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AnHOTanua

Mbr u3ydaeM 1OJIs PEAIU3AIUU U [EJOYUCICHHOCTh XapAKTEPOB [IUCKPETHBIX ¥ KOHEYHBIX
noarpyni S Lo (C) u cBSI3aHHbBIE C HUM DEIeTKH, a TaK¥Ke IEJOYNCIeHHOCTh XapaKTepoB KOHeY-
HbIX Tpynn G.

Teopusi XapakKTepOB KOHEYHBIX U OECKOHEYHBIX IPYII UTPAET HMEHTPATBHYIO POJb B TEO-
pHUU IPYII, TEOPUH [IPEJICTABICHAN KOHEYHBIX IPYII U aCCONMUATUBHBIX airedp. Knaccuaeckue
PE3YJIBTAThI CBA3AHBI ¢ HEKOTOPBIMEH apu(DMETHICCKUME 33[a9aMU: OIMUCAHUE EJT0IUCTIEHBIX
MPEICTABJIEHNT CYIIECTBEHHO JIJIT KOHEYHBIX TPYIIT HAJ KOJBIAMY IEJIBIX YHCEN B YHCIOBBIX
MTOJIAX, JIOKAJIBHBIX MOJIAX WK, B O0ojiee O0IeM cirydae, s 1€ IeKUHIOBBIX KOJIEII.

CymiecTBeHHas 9aCcTh 9TOH CTATHU MOCBAIIEHA CJIELYIOMIEMY BOIPOCY, BOCXOmsAIeMy K B.
BepHucaiiay: kaxkaoe i MpeIcTaBICHIE HAJ 9UCTOBBIM MOJEM MOMXKET ObITh CIEIAHO MET0IUC-
JIEHHBIM.

Besikoe sin smueitnoe mpencrasienne p : G — GL,(K) koHeunoit rpynmbl G Haz YHCIIO-
BbIM TiosieM K /Q compsizkeno B GL, (K) c npeacraenennem p : G — GL,(Ok) Hax KOIbIOM
nenbix gucesn Ok mons K7 YToObl u3yuuTh 9TOT BOIPOC, UCIIOIH3YETCS CBSI3b MEJTOYNCIEHBIX
MpPeICTABJIEHUI U PEIIeTOK.

OTOT BOIPOC TECHO CBsA3aH C IVIODATBHO HEHPUBOAMMBIMU TPEICTABICHUSIMEI; KOHIIETIIHS,
npemyioxkennas Jxx. Tommconom u B. I'poccom, 6puta nzydena @am Xory Tuenom n 06obmena
®. Ban OiicraeaoM u A. E. 3amecckuM, 0JHAKO OCTAETCS MHOTO OTKPBITHIX BOIIPOCOB.

Hac wmaTepecyror apudmernyieckne acrueKThl IeJ0YNCACHHON PeAJTN3yeMOCTH TPEICTABIIE-
HUI KOHEYHBIX PYII, W, B 9ACTHOCTH, PACCMATPUBAIOTCS YCIOBUS PEATH3YEMOCTH B TEPMHUHAX
cuMBOJIOB I'mipbepTa n anrebp KBATEPHUOHOB.

Kamouesnie crosa: T'unepbosimdeckne pemeTKu, IPYIIbI, TOPOXK/IEHHBIE OTPAKEHUIMHE, Xa-
PaKTEPhI JUCKPETHBIX M KOHEYHBIX rpymi, uHaekc lllypa, meIeKuHIOBBI KOJIBIA, TJI00ATBHO
HEMIPUBOAMMbBIE TTPEICTABJIEHNUS, IPOCTHIE AJIT€OPhI HAJT YUCIOBBIMHU TOJISIMA, KBATEPHUOHBI, De-
IIeTKU B IMPOCTHIX aaredpax, CUMBOI ['map0epTa, pobl, MO PACIIEIIeHNs.
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Abstract

