ЧЕБЫШЕВСКИЙ СБОРНИК

Том 20. Выпуск 1.

УДК 512.541

DOI 10.22405/2226-8383-2018-20-1-202-211

Алгебраически компактные абелевы TI-группы

Е. И. Компанцева, Т. К. Ч. Нгуен

Компанцева Екатерина Игоревна — доктор технических наук, доцент, профессор кафедры алгебры, Московский педагогический государственный университет; профессор кафедры теории вероятностей и математической статистики, Финансовый университет при Правительстве $P\Phi$, г. Москва.

 $e ext{-}mail: kompantseva@yandex.ru$

Нгуен Т. К. Ч. — аспирант, Московский педагогический государственный университет, г. Москва.

e-mail: trangnguyen.ru@gmail.com

Аннотация

Абелева группа G называется TI-группой если любое ассоциативное кольцо с аддитивной группой G является филиальным. Абелева группа называется SI-группой (SI_H -группой), если любое (ассоциативное) кольцо с аддитивной группой G является SI-кольцом (гамильтоновым кольцом). В работе в классе редуцированных алгебраически компактных абелевых групп описаны TI-группы, а также SI-группы и SI_H -группы.

Kлючевые слова: абелева группа, кольцо на абелевой группе, алгебраически компактная группа, филиальное кольцо, TI-группа.

Библиография: 23 названий.

Для цитирования:

Е. И. Компанцева, Т. К. Ч. Нгуен Алгебраически компактные абелевы TI-группы // Чебышевский сборник, 2019. Т. 20, вып. 1. С. 202–211.

CHEBYSHEVSKII SBORNIK

Vol. 20. No. 1.

UDC 512.541

DOI 10.22405/2226-8383-2018-20-1-202-211

Algebraically compact abelian TI-groups

E. I. Kompantseva, T. Q. T. Nguyen

Kompantseva Ekaterina Igorevna — doctor of engineering, professor, Professor, Department of algebra, Moscow state pedagogical University; Professor of the Department of probability theory and mathematical statistics, Financial University under the Government of the Russian Federation, Moscow.

 $e\hbox{-}mail\hbox{:}\ kompantseva@yandex.ru$

Nguyen T. Q. T. — postgraduate student, Moscow state pedagogical University, Moscow. e-mail: trangnguyen.ru@qmail.com

Abstract

An abelian group G is called a TI-group if every associative ring with additive group G is filial. An abelian group G such that every (associative) ring with additive group G is an SI-ring (a hamiltonian ring) is called an SI-group (an SI_H -group). In this paper, TI-groups, as well as SI-groups and SI_H -groups are described in the class of reduced algebraically compact abelian groups.

Keywords: abelian group, ring on a group, algebraically compact group, filial ring, TI-group. Bibliography: 23 titles.

For citation:

E. I. Kompantseva, T. Q. T. Nguyen, 2019, "Algebraically compact abelian TI-groups", Chebyshevskii sbornik, vol. 20, no. 1, pp. 202–211.

1. Введение

Изучение взаимосвязи между свойствами кольца и строением его аддитивной группы имеет долгую историю в алгебре (см., например, [1–5]), а также вызывает интерес у современных алгебраистов ([6–8] и других), наиболее полные обзоры содержатся в [9] и [10].

Для определения кольцевой структуры на абелевой группе G необходимо указать гомоморфизм $\mu:G\otimes G\to G$, который называется умножением на группе G. Абелева группа с заданным на ней умножением называется кольцом на этой группе. В [11] получено описание всех умножений на редуцированной алгебраически компактной абелевой группе, которое выявляет тесную связь между кольцевыми структурами и базисными подмодулями p-адических компонент и дает удобный метод построения алгебраически компактных колец. На основании этого описания в настоящей работе исследуются свойства колец на редуцированных алгебраически компактных абелевых группах. Изучение колец на алгебраически компактных группах обусловлено и следующим фактом. В [9] показано, что умножение на произвольной абелевой группе продолжается однозначно до умножения на ее сервантно-инъективной и копериодических оболочках, поэтому изучение колец на алгебраичеки компактных и копериодических группах может дать полезную информацию об умножениях на произвольной абелевой группе. Таким способом, например, в [12] описаны абсолютные ниль-идеалы смешанных абелевых групп.

В [13] изучаются аддитивные группы SI-колец, SI-кольцо – это кольцо, в котором любое подкольцо является идеалом. Ассоциативное SI-кольцо называется гамильтоновым кольцом или Н-кольцом, поскольку эти структуры в определенном смысле аналогичны гамильтоновым группам. Гамильтоновы кольца систематически изучались многими авторами, наиболее значительные результаты содержатся в [14-16]. Абелева группа, на которой любое (ассоциативное) кольцо является SI-кольцом (H-кольцом), называется SI-группой (SI_H -группой). Естественным обобщением Н-колец являются филиальные кольца, то есть ассоцитативные кольца, в которых отношение «быть идеалом» транзитивно. Филиальные кольца изучались в [17-20]. В связи с этим в [21] введено понятие TI-группы (от «transitive ideal»). Абелева группа называется TI-группой, если любое ассоциативное кольцо на ней филиально. В [22] С. Фейгельсток изучал абелевы группы, на которых любое умножение коммутативно, такие группы называются CR-группами. В [8] введено понятие SACR-группы, SACR-группа – это абелева группа, на которой любое кольцо является ассоциативным и коммутативным. В [22] описаны периодические CR-группы, а в |8| показано, что в классе всех периодических абелевых групп понятия CR-группы и SACR-группы эквивалентны. В [13] получено описание периодических SI_H -групп и SI-групп, а в [21] – описание периодических TI-групп.

