O MmHoOrousenax Hromena . .. 195

YEBBIINEBCKNIT CBOPHUK
Towm 20. Bormyck 1.

YIK 512.62 DOI 10.22405/2226-8383-2019-20-1-195-201

O muorousieHax HiomeHa 6e3 KopHeil Ha € TMHUIHOM KpPyTe
A. Iy6urkac

Aprypac /lybuinkac — JOKTOp MaTeMaTHIeCKUX HAYK, BEYIIUiI HayIHBIN cOTpyTHUK, UHCTUTY T
Maremarukn Bunbaiocckoro yauBepcutera, 1. Bumbatoc (JIursa).
e-mail: arturas.dubickas@mif.vu.lt

AnHOTanusa

B nacrosimieit 3aMerke MbI IOTYy9IrM HEOOXOIAMMOE W JOCTATOYHOE YCJIOBHE HA TPOIKY HEOT-
pUIATEIbHBIX IEJIbIX 4Yuces ¢ < b < ¢ upu BbINOJIHEHWH KOTOporo muorodsien Hromena
a y (& y
> jeo &) + Zj:b ) umeer KOpeHb HA eAMHUYHOM Kpyre. V3mosb3ys 3TO ycjaoBue Mbl JI0Ka-
JKeM, |UTO JIJIs KarkKJ0ro d > 3 CyIIeCTBYeT TaKoe IeJI0e TOJO0XKHUTEIbHOe YUCI0 m > d, 9To
muorousen Hiomena 1+ + -+ 4+ 2972 + 2" nyunbl d He MMeeT KOpHeH Ha eIMHUYHOM KpyTe.
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Abstract

In this note we give a necessary and sufficient condition on the triplet of nonnegative integers
a < b < ¢ for which the Newman polynomial Z?:o zd + Z;:b 27 has a root on the unit circle.
From this condition we derive that for each d > 3 there is a positive integer n > d such that
the Newman polynomial 1 4z + - -- + 2972 4 2™ of length d has no roots on the unit circle.
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In honor of Professor Antanas Laurincéikas on the occasion of his 70th birthday

1. Introduction

For a polynomial f € C[z], let throughout

m(f) := min [f(z)]
|z|=1
be the minimal value of f on the unit circle. Motivated by some questions raised by Campbell,
Ferguson, Forcade [2|, and Smyth [11] Boyd in [1] studied the behavior of m(f) for Newman
polynomials f. (Recall that f(x) = Z;l:o ajz’ is a Newman polynomial if a; € {0,1} for each
j=0,1,...,d.) In particular, in [1] it was shown that for each d > 12 there is a Newman polynomial
f of degree d satisfying m(f) > 1 and that for each sufficiently large d € N there is a Newman
polynomial f of degree d satisfying m(f) > d%'37. Here, 12 is the smallest possible such degree. For
example,
m(l+z+a2? +2° +a* + 27 + 2% + 2"+ 2'%) = 1.36237.....

See also [9] for some results on the irreducibility of Newman polynomials.

One can raise similar questions with degree of f replaced by its length (see [1], [4] and [8]). Such
questions turn out to be more difficult. More precisely, let Ny be the set of Newman polynomials
of length d, namely,

Ny = {xkl + -+ 2P, where k| < --- < kg are nonnegative integers}.

As in 8], we put
d) = .
p(d) max m(f)
Evidently, 1(1) = 1 and u(2) = 0. The values of x(3) and u(4) have been calculated in [11] and [4],
respectively. (They come from polynomials 1+ 22 + 22 and 1+ 22 4 23 + 2*.) Tt is conjectured that
p(d) — oo as d — oo (see [1], [8]), but even much weaker inequality p(d) > 1 is still not established
for each d > 5 (see [8]).

In [8] Mercer proved that p(d) > 0 for each d > 3. This is equivalent to the fact that for each
d > 3 there is a Newman polynomial of length d which has no roots on the unit circle. In this note
we describe which Newman polynomials of the form

a C
fa)=Yal+Y 2l =1+ +a"+a" +- +2°,
=0 =b

where 0 < a < b < ¢, have roots on the unit circle and which do not have. These polynomials are
naturally obtained by taking a degree ¢ polynomial with all coefficients 1 and then replacing in it
a string of consecutive coefficients by zeros. Note that Theorem 3 immediately implies the above
mentioned result p(d) > 0 for every d > 3.