We study realization fields and integrality of characters of discrete and finite subgroups of
SLs(C) and related lattices with a focus on on the integrality of characters of finite groups G.
Theory of characters of finite and infinite groups plays the central role in the group theory and
the theory of representations of finite groups and associative algebras. The classical results are
related to some arithmetic problems: the description of integral representations are essential for
finite groups over rings of integers in number fields, local fields, or, more generally, for Dedekind
rings. A substantial part of this paper is devoted to the following question, coming back to W.
Burnside: whether every representation over a number field can be made integral. Given a linear
representation p : G — GL, (K) of finite group G over a number field K/Q, is it conjugate in
GL,(K) to a representation p : G — GL,(Ok) over the ring of integers Ox? To study this
question, it is possible to translate integrality into the setting of lattices.

This question is closely related to globally irreducible representations; the concept introduced
by J. G. Thompson and B. Gross, was developed by Pham Huu Tiep and generalized by F. Van
Oystaeyen and A.E. Zalesskii, and there are still many open questions. We are interested in the
arithmetic aspects of the integral realizability of representations of finite groups, splitting fields,
and, in particular, consider the conditions of realizability in the terms of Hilbert symbols and
quaternion algebras.

Keywords: Hyperbolic lattices, groups generated by reflections, characters of discrete and
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over number fields, quaternions, lattices in simple algebras, Hilbert symbol, genera, splitting
fields.
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1. Introduction

In this paper we are interested to study the integrality of characters of discrete subgroups of
SLy(C) and related lattices.

Hyperbolic lattices in dimension three, that is, discrete cofinite subgroups of SLo(C), show
a preference for having integrally valued character functions, see [29]. Probably, the first known
lattice with non-integral character seems to be the one presented by Vinberg at the very end
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of his fundamental paper [29] where it plays the role of an example for reflection groups. We can
present a version of this example and then discuss a series of lattices which contains, most probably,
infinitely many with no integer valued character. This is a lattice in three-dimensional hyperbolic
space generated by reflections. Let P be the solid in H? described combinatorially as a prism with
two opposite triangular and three planar quadrangular faces.

Proposition 1. (Vinberg [29]). The group I' generated by reflections on the faces of P is a
cofinite but not cocompact lattice in hyperbolic space H?. It is not arithmetic.

Consider the following presentation of a subgroup I'; of I':
Generators: o1, 09, 71, T2,
Relations:

(1) 0f = 03 = (0171)? = (0271)? = (0272)? = (73 '11)* = 1,

(2) (o172)® =1,

B)h=78=1

Proposition 2. T’y has trace field equal to Q(v/—3), the field of cube roots of unity. Its character
values (squared) are unbounded at the nonarchimedian valuation at the prime 2 and integral at all
other non-archimedian places. It is cofinite with exactly one cusp.

The character of I'y is determined by the following representation

G — GL,(C)
- 2 (0

B ﬁ;Si V2i B \/%+i 0
n= 3 \/52—31‘ T2 0 \/%—i

In [10] H. Helling considered explicit hyperbolic manifolds obtained by Dehn surgeries of type
(4n,n) on the figure of eight knot 4;. These share the properties of an earlier paper [15] and
the above propositions of having associated lattices SLy(C) with non-integrally valued character
functions. See also [15] and [27]. This gives a series of examples of lattices SLy(C) having non-
integral characters.

Sl

2. Integrality of characters for finite groups

Starting from this section in this paper we focus on the integrality of characters of finite groups
G. Though the traces of g € G are always algebraic integers, the representations G — G L, (K) are
not always realizable in the rings of integers of algebraic number fields K.

Let us consider the following

Assumption 1. Let G be a finite group, K a number field with the ring of integers Ox and
p: G — GLy(K) an irreducible representation of G. We denote by M the associated irreducible
KG-module.

Definition. The representation p : G — GL,(K) is integral, if and only if p(g9) € GL,(Ok)
for all ¢ € G. We say that p(G) can be made integral, if and only if there exists an integral
representation G — GL,(Og) which is equivalent to p. We call My integral if p(G) can be made
integral.