В настоящей работе описаны TI-группы, а также SI-группы, SI_H -группы и SACR-группы в классе редуцированных алгебраически компактных абелевых групп.

Все группы, рассматриваемые в работе, абелевы, и слово «группа» везде в дальнейшем означает «абелева группа». Умножение $\mu: G \otimes G \to G$ на группе G часто обозначается знаком imes (\cdot и т. п.), т.е. $\mu(g_1\otimes g_2)=g_1 imes g_2$ для любых $g_1,g_2\in G$. Умножение imes задает кольцо на группе G, которое обозначется (G, \times) . Если в кольце (G, \times) выполняется $g_1 \times g_2 = 0$ для всех $g_1, g_2 \in G$, то умножение называется нулевым, а кольцо (G, \times) обозначается G^0 . Как обычно, $\mathbb{N}, \mathbb{N}_0, \mathbb{P}$ – множества натуральных, целых неотрицательных, всех простых чисел соответственно, \mathbb{Z} – кольцо целых чисел, $\widehat{\mathbb{Z}}_p$, \mathbb{Q}_p^* – аддитивная группа и кольцо целых р-адических чисел соответственно, $\mathbb{Z}(n)$ – циклическая группа порядка n, а \mathbb{Z}_n – кольцо $\mathbb{Z}/n\mathbb{Z}$. Циклический модуль над ассоциативным кольцом R, порожденный элементом e, будем записывать в виде Re. Пусть G – группа, $g \in G$ и (G, \times) – кольцо на G, через T(G) обозначим периодическую часть группы $G, o(g), \langle g \rangle, (g)_{\times}$ – порядок элемента g, циклическая группа, порожденная g, и идеал кольца (G,\times) , порожденный g, соответственно. Элемент прямого произведнеия $G=\prod G_i$ групп G_i $(i \in I)$ будем записывать в виде $(g_i)_{i \in I}$, где $g_i \in G_i$ для всех $i \in I$. Если J – идеал кольца R, то пишем $J \triangleleft R$. Чтобы подчеркнуть, что разложение $G = A \oplus B$ группы G в прямую сумму подгрупп A и B является также разложением некоторго фиксированного кольца на Gв прямую сумму идеалов, будем писать $G = A \dotplus B$. За всеми определениями и обозначениями, если не оговорено противное, мы отсылаем к [9].

Известно [9], что редуцированная алгебраически компактная группа G представима в виде $G = \prod G_p$, где G_p – p-адическая алгебраически компактная группа, которая называется p-адической компонентой группы G. При этом разложение $G=\prod G_p$ является разложением любого кольца на G в прямое произведение иделов [11]. Для описания p-адических алгебраически компактных групп приведем определения из [23]. Пусть I – множество индексов. Набор целых p-адических чисел $\{a_i \mid i \in I\}$ называется почти конечным, если, во первых, не более чем счетное число $a_i \ (i \in I)$ отлично от нуля; во вторых, для любого натурального числа nпочти все a_i $(i \in I)$ делятся в \mathbb{Q}_p^* на p^n . Пусть $\prod_{i \in I} \mathbb{Q}_p^* e_i$ — прямое произведение циклических ___ p-адических модулей с образующими элементами e_i . Подгруппу группы $\prod_{i\in I}\mathbb{Q}_p^*e_i$, состоящую из таких элемнтов $(a_ie_i)_{i\in I}$, что $\{a_i\mid i\in I\}$ – почти конечный набор целых p-адических чисел, называются регулярной прямой суммой циклических р-адических модулей и обозначаются $\sum_{i \in I} \mathbb{Q}_p^* e_i$. Каждая p-адическая алгебраически компактная группа G изоморфна p-адическому пополнению своего базисного подмодуля $B = \bigoplus_{i \in I} \mathbb{Q}_p^* e_i$, где I – некоторое множество индексов [9], следовательно, G является регулярной прямой суммой циклических модулей: $G = \sum_{i=1}^{\infty} \mathbb{Q}_p^* e_i$. Кроме того, такую группу можно представить в виде $G=A\oplus C$, где $A=\sum\limits_{i\in I_1}\mathbb{Q}_p^*e_i$ – алгебраически компактная группа без кручения, $C = \sum_{i \in I_2} \mathbb{Q}_p^* e_i$ – урегулированная алгебраически компактная группа, здесь $o(e_i)=\infty$ при $i\in I_1$ и $o(e_i)=p^{k_i}$ $(k_i\in\mathbb{N})$ при $i\in I_2$.

2. Алгебраически компактные ТІ-группы

ЛЕММА 1. 1) Любое кольцо с ненулевым умножением на группе $\widehat{\mathbb{Z}}_p$ изоморфно кольцу $p^k\mathbb{Q}_p^*$ при некотором $k\in\mathbb{N}_0$.

