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Аннотация

Задача динамической геометрии расстояния (dynDGP) – это недавно введенный под-
класс геометрии расстояния, где проблемы имеют динамическую составляющую.

Графы
𝐺 = (𝑉 × 𝑇,𝐸, {𝛿, 𝜋})

dynDGP имеют множество вершин, которое является произведением множества двух мно-
жеств: множества 𝑉 , содержащего объекты для анимации, и множества 𝑇 , представляю-
щего время.

В этой статье основное внимание уделяется специальным экземплярам dynDGP, ко-
торые используются для представления движения человека в проблеме адаптации, где
множество 𝑉 допускает скелетную структуру (𝑆, 𝜒).

"Расстояние взаимодействия" — это понятие введено в качестве возможной замены ев-
клидова расстояния, которое способно улавливать информацию о представлении динамики
задачи и некоторые начальные свойства этого нового расстояния.
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Abstract

The dynamical Distance Geometry Problem (dynDGP) is a recently introduced subclass of
the distance geometry where problems have a dynamical component. The graphs

𝐺 = (𝑉 × 𝑇,𝐸, {𝛿, 𝜋})

of dynDGPs have a vertex set that is the set product of two sets: the set 𝑉 , containing the
objects to animate, and the set 𝑇 , representing the time. In this article, the focus is given to
special instances of the dynDGP that are used to represent human motion adaptation problems,
where the set 𝑉 admits a skeletal structure (𝑆, 𝜒).

The “interaction distance” is introduced as a possible replacement of the Euclidean distance
which is able to capture the information about the dynamics of the problem, and some initial
properties of this new distance are presented.

Keywords: dynamical distance geometry, interaction distance, human motion adaptation,
retargeting, animated skeletal structures, symmetric quasi-distance.
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1. Introduction

Given a weighted undirected graph 𝐺 = (𝑉 × 𝑇,𝐸, {𝛿, 𝜋}), the dynamical Distance Geometry
Problem (dynDGP) [16, 20] in dimension 3 consists in finding a realization

𝑥 : (𝑣, 𝑡) ∈ 𝑉 × 𝑇 −→ (𝑥𝑡𝑣, 𝑦
𝑡
𝑣, 𝑧

𝑡
𝑣) ∈ R3 (1)

of 𝐺 in the Euclidean space R3 such that the following objective is minimized:

𝜎(𝑥) =
∑︁

(𝑢𝑞 ,𝑣𝑡)∈𝐸

𝜋(𝑢𝑞, 𝑣𝑡)
| 𝑑((𝑥𝑞𝑢, 𝑦𝑞𝑢, 𝑧𝑞𝑢), (𝑥𝑡𝑣, 𝑦𝑡𝑣, 𝑧𝑡𝑣))− 𝛿(𝑢𝑞, 𝑣𝑡) |

𝛿(𝑢𝑞, 𝑣𝑡)
, (2)

where 𝑑 is a distance function, and | · | indicates the absolute value of a real number.
It is important to point out the two different roles of 𝛿 and 𝑑 in equ. (2). The former is one

of the weights associated to the edges of the graph 𝐺, which corresponds to the available distance
value between a vertex pair. The latter is instead a distance function: 𝑑 associates, to every pair
of positions, their corresponding distance. In the majority of the applications of distance geometry
[19], the distance function 𝑑 is the Euclidean distance:

𝑑((𝑥𝑞𝑢, 𝑦
𝑞
𝑢, 𝑧

𝑞
𝑢), (𝑥

𝑡
𝑣, 𝑦

𝑡
𝑣, 𝑧

𝑡
𝑣)) =

2

√︁
(𝑥𝑡𝑣 − 𝑥𝑞𝑢)2 + (𝑦𝑡𝑣 − 𝑦𝑞𝑢)2 + (𝑧𝑡𝑣 − 𝑧𝑞𝑢)2.

The value of 𝜋 associated to every distance represents the “importance” of such a distance, and it
is generally referred to as the priority of the distance 𝛿 [9, 16].

