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Аннотация

В настоящей заметке мы получим необходимое и достаточное условие на тройку неот-
рицательных целых чисел 𝑎 < 𝑏 < 𝑐 при выполнении которого многочлен Нюмена∑︀𝑎

𝑗=0 𝑥
𝑗 +

∑︀𝑐
𝑗=𝑏 𝑥

𝑗 имеет корень на единичном круге. Изпользуя это условие мы дока-
жем, что для каждого 𝑑 ≥ 3 существует такое целое положительное число 𝑛 > 𝑑, что
многочлен Нюмена 1 + 𝑥+ · · ·+ 𝑥𝑑−2 + 𝑥𝑛 длины 𝑑 не имеет корней на единичном круге.
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Abstract

In this note we give a necessary and sufficient condition on the triplet of nonnegative integers
𝑎 < 𝑏 < 𝑐 for which the Newman polynomial

∑︀𝑎
𝑗=0 𝑥

𝑗 +
∑︀𝑐

𝑗=𝑏 𝑥
𝑗 has a root on the unit circle.

From this condition we derive that for each 𝑑 ≥ 3 there is a positive integer 𝑛 > 𝑑 such that
the Newman polynomial 1 + 𝑥+ · · ·+ 𝑥𝑑−2 + 𝑥𝑛 of length 𝑑 has no roots on the unit circle.
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In honor of Professor Antanas Laurinčikas on the occasion of his 70th birthday

1. Introduction

For a polynomial 𝑓 ∈ C[𝑥], let throughout

𝑚(𝑓) := min
|𝑧|=1

|𝑓(𝑧)|

be the minimal value of 𝑓 on the unit circle. Motivated by some questions raised by Campbell,
Ferguson, Forcade [2], and Smyth [11] Boyd in [1] studied the behavior of 𝑚(𝑓) for Newman
polynomials 𝑓 . (Recall that 𝑓(𝑥) =

∑︀𝑑
𝑗=0 𝑎𝑗𝑥

𝑗 is a Newman polynomial if 𝑎𝑗 ∈ {0, 1} for each
𝑗 = 0, 1, . . . , 𝑑.) In particular, in [1] it was shown that for each 𝑑 ≥ 12 there is a Newman polynomial
𝑓 of degree 𝑑 satisfying 𝑚(𝑓) > 1 and that for each sufficiently large 𝑑 ∈ N there is a Newman
polynomial 𝑓 of degree 𝑑 satisfying 𝑚(𝑓) > 𝑑0.137. Here, 12 is the smallest possible such degree. For
example,

𝑚(1 + 𝑥+ 𝑥2 + 𝑥3 + 𝑥4 + 𝑥7 + 𝑥8 + 𝑥10 + 𝑥12) = 1.36237 . . . .

See also [9] for some results on the irreducibility of Newman polynomials.

One can raise similar questions with degree of 𝑓 replaced by its length (see [1], [4] and [8]). Such
questions turn out to be more difficult. More precisely, let 𝒩𝑑 be the set of Newman polynomials
of length 𝑑, namely,

𝒩𝑑 := {𝑥𝑘1 + · · ·+ 𝑥𝑘𝑑 , where 𝑘1 < · · · < 𝑘𝑑 are nonnegative integers}.

As in [8], we put
𝜇(𝑑) := max

𝑓∈𝒩𝑑

𝑚(𝑓).

Evidently, 𝜇(1) = 1 and 𝜇(2) = 0. The values of 𝜇(3) and 𝜇(4) have been calculated in [11] and [4],
respectively. (They come from polynomials 1+𝑥2+𝑥3 and 1+𝑥2+𝑥3+𝑥4.) It is conjectured that
𝜇(𝑑) → ∞ as 𝑑→ ∞ (see [1], [8]), but even much weaker inequality 𝜇(𝑑) ≥ 1 is still not established
for each 𝑑 ≥ 5 (see [8]).

In [8] Mercer proved that 𝜇(𝑑) > 0 for each 𝑑 ≥ 3. This is equivalent to the fact that for each
𝑑 ≥ 3 there is a Newman polynomial of length 𝑑 which has no roots on the unit circle. In this note
we describe which Newman polynomials of the form

𝑓(𝑥) =

𝑎∑︁
𝑗=0

𝑥𝑗 +

𝑐∑︁
𝑗=𝑏

𝑥𝑗 = 1 + · · ·+ 𝑥𝑎 + 𝑥𝑏 + · · ·+ 𝑥𝑐,

where 0 ≤ 𝑎 < 𝑏 ≤ 𝑐, have roots on the unit circle and which do not have. These polynomials are
naturally obtained by taking a degree 𝑐 polynomial with all coefficients 1 and then replacing in it
a string of consecutive coefficients by zeros. Note that Theorem 3 immediately implies the above
mentioned result 𝜇(𝑑) > 0 for every 𝑑 ≥ 3.

