ЧЕБЫШЕВСКИЙ СБОРНИК

Том 20. Выпуск 1.

УДК 512.541

 $DOI\ 10.22405/2226\text{--}8383\text{--}2018\text{--}20\text{--}1\text{--}212\text{--}221$

Умножения на смешанных абелевых группах

Е. И. Компанцева

Компанцева Екатерина Игоревна — доктор технических наук, доцент, профессор кафедры алгебры, Московский педагогический государственный университет; профессор кафедры теории вероятностей и математической статистики, Финансовый университет при Правительстве $P\Phi$, г. Москва.

e-mail: kompantseva@yandex.ru

Аннотация

Умножение на абелевой группе G — это гомоморфизм $\mu:G\otimes G\to G$. Абелева группа G называется MT-группой, если любое умноженеие на ее периодической части однозначно продолжается до умножения на G. MT-группы изучались во многих работах по теории аддитивных групп колец, но вопрос об их строении остается открытым. В настоящней работе для MT-группы G рассматривается сервантная вполне характеристическая подгруппа G_{Λ}^* , одно из основных свойств которой заключается в том, что подгруппа $\bigcap_{p\in\Lambda(G)} pG_{\Lambda}^*$ является ниль-идеалом в любом кольце с аддитивной группой G (здесь $\Lambda(G)$ — множество всех простых чисел p, для которых p-примарная компонента группы G отлична от нуля). Показано, что для любой MT-группы G либо $G = G_{\Lambda}^*$, либо факторгруппа G/G_{Λ}^* несчетна.

Ключевые слова: Абелева группа, умножение на группе, кольцо на абелевой группе.

Библиография: 16 названий.

Для цитирования:

Е. И. Компанцева Умножения на смешанных абелевых группах // Чебышевский сборник, 2019. Т. 20, вып. 1. С. 212–221.

CHEBYSHEVSKII SBORNIK

Vol. 20. No. 1.

UDC 512.541

DOI 10.22405/2226-8383-2018-20-1-212-221

Multiplications on mixed abelian groups

E. I. Kompantseva

Kompantseva Ekaterina Igorevna — doctor of engineering, professor, Professor, Department of algebra, Moscow state pedagogical University; Professor of the Department of probability theory and mathematical statistics, Financial University under the Government of the Russian Federation, Moscow.

 $e ext{-}mail: kompantseva@yandex.ru$

Abstract

A multiplication on an abelian group G is a homomorphism $\mu: G \otimes G \to G$. An mixed abelian group G is called an MT-group if every multiplication on the torsion part of the group G can be extended uniquely to a multiplication on G. MT-groups have been studied in many articles on the theory of additive groups of rings, but their complete description has not yet been obtained. In this paper, a pure fully invariant subgroup G_{Λ}^* is considered for an abelian MT-group G. One of the main properties of this subgroup is that $\bigcap_{n \in \Lambda(G)} pG_{\Lambda}^*$ is a nil-ideal

in every ring with the additive group G (here $\Lambda(G)$ is the set of all primes p, for which the p-primary component of G is non-zero). It is shown that for every MT-group G either $G = G_{\Lambda}^*$ or the quotient group G/G_{Λ}^* is uncountable.

Keywords: Abelian group, multiplication on a group, ring on an abelian group.

Bibliography: 16 titles.

For citation:

E. I. Kompantseva, 2019, "Multiplications on mixed abelian groups", *Chebyshevskii sbornik*, vol. 20, no. 1, pp. 212–221.

Умножением на абелевой группе G называется гомоморфизм $\mu: G \otimes G \to G$, все умножения на группе G образуют группу $MultG = Hom(G \otimes G, G)$. Абелева группа G с заданным на ней умножением называется кольцом на G.

В [1] показано, что любое умножение на периодической абелевой группе G определяется частичным умножением $\mu: B \otimes B \to G$ на базисной погруппе B группы G и, более того, $Mult\ G \cong Hom(B \otimes B, G)$. Это значит, что для задания умножения на периодической группе достаточно указать попарные произведения элементов некоторго ее базиса. Этот факт позволяет строить и изучать кольца не только на периодических группах, но и на смешанных абелевых группах G, обладающих следующим свойством: любое умножение на периодической части T(G) группы G однозначно продолжается до умножения на всей группе. Такие группы называются MT-группами, задача их изучения поставлена в [2, стр. 34, проблема 38], ее решению посвящены работы [3,4,5] и др. Класс MT-групп достаточно широк, он содержит, например, урегулированные копериодические группы G и все их вполне характеристические подгруппы, содержащие T(G). Очевидно, для MT-группы G имеют место изоморфизмы $Mult\ G \cong Mult\ T(G) \cong Hom(B \otimes B, T(G))$.