2) Идеалами кольца $p^k\mathbb{Q}_p^*$ $(k\in\mathbb{N}_0)$ являются подгруппы $p^{k+k_1}\mathbb{Q}_p^*$ $(k_1\in\mathbb{N}_0)$ и только они.

Доказательство. 1) Запишем группу $\widehat{\mathbb{Z}}_p$ в виде $\widehat{\mathbb{Z}}_p = \mathbb{Q}_p^* e$, где $e \in \widehat{\mathbb{Z}}_p$. Пусть $e \times e = p^k a e$, где $a \in \mathbb{Q}_p^* \setminus p \mathbb{Q}_p^*$. Тогда $x e \times y e = (xy) p^k a e$ для любых $x, y \in \mathbb{Q}_p^*$ [11]. Легко проверить, что

отображение

$$\varphi: \mathbb{Q}_p^* e \to p^k \mathbb{Q}_p^*,$$

при котором $\varphi(xe) = p^k ax$ для любого $x \in \mathbb{Q}_p^*$, является изоморфизмом колец $(\mathbb{Q}_p^* e, \times)$ и $p^k \mathbb{Q}_p^*$ $(k \in \mathbb{N}_0)$.

2) Пусть $I \triangleleft p^k \mathbb{Q}_p^*$ и пусть k_1 – наименьшее целое неотрицательное число такое, что $p^{k+k_1} \mathbb{Q}_p^* \cap I \neq 0$. Тогда существует $x \in \mathbb{Q}_p^*$ такой, что $g = p^{k+k_1} x \in I$ и $p \nmid x$. Элемент x можно представить в виде $x = a + p^k y$, где $a \in \mathbb{Z}$, $y \in \mathbb{Q}_p^*$ и $p \nmid a$. Существуют $u, v \in \mathbb{Z}$, для которых $ua + vp^k = 1$. Имеем

$$ug = p^{k+k_1}(ux) = p^{k+k_1}(ua + up^ky) = p^{k+k_1}(1 - vp^k + up^ky) = p^{k+k_1} + p^{2k+k_1}z \in I,$$

где $z = uy - v \in \mathbb{Q}_p^*$. Поскольку $g_1 = p^{2k+k_1}z = g(p^kx^{-1}z) \in I$, то $p^{k+k_1} = ug - g_1 \in I$. Отсюда $p^{k+k_1}\mathbb{Q}_p^* \subseteq I$. Так как обратное включение выполняется в силу выбора числа k_1 , то $I = p^{k+k_1}\mathbb{Q}_p^*$. \square

Следствие 1. $\Gamma pynna \ \widehat{\mathbb{Z}}_p$ целых p-адических чисел является TI-группой.

ДОКАЗАТЕЛЬСТВО. Кольцо с нулевым умножением на группе $\widehat{\mathbb{Z}}_p$ является филиальным. Если умножение \times на $\widehat{\mathbb{Z}}_p$ ненулевое, то $(\widehat{\mathbb{Z}}_p, \times)$ изоморфно кольцу $p^k \mathbb{Q}_p^*$ $(k \in \mathbb{N}_0)$ по лемме 1. Пусть $J \lhd I \lhd p^k \mathbb{Q}_p^*$, тогда $I = p^{k+k_1} \mathbb{Q}_p^*$, $J = p^{k+k_1+k_2} \mathbb{Q}_p^*$, где $k_1, k_2 \in \mathbb{N}_0$ в силу леммы 1. Значит, $J \lhd p^k \mathbb{Q}_p^*$. Следовательно, $\widehat{\mathbb{Z}}_p$ является TI-группой. \square

ЛЕММА 2. Пусть $p \in \mathbb{P}$, A – такая группа, что $A \neq T(A)$ или $A_p \neq 0$. Тогда кольцо $\mathbb{Q}_p^* \dotplus A^0$ не является филиальным.

ДОКАЗАТЕЛЬСТВО. Пусть a — такой элемент из группы A, что $o(a) = \infty$ или o(a) = p. Положим $g = p + a \in \mathbb{Q}_p^* \dotplus A$, $I = p\mathbb{Q}_p^* \dotplus (a) \lhd \mathbb{Q}_p^* \dotplus A$, $J = p^2\mathbb{Q}_p^* \dotplus (g)$. Так как $g \cdot a = 0$ (здесь — умножение в кольце $\mathbb{Q}_p^* \dotplus A$), то нетрудно видеть, что $J \lhd I \lhd \mathbb{Q}_p^* \dotplus A^0$. Допустим, $1 \cdot g \in J$, где $1 \in \mathbb{Q}_p^*$, тогда $1 \cdot g = p = (p^2x + kp) + ka$ при некоторых $x \in \mathbb{Q}_p^*$, $k \in \mathbb{Z}$.

Если $o(a) = \infty$, то k = 0, откуда $p = p^2x$. Если o(a) = p, то $k = pk_1$, где $k_1 \in \mathbb{Z}$, откуда $p = p^2(x + k_1)$, где $x + k_1 \in \mathbb{Q}_p^*$. В каждом из случаев получили противоречие, следовательно, $J \not \preceq \mathbb{Q}_p^* \dotplus A^0$. Значит, кольцо $\mathbb{Q}_p^* \dotplus A^0$ не является филиальным. \square

Следствие 2. Пусть $p \in \mathbb{P}$, A – такая группа, что $A \neq T(A)$ или $A_p \neq 0$. Тогда группа $\widehat{\mathbb{Z}}_p \oplus A$ не является TI-группой.