In other words, p(G) can be made integral if and only if we can apply a base change such that
all matrices have integral entries.
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W. Burnside asked the question whether every representation over a number field can be made
integral. To study this question, it is possible to translate integrality into the setting of lattices.

Question. (W. Burnside, 1. Schur, later W. Feit, J.-P. Serre). Given a linear representation
p: G — GL,(K) of finite group G over a number field K/Q, is it conjugate to a representation
p: G — GL,(Ok) over the ring of integers O ?

There is an algorithm which efficiently answers this question, it decides whether this repre-
sentation can be made integral, and, if this is the case, a conjugate integral representation can
be computed. Integral realizability of p ver the ring of integers O depends strongly on the class
number clg of K. The following proposition is well-known, see e.g. [4].

Proposition 3A. Assume that one of the conditions hold:

(i) We have K = Q.

(i) We have clg = 1.

(i1i) We have the greatest common divisor GCD(cli;n) = 1.
(iv) We have clg /cl3 = 1.

Then the representation p : G — GL,(K) can be made integral.

In the papers by D. K. Faddeev (1965, 1995), see [6] and [7], some new ideas on generalized
integral representations over Dedekind rings were discussed.

The following theorem is contained in [2].

Theorem 1 (Cliff, Ritter, Weiss, [2]). Let G be a finite solvable group. Then every absolutely
irreducible character x of G can be realized over Z[(m], where m is the exponent of G.

Example. The metacyclic group G = (z;ylz® = 3! = 1;9* = y") admits an absolutely
irreducible representation G — GL3(K) which cannot be made integral, where K is the unique
subfield of Q((s7) of degree 12.

Theorem 2 (Serre, [28]).

Let G =Qs, K = Q(vV/—d), and d > 0. Then

1) G is realizable over K, p: G — GLy(K), if and only if d = a® + b + ¢ for some integers
a,b,c.

2) G is realizable over O, p: G — GLy(Og), if and only if d = a® + b? for some integers a,b
or d = a® + 2b% for some integers a,b.

The starting point of studying absolutely irreducible representations of finite groups with the
property of irreducibility modulo all primes was the concept of of global irreducibility. The notion
of globally irreducible representations for the ring of rational integers appeared in papers by B. H.
Gross, see [8], [9] in order to explain new series of Euclidean lattices discovered by N. Elkies and
T. Shioda using Mordell-Weil lattices of elliptic curves.

The concept of global irreducibility for arithmetic rings has been introduced by F. Van Oystaeyen
and A.E. Zalesskii: a finite group G C GL,(F) over an algebraic number field F' is globally
irreducible if for every non-archimedean valuation v of F' a Brauer reduction reduction of G (mod
v) is absolutely irreducible. The following theorem is proven in [25].

Theorem 3 (F. Van Oystaeyen and A.E. Zalesskii, see [25]).
Op-span OpG of a group G C GL,(OF) is equal to M, (Op) if and only if G C GL,(OF) is
globally irreducible.

The natural problem is to describe the possible n and arithmetic rings O such that there is a
globally irreducible G C GL,,(OF). In our particular situation it is interesting, what happens for
n = 27 This question was considered in [20], [22]. The answer is given in the theorem below, see
[22], Theorem, p. 9.
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Theorem 4 ([22]).

1) Let G = Qum be the group of generalized quaternions, and let H = G = Qg be the group of
quaternions. Then there is a quadratic subfield K; C K and an Ok, H-module I which is an ideal
in an extended field Ly = K;(i), such that: G = Qu, is realizable over Ok if and only if H is

realizable over Ok, , and all Hilbert symbols <_d’N+1/Q(I)) =1 for all p|d.