Многие работы по теории аддитивных групп колец посвящены подгруппам абелевых групп с так называемыми «абсолютными свойствами»: абсолютным идеалам [6–9], абсолютным ниль-идеалам (нильпотентным идеалам) [10–12] и тп. Абсолютным идеалом (ниль-идеалом, нильпотентным идеалом) абелевой группы G называют ее подгруппу, которая является идеалом (ниль-идеалом, нильпотентным идеалом) в любом кольце на G. В [12] для смешанной абелевой группы G определена сервантная вполне характеристическая подгруппа G_{Λ}^* , одно из основных свойств которой заключается в том, что если G-MT-группа, то $\bigcap_{p \in \Lambda(G)} pG_{\Lambda}^*$ является ее наибольшим абсолютным ниль-идеалом, здесь $\Lambda(G) = \{p \mid T_p(G) \neq 0\}, T_p(G) - p$ -примарная компонента группы G. Однако вопрос о возможном индексе подгруппы G_{Λ}^* в MT-группе G оставался открытым. В настоящей работе показано, что для любой MT-группы G либо $G = G_{\Lambda}^*$, либо факторгруппа G/G_{Λ}^* несчетна.

Все группы, рассматриваемые в работе, абелевы, и слово «группа» всюду в дальнейшем означает «абелева группа». Умножение $\mu:G\otimes G\to G$ на группе G часто обозначается знаком \times и т.п., то есть $\mu(g_1\otimes g_2)=g_1\times g_2$ для всех $g_1,g_2\in G$. Группа G с заданным на ней умножением \times определяет кольцо на группе G, которое обозначается (G,\times) . Множества целых, целых неотрицательных, натуральных и всех простых чисел обозначаются $\mathbb{Z},\mathbb{N}_0,\mathbb{N}$ и \mathbb{P} соответственно. Элемент прямого произведения $\prod_{i\in I}G_i$ записывается в виде $(g_i)_{i\in I}$, где $g_i\in G_i$, или в виде

 (g_1,g_2,\cdots) , если множество I счётно. Пусть $\mathbb{P}_1\subseteq\mathbb{P}$, группа G называется \mathbb{P}_1 -делимой, если она p-делима для любого $p\in\mathbb{P}_1$. Для произвольной группы G обозначим: $T_p(G)-p$ -примарная компонента группы G, $\Lambda(G)=\{p\mid T_p(G)\neq 0\},\ G^1_{\Lambda}=\{g\in G\mid (\forall p\in\Lambda(G))\ h_p(g)=\infty\},\ \bar{G}_{\Lambda}=G/G^1_{\Lambda},\ \bigotimes^n G-n$ -ая тензорная степень группы G. Если $g\in G$, то $\bar{g}=g+G^1_{\Lambda}\in \overline{G}_{\Lambda},\ h_p(g)-p$ -высота элемента g, o(g)— порядок элемента g.. За всеми определениями и обозначениями, если не оговорено противное, мы отсылаем к $[1,\ 13]$.

В [14] при изучении расщепляемости тензорных степеней смешанной группы было введено следующее определение. Пусть d — действительное число, G — группа; мы говорим, что элемент $g \in G$ удовлетворяет условию (*) для d и простого числа p, если существует неубывающая неограниченная функция $f: \mathbb{N}_0 \to \mathbb{N}_0$ такая, что $h_p(p^i g) > d(i+f(i))$ для любого $i \in \mathbb{N}_0$. Определим подмножества $G_{\Lambda}^{(n)}$ ($n \in \mathbb{N}$, $n \geq 2$), G_{Λ}^* и G^* группы G следующим образом:

$$G_{\Lambda}^{(n)}=\{g\in G\mid (\exists k\in\mathbb{N})\ kg\$$
удовлетворяет условию $(*)$ для $\frac{n}{n-1}$ и любого $p\in\Lambda(G)\},$

 $G_{\Lambda}^* = \bigcup_{n \geq 2} G_{\Lambda}^{(n)} = \{g \in G \mid (\exists k \in \mathbb{N}) \ (\exists d > 1) \ kg$ удовлетворяет условию (*) для d и любого $p \in \Lambda(G)\},$

$$G^* = \{g \in G \mid (\exists k \in \mathbb{N}) \ (\exists d > 1) \ kg \$$
удовлетворяет условию $(*)$ для d и любого $p \in \mathbb{P}\}$.

В [12] показано в любой смешанной группе G подмножества $G_{\Lambda}^{(n)}$ $(n\geq 2),\ G_{\Lambda}^*$ и G^* являются серватными вполне характеристическими подгруппами, содержащими T(G) и G_{Λ}^1 ; при этом факторгруппы $G/G_{\Lambda}^{(n)}$ $(n\geq 2),\ G/G_{\Lambda}^*$ и G/G^* являются группами без кручения.

1. Индекс подгруппы G^*_{Λ} в MT-группе G

Сформулируем три факта о смешанных группах, которые будем использовать в дальней-шем.

ТЕОРЕМА 1. 1) [14] Пусть G- редуцированная группа u факторгруппа G/T(G) является $\Lambda(G)$ -делимой. Группа $\bigotimes^n G$ расщепляется тогда u только тогда, когда для любого элемента $g \in G \setminus T(G)$ существует $k \in \mathbb{N}$ такое, что kg удовлетворяет условию (*) для $\frac{n}{n-1}$ u любого $p \in \Lambda(G)$.