ЗАМЕЧАНИЕ 1. Из предложений 1, 2, 7 в [21] следует, что если A – такая группа, что $A \neq T(A)$ или $A_p \neq 0$, то группы $\mathbb{Z}(p^n) \oplus A$ $(n \geq 2)$ и $\mathbb{Z}_p \oplus \mathbb{Z}_p \oplus A$ не являются TI-группами. Там же показано, что прямые слагаемые TI-группы являются TI-группами.

ТЕОРЕМА 1. p-адическая алгебраически компактная группа G, не являющаяся периодической, является TI-группой тогда и только тогда, когда $G=\widehat{\mathbb{Z}}_p$.

Доказательство. Пусть G-p-адическая алгебраически компактная группа. Тогда G можно представить в виде $G=A\oplus C$, где $A=\sum_{i\in I_1}\mathbb{Q}_p^*e_i$ (здесь $o(e_i)=\infty$) – алгебраически компакт-

ная группа без кручения, $C=\widetilde{\sum_{i\in I_2}}\mathbb{Q}_p^*e_i$ (здесь $o(e_i)=p^{k_i})$ – урегулированная алгебраически компактная группа [9]. Пусть G является TI-группой, тогда A и C – также TI-группы.

Если $A \neq 0$, то $A = \mathbb{Q}_p^* e_1 \cong \widehat{\mathbb{Z}}_p$ при некотором $p \in \mathbb{P}$ в силу следствия 2. По тому же следствию в этом случае C = 0.

Допустим, A=0. Тогда $G=C\neq T(C)$, поэтому группу C можно представить в виде $C=\mathbb{Z}(p^k)\oplus C_1$, где $C_1\neq T(C_1)$, что противоречит предложению 2 в [21] (см. замечание 1).

Таким образом, $G = \widehat{\mathbb{Z}}_p$. Следствие 1 завершает доказательство. \square

Далее символом (a,b), как обычно, обозначаем наибольший общий делитель целых чисел a и b.

ЛЕММА 3. Группа $\widehat{\mathbb{Z}}_p \oplus \mathbb{Z}(n)$, где n – натуральное число, свободное от квадратов u (p,n)=1, является TI-группой.

Доказательство. Группу $G=\widehat{\mathbb{Z}}_p\oplus \mathbb{Z}(n)$ можно записать в виде

$$G = \mathbb{Q}_p^* e_1 \oplus \mathbb{Z} e_2, \tag{1}$$

где $e_1 \in \widehat{\mathbb{Z}}_p$, $e_2 \in \mathbb{Z}(n)$, $o(e_2) = n$. Пусть (G, \times) – кольцо на группе G, тогда разложение (1) является разложением кольца (G, \times) в прямую сумму идеалов. При этом, согласно [11], $(x_1e_1 + y_1e_2) \times (x_2e_1 + y_2e_2) = (x_1x_2)(e_1 \times e_1) + (y_1y_2)(e_2 \times e_2)$ для любых $x_1, x_2 \in \mathbb{Q}_p^*$, $y_1, y_2 \in \mathbb{Z}$. Легко видеть, что кольцо (G, \times) является ассоциативным и коммутативным. Пусть $e_2 \times e_2 = t_0e_2$, где $t_0 \in \mathbb{N}_0$. По теореме 1 в [19] кольцо (G, \times) является филиальным тогда и только тогда, когда

$$(g)_{\times} = (g)_{\times}^2 + \langle g \rangle, \tag{2}$$

для любого $g \in G$.

Пусть

$$g = p^k a e_1 + t e_2 \in G, (3)$$

где $k \in \mathbb{N}_0$, $a \in \mathbb{Q}_p^* \setminus p\mathbb{Q}_p^*$, $t \in \mathbb{Z}$.

Случай 1. Умножение \times индуцирует на $\mathbb{Q}_p^*e_1$ ненулевое умножение.

В этом случае элемент e_1 может быть выбран таким образом, что $e_1 \times e_1 = p^{k_0}e_1$ для некоторого $k_0 \in \mathbb{N}_0$. Тогда

$$(g)_{\times} = g \times G + \langle g \rangle = p^{k+k_0} \mathbb{Q}_p^* e_1 + \langle tt_0 e_2 \rangle + \langle g \rangle.$$
 (4)

Так как (p,n)=1, то $u_1p^{k_0}+v_1an=1$ при некоторых $u_1,v_1\in\mathbb{Z}$. Имеем:

$$(v_1 n)g = (p^k v_1 a n)e_1 + 0 = p^k (1 - u_1 p^{k_0})e_1 = p^k e_1 - (p^{k+k_0} u_1)e_1 \in (g)_{\times}.$$
 (5)

Так как $(p^{k+k_0}u_1)e_1 \in (g)_{\times}$ в силу (4), то из (5) получаем, что $p^ke_1 \in (g)_{\times}$, откуда $(p^k\mathbb{Z})e_1\subseteq (g)_{\times}$. Следовательно, $(p^k\mathbb{Q}_p^*)e_1=(p^k\mathbb{Z})e_1+(p^{k+k_0}\mathbb{Q}_p^*)e_1\subseteq (g)_{\times}$. Отсюда из (3) имеем $\langle te_2\rangle\subseteq (g)_{\times}$. Значит,

$$(g)_{\times} = (p^k \mathbb{Q}_p^*) e_1 + \langle t e_2 \rangle. \tag{6}$$

Рассмотрим теперь

$$I = (g)_{\times}^2 + \langle g \rangle = (p^{2k+k_0} \mathbb{Q}_p^*) e_1 + \langle t^2 t_0 e_2 \rangle + \langle g \rangle. \tag{7}$$