For a positive integer 𝑚 and a prime number 𝑝, let 𝜈𝑝(𝑚) be the power of 𝑝 in the prime
factorization of 𝑚, and 𝜈𝑝(0) = 0.

Theorem 1. Let 𝑎, 𝑏, 𝑐 be integers satisfying 0 ≤ 𝑎 < 𝑏 ≤ 𝑐. Then the Newman polynomial
1 + · · ·+ 𝑥𝑎 + 𝑥𝑏 + · · ·+ 𝑥𝑐 has a root on the unit circle if and only if 𝑐 = 𝑎+ 𝑏 or at least one of
the inequalities

gcd(𝑎+ 1, 𝑐− 𝑏+ 1) > 1, (1)
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gcd(𝑐+ 1, 𝑐− 𝑏+ 𝑎+ 2) > 1, (2)

𝜈2(|𝑐− 𝑎− 𝑏|) > 𝜈2(𝑏) (3)

holds.

In particular, selecting 𝑎 = 𝑑 − 2 ≥ 1 and 𝑏 = 𝑐 = 𝑛 > 𝑎, we see that 𝑐 ̸= 𝑎 + 𝑏 and
that gcd(𝑎 + 1, 𝑐 − 𝑏 + 1) = gcd(𝑑 − 1, 1) = 1, so (1) does not hold. Inserting 𝑐 + 1 = 𝑛 + 1,
𝑐 − 𝑏 + 𝑎 + 2 = 𝑑, |𝑐 − 𝑎 − 𝑏| = 𝑑 − 2 and 𝑏 = 𝑛 into (2) and (3), we obtain the following special
case of Theorem 1:

Theorem 2. Let 𝑑 and 𝑛 be integers satisfying 𝑛 > 𝑑 − 2 ≥ 1. Then the Newman polynomial
1+𝑥+ · · ·+𝑥𝑑−2+𝑥𝑛 ∈ 𝒩𝑑 has a root on the unit circle if and only if at least one of the inequalities

gcd(𝑛+ 1, 𝑑) > 1, (4)

𝜈2(𝑑− 2) > 𝜈2(𝑛) (5)

holds.

Let 𝜙(𝑚) be the Euler totient function. From Theorem 2 we shall derive the following:

Theorem 3. Let 𝑑 ≥ 3 be an integer. Write 𝑑 in the form 𝑑 = 2𝑚(2𝑙+1) with integers 𝑚, 𝑙 ≥ 0.
If 𝑘 ∈ N satisfies

𝑘 ≥ log 𝑑

𝜙(2𝑙 + 1) log 2
(6)

then the Newman polynomial 1 + 𝑥+ · · ·+ 𝑥𝑑−2 + 𝑥𝑛 ∈ 𝒩𝑑, with degree 𝑛 = 2𝜙(2𝑙+1)𝑘, has no roots
on the unit circle.

The proof of Theorem 1 is based on the following very simple lemma which was proved in [3].
(Subsequently, it was used in a different context in [6], [7], [10].)

Lemma 1. Suppose 𝑧1, 𝑧2, 𝑧3, 𝑧4 are complex numbers of modulus 1 satisfying

𝑧1 + 𝑧2 + 𝑧3 + 𝑧4 = 0.

Then 𝑧1 + 𝑧𝑗 = 0 for some 𝑗 ∈ {2, 3, 4}.

In the next section we give the proof of Theorem 1. In Section 3 we prove Theorem 3. Finally,
in Section 4 we present one more construction of Newman polynomials without roots on the unit
circle.

2. Proof of Theorem 1

For 𝑐 = 𝑎+ 𝑏, the polynomial

1 + · · ·+ 𝑥𝑎 + 𝑥𝑏 + · · ·+ 𝑥𝑐 = (1 + · · ·+ 𝑥𝑎)(1 + 𝑥𝑏)

is a product of cyclotomic polynomials, so all of its roots are roots of unity. In all what follows we
will assume that 𝑐 ̸= 𝑎+ 𝑏.

If a complex number 𝜁 of modulus 1 is a root of

𝑓(𝑥) := 1 + · · ·+ 𝑥𝑎 + 𝑥𝑏 + · · ·+ 𝑥𝑐,

then 𝜁 ̸= 1 and
0 = (1− 𝜁)𝑓(𝜁) = 1− 𝜁𝑎+1 + 𝜁𝑏 − 𝜁𝑐+1.