- 2) [12] Если смешанная группа G имеет $\Lambda(G)$ -делимую факторгруппу G/T(G), то $\bar{G}_{\Lambda}=G/G^1_{\Lambda}$ изоморфна сервантной подгруппе \mathbb{Z} -адического пополнения базисной подгруппы группы T(G).
- 3) [3] Если G-MT-группа, то G- редуцированная группа и факторгруппа G/T(G) является $\Lambda(G)$ -делимой.

ЛЕММА 1. Пусть (G, μ) — кольцо на MT-группе G, D_{Λ} — максимальная $\Lambda(G)$ -делимая подгруппа группы G. Тогда для любого элемента $g \in G_{\Lambda}^*$ существует $n \in \mathbb{N}$ такое, что степень g^n элемента g в кольце (G, μ) при любой расстановке скобок содержится в подгруппе $T(G) \oplus D_{\Lambda}$.

Доказательство. Пусть $g \in G_{\Lambda}^*$, тогда $g \in G_{\Lambda}^{(n)}$ при некотором натуральном $n \geq 2$. Тогда умножение μ на G индуцирует умножение на $G_{\Lambda}^{(n)}$. При этом $D_{\Lambda} \subseteq G_{\Lambda}^{(n)}$, $T(G) \subseteq G_{\Lambda}^{(n)}$ и группа $G_{\Lambda}^{(n)}/T(G)$ является $\Lambda(G)$ -делимой, так как $G_{\Lambda}^{(n)}$ сервантна в G.

Пусть g^n степень элемента g в кольце (G,μ) с некоторой расстановкой скобок, $\bigotimes^n G^{(n)}_\Lambda$ — тензорная степень группы $G^{(n)}_\Lambda$ с той же расстановкой скобок. Имеем

$$(\bigotimes^n G_{\Lambda}^{(n)})/T(\bigotimes^n G_{\Lambda}^{(n)}) \cong \bigotimes^n (G_{\Lambda}^{(n)}/T(G))$$

[1], отсюда $(\bigotimes^n G_{\Lambda}^{(n)})/T(\bigotimes^n G_{\Lambda}^{(n)})$ является $\Lambda(G)$ -делимой группой.

Так как $\bigotimes^n G_{\Lambda}^{(n)}$ — расщепляется по теореме 1, то $\bigotimes^n G_{\Lambda}^{(n)} \cong (\bigotimes^n G_{\Lambda}^{(n)})/T(\bigotimes^n G_{\Lambda}^{(n)}) + T(\bigotimes^n G_{\Lambda}^{(n)})$ — это сумма $\Lambda(G)$ -делимой и периодической групп. Значит, $g^n \in D_{\Lambda} \oplus T(G)$. \square

 Π ЕММА 2. Π усть g — элемент смешанной группы G. Тогда следующие условия равносильны:

- 1) для любого действительного числа d>0 существует $p\in\mathbb{P}$ такое, что g не удовлетворяет условию (*) для d u p.
- 2) для любого действительного числа $\varepsilon > 0$ существуют $p \in \mathbb{P}$ и $i_p \in \mathbb{N}_0$ такие, что $h_p(p^{i_p}g) i_p \leq \varepsilon i_p$.

ДОКАЗАТЕЛЬСТВО. Пусть для элемента $g \in G$ выполняется условие 1) и пусть $\varepsilon > 0$. Положим $d = 1 + \frac{\varepsilon}{2}, \ f(i) = [\frac{\varepsilon}{2d}i]$. Так как g не удовлетворяет условию (*) для d и p, то найдется $i_p \in N_0$ такое, что $h_p(p^{i_p}g) \le d(i_p + f(i_p)) \le di_p + \frac{\varepsilon}{2}i_p = i_p + \varepsilon i_p$.

Обратно, пусть для элемента g выполняется условие 2) и пусть заданы d>1 и неубывающая неограниченная функция $f: \mathbb{N}_0 \to \mathbb{N}_0$. Положим $\varepsilon = d-1>0$. Тогда найдется $i_p \in \mathbb{N}_0$, для которого $h_p(p^{i_p}g) - i_p \le \varepsilon i_p = (d-1)i_p \le (d-1)i_p + df(i_p)$, отсюда $h_p(p^{i_p}g) \le d(i_p + f(i_p))$, то есть g не удовлетворяет условию (*) для d и p. \square

Теорема 1 позволяет свести изучение колец на MT-группах к изучению колец на урегулированных алгебраически компактных группах, все умножения на которых описаны в [15].