Имеем $u_2p^{k+k_0}+v_2na=1$ при некоторых $u_2,v_2\in\mathbb{Z}$, откуда

$$(v_2n)g = (p^k v_2na)e_1 = p^k(1 - u_2p^{k+k_0})e_1 = p^k e_1 - (u_2p^{2k+k_0})e_1 \in (g)_{\times}.$$
 (8)

Так как $(u_2p^{2k+k_0})e_1 \in I$ в силу (7), то из (8) имеем $p^ke_1 \in I$, откуда $(p^k\mathbb{Z})e_1 \subseteq I$. Следовательно, $(p^k\mathbb{Q}_p^*)e_1 = (p^k\mathbb{Z})e_1 + (p^{2k+k_0}\mathbb{Q}_p^*)e_1 \subseteq I$. Отсюда получаем $\langle te_2 \rangle \subseteq I$ в силу (3). Значит, в силу (7) имеем $I = (g)_{\times}^2 + \langle g \rangle = (p^k\mathbb{Q}_p^*)e_1 + \langle te_2 \rangle = (g)_{\times}$. Следовательно, кольцо (G, \times) филиально в силу (2).

Случай 2. Умножение \times индуцирует на $\mathbb{Q}_p^*e_1$ нулевое умножение.

В этом случае $(G, \times) = \widehat{\mathbb{Z}}_p^0 \dotplus \mathbb{Z} e_2$, $(g)_{\times} = \langle tt_0 e_2 \rangle + \langle g \rangle$. Нетрудно видеть, что $(g)_{\times}^2 + \langle g \rangle = \langle t^2 t_0 e_2 \rangle + \langle g \rangle$. Заметим, что $o(tt_0 e_2) = \frac{n}{(tt_0, n)}$, поэтому $(t, o(tt_0 e_2)) = 1$, так как n свободно от квадратов.

Следовательно, $\langle t^2 t e_2 \rangle = \langle t t_0 e_2 \rangle$. Значит, $\langle t t_0 e_2 \rangle = \langle t t_0 e_2 \rangle + \langle g \rangle = \langle t t_0 e_2 \rangle$. Следовательно, кольцо $\langle t t_0 e_2 \rangle + \langle t$

ЛЕММА 4. Если $\mathbb{P}_0\subseteq\mathbb{P}$, то группа $\prod_{p\in\mathbb{P}_0}\mathbb{Z}(p)$ является TI-группой.

Доказательство. Запишем группу $G = \prod_{p \in \mathbb{P}_0} \mathbb{Z}(p)$ в виде $G = \prod_{p \in \mathbb{P}_0} \mathbb{Z}e_p$, где $o(e_p) = p$. Пусть (G, \times) – кольцо на группе G. Тогда разложение $G = \prod_{p \in \mathbb{P}_0} \mathbb{Z}e_p$ является разложением кольца (G, \times) в прямое произведение идеалов. При этом кольцо (G, \times) ассоциативно и коммутативно, так как таким является каждый из идеалов $\mathbb{Z}e_p$ $(p \in \mathbb{P}_0)$.

Пусть $g \in G$, $g \neq 0$. Обозначим: π_p – проекция G на $\mathbb{Z}e_p$, $\mathbb{P}_1 = \{p \in \mathbb{P}_0 \mid \pi_p(g) \neq 0, e_p \times e_p \neq 0\}$. Без потери общности можно считать, что $\mathbb{P}_1 \neq \emptyset$. Элементы $e_p \ (p \in \mathbb{P}_1)$ могут быть выбраны таким образом, что $e_p \times e_p = e_p$.

Нетрудно видеть, что $(g)_{\times} = \prod_{p \in \mathbb{P}_1} \mathbb{Z} e_p + \langle g \rangle$, откуда $(g)_{\times} = (g)_{\times}^2 + \langle g \rangle$. По теореме 1 в [19] кольцо (G, \times) филиально. Следовательно, G является TI-группой. \square

ТЕОРЕМА 2. Пусть G – редуцированная алгебраически компактная группа, не являющаяся периодической. Группа G является TI-группой тогда и только тогда, когда G удовлетворяет одному из следующих условий:

- 1) $G = \widehat{\mathbb{Z}}_p$, $i \partial e \ p \in \mathbb{P}$,
- 2) $G=\widehat{\mathbb{Z}}_p\oplus\mathbb{Z}(n)$, где $p\in\mathbb{P}$, (p,n)=1, n натуральное число, свободное от квадратов,
- 3) $G=\prod_{p\in \mathbb{P}_0}\mathbb{Z}(p),$ где \mathbb{P}_0 бесконечное подмножество множества $\mathbb{P}.$

Доказательство. Пусть G – редуцированная алгебраически компактная группа и $G \neq T(G)$. Тогда $G = \prod_{p \in \mathbb{P}} G_p$, где G_p – p-адическая алгебраически компактная группа. Допустим,