For a positive integer m and a prime number p, let v,(m) be the power of p in the prime
factorization of m, and v,(0) = 0.

THEOREM 1. Let a,b,c be integers satisfying 0 < a < b < c¢. Then the Newman polynomial
1442+ 2P+ -+ 2° has a root on the unit circle if and only if ¢ = a + b or at least one of
the inequalities

ged(a+1,c—b+1) > 1, (1)
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ged(ec+1l,e—b+a+2)>1, (2)
va(|le —a —b|) > va(b) (3)
holds.

In particular, selecting a = d—2 > 1 and b = ¢ = n > a, we see that ¢ # a + b and
that ged(a + 1,c — b+ 1) = ged(d — 1,1) = 1, so (1) does not hold. Inserting ¢ + 1 = n + 1,
c—b+a+2=d,|c—a—-b=d—2and b=ninto (2) and (3), we obtain the following special
case of Theorem 1:

THEOREM 2. Let d and n be integers satisfying n > d — 2 > 1. Then the Newman polynomial
1+z+---+297 242" € Ny has a root on the unit circle if and only if at least one of the inequalities

ged(n+1,d) > 1, (4)
va(d —2) > va(n) (5)
holds.
Let ¢(m) be the Euler totient function. From Theorem 2 we shall derive the following;:

THEOREM 3. Let d > 3 be an integer. Write d in the form d = 2™ (214 1) with integers m,l > 0.

If k € N satisfies
logd

~ (2l +1)log2

then the Newman polynomial 1+ + - -- + 2% 2 + 2" € Ny, with degree n = 2°HVE has no roots
on the unit circle.

(6)

The proof of Theorem 1 is based on the following very simple lemma which was proved in [3].
(Subsequently, it was used in a different context in [6], [7], [10].)

LEMMA 1. Suppose z1, 29, 23, 24 are complex numbers of modulus 1 satisfying
21+ 29+ 23+ 24 =0.
Then z1 + z; = 0 for some j € {2,3,4}.

In the next section we give the proof of Theorem 1. In Section 3 we prove Theorem 3. Finally,
in Section 4 we present one more construction of Newman polynomials without roots on the unit
circle.

2. Proof of Theorem 1
For ¢ = a + b, the polynomial
1+ Fat4ab+ 2= 14 +29)(1 +2°)

is a product of cyclotomic polynomials, so all of its roots are roots of unity. In all what follows we
will assume that ¢ # a + b.
If a complex number ¢ of modulus 1 is a root of

fl@)=1++a"+2"+ - +2°

then ¢ # 1 and
0=(1-QF() =1 - ¢+ =,
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Since the four numbers on the right hand side of this equality, namely, 1, =21, ¢b, —¢¢t1, are
all of modulus 1, by Lemma 1, we must have one of the following three possibilities:

1_Ca+1 :Cb_Cc+1:0
1 _CC+1 _ _Ca+1 +<b:07

1+Cb :Ca+1+CC+1 —=0.

In particular, these equalities imply that if ¢ of modulus 1 is a root of f, then ¢ must be a root of
unity.

Now, will show that in the first (resp. second and third) case the inequality (1) (resp. (2) and
(3)) holds and, conversely, if (1), (2) or (3) holds then f(&) = 0 for some root of unity £. (Evidently,
€l =1)

In the first case, we have (¢*! = ¢¢~0+1 = 1. Set g := gcd(a+1,c—b+1). Then, there are some
u,v € Z such that g = u(a+ 1) + v(c — b+ 1), and therefore (Y = 1. This is impossible if g = 1,
because ¢ # 1. Hence g > 1 which proves (1). On the other hand, we will show that & := e2™/9 £ 1
is a root of f. Indeed, then, as g divides a + 1 and ¢ — b+ 1, we have &1 = ¢¢70+1 = 1 which
yields €71 = €0, Consequently,

1-9f(@)=1—¢ ¢t peb=1-1+0=0,

giving f(&) = 0.