Пусть группа G имеет $\Lambda(G)$ -делимую факторгруппу G/T(G). Для каждого $p \in \Lambda(G)$ базисную подгруппу группы $T_p(G)$ запишем в виде $B_p = \bigoplus_{i \in I_p} \langle e_i^{(p)} \rangle, \, \widehat{B}_p - p$ -адическое пополнение

группы B_p , тогда $B = \bigoplus_{p \in \Lambda(G)} B_p$ — базисная подгруппа группы T(G), $\widehat{B} = \prod_{p \in \Lambda(G)} \widehat{B}_p$ — \mathbb{Z} адическое пополнение группы B. В группе \overline{G}_{Λ} рассмотрим подгруппы $\overline{B}_p = (B_p \oplus G_{\Lambda}^1)/G_{\Lambda}^1$ и $\overline{B} = (B \oplus G_{\Lambda}^1)/G_{\Lambda}^1$. Тогда $\overline{B}_p = \bigoplus_{i \in I_p} \langle \overline{e_i^{(p)}} \rangle$, $\overline{B} = \bigoplus_{p \in \Lambda(G)} \overline{B}_p$, при этом $\overline{B}_p \cong B_p$, $\overline{B} \cong B$ и $o(e^{(p)}) = o(\overline{e^{(p)}})$ при всех $p \in \Lambda(G)$, $i \in I_p$

 $o(e_i^{(p)})=o(\overline{e_i^{(p)}})$ при всех $p\in\Lambda(G),\,i\in I_p$. Обозначим через V_p p-адическое пополнение группы \bar{B}_p , тогда $V=\prod_{p\in\Lambda(G)}V_p-\mathbb{Z}$ -адическое

пополнение группы \bar{B} и $V \cong \hat{B}$, $V_p \cong \hat{B}_p$ при всех $p \in \Lambda(G)$. Через π_p будем обозначать проекцию V на V_p , группу V_p будем рассматривать как сервантную подгруппу группы $\prod_{i \in I_p} \langle \overline{e_i^{(p)}} \rangle$,

то есть элемент $a \in V_p$ записывается в виде $a = (k_{i,p}\overline{e_i^{(p)}})_{i \in I_p}$, где $k_{i,p} \in \mathbb{Z}$. В силу теоремы 1 группа \bar{G}_{Λ} является сервантной подгруппой группы V.

Пусть на группе G задано кольцо (G,\times) , тогда определено факторкольцо $(\bar{G}_{\Lambda},\times)$, так как подгруппа G_{Λ}^1 является абсолютным идеалом группы G. Попарные произведения $\overline{e_i^{(p)}} \times \overline{e_j^{(p)}} = \overline{e_i^{(p)}} \times \overline{e_j^{(p)}}$ базисных элементов в кольце $(\bar{G}_{\Lambda},\times)$ определяют также умножение на $V \subseteq \prod_{p \in \Lambda(G)} \prod_{i \in I_p} \langle \overline{e_i^{(p)}} \rangle$, то есть умножение на \bar{G}_{Λ} продолжается до умножения на V. Кольцо (V,\times) будем называть кольцом, соответствующим кольцу (G,\times) .

Пусть G-MT-группа. Определим ассоциативное и коммутативное умножение \times на группе T(G), положив

$$e_i^{(p)} imes e_j^{(q)} = \left\{ egin{array}{ll} e_i^{(p)}, & \mbox{если } p = q & \mbox{и} & i = j \\ 0, & \mbox{если } p
eq q & \mbox{или} & i
eq j \end{array}
ight.$$

для любых $p,q\in\Lambda(G)$ и для любых $i\in I_p,\ j\in I_q$. Это умножение на T(G) однозначно продолжается до ассоциативного и коммутативного умножения на G, такое умножение будем

называть каноническим умножением на G, определенным базисом $\{e_i^{(p)} \mid p \in \Lambda(G), \ i \in I_p\}.$

ЛЕММА 3. Пусть G-MT- группа, \times — каноническое умножение на $G, g \in G \setminus G_{\Lambda}^*$. Тогда $g^2 = g \times g \notin G_{\Lambda}^*$.

Доказательство. Пусть \times — каноническое умножение на G, определенное базисом

$$\{e_j^{(p)} \mid p \in \Lambda(G), \ j \in I_p\}, \quad g \in G \setminus G_{\Lambda}^*$$

Тогда $\bar{g} \notin \overline{G}_{\Lambda}^* = (\overline{G}_{\Lambda})^*$. Допустим, $g^2 \in G_{\Lambda}^*$, тогда $\bar{g}^2 \in \overline{G}_{\Lambda}^*$. Следовательно, $\bar{g}^n \in T(\overline{G})$ при некотором $n \in \mathbb{N}$ в силу леммы 1. Значит,

$$c\bar{g}^n = 0 \tag{1}$$

при некотром $c \in \mathbb{N}$.

Пусть (V, \times) — кольцо, соответствующее кольцу (G, \times) , тогда $\bar{g} \notin V^*$, так как \overline{G}_{Λ} сервантна в V. Для $p \in \Lambda(G)$ обозначим $\pi_p(\bar{g}) = (p^{k_{j,p}}\alpha_{j,p}e_j^{(p)})_{j\in I_p} = (p^{k_{1,p}}\alpha_{1,p}e_1^{(p)}, \ p^{k_{2,p}}\alpha_{2,p}e_2^{(p)}, \cdots) \in V_p$, где $k_{j,p} \in N_0$, $\alpha_{j,p} \in \mathbb{Z}$, $p \nmid \alpha_{j,p} \ (j \in \mathbb{N})$, причем последовательность $\{k_{j,p}\}_{j\in \mathbb{N}}$ не ограничена, и можно считать, что $k_{1,p} \le k_{2,p} \le \cdots$. Обозначим $o(e_j^{(p)}) = p^{s_{j,p}} \ (j \in \mathbb{N})$. Из [15] следует, что

$$\pi_p(\bar{g}^n) = (p^{nk_{1,p}}\alpha_{1,p}^n e_1^{(p)}, p^{nk_{2,p}}\alpha_{2,p}^n e_2^{(p)}, \cdots).$$

Случай 1. $\pi_p(\bar{g}) \notin V_p^* = (V_p)^*$ при некотором $p \in \Lambda(G)$.