G является TI-группой, тогда G_p также являются TI-группами при всех $p \in \mathbb{P}$ (замечание 1). Пусть $\mathbb{P}_0 = \{ p \in \mathbb{P} \mid G_n \neq 0 \}$. Лопустим для некоторого $p \in \mathbb{P}_0$ группа G_n не является

Пусть $\mathbb{P}_0 = \{ p \in \mathbb{P} \mid G_p \neq 0 \}$. Допустим, для некоторого $p \in \mathbb{P}_0$ группа G_p не является периодической, тогда $G_p = \widehat{\mathbb{Z}}_p$ по теореме 1 и $G = \widehat{\mathbb{Z}}_p \oplus \prod_{q \in \mathbb{P}_1} G_q$, где $\mathbb{P}_1 = \mathbb{P}_0 \setminus \{p\}$. Если $\mathbb{P}_1 = \emptyset$,

то $G = \widehat{\mathbb{Z}}_p$. Если же $\mathbb{P}_1 \neq \emptyset$, то в силу следствия 2 множество \mathbb{P}_1 конечно и G_q – периодическая группа для всех $q \in \mathbb{P}_1$. При этом каждая из групп G_q $(q \in \mathbb{P}_1)$ не имеет прямых слагаемых вида $\mathbb{Z}(q^k)$, где $k \geq 2$, и $\mathbb{Z}(q) \oplus \mathbb{Z}(q)$ (см. замечание 1). Следовательно, $G_q = \mathbb{Z}(q)$ при любом $q \in \mathbb{P}_1$, и, значит, $\prod_{q \in \mathbb{P}_1} G_q = \bigoplus_{q \in \mathbb{P}_1} \mathbb{Z}(q) = \mathbb{Z}(n)$, где $n = \prod_{q \in \mathbb{P}_1} q$. Таким образом, $G = \widehat{\mathbb{Z}}_p \oplus \mathbb{Z}(n)$, где (n,p) = 1 и число n свободно от квадратов.

Пусть теперь для любого $p \in \mathbb{P}_0$ группа G_p является периодической. В этом случае, так как $G \neq T(G)$, множество \mathbb{P}_0 бесконечно. Отсюда для любого $p \in \mathbb{P}_0$ группа G может быть записано в виде $G = G_p \oplus B_p$, где $B_p = \prod_{q \in \mathbb{P}_0 \setminus \{p\}} G_q$ – группа без кручения. Значит, ни одна

из групп G_p $(p \in \mathbb{P}_0)$ не содержит подгрупп вида $\mathbb{Z}(p^k)$, где $k \geq 2$, и $\mathbb{Z}(p) \oplus \mathbb{Z}(p)$ (замечание 1). Следовательно, $G_p = \mathbb{Z}_p$ при всех $p \in \mathbb{P}_0$. Значит, $G = \prod_{p \in \mathbb{P}_0} \mathbb{Z}(p)$, где \mathbb{P}_0 – бесконечное множество простых чисел.

Из следствия 1 и лемм 3, 4 получаем обратное утверждение.

□

3. Алгебраически компактные SI-группы и SACR-группы

Пусть G – редуцированная алгебраически компактная группа, тогда, G может быть представлена в виде $G = \prod_{p \in \mathbb{P}_0} G_p$, где $\mathbb{P}_0 \subseteq \mathbb{P}$ и $G_p = \sum_{i \in I_p} \mathbb{Q}_p^* e_i^{(p)}$ – регулярная прямая сумма при любом $p \in \mathbb{P}_0$. Согласно [11], для любых элементов $\tau_{ij}^{(p)} \in G_p$ таких, что $o(\tau_{ij}^{(p)}) \leq min\{o(e_i), o(e_j)\}$, существует умножение \times на G, для которого $e_i^{(p)} \times e_j^{(p)} = \tau_{ij}^{(p)}$ и $e_i^{(p)} \times e_j^{(q)} = 0$ при $p \neq q$. Следовательно, если хотя бы для одного p множество I_p содержит более одного элемента, то на группе G существует некоммутативное умножение. Отсюда получаем описание алгебраически компактных SACR-групп.

ПРЕДЛОЖЕНИЕ 1. Редуцированная алгебраически компактная группа G является SACR-группой тогда и только тогда, когда $G = \prod_{p \in \mathbb{P}_0} G_p$, где $\mathbb{P}_0 \subseteq \mathbb{P}$, $G_p = \widehat{\mathbb{Z}}_p$ или $G_p = \mathbb{Z}(p^k)$ $(k \in \mathbb{N})$ при любом $p \in \mathbb{P}_0$.

В следующей теореме описаны SI-группы и SI_H -группы в классе редуцированных алгебраически компактных групп.

Теорема 3. Пусть G – редуцированная алгебраически компактная группа. Тогда следующие условия равносильны:

- 1) G является SI-группой,
- 2) G является SI_H -группой,
- 3) $G \cong \mathbb{Z}(n)$ при некотором $n \in \mathbb{N}$.

Доказательство. Так как то, что из 1) следует 2), а из 3 следует 1), очевидно, докажем, что из 2) следует 3). Пусть $G-SI_H$ -группа и $G=\prod_{p\in\mathbb{P}_0}G_p$, где $\mathbb{P}_0\subseteq\mathbb{P},\ G_p-p$ -адическая компонента группы G. Пусть $p\in\mathbb{P}_0$, тогда группа G_p является SI_H -группой в силу леммы 3 в [13].