In the second case, we have (¢! =1 and ¢*~%! = 1. Therefore, (¢t = (¢70*+2+2 = 1. As above,
putting g1 := ged(c+ 1,¢ — b+ a + 2) we derive that (9 = 1. Hence g1 > 1 which proves (2). On
the other hand, we will show that & := €27/91 £ 1 is a root of f. Indeed, then £+ = gebtat2 — 1
which yields £ = ¢!, Consequently,

(1-f(=1-¢T -+ =1-1+0=0,

giving f(§) = 0.
In the third case, we obtain ¢ = —1 and ¢“~% = —1. Hence (¢ %% = 1, and so ¢lco~bl = 1.
From (* = —1 we find that ¢ = ™D/t for some k € Z. So, using ¢!“=*~% = 1, we obtain

6Tri(2k+1)\cfafb|/b -1

It follows that (2k + 1)|c — a — b|/b must be an even integer, which is only possible when
va(|lc —a — b|) > vo(b). This implies (3). To prove that the condition (3) is sufficient, we assume
that v9(b) =t > 0 and va(jc—a—b|) =s >t +1. Then b =2!(2¢+ 1) and |c —a — b| = 25(20 + 1),
where ¢,¢ > 0 are integers. (Here, we use the fact that ¢ # a + b.) Putting £ := e™/2'  we deduce
that

¢b = 2 QatDmi/2 _ (et _
and
€|c—a—b| _ 625(2£+1)7ri/2t _ eQS’t(%—Q—l)ﬂ'i - 1.
Thus 1 4+ &% = 0 and £€7%7% = 1, which yields &1 = —¢o+1, Tt follows that & is a root of

(1—2)f(x) =1 — 20" 4 2b — 2¢+1 Since & # 1, it is a root of f. This completes the proof of
Theorem 1.
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3. Proof of Theorem 3

To derive Theorem 3 from Theorem 2 we first observe that (6) implies

n— 2@(2l+1)k _ ecp(2l+1)k:log2 > elogd =d,

so 14z +---+2% 242" is indeed a Newman polynomial of length d. Next, from (6), n = 2#(2+1Dk,
d > 3 and the trivial inequality v5(c) < log, ¢ for ¢ € N, it follows that

va(n) = (2l + 1)k > logy d > logy(d — 2) > vo(d — 2),

so (5) does not hold. To show that (4) does not hold as well, we need to prove that the numbers
n41 = 29C+Dk 11 and d = 27(21+1) are coprime. By Euler’s theorem, 292+ D% = 1 (mod 21+1).
Consequently, n + 1 = 2¢@HDE 11 modulo 2/ + 1 is 2. Combining this with the fact that n 4 1 is
odd, we derive that

ged(n +1,d) = ged(n + 1,21+ 1) = ged(2,2l + 1) = 1.

This completes the proof of Theorem 3.

4. Another series of Newman polynomials without unimodular roots

Finally, in order to give one more alternative (and very short) proof of the fact that u(d) > 0 for
each d > 3 we recall the following result of Filaseta, Finch and Nicol (see the proof of Theorem 4.1
in [5]):

LEMMA 2. There is an infinite sequence of nonnegative integers S := {s1 < s2 < 83 < ...}
such that for every finite set T C S the polynomial 143, p 2 is irreducible over the rationals.

Fix d > 3 and take any 7' C S with d — 1 elements, for instance, T' = {t; < --- < t4_1} C S.
Then

fla) =1+ 2" e Ny

teT

We claim that f has no roots on the unit circle. Indeed, if ¢ is a root of f satisfying || = 1 then so is
¢ = 1/¢, and hence the minimal polynomial g of ¢ over Q is reciprocal. Since g|f and, by Lemma 2,
f is irreducible, we must have g = f. It follows that f is reciprocal, namely, f(z) = 2P f(1/z), with
D = 4%a-1, However, the identity

zP +Z$D_4t =2Pf(1/z) = f(z) =1 —I—ch4t

teT teT

does not hold in view of
D — (D —4") =41 < 3. 4ld2 < gla-t _gla—2 = D — gla—2,

Hence f has no roots on the unit circle, as claimed.
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