В этом случае будем опускать индекс p: $e_j^{(p)}=e_j$; $s_{j,p}=s_j$; $\pi_p(\bar{g})=(p^{k_j}\alpha_j e_j)_{j\in N}$; $\pi_p(\bar{g}^n)=(p^{nk_j}\alpha_j^n e_j)_{j\in N}$.

Пусть $t \in \mathbb{N}$, покажем, что $p^{k_t}|c$. В силу леммы 2 имеем

$$0 < h_p(p^{i_0}\bar{g}) - i_0 \le \frac{1}{n \max\{s_i - k_i | 1 < j < t\}} i_0 \tag{2}$$

при некотором $i_0 \in \mathbb{N}$.

Так как $\pi_p(\bar{g}) \notin V_p^*$, то $\pi_p(\bar{g})$ — элемент бесконечного порядка, поэтому последовательность $\{s_j - k_j\}_{j \in \mathbb{N}}$ не ограничена. Следовательно, найдется такое число $l \in \mathbb{N}$, что

$$s_l - k_l > i_0. (3)$$

Отметим, что в силу (2) и (3) выполняется $s_l - j_l > i_0 \ge max\{s_j - k_j | 1 \le j \le t\}$, значит l > t, откуда $k_l \ge k_t$, причем индекс l можно выбрать таким образом, что

$$s_j - k_j \le i_0$$
 при всех $j < l$. (4)

Получаем из (3) и (4)

$$h_p(p^{i_0}\bar{g}) - i_0 = k_l. (5)$$

С другой стороны, из (2) и (3) имеем

$$h_p(p^{i_0}\bar{g}) - i_0 \le \frac{1}{n}i_0 < \frac{1}{n}(s_l - k_l).$$
 (6)

Из (5) и (6) получаем

$$k_l < s_l - nk_l. (7)$$

Из (1) имеем $\pi_p(c\bar{g}^n) = 0$, откуда $cp^{nk_l}\alpha_l^n e_l = 0$, значит, $cp^{nk_l}\alpha_l^n \equiv 0 \pmod{p^{s_l}}$ и, следовательно, $c \equiv 0 \pmod{p^{s_l-nk_l}}$. Значит, $p^{k_l} \mid c$ в силу (7), откуда $p^{k_t} \mid c$. Так как последовательность $\{k_t\}_{t\in N}$ не ограничена, то c = 0.

Случай 2. $\pi_p(\bar{g}) \in V_p^*$ при всех $p \in \Lambda(G)$.

Если $\bar{g} \notin p\overline{G}_{\Lambda}$ для бесконечного множества простых чисел p, то $\bar{g}^2 \notin p\overline{G}_{\Lambda}$ для всех p из этого множества. Следовательно, $g^2 \notin G_{\Lambda}^*$.

Пусть теперь $\bar{g} \in p\overline{G}_{\Lambda}$ для почти всех $p \in \Lambda(G)$. Тогда существует бесконечное множество простых чисел p, для каждого из которых существует $i_p \in \mathbb{N}$ такое, что

$$0 < h_p(p^{i_p}\bar{g}) - i_p \le \frac{1}{n}i_p.$$
 (8)

Зафиксируем одно из таких p, тогда $p^{i_p}\bar{g} \neq 0$, поэтому $s_{l,p} - k_{l,p} > i_p$ при некотором $l \in \mathbb{N}$. При этом, l можно выбрать так, что

$$s_{j,p} - k_{j,p} \le i_p$$
 при всех $j < l$. (9)

Тогда

$$h(p^{i_p}\bar{g}) - i_p = k_{l,p} > 0 \tag{10}$$

в силу (9). Из (8) имеем

$$h(p^{i_p}\bar{g}) - i_p \le \frac{1}{n}i_p < \frac{1}{n}(s_{l,p} - k_{l,p}).$$
 (11)

Из (10) и (11) получаем

$$s_{l,p} - nk_{l,p} > k_{l,p} > 0.$$
 (12)

Из (1) следует, что $\pi_p(c\bar{g}^n)=0$, откуда $cp^{nk_{l,p}}\alpha_{l,p}^ne_l^{(p)}=0$, и, значит, $cp^{nk_{l,p}}\equiv 0 \pmod{p^{s_{l,p}}}$. Следовательно, $c\equiv 0 \pmod{p^{s_{l,p}-nk_{l,p}}}$, т.е. $p\mid c$. В силу бесконечности множества таких p получаем, что c=0. Это противоречит (1), значит, $g^2\notin G_{\Lambda}^*$. \square

 ${
m T}$ ЕОРЕМА ${
m 2.}~ E$ сли ${
m G}-{
m M}{
m T}$ -группа, то ${
m G}={
m G}^*_\Lambda$ или группа ${
m G}/{
m G}^*_\Lambda$ более чем счетна.