Отметим, что $\widehat{\mathbb{Z}}_p$ не является SI_H -группой, поскольку в кольце \mathbb{Q}_p^* подкольцо \mathbb{Z} не является идеалом. Значит, G_p не содержит подгруппы $\widehat{\mathbb{Z}}_p$ и имеет вид $G_p = \sum_{i \in I_p} \mathbb{Z}(p^{n_{i,p}})$, где $n_{i,p} \in \mathbb{N}$ при всех $i \in I_p$. По следствию 9 в [13] группа $T(G_p)$ является SI_H -группой, и, следовательно, $T(G_p) \cong \mathbb{Z}(p^{n_p})$ при некотором $n_p \in \mathbb{N}$ (по теореме 7 в [13]). Отсюда и $G_p \cong \mathbb{Z}(p^{n_p})$, так как G_p – это p-адическое пополнение $T(G_p)$.

Допустим, \mathbb{P}_0 – бесконечное множество. Запишем группу G в виде $G = \prod_{p \in \mathbb{P}_0} \mathbb{Z}e_p$, где $o(e_p) = p^{n_p}$, и определим ассоциативное умножение \times на G, положив $e_p \times e_p = e_p$ и $e_p \times e_q = 0$ при $p \neq q$. Рассмотрим элемент $g = (e_p)_{p \in \mathbb{P}_0} \in G$, тогда подгруппа $\langle g \rangle$ является подкольцом кольца (G, \times) , но не является его идеалом. Следовательно, G не является SI_H -группой. Отсюда получаем, что множество \mathbb{P}_0 конечно и, значит, $G = \prod_{p \in \mathbb{P}_0} \mathbb{Z}(p^{n_p}) \cong \mathbb{Z}(n)$, где $n = \prod_{p \in \mathbb{P}_0} p^{n_p}$.

Следствие 3. В классе непериодических редуцированных алгебраически компактных групп не существует SI-групп и SI_H -групп.

4. Заключение

В [9] показано, что любое умножение на периодической группе G полностью определяется его сужением на базисную подгруппу группы G. Как уже отмечалось, описание всех умножений на редуцированных алгебраически компактных группах [11] также выявило тесную связь

между кольцевыми структурами на этих группах и базисными подмодулями их p-адических компонент. Этот факт позволяет успешно изучать и строить кольца на алгебраически компактных группах.

В свою очередь, возможность продолжения умножения на группе до умножения на ее сервантно-инъективной оболочке дает метод изучения колец на произвольных редуцированных группах. Действительно, вкладывая кольцо на редуцированной группе G в качестве подкольца в кольцо на алгебраически компактной группе, свойства которого известны, мы можем получать информацию о кольцах на G. Так, например, нетрудно видеть, что группа, сервантно-инъективная оболочка которой является SI-группой (SI_H -группой); заметим, что обратное не верно, примером чему служит аддитивная группа \mathbb{Z} . Кроме того, группа является SACR-группой тогда и только тогда, когда SACR-группой является ее сервантно-инъективная оболочка.

СПИСОК ЦИТИРОВАННОЙ ЛИТЕРАТУРЫ

- 1. Beaumont R.A. Rings with additive groups which is the direct sum of cyclic groups // Duke Math. J. 1948. Vol. 15, № 2. P. 367–369.
- 2. Fuchs L. Ringe und ihre additive Gruppe // Publ. Math. Debrecen 1956. Vol. 4. P. 488–508.
- 3. Szele T. Zur Theorie der Zeroringe // Math. Ann. 1949. Vol. 121. P. 242–246.
- 4. Redei L., Szele T. Die Ringe "erstaen Ranges" // Acta Sci. Math. (Szeged) 1950. Vol. 12a. P. 18–29.
- 5. Beaumont R.A., Pierce R.S. Torsion-free rings // Illinois J. Math. 1961. Vol. 5. P. 61–98.
- 6. Чехлов А. Р., Об абелевых группах, все подгруппы которых являются идеалами // Вестн. Томск. гос. ун-та. Матем. и мех. 2009. № 3(7). С. 64–67.
- 7. Aghdam A. M., Karimi F., Najafizadeh A. On the subgroups of torsion-free groups which are subrings in every ring // Ital. J. Pure Appl. Math. 2013. Vol. 31. P. 63–76.
- 8. Andruszkiewicz R., Woronowicz M. On additive groups of associative and commutative rings // J. Quaest. Math. 2017. Vol. 40, № 4. P. 527–537.
- 9. Fuchs L. Abelian groups. Switz.: Springer International Publishing, 2015.
- 10. Feigelstock S. Additive Groups of Rings. Vol. I, II. Boston-London: Pitman Advanced Publishing Program, 1983, 1988.
- 11. Kompantseva E. I. Torsion-free rings // J. Math. Sci. 2010. Vol. 171. № 2. P. 213–247.
- 12. Kompantseva E. I. Absolute nil-ideals of Abelian groups // J. Math. Sci. 2014. Vol. 197. № 5. P. 625–634.
- 13. Feigelstock S. Additive groups of rings whose subrings are ideals // Bull. Austral. Math. Soc. 1997. Vol. 55. P. 477–481.
- 14. Redei L. Vollidealringe im weiteren Sinn. I // Acta Math. Acad. Sci. Hungar. 1952. Vol. 3. P. 243–268.
- 15. Андриянов В. И. Периодические гамильтоновы кольца // Матем. сб. 1967. Vol. 74(116). № 2. С. 241–261