The vertex (𝑣, 𝑡) of the graph 𝐺 is an ordered pair that represents a given object 𝑣 at a certain
instant 𝑡, and a realization 𝑥 corresponds to an animation of the objects in 𝑉 over the time steps
in 𝑇 = {1, 2, . . . , 𝑛}. As in the equations already introduced above, the compact notations 𝑣𝑡 and
{𝑢𝑞, 𝑣𝑡} are employed for indicating a vertex and an edge of 𝐺, respectively. The coordinates of
the object 𝑣 at the time 𝑡 obtained through the realization function 𝑥 are indicated with compact
notations 𝑥𝑡𝑣, 𝑦

𝑡
𝑣 and 𝑧𝑡𝑣. Notice that, from a formal point of view, the only particularity of the

dynDGP (w.r.t a standard distance geometry problem) is the fact that the vertex set of 𝐺 is the
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set product of two sets: 𝑉 (the objects) and 𝑇 (the time). In other words, a dynDGP with 𝑇 = {1}
is a “standard” distance geometry problem [12].

This article focuses on a particular application of the dynDGP, where the main interest is in
analyzing human motions through the study of animated skeletal structures which resemble the
human body [20]. Some initial works have shown that tools for distance geometry can be employed
in this context [2, 17], but they consider, as in the majority of the applications in distance geometry,
the Euclidean distance as a metric.

In fact, only a few examples of use of non-Euclidean distances in the context of distance geometry
can currently be found in the scientific literature: in [4], for example, the 𝐿∞ distance is used to
reformulate the distance geometry problem as an optimization problem whose constraints only
include linear terms; in [13], distance geometry on the sphere is studied, where the distances can be
either Euclidean, or geodesic distances. In the present work, the possibility to replace the Euclidean
distance with another distance function, which is able to “better” capture the features of the motion
adaptation problem, is discussed. To this aim, the interaction distance will be introduced, and some
of its basic properties will be studied.

The rest of the article is organized as follows. Section 2 will introduce more in details the
mathematical objects that are involved in motion adaptation. Section 3 will propose a definition of
the human motion adaptation problem which is based on the formulation of a dynDGP. Then, the
interaction distance will be introduced in Section 4, and some initial properties will be presented.
Finally, Section 5 will conclude the paper.

2. The objects that come to play

Human-like characters are sets of bars that represent “bones” (i.e. the rigid components) of
a human body, while the intersection points between two bars are named “joints”. This kind
of structure is widely used in applied mathematics and can be represented by a simple graph
𝑆 = (𝑉,𝐸𝑆), where vertices in 𝑉 are the joints and the existence of an edge {𝑢, 𝑣} ∈ 𝐸𝑆 between
two joints 𝑢 and 𝑣 indicates that they are connected by a bar [11].

The graph 𝑆 provides information about the structure (a hand is connected through a bar to
an elbow, which is then connected through another bar to the shoulder, and so on), but it gives no
information about the morphology of the character. For a predefined accuracy level of the skeletal
representation of the character (not all human bones are generally represented, but only a few of
them, often a little more than 20 bones), in fact, it is actually possible to consider the graph 𝑆 as
a constant for an entire group of characters. Then, the difference between pairs of characters can
be evaluated by simply comparing their morphology. Notice that, for the majority of the skeletal
representations, the graph 𝑆 is a tree.

The simplest way to add morphology information to a character is to include in the graph 𝑆 a
weight function that associates a real positive value (the bone length) to all its edges in 𝐸𝑆 . This
way, a “tall guy” has larger values associated to the weights of its “leg” edges, in comparison with
a normal-sized guy. Naturally, lengths can be provided in absolute values for all edges:

𝑤 : {𝑢, 𝑣} ∈ 𝐸 −→ 𝑤(𝑢, 𝑣) ∈ R+,

or rather the propositions among them can be provided in order to obtain a more efficient character
description which is independent from the metric scale.

Even though the simple, and weighted, graph 𝑆 = (𝑉,𝐸,𝑤) provides enough information to
represent a character bone structure and morphology, it is typical (in the works signed by the
computer graphics community) to represent characters by skeletal structures [1, 11]. A skeletal
structure is a pair consisting of a graph (𝑆 in our case, without weights), and a function 𝜒 that is
able to assign a position in R3 to every joint 𝑣 ∈ 𝑉 . This initial set of positions corresponds to the
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Рис. 1: The initial pose for the skeletal structure (𝑆, 𝜒). 𝑆 is a tree and, in its realization shown
in this figure, the joint positions are computed by setting the position of its root to (0, 0, 0) and by
using the displacement function 𝜒 to compute the coordinates of all other joints.