Доказательство. Пусть \times — каноническое умножение на G, определенное базисом

$$\{e_j^{(p)} \mid p \in \Lambda(G), j \in I_p\},\$$

 (V, \times) — кольцо, соответствующее кольцу (G, \times) . Допустим, $G \neq G_{\Lambda}^*$, и пусть $g \in G \setminus G_{\Lambda}^*$, тогда $g^2 \notin G_{\Lambda}^*$ по лемме 3, значит, $\bar{g}^2 \notin V^*$. Пусть $\pi_p(\bar{g}^2) = (b_{j,p}e_i^{(p)})_{j \in \mathbb{N}}$.

Случай 1. $\pi_p(\bar{g}^2) \in V_p^*$ при всех $p \in \Lambda(G)$.

 $\overline{\mathrm{B}}$ этом случае существуют бесконечное множество $\{p_n\in\mathbb{P}\mid n\in\mathbb{N}\}$ и множество $\{i_n\in\mathbb{N}\mid n\in\mathbb{N}\}$ такие, что

$$h_{p_n}(p_n^{i_n}\bar{g}^2) - i_n \le \frac{1}{n}i_n \tag{13}$$

при всех $n\in\mathbb{N}$. Так как $\pi_{p_n}(p_n^{i_n}\bar{g}^2)=(p_n^{i_n}b_{j,p_n}e_j^{(p_n)})_{j\in\mathbb{N}}$ для каждого $n\in\mathbb{N},$ то

$$h_{p_n}(p_n^{i_n}\bar{g}^2) = h_{p_n}(p_n^{i_n}b_{j_n,p_n}e_{j_n}^{(p_n)})$$
(14)

при некоторых $j_n \in \mathbb{N} \ (n \in \mathbb{N})$.

Пусть T — бесконечное множество натуральных чисел. Определим умножение \times_T на T(G), положив $e_{j_n}^{(p_n)} \times_T e_{j_n}^{(p_n)} = e_{j_n}^{(p_n)}$ для всех $n \in T$, а все остальные попарные произведения базисных элементов T(G) равными нулю. Это умножение однозначно продолжается до умножения \times на G. Пусть (V, \times_T) — кольцо, соответствующее кольцу (G, \times_T) .

Пусть $x = \bar{g} \times_T \bar{g} \in \overline{G} \leq V$, $k \in \mathbb{N}$ и $\varepsilon > 0$. Тогда существует $t \in T$, для которого $\frac{1}{t} < \varepsilon$ и $p_t \nmid k$.

В силу (14) имеем

$$h_{p_t}(p_t^{i_t}kx) = h_{p_t}(p_t^{i_t}x) = h_{p_t}(p_t^{i_t}b_{j_t,p_t}e_{j_t}^{(p_t)}) = h_{p_t}(p_t^{i_t}\bar{g}^2),$$

откуда $h_{p_t}(p_t^{i_t}kx)-i_t\leq \frac{1}{t}i_t<\varepsilon i_t$ в силу (13). Это значит, что $x=\bar{g}\times_T\bar{g}\notin\overline{G}_\Lambda^*$ по лемме 2. Так как $\bar{g}\times_T\bar{g}-\bar{g}\times_S\bar{g}=\bar{g}\times_M\bar{g}$, где $S,T\subseteq\mathbb{N},\ M=(T\cup S)\backslash(S\cap T)$, то $\bar{g}\times_T\bar{g}$ и $\bar{g}\times_S\bar{g}$

Так как $\bar{g} \times_T \bar{g} - \bar{g} \times_S \bar{g} = \bar{g} \times_M \bar{g}$, где $S, T \subseteq \mathbb{N}$, $M = (T \cup S) \setminus (S \cap T)$, то $\bar{g} \times_T \bar{g}$ и $\bar{g} \times_S \bar{g}$ сравнимы по подгруппе \overline{G}_{Λ}^* если и только если множества T и S почти равны. Следовательно, группа $\overline{G}_{\Lambda}/\overline{G}_{\Lambda}^*$ содержит несчетное подмножество $\{(\bar{g} \times_T \bar{g}) + \overline{G}_{\Lambda}^* | T \subseteq \mathbb{N}\}$. Значит, и группа G/G_{Λ}^* более чем счетна.

Случай 2. $\pi_p(\bar{g}) \notin V_p^*$ при некотором $p \in \Lambda(G)$.