- 16. Kruse R. L. Rings in which all subrings are ideals // Canad. J. Math. 1968. Vol. 20. P. 862–871.
- 17. Ehrlich G. Filial rings // Portugal. Math. 1983-1984. vol. 42. P. 185-194.
- 18. Sands A. D. On ideals in over-rings // Publ. Math. Debrecen. 1988. V. 35. P. 273–279.
- Andruszkiewicz R., Puczylowski E. On filial rings// Portugal. Math. 1988. Vol. 45, № 2. P. 139– 149.
- 20. Filipowicz M., Puczylowski E. R. Left filial rings // Algebra Colloq. 2004. Vol. 11. P. 335–344.
- 21. Andruszkiewicz R., Woronowicz M. On TI-groups // Recent Results in Pure and Applied Math. Podlasie. 2014. P. 33–41.
- 22. Feigelstock S. Additive groups of commutative rings // Quaest. Math. 2000. Vol. 23. P. 241–245.
- 23. Куликов Л. Я. Обобщенный примарные группы. І, ІІ // Труды московского матем. общества 1952. С. 247–326., 1953. С. 85–167.

REFERENCES

- 1. Beaumont, R. A. 1948, "Rings with additive groups which is the direct sum of cyclic groups", Duke Math. J., vol. 15, no. 2, pp. 367–369.
- 2. Fuchs, L. 1948, "Ringe und ihre additive Gruppe", Publ. Math. Debrecen, vol. 4, pp. 488–508.
- 3. Szele, T. 1949, "Zur Theorie der Zeroringe", Math. Ann., vol. 121, pp. 242–246.
- 4. Redei, L. & Szele, T. 1950, "Die Ringe "erstaen Ranges", Acta Sci. Math. (Szeged), vol. 12a, pp. 18–29.
- 5. Beaumont, R. A. & Pierce, R. S. 1961, "Torsion-free rings", Illinois J. Math., vol. 5, pp. 61–98.
- 6. Chekhlov, A. R. 2009, "On abelian groups, in which all subgroups are ideals", Vestn. Tomsk. Gos. Univ. Mat. Mekh., no. 3(7), pp. 64–67.
- 7. Aghdam, A. M. & Karimi, F. & Najafizadeh, A. 2013, "On the subgroups of torsion-free groups which are subrings in every ring", *Ital. J. Pure Appl. Math.*, vol. 31, pp. 63–76.
- 8. Andruszkiewicz, R. & Woronowicz, M. 2017, On additive groups of associative and commutative rings, J. Quaest. Math., vol. 40, no. 4, pp. 527–537.
- 9. Fuchs, L. 2015, "Abelian groups", Switz.: Springer International Publishing.
- 10. Feigelstock, S. 1983, 1988, "Additive groups of rings", vol. 1, vol. 2, Boston-London: Pitman Advanced Publishing Program.
- 11. Kompantseva, E. I. 2010, "Torsion-free rings", J. Math. Sci., vol. 171, no. 2, pp. 213–247.
- 12. Kompantseva, E. I. 2014, "Absolute nil-ideals of Abelian groups", J. Math. Sci., vol. 197, no. 5, pp. 625–634.
- 13. Feigelstock, S. 1997, "Additive groups of rings whose subrings are ideals", Bull. Austral. Math. Soc., vol. 55, pp. 477–481.
- 14. Redei, L. 1952, "Vollidealringe im weiteren Sinn. I", Acta Math. Acad. Sci. Hungar., vol. 3, pp. 243–268.

- 15. Andriyanov, V.I. 1967, "Periodic Hamiltonian rings", Math. USSR-Sb., vol. 3, no. 2, pp. 225–242.
- 16. Kruse, R. L. 1968, "Rings in which all subrings are ideals", Canad. J. Math., vol. 20, pp. 862–871.
- 17. Ehrlich, G. 1983-1984. "Filial rings", Portugal. Math., vol. 42, pp. 185-194.
- 18. Sands, A. D. 1988, "On ideals in over-rings", Publ. Math. Debrecen., vol. 35, pp. 273–279.
- 19. Andruszkiewicz, R. & Puczylowski, E. 1988, "On filial rings", *Portugal. Math.*, vol. 45, no. 2, pp. 139–149.
- 20. Filipowicz, M. & Puczylowski, E. R. 2004, "Left filial rings", Algebra Collog., vol. 11, pp. 335–344.
- 21. Andruszkiewicz, R. & Woronowicz, M. 2014, "On TI-groups", Recent Results in Pure and Applied Math. Podlasie., pp. 33–41.
- 22. Feigelstock, S. 2000, "Additive groups of commutative rings", Quaest. Math., vol. 23, pp. 241–245.
- 23. Kulikov L. Ya. 1952, 1953, "Generalized primary groups. I, II", *Tr. Mosk. Mat. Obs.*, pp. 247–326, pp. 85–167.

Получено 14.01.2019 г.

Принято в печать 10.04.2019 г.