“initial pose” of the character (Fig. 1 shows an example of initial pose for a human-like character).
The function 𝜒 takes into consideration the hierarchical information in the graph 𝑆, and actually
provides the displacement (𝜉𝑥𝑣 , 𝜉

𝑦
𝑣 , 𝜉𝑧𝑣) of every vertex 𝑣 ∈ 𝑉 w.r.t. its parent (when 𝑆 is a tree, every

vertex has only one parent):
𝜒 : 𝑣 ∈ 𝑉 −→ (𝜉𝑥𝑣 , 𝜉

𝑦
𝑣 , 𝜉

𝑧
𝑣) ∈ R3,

from which all vertex positions in the initial pose can be obtained.
The most common way to represent the animation of the character (𝑆, 𝜒) is through the function:

𝜌 : (𝑣, 𝑡) ∈ 𝑉 × 𝑇 −→ (𝜃𝑡𝑣, 𝜑
𝑡
𝑣, 𝜂

𝑡
𝑣) ∈ R3, (3)

where 𝜃𝑡𝑣, 𝜑
𝑡
𝑣 and 𝜂

𝑡
𝑣 are three Euler angles (pitch: 𝜃, roll: 𝜑 and yaw: 𝜂) used to control the relative

rotations of every character edge in the local coordinate system of the hierarchically lowest (closest
to the root) joint of the edge [14]. This representation has the great advantage of keeping the skeletal
structure, as well as its morphology, constant during the animation.

From the initial pose for the character, and by using the Euler angles (𝜃𝑡𝑣, 𝜑
𝑡
𝑣, 𝜂

𝑡
𝑣) for all following

time steps 𝑡, it is possible to calculate the vertex coordinates of all subsequent character poses, so
that the entire animation can be represented through a function 𝑥 (see equ. (1)). This procedure is
detailed, for example, in [14]. A solutions (realization) 𝑥 to a dynDGP has exactly the same form.

3. Human motion adaptation

Character animation is nowadays largely used in movie and video game industries. Typically,
a 3D model and its associated skeletal structure (𝑆, 𝜒) are designed by an artist, then animated
either manually or using recorded motion capture data. However, it is often the case that animations
created for a specific character, or captured from a given actor, need to be reused on characters with
a different morphology: this problem is known in the specialized literature as the motion adaptation
problem.

Since the early works of Gleicher [8], and Choi and Ko [3], the problem of adapting a given
animation to the special features of a given character is taking particular attention from the
research community. The main problem consists extracting the information about the animation
played by character A (the actor), and to transfer this piece of information to another character B
(the character to be animated), which is generally morphologically different from character A (see
Section 2 for the representation of the characters and the animations).
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Let (𝑆, 𝜒𝐴) be the skeletal structure that describes the morphology of character A, and suppose
that the initial animation is captured from character A; let (𝑆, 𝜒𝐵) be the skeletal structure of the
target character B. The two characters have a common graph 𝑆, but the two functions 𝜒𝐴 and 𝜒𝐵
are different. When the two initial poses described by the two displacement functions 𝜒𝐴 and 𝜒𝐵 are
the same (different numerical values for the displacements over the three components may represent
the same pose, such as the typical T pose), one possible (and easy) approach to motion adaptation
is to simply transfer the function 𝜌𝐴 (see equ. (3), representing the animation of character A, to
character B (in other words, it is imposed that 𝜌𝐵 ≡ 𝜌𝐴). However, the Euler angles in 𝜌𝐴 are not
able to take into consideration the spatial relationship between pairs of character joints [2, 10], and
as a consequence undesired effects may be introduced in the animation. Typical undesired effects
include creating body contacts that were not present in the original animation, or to miss body
contacts that actually occur in the original animation.