В этом случае будем опускать индекс p: $e_j^{(p)}=e_j$, $b_{j,p}=b_j$. Определим последовательности натуральных чисел $\{n_k\}_{k\in\mathbb{N}}$, $\{i_k\}_{k\in\mathbb{N}}$, $\{j_k\}_{k\in\mathbb{N}}$ следующим образом. Положим $n_1=2$; предположим, что определено $n_k\in\mathbb{N}$. Тогда определено натуральное i_k , для которого

$$0 < h_p(p^{i_k}\bar{g}^2) - i_k \le \frac{1}{n_k}i_k. \tag{15}$$

Так как $\pi_p(p^{i_k}\bar{g}^2)=(p^{i_k}b_je_j)_{j\in\mathbb{N}}$ для каждого $k\in\mathbb{N}$, то найдется такое $j_k\in\mathbb{N}$, что

$$h_p(p^{i_k}\bar{g}^2) = h(p^{i_k}b_{j_k}e_j) < \infty \tag{16}$$

Определим n_{k+1} как наименьшее натуральное число, для которого

$$p^{n_{k+1}}b_{j_k}e_{j_k} = 0 (17)$$

Из (15), (16), (17) получаем, что

$$i_{k+1} \ge n_{k+1} > i_k \ge n_k \tag{18}$$

при всех $k \in \mathbb{N}$. Поэтому

$$p^{i_k} b_{j_s} e_{j_s} = 0 (19)$$

при всех s < k. Из (16) и (19) получаем, что все числа j_k ($k \in \mathbb{N}$) различны.

Пусть T — бесконечное множество натуральных чисел. Определим умножение \times_T на T(G), положив $e_{j_k} \times_T e_{j_k} = e_{j_k}$ при всех $k \in T$, а все остальные попарные произведения базисных элементов T(G) равными нулю. Это умножение однозначно продолжается до умножения на G.

Пусть (V, \times_T) — кольцо, соответствующее кольцу (G, \times_T) , и пусть $x = \bar{g} \times_T \bar{g} \in V$, тогда $\pi_p(x) = (b_{j_k}e_{j_k})_{k\in T}$. Покажем, что $x \notin \overline{G}_{\Lambda}^*$. Заметим, что для любого $k \in T$ имеем $h_p(p^{i_k}\bar{g}^2) \leq h_p(p^{i_k}x) \leq h_p(p^{i_k}b_{j_k}e_{j_k})$, откуда $h_p(p^{i_k}x) = h_p(p^{i_k}\bar{g}^2)$ в силу (16). Следовательно, из (15) получаем

$$0 < h_p(p^{i_k}x) - i_k \le \frac{1}{n_k} i_k \tag{20}$$

при всех $k \in T$.

Пусть $\varepsilon > 0$, $s \in \mathbb{N}_0$ покажем, что $\frac{h_p(p^ip^sx)}{i} < 1 + \varepsilon$ для некоторого $i \in \mathbb{N}$. Выберем $m \in T$, для которого $n_m > \max\{\frac{2}{\varepsilon}, s\}$, тогда $\frac{1}{n_m} < \frac{\varepsilon}{2}$ и $i_m \ge n_m > s$ в силу (18). Так как $\{i_t \mid t \in T\}$ — неограниченное множество, то существует такое $t \in T$, что t > m и $i_t > (1 + \frac{1}{n_m})\frac{2s}{\varepsilon} + s$. Тогда

$$i_t - s > (1 + \frac{1}{n_m}) \frac{2s}{\varepsilon} \tag{21}$$

И

$$\frac{h_p(p^{i_t}x)}{i_t} < 1 + \frac{1}{n_t} < 1 + \frac{1}{n_m} \tag{22}$$

в силу (20). Обозначим $i=i_t-s$. Используя (21) и (22), получаем

$$\frac{h_p(p^{i+s}x)}{i} = \frac{h(p^{i_t}x)}{i_t} \cdot \frac{i_t}{i_t - s} = \frac{h(p^{i_t}x)}{i_t} (1 + \frac{s}{i_t - s})$$

$$<(1+\frac{1}{n_m})(1+\frac{s}{(1+\frac{1}{n_m})\cdot\frac{2s}{\varepsilon}})=1+\frac{1}{n_m}+\frac{\varepsilon}{2}<1+\varepsilon.$$

Следовательно, $p^s x$ не удовлетворяет условию (*) для p и любого d>1 по лемме 2. Значит, $x=\bar{g}\times_T\bar{g}\notin\overline{G}^*_{\Lambda}$. Как и в случае 1, получаем, что группа G/G^*_{Λ} более чем счетна. \square

2. Заключение

Итак, в MT-группе G для подгруппы G^*_Λ возможны два случая. В первом — факторгруппа G/G^*_Λ несчетна. В этом случае из доказательства теоремы 2 и из леммы 9 в [12] следует, что для любого $g \in G \setminus G^*_\Lambda$ существует несчетное множество ассоциативных и коммутативных колец на G, в каждом из которых система $\{g^n \mid n \in \mathbb{N}\}$ всех натуральных степеней элемента g линейно независима.

Во втором случае $G = G_{\Lambda}^*$. В этой ситуации в силу леммы 1 и того, что максимальная $\Lambda(G)$ -делимая подгруппа группы G является абсолютным нильпотентным идеалом [16], для любого кольца (G, \times) на G факторкольцо $(G/T(G), \times)$ является ниль-кольцом. Более того, для любого $g \in G$ существует такое $n \in \mathbb{N}$, что в каждом кольце на G степень g^n при любой расстановке скобок принадлежит T(G).