198 А. Дубицкас

Since the four numbers on the right hand side of this equality, namely, 1,−𝜁𝑎+1, 𝜁𝑏,−𝜁𝑐+1, are
all of modulus 1, by Lemma 1, we must have one of the following three possibilities:

1− 𝜁𝑎+1 = 𝜁𝑏 − 𝜁𝑐+1 = 0,

1− 𝜁𝑐+1 = −𝜁𝑎+1 + 𝜁𝑏 = 0,

1 + 𝜁𝑏 = 𝜁𝑎+1 + 𝜁𝑐+1 = 0.

In particular, these equalities imply that if 𝜁 of modulus 1 is a root of 𝑓 , then 𝜁 must be a root of
unity.

Now, will show that in the first (resp. second and third) case the inequality (1) (resp. (2) and
(3)) holds and, conversely, if (1), (2) or (3) holds then 𝑓(𝜉) = 0 for some root of unity 𝜉. (Evidently,
|𝜉| = 1.)

In the first case, we have 𝜁𝑎+1 = 𝜁𝑐−𝑏+1 = 1. Set 𝑔 := gcd(𝑎+1, 𝑐− 𝑏+1). Then, there are some
𝑢, 𝑣 ∈ Z such that 𝑔 = 𝑢(𝑎 + 1) + 𝑣(𝑐 − 𝑏 + 1), and therefore 𝜁𝑔 = 1. This is impossible if 𝑔 = 1,
because 𝜁 ̸= 1. Hence 𝑔 > 1 which proves (1). On the other hand, we will show that 𝜉 := 𝑒2𝜋𝑖/𝑔 ̸= 1
is a root of 𝑓 . Indeed, then, as 𝑔 divides 𝑎 + 1 and 𝑐 − 𝑏 + 1, we have 𝜉𝑎+1 = 𝜉𝑐−𝑏+1 = 1, which
yields 𝜉𝑐+1 = 𝜉𝑏. Consequently,

(1− 𝜉)𝑓(𝜉) = 1− 𝜉𝑎+1 − 𝜉𝑐+1 + 𝜉𝑏 = 1− 1 + 0 = 0,

giving 𝑓(𝜉) = 0.
In the second case, we have 𝜁𝑐+1 = 1 and 𝜁𝑏−𝑎−1 = 1. Therefore, 𝜁𝑐+1 = 𝜁𝑐−𝑏+𝑎+2 = 1. As above,

putting 𝑔1 := gcd(𝑐 + 1, 𝑐 − 𝑏 + 𝑎 + 2) we derive that 𝜁𝑔1 = 1. Hence 𝑔1 > 1 which proves (2). On
the other hand, we will show that 𝜉 := 𝑒2𝜋𝑖/𝑔1 ̸= 1 is a root of 𝑓 . Indeed, then 𝜉𝑐+1 = 𝜉𝑐−𝑏+𝑎+2 = 1,
which yields 𝜉𝑏 = 𝜉𝑎+1. Consequently,

(1− 𝜉)𝑓(𝜉) = 1− 𝜉𝑐+1 − 𝜉𝑎+1 + 𝜉𝑏 = 1− 1 + 0 = 0,

giving 𝑓(𝜉) = 0.
In the third case, we obtain 𝜁𝑏 = −1 and 𝜁𝑐−𝑎 = −1. Hence 𝜁𝑐−𝑎−𝑏 = 1, and so 𝜁 |𝑐−𝑎−𝑏| = 1.

From 𝜁𝑏 = −1 we find that 𝜁 = 𝑒𝜋𝑖(2𝑘+1)/𝑏 for some 𝑘 ∈ Z. So, using 𝜁 |𝑐−𝑎−𝑏| = 1, we obtain

𝑒𝜋𝑖(2𝑘+1)|𝑐−𝑎−𝑏|/𝑏 = 1.

It follows that (2𝑘 + 1)|𝑐 − 𝑎 − 𝑏|/𝑏 must be an even integer, which is only possible when
𝜈2(|𝑐 − 𝑎 − 𝑏|) > 𝜈2(𝑏). This implies (3). To prove that the condition (3) is sufficient, we assume
that 𝜈2(𝑏) = 𝑡 ≥ 0 and 𝜈2(|𝑐− 𝑎− 𝑏|) = 𝑠 ≥ 𝑡+ 1. Then 𝑏 = 2𝑡(2𝑞+ 1) and |𝑐− 𝑎− 𝑏| = 2𝑠(2ℓ+ 1),
where 𝑞, ℓ ≥ 0 are integers. (Here, we use the fact that 𝑐 ̸= 𝑎 + 𝑏.) Putting 𝜉 := 𝑒𝜋𝑖/2

𝑡
, we deduce

that

𝜉𝑏 = 𝑒2
𝑡(2𝑞+1)𝜋𝑖/2𝑡 = 𝑒(2𝑞+1)𝜋𝑖 = −1

and

𝜉|𝑐−𝑎−𝑏| = 𝑒2
𝑠(2ℓ+1)𝜋𝑖/2𝑡 = 𝑒2

𝑠−𝑡(2ℓ+1)𝜋𝑖 = 1.

