain

#{n e 0,0 = ol j e Lmnlie L), 4 =0, € [Lm+g+2]} >0

] ’ n7

for all u}) € .
T herefore in order to prove (73), it suffices to verify that

if y ©) — Oforje[l,m+g+2 then a;(n)=0forje[0,m). (74)

n]

Now we will prove (74) :
From (35) and (43), we have 9,79 = ZJ>1 gr)tj !
= a(r). Hencecg)_()for] < a(r )andc )#Ofor]:oz(r)%-l.

with vp, (0,70)

Using (4), (47) and (49) we obtain Cg; 7é 0 and
vy = Y amd) = 3 amd]) = 3 ame), iz
r>0 a(r)<j reB;
We apply induction and consider the case j = 1. By (50), we see that agy(n) = 0 if yf@o% = 0.
Suppose that aggy(n) = -+ = agq_1)(n) = 0 if nyO])L = = yflol) = 0 for some [ > 1 .Now let
Z/r(LO% == yS)Z) = y,(fl)H = 0. We see

0 _ .(0 _ .(0 _ .(0
0= yé,l)ﬂ = Z aT(n)cl(-i—)l,r = Z ar(”)cl(Jr)l,r = “ﬂ(l)(”)cl(+)1,5(l)‘
r€By1 r€B1\B;

Bearing in mind that cl(Jrl A0 # 0, we get Gﬁ(l)( n) = 0.

Therefore if yT(”) =0forall1<j<m+g+1,then ag;_1)y(n) =0forall 1 <j<m+g+1. Using
Lemma 2, we get a,(n) =0 forall 0 <r <m — 1.
Hence (74) is true and Theorem 4 follows. m
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AnHOTanusa

[MepuoguaHoCTh ¥ KBA3UIEPUOIUIHOCTD (DYHKIIMOHATHHBIX HEIPEPBIBHBIX JIpo0eil B rume-
pasunrudeckom 1oie L = Q(x)(y/f) umeer Gosiee Cil0xHYI0 NPUPOJLY, YEM I€PUOJMYHOCTD
YUCJIOBBIX HEMPEPBIBHBIX IpPO0Ei 3JIeMEHTOB KBAAPATHIHBIX mojeil. VI3BecTHO, 9TO mepuoand-
HOCTh HeMpepbuIBHO 1pobu axementa /f/h9TL, mocTpoennoit Mo HOPMUPOBAHMIO, CBAZAHHOMY
C MHOTOYWJIEHOM h TIepBO¥ CTEMeHHU, SKBUBAJIECHTHA HAJUIUIO HETPUBUAJIBHBIX S-€IUHUIL B MTOJIE
L poma g u 9KBUBAJIEHTHA HAJIUYUIO0 HETPUBUAIBHOTO KPYUEHHs B TPYIIE KJIACCOB JIMBH30-
poB. B nmamHoli crarbe HalileH TOYHBIM NMPOMEXKYTOK 3HAYEHUN S € 7 TAKUX, 9TO IJIEMEHTHI
Vf/h® mmeroT mepromIeckoe pa3ioskenne B HEMPEPBIBHYIO 1pobb, Tae f € Q[z] — cBobommsbIit
OT KB3JPATOB MHOTOUYJIEH YeTHOW cremenu. /s MHOro4JIeHOB [ HEYETHOU CTemeHu mpobire-
Ma TIePHOJMYHOCTH HETPEPBIBHBIX 1pobeil smemenTor Buma +/f/h® pacemorpena B cratbe [,
mpUYeM TaM JIOKA3aHO, 9TO JJIMHA KBA3UIIEPUOIA HE MPEBOCXOIUT CTereHu (yHIAMEHTATEHON
S-eauuuipt nosist L. TIpobiiema 11epuoiM4HOCTH HellpepbiBHbIX J1pobeit 31emMenTos suja +/ f /h®
JIJIsi MHOPOYIEHOB [ 9eTHOH CcTereHu sBisercs 0oJiee CI0KHON. DTO MOMY9EPKUBACTC HAMIEH-
HBIM HaMU IPUMEPOM MHOTOUJIeHa, f cremnenu 4, 171 KOTOPOrO0 COOTBETCTBYIOIINE HEMTPEPHIBHBIE
JIpOOM MMEIOT aHOMAJIBHO DOJIBINYIO JJHHY Tepnosa. Panee B cratbe [5] Takrke ObIM HaiiIeHBI
MPUMEPHI HENPEPBIBHBIX APOOEil 3IEMEHTOB MUIEPILTUITHIECKOro nost L ¢ IIuHON KBa3ure-
PHOJA 3HAYUTETHLHO TPEBOCXOIUBINEH CTereHb (DYHIAMEHTATBHON S-eauHuIlbl mosis L.

Karwuesvie cao6a: HETPEPBIBHBIE Apo0H, (DYHIAMEHTAIbHBIE eIUHUIBI, S-€IUHUIBI, KPYUe-
HU€ B SKOOMAHAX, TUMEPIJIIUITHIECKUE MO, IUBU30PHI, IPYIIA KJIACCOB IUBU30DOB.
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