As already remarked in Section 2, the coordinates (𝑥𝑡𝑣, 𝑦
𝑡
𝑣, 𝑧

𝑡
𝑣) for every joint and for every time 𝑡

can be computed by combining the displacement function of the skeletal structure (𝑆, 𝜒𝐴) with the
function 𝜌𝐴. With the obtained representation 𝑥𝐴 of the animation, Euclidean distances between
pairs of joints, at every time frame 𝑡, can be computed. As it is well-known, the Euclidean distance
is widely used in several scientific disciplines, and provides information that is easily understandable
by humans, which is, the simple measure of proximity between object pairs. A character that flaps
its hands, for example, needs to bring, at particular time frames, the Euclidean distance between
the two hands to zero in order to perform this movement; the distance provides this simple and
fundamental feature of the movement.

When the animations are represented by functions having the form of equ. (1), the motion
adaptation problem can be formulated as follows [2, 17]. Let 𝑥𝐴 be the initial animation of
(𝑆, 𝜒𝐴), given in terms of absolute vertex positions. In order to capture the spatial relationships
between joint pairs in the animation, all relative distances 𝛿, for every time frame, can be
computed. If some distances are considered to be more important than others, then a higher priority
value 𝜋 can be associated to them. This procedure allows to define the simple undirected graph
𝐺 = (𝑉 × 𝑇,𝐸, {𝛿, 𝜋}), which represents the animation in terms of distances.

Definition 11. (dynDGP-based human motion adaptation).
Given a skeletal structure (𝑆, 𝜒𝐵) and a simple weighted undirected graph 𝐺 = (𝑉 × 𝑇,𝐸, {𝛿, 𝜋})
obtained from an animation of (𝑆, 𝜒𝐴), find an animation 𝑥𝐵 for the skeletal structure (𝑆, 𝜒𝐵) that
is solution to dynDGP(𝐺).

It is important to remark that “an animation for (𝑆, 𝜒𝐵)” is meant to be an animation where
the morphology described by the skeletal structure is preserved. Naturally, finding an animation
for (𝑆, 𝜒𝐴), when 𝐺 was obtained from an animation of the same skeletal structure, is an easy
problem, because all distance constraints are precise and compatible to each other [15]. When the
morphology changes from the original character to the target character, instead, it is unlikely that
the all distance constraints can be satisfied, so that the best trade-off needs to be identified by
minimizing the function 𝜎(𝑥) (see equ. (2)).

Some initial studies where the motion adaptation problem is formulated as a dynDGP can
be found in [2, 15, 17]. However, these studies pointed out some limitations in the use of the
Euclidean distance for this particular application. The Euclidean distance, in fact, can fail in
providing information about the dynamics of the considered animation, because it focuses only on
one snapshot of the animation per time. This observation motivated the main aim of this paper: the
next section will introduce the concept of interaction distance, and will study some basic properties.
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4. The interaction distance

Immanuel Kant, whose works preceding the criticism were influenced by his readings of Newton
and Leibniz, compared time (in his early writings on the topic) to a point moving on an infinite
line [22]. Moreover, such a line was oriented, because “time instants do not depend reciprocally on
each other, it is rather the instant that precedes which determines the one that follows; this is the
reason why time admits only one dimension” [7].

In the same spirit, the main idea behind the interaction distance is to consider the dynamics of
the problem through the semi-straight lines (only the future information is taken into consideration)
defined by given joint positions at two consecutive time frames. Let 𝑢 and 𝑣 ∈ 𝑉 be two distinct
joints. The orientation of the joint 𝑢 at the current frame 𝑡 > 1 can be obtained by using two
positions: the position of 𝑢 at the previous frame 𝑝𝑡−1

𝑢 = (𝑥𝑡−1
𝑢 , 𝑦𝑡−1

𝑢 , 𝑧𝑡−1
𝑢 ), and its current position

𝑝𝑡𝑢. The semi-straight line ℓ𝑢 defined by 𝑝𝑡−1
𝑢 and 𝑝𝑡𝑢, having as a boundary 𝑝

𝑡
𝑣 and not including

𝑝𝑡−1
𝑢 , provides an approximation of the trajectory of 𝑢 at further frames in the hypothesis there will
be no changes in the joint orientation. Moreover, in the hypothesis the joint speed is also constant,
it is possible to select a discrete subset of equidistant points on ℓ𝑢 representing potential positions
for 𝑢 at future time steps. The discrete set of potential future positions for 𝑢 is therefore given by
the equation:

𝑝(𝑢, 𝛼𝑢) = 𝑝𝑡−1
𝑢 + 𝛼𝑢 · (𝑝𝑡𝑢 − 𝑝𝑡−1

𝑢 ), 𝛼𝑢 ∈ {1, 2, . . . ,+∞}.
Once a similar discrete set of potential positions for the joint 𝑣 is computed, the interaction distance
between 𝑢 and 𝑣 can be measured by studying how these potential position points on the two semi-
straight lines ℓ𝑢 and ℓ𝑣 approach one another.

Definition 12. (The interaction distance).
Given a skeletal structure (𝑆, 𝜒) and an animation 𝑥, the “interaction distance” 𝐷(𝑝𝑡𝑢, 𝑝

𝑡
𝑣) at frame

𝑡 > 1 between two joints 𝑢, 𝑣 ∈ 𝑉 is:

min
𝛼∈N∖{0}

𝑑(𝑝(𝑣, 𝛼), 𝑝(𝑢, 𝛼)), if 𝑝𝑡−1
𝑢 ̸= 𝑝𝑡𝑢 and 𝑝𝑡−1

𝑣 ̸= 𝑝𝑡𝑣,

min
𝛼∈N∖{0}

𝑑(𝑝(𝑣, 𝛼), 𝑝𝑡𝑢), if 𝑝𝑡−1
𝑢 = 𝑝𝑡𝑣 and 𝑝𝑡−1

𝑣 ̸= 𝑝𝑡𝑣,

𝑑(𝑝𝑡𝑣, 𝑝
𝑡
𝑢), if 𝑝𝑡−1

𝑢 = 𝑝𝑡𝑣 and 𝑝𝑡−1
𝑣 = 𝑝𝑡𝑣,

where 𝑑 is the Euclidean distance.

From a geometric point of view, the interaction distance gives a measure of the relative approach
between two joints by using only the information about their current position and orientation. It
follows immediately from the definition that interaction distances between joints can be computed
at every frame of the animation, except the frame 1, and that two consecutive frames are involved in
the computation of this distance. Fig. 2 shows a graphical representation of the interaction distance
for a simple animation.

It is important to remark that the idea to use semi-straight lines to define a distance function
is not completely new. A distance with exactly the same name (“interaction distance”) was already
introduced in the context of ballistics [6] (see Ch.24, Distances in Physics), but it differs from the
definition given above for the domain of 𝛼 (which is discrete in the definition above). Moreover, in
the context of robotics, semi-straight lines were also used in [21] with the aim of verifying an entire
set of intermediary configurations for robot arms, instead of only a few positions. This use of the
semi-straight lines is evidently different from the one in the definition of interaction distance.

Since the interaction distance is, by definition, the smallest Euclidean distance between selected
points on two straight lines, which also include the two points 𝑝𝑡𝑢 and 𝑝𝑡𝑣, it follows that the
interaction distance between two joints 𝑢 and 𝑣 at frame 𝑡 > 1 is always smaller than, or at most
equal to, the Euclidean distance between the current positions of the two joints at frame 𝑡.
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Рис. 2: A graphical representation of the interaction distance between two joints (wrist of
approaching arm in red, and steady opposite shoulder in blue) in a simple animation. Since one
joint is steady, it is necessary to compute the semi-straight line (light red) only for one of the two
joints. It is possible to notice that the interaction distance (blue segment) is able to “anticipate”
the detection of potential joint contacts. The potential interaction is finally not completely attained,
because the value of the interaction distance at the third shown frame is smaller than the Euclidean
distance in the last frame, where the Euclidean and interaction distances coincide.

Proposition 2. The interaction distance is not a metric, but rather a symmetric quasi-
distance.