Thus 1 + 𝜉𝑏 = 0 and 𝜉𝑐−𝑎−𝑏 = 1, which yields 𝜉𝑐+1 = −𝜉𝑎+1. It follows that 𝜉 is a root of
(1 − 𝑥)𝑓(𝑥) = 1 − 𝑥𝑎+1 + 𝑥𝑏 − 𝑥𝑐+1. Since 𝜉 ̸= 1, it is a root of 𝑓 . This completes the proof of
Theorem 1.
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3. Proof of Theorem 3

To derive Theorem 3 from Theorem 2 we first observe that (6) implies

𝑛 = 2𝜙(2𝑙+1)𝑘 = 𝑒𝜙(2𝑙+1)𝑘 log 2 ≥ 𝑒log 𝑑 = 𝑑,

so 1+𝑥+ · · ·+𝑥𝑑−2+𝑥𝑛 is indeed a Newman polynomial of length 𝑑. Next, from (6), 𝑛 = 2𝜙(2𝑙+1)𝑘,
𝑑 ≥ 3 and the trivial inequality 𝜈2(𝑐) ≤ log2 𝑐 for 𝑐 ∈ N, it follows that

𝜈2(𝑛) = 𝜙(2𝑙 + 1)𝑘 ≥ log2 𝑑 > log2(𝑑− 2) ≥ 𝜈2(𝑑− 2),

so (5) does not hold. To show that (4) does not hold as well, we need to prove that the numbers
𝑛+1 = 2𝜙(2𝑙+1)𝑘+1 and 𝑑 = 2𝑚(2𝑙+1) are coprime. By Euler’s theorem, 2𝜙(2𝑙+1)𝑘 ≡ 1 (mod 2𝑙+1).
Consequently, 𝑛+ 1 = 2𝜙(2𝑙+1)𝑘 + 1 modulo 2𝑙 + 1 is 2. Combining this with the fact that 𝑛+ 1 is
odd, we derive that

gcd(𝑛+ 1, 𝑑) = gcd(𝑛+ 1, 2𝑙 + 1) = gcd(2, 2𝑙 + 1) = 1.

This completes the proof of Theorem 3.

4. Another series of Newman polynomials without unimodular roots

Finally, in order to give one more alternative (and very short) proof of the fact that 𝜇(𝑑) > 0 for
each 𝑑 ≥ 3 we recall the following result of Filaseta, Finch and Nicol (see the proof of Theorem 4.1
in [5]):

Lemma 2. There is an infinite sequence of nonnegative integers 𝑆 := {𝑠1 < 𝑠2 < 𝑠3 < . . . }
such that for every finite set 𝑇 ⊂ 𝑆 the polynomial 1 +

∑︀
𝑡∈𝑇 𝑥

4𝑡 is irreducible over the rationals.

Fix 𝑑 ≥ 3 and take any 𝑇 ⊂ 𝑆 with 𝑑 − 1 elements, for instance, 𝑇 = {𝑡1 < · · · < 𝑡𝑑−1} ⊂ 𝑆.
Then

𝑓(𝑥) := 1 +
∑︁
𝑡∈𝑇

𝑥4
𝑡 ∈ 𝒩𝑑.

We claim that 𝑓 has no roots on the unit circle. Indeed, if 𝜁 is a root of 𝑓 satisfying |𝜁| = 1 then so is
𝜁 = 1/𝜁, and hence the minimal polynomial 𝑔 of 𝜁 over Q is reciprocal. Since 𝑔|𝑓 and, by Lemma 2,
𝑓 is irreducible, we must have 𝑔 = 𝑓 . It follows that 𝑓 is reciprocal, namely, 𝑓(𝑥) = 𝑥𝐷𝑓(1/𝑥), with
𝐷 = 4𝑡𝑑−1 . However, the identity

𝑥𝐷 +
∑︁
𝑡∈𝑇

𝑥𝐷−4𝑡 = 𝑥𝐷𝑓(1/𝑥) = 𝑓(𝑥) = 1 +
∑︁
𝑡∈𝑇

𝑥4
𝑡

does not hold in view of

𝐷 − (𝐷 − 4𝑡1) = 4𝑡1 < 3 · 4𝑡𝑑−2 ≤ 4𝑡𝑑−1 − 4𝑡𝑑−2 = 𝐷 − 4𝑡𝑑−2 .

Hence 𝑓 has no roots on the unit circle, as claimed.
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