СПИСОК ЦИТИРОВАННОЙ ЛИТЕРАТУРЫ

- 1. Fuchs L. Abelian groups. Switz.: Springer International Publishing, 2015.
- 2. Topics in abelian groups. Chicago, Ill., 1963
- 3. Москаленко А. И. О длине расщепления абелевой группы // Мат. заметки 1978. Vol. 24. № 6. Р. 749–762.
- 4. Москаленко А. И. О продолжении умножений на смешанной абелевой группе счетного ранга // Матем. заметки 1981. Vol. 29. № 3. Р. 375–379.
- Фам Т. Т. Т. Абсолютные идеалы смешанных абелевых групп // Чебышевский сбор. 2012.
 Vol. 13. № 1. Р. 153–164.
- 6. Fried E. On the subgroups of abelian groups that are ideals in every ring // Proc. Colloq. Abelian groups, Budapest, 1964. P. 51–55.
- 7. Fried E. Preideals in modules // Period. Math. Hung. 1971. Vol. 1. № 3. P. 163–169.
- 8. McLean K. R. The additive ideals of a p-ring // J. London Math. Soc. 1975. Vol. 2. P. 523–529.
- 9. McLean K. R. p-ring whose only right ideals are the fully invariant subgroups // Proc. London Math. Soc. 1975. Vol. 3. P. 445–458.
- 10. Gardner B. J. Rings on completely decomposable torsion-free abelian groups // Comment. Math. Univ. Carolinae 1974. Vol. 15. № 3. P. 381–392.
- 11. Jackett D. R. Rings on certain mixed abelian groups // Pacific. J. Math. 1982. Vol. 98. № 2. P. 365–373.

- 12. Kompantseva E. I. Absolute nil-ideals of abelian groups // J. Math. Sci. 2014. Vol. 197. № 5. P. 625–634.
- 13. Jacobson N. Structure of rings. Amer. Math. Soc., Colloq. Publ. Vol. 37, 1968.
- 14. Toubassi E. H., Lawver D. A. Height-slope and splitting length of abelian groups // Publs. Math. 1973. Vol. 20. P. 63–71.
- 15. Kompantseva E. I. Torsion-free rings // J. Math. Sci. 2010. Vol. 171. № 2. P. 213–247.
- 16. Компанцева Е. И. Абелева MT-группы и кольца на них // Тезисы докладов международной алгебраической конференции, посвященной 110-летию со дня рождения профессора А. Г. Куроша. М.: Издательство МГУ, 2018. С. 108–109.

REFERENCES

- 1. Fuchs, L. 2015, "Abelian groups", Switz.: Springer International Publishing.
- 2. Topics in abelian groups. Chicago, Ill., 1963
- 3. Moskalenko, A. I. 1978, "Splitting length of an Abelian group", *Mat. Zametki*, vol. 24, no. 6, pp. 749–762.
- 4. Moskalenko, A. I. 1981, "Extension of multiplications on a mixed Abelian group of countable rank", *Mat. Zametki*, vol. 29, no. 3, pp. 375–379.
- 5. Pham, T. T. 2012, "Absolute ideals of mixed abelian groups", *Chebyshevskii Sb.*, vol. 13, no. 1, pp. 153—164.
- 6. Fried, E. 1964, "On the subgroups of abelian groups that are ideals in every ring", *Proc. Colloq. Abelian groups*, Budapest, pp. 51–55.
- 7. Fried, E. 1971, "Preideals in modules", *Period. Math. Hung.*, vol. 1, no. 3, pp. 163–169.
- 8. McLean, K. R. 1975, "The additive ideals of a p-ring" J. London Math. Soc., vol. 2, pp. 523–529.
- 9. McLean, K. R. 1975, "p-ring whose only right ideals are the fully invariant subgroups", Proc. London Math. Soc., vol. 3, pp. 445–458.
- 10. Gardner, B. J. 1974, "Rings on completely decomposable torsion-free abelian groups", *Comment. Math. Univ. Carolinae*, vol. 15, no. 3, pp. 381–392.
- 11. Jackett, D. R. 1982, "Rings on certain mixed abelian groups", *Pacific. J. Math.*, vol. 98, no. 2, pp. 365–373.
- 12. Kompantseva, E. I. 2014, "Absolute nil-ideals of Abelian groups", J. Math. Sci., vol. 197, no. 5, pp. 625–634.
- 13. Jacobson, N. 1968, "Structure of rings". Amer. Math. Soc., Colloq. Publ. vol. 37.
- 14. Toubassi, E. H. & Lawver, D. A. 1973, "Height-slope and splitting length of abelian groups", *Publs. Math.*, vol. 20, pp. 63–71.
- 15. Kompantseva, E. I. 2010, "Torsion-free rings", J. Math. Sci., vol. 171, no. 2, pp. 213–247.

16. Kompantseva, E.I. 2018, "Abelian *MT*-groups and rings on them", *Abstract of International Algebraic Conference dedicated to the* 110th anniversary of Professor A. G. Kurosh, M.: Pub. MSU, pp. 108–109.

Получено 14.01.2019 г. Принято в печать 10.04.2019 г.