Proof The three properties that a symmetric quasi-distance and a metric have in common can be
easily verified:

� nonnegativity: ∀𝑡 ∈ 𝑇, ∀𝑢, 𝑣 ∈ 𝑉, 𝐷(𝑝𝑡𝑢, 𝑝
𝑡
𝑣) > 0;

� reflexivity: ∀𝑡 ∈ 𝑇, ∀𝑣 ∈ 𝑉, 𝐷(𝑝𝑡𝑣, 𝑝
𝑡
𝑣) = 0;

� symmetry: ∀𝑡 ∈ 𝑇, ∀𝑢, 𝑣 ∈ 𝑉 : 𝑢 ̸= 𝑣, 𝐷(𝑝𝑡𝑢, 𝑝
𝑡
𝑣) = 𝐷(𝑝𝑡𝑣, 𝑝

𝑡
𝑢).

The other two additional properties of a metric are instead not satisfied. The interaction distance
does not satisfy the “identity of indiscernibles” property, because a distance equal to 0 does not
necessarily imply that 𝑝𝑡𝑢 and 𝑝

𝑡
𝑣 are actually the same. As the reflexivity property shows, in fact,

the distance between one joint and itself is 0 (because the two straight lines ℓ𝑢 and ℓ𝑣 coincide), but
the converse implication is not true in general: 𝐷(𝑝𝑡𝑢, 𝑝

𝑡
𝑣) can be equal to 0 when two distinct joints

will collide when continuing to travel along their current trajectories in future frames (in other
words, when the two straight lines ℓ𝑢 and ℓ𝑣 intersect in the common point where the collision
occurs).

The second property of a metric that is not satisfied is the triangular inequality. Suppose that
the joints 𝑢 and 𝑣 are fixed in two distinct positions during the animation, while the joint 𝑤 “travels”
on the straight line defined by 𝑝𝑡𝑢 and 𝑝𝑡𝑣 in their direction, so that 𝐷(𝑝𝑡𝑢, 𝑝

𝑡
𝑤) and 𝐷(𝑝𝑡𝑣, 𝑝

𝑡
𝑤) are

both equal to 0. Let 𝑐 be the Euclidean distance between 𝑝𝑡𝑢 and 𝑝
𝑡
𝑣, which is strictly larger than 0

by hypothesis. The triangular inequality would imply:

𝐷(𝑝𝑡𝑢, 𝑝
𝑡
𝑣) 6 𝐷(𝑝𝑡𝑢, 𝑝

𝑡
𝑤) +𝐷(𝑝𝑡𝑤, 𝑝

𝑡
𝑣) ⇒ 𝑐 6 0,

which brings to a contradiction. 2

Notice that, for any given distance function 𝑑(𝑝𝑡𝑢, 𝑝
𝑡
𝑣), if the distance value 𝑑 is known and one

of the two points is fixed, say 𝑝𝑡𝑢, then the set

Π =
{︁
𝑝 ∈ R3 : 𝑑(𝑝𝑡𝑢, 𝑝) = 𝑑

}︁
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contains all points 𝑝 such that the distance between 𝑝𝑡𝑢 and 𝑝 is equal to 𝑑. When 𝑑 is the Euclidean
distance, it is well-known that Π is a sphere centered in 𝑝𝑡𝑢 and having radius 𝑑. When the interaction
distance is concerned, fixing 𝑝𝑡𝑢 implies the definition of the semi-straight line ℓ𝑢, from which all
potential interaction points 𝑝(𝑢, 𝛼), for every 𝛼, can be extracted (because the step 𝑝𝑡𝑢 − 𝑝𝑡−1

𝑢 is
known).

Let 𝐷̂ be the known value for the interaction distance between the two joints 𝑢 and 𝑣 at the time
step 𝑡. Every interaction point 𝑝(𝑢, 𝛼) on ℓ𝑢 corresponds to a sphere 𝒮𝛼(𝑝𝑡−1

𝑢 ) centered in 𝑝(𝑢, 𝛼)
and having radius 𝐷̂. The points in Π are therefore those lying on the semi-straight lines passing
through 𝑝𝑡−1

𝑣 and any other point of 𝒮𝛼(𝑝𝑡−1
𝑢 ), for any 𝛼. Once one semi-straight line ℓ𝑣 is selected,

the corresponding value of 𝛼 can be deduced from the sphere 𝒮𝛼(𝑝𝑡−1
𝑢 ) that ℓ𝑣 intersects. This value

is necessary to set the intersection point 𝛼 time steps after 𝑝𝑡−1
𝑣 : the position 𝑝𝑡𝑣 corresponds to the

point of ℓ𝑣 placed only one time step further (𝛼 = 1).
In the hypothesis that more than one distance constraint concerns the same point 𝑝𝑡𝑣 (the

unknown), so that the system of equations⎧⎨⎩
𝐷(𝑝𝑡𝑢, 𝑝

𝑡
𝑣) = 𝐷̂𝑢𝑣,

. . .

𝐷(𝑝𝑡𝑤, 𝑝
𝑡
𝑣) = 𝐷̂𝑤𝑣,

can be defined, the feasible points for 𝑝𝑡𝑣 lie on the intersection of the several sets Π. Intuitively,
this intersection is related to a set of semi-straight lines which do not only pass through the point
𝑝𝑡𝑣, but also through the points of 𝒮𝛼(𝑝𝑡−1

𝑢 )∩ · · · ∩ 𝒮𝛼(𝑝𝑡−1
𝑤 ), for every 𝛼. Since the value of 𝛼 needs

to be the same for every semi-straight line, each intersection concerns only the spheres related to
the same 𝛼: the number of spheres to intersect, for every 𝛼, depends on the number of distance
constraints (see Fig. 3 for a graphical representation in 2D). These sphere intersections may be for
example empty (indicating that the target distance cannot be attained for the fixed value of 𝛼),
or they could enjoy special properties, such as the ones studied in [18] in the context of distance
geometry with the Euclidean distance. This is the current research direction.

5. Conclusions

Some initial empirical studies on the interaction distance computed for the joints of human-
like character animations have shown that this new distance can, differently from the Euclidean
distance, anticipate joint contacts and collisions of several frames before they actually occur (see
Fig. 2). This is of fundamental importance in real-time applications, where the future is actually not
known yet (differently from other applications where an animation may be preprocessed in order
to find out its critical parts).

Even if the interaction distance is introduced in this article in the context of human motion
adaptation, it is important to point out that the problem of “collision detection” arises in many
other contexts, such as aircraft and robot trajectory planning, and crowd simulations, to name a
few important examples. In some early studies of pedestrians collision avoidance [5], a short survey
on previous works proposed a classification on the two main approaches to the problem: those which
focus on the idea to predict when a collision is going to occur; the others where the main question is
whether the collision is going to take place or not. The interaction distance introduced in this work
makes a bridge between these two main approaches: small values of the distance indicates in fact
that joints are going to approach each other; moreover, the value of 𝛼 (see Def. 12) corresponding
to the distance value indicates how many time steps are necessary for the contact to actually take
place.

However, while the interaction distance already finds its interest from a mathematical point
of view, the real practical benefits in using it in real-life applications still need to be verified.
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Рис. 3: An example in 2D where the set of feasible semi-straight lines for 𝑣 reduces to two lines
when 𝛼 = 2 (only one of the two is reported in gray in the figure). The spheres 𝒮𝛼(𝑝𝑡𝑢) on ℓ𝑢, as
well as the spheres 𝒮𝛼(𝑝𝑡𝑤) on ℓ𝑤, intersect in fact only when 𝛼 is set to 2 (the values of 𝛼 are
reported inside the spheres). Once one semi-straight line ℓ𝑣 is selected, the point 𝑝 (the unknown)
is the point on the line corresponding to 𝛼 = 1.

In particular, the definition and solution of dynDGP instances related to human-like character
animations, where the interaction distance replaces the classical Euclidean distance, will be the
subject of future publications.

Dedication

This article is dedicated to the memory of Michel Deza (1939–2016). The reason to dedicating
this work to him is not only because it is going to appear in a journal special issue where
contributions from a recent conference, dedicated to his 80𝑡ℎ birthday, are collected. The main
reason is actually that most of this work was inspired by the reading of the wonderful Encyclopedia
of Distances, that Michel authored with his wife.

REFERENCES

1. A.Y. Alfakih, On Dimensional Rigidity of Bar-and-Joint Frameworks, Discrete Applied
Mathematics 155(10), 1244–1253, 2007.

2. A. Bernardin, L. Hoyet, A. Mucherino, D.S. Gonçalves, F. Multon, Normalized Euclidean
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