2) If G = Qum, is not realizable over Ok, the minimal realization field such that H is realizable over
its ring of integers is a biquadratic extension Q(+/dy,v/d2), where d = dyds and dy, do are integers
not equal to + 1 or to £+ d.
3) The explicit computation of I in Ly = K;(i) is relevant to a representation of the integer
d=a%+b%+c2 Nrp, /K, of either of these ideals is a principal ideal in O, if:

(1) b = ¢; then d = a® + 2b* ((a,b) = 1) - equivalently, d has no prime factors p = 5(mod8)
and p = 7(mod8), or

(2) ¢ =0; then d = a® + b* ((a,b) = 1) or equivalently, d has no prime factors p = 3(mod4).

Let G be a finite group and y its complex irreducible character. A number field K/Q is a
splitting field of y, if there exists a representation of G over K affording x. A splitting field K is
of the minimal degree, if there is no splitting field of x with degree smaller than K. We say that a
splitting field K of y is integral, if any representation of G over K affording y can be made integral.
Otherwise, the splitting field K is nonintegral.

Let x be an irreducible complex character of a finite group. All minimal splitting fields of x
have the same relative degree over the character field Q(x), which is called the Schur index of x
over Q, [18] . Let us use for this degree the following notation: mgqy)(x)-

For each place v of Q(x), there is an associated local Schur index of x at v, denoted by mQ(x)y (x),
and the least common multiple

mq(y) (X) = LOMy{mgq), (x)-}

The field Q(x) C K is a splitting field of x if and only if mq(y), (x) divides [Ky : Q(x)v] for
all places v of Q(x) and all divisors w of v.

If mq(x) > 1, then there are infinitely many minimal splitting fields of x, and if mq(x) =1,
then the field of characters Q(x) is the unique minimal splitting field of x.

Do there exist integral and nonintegral minimal splitting fields of a given character? If so, how
many are there?

Let us consider the case of trivial Schur index. In this case Q(x) is the only minimal splitting
field of x. The example above shows that it can be nonintegral. On the other hand, for a character
x with Q(x) = Q the minimal splitting field of y is integral. Thus in general both cases will occur.
We will now concentrate on the case mq(x) > 1, more precisely on the case mq(x) > 1,Q(x) = Q
and deg(y) = 2.

Let G be a finite group, K a number field with the ring of integers O = Og. We will now
concentrate on a special situation, originally treated by Serre in [Ser08], for which the existence of
integral and nonintegral minimal splitting fields is closely connected to the theory of quaternion
algebras and Hilbert symbols. Below we consider (the Hilbert symbol (a,b) over Q and for a place
v of Q we denote by (a;b), the corresponding local Hilbert symbol over Q. By Bra(Q) we denote
the subgroup of the Brauer group of Q generated by quaternion algebras.

We denote by Clg the group of ideal classes of K. For a finitely generated Og-module (a
lattice) M we denote by cl(M) its Steinitz class. The simple component of QG, corresponding to
the irreducible character x, is a non-split quaternion algebra over Q, which we denote by D. The
proof of the proposition 3 below is contained in the paper by J.-P. Serre [28].
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Definition (see [28].) Let K be an imaginary quadratic number field with discriminant
—d,d > 0. We define the map

ex : Clg/Cl3 — Bro(Q);[a] — (N(a), —d).

Proposition 3 (see [28]). Let K be an imaginary quadratic number field with discriminant
—d, which splits D and which we consequently view as a subfield of D. Then the following conditions
hold true:

(i) The map ef is well-defined and injective.

(ii) Let R be a maximal order of D containing O. Then the O-module R is G-invariant. In particular
R is an OG-lattice.

(iii) If R and Ry are two maximal orders of D containing O, then cl(R) = cl(Ro) in Clg/Cl%.
(iv) Let R be a maximal order of D containing O. Then we have ek (cl(R)) = (D) - (dp; —d), where
dp is the product of all primes ramified in D including —1 if oo is ramified, (D) is the class of D

in Bra(Q).
Proposition 4 ([22], proposition 5).

~~

(1) An algebraic number field K is a splitting field for the group G of quaternions if and only if K
is totally imaginary and for all localizations K, for all prime divisors v of 2 the local degree
[Ky : Q2] is even.

(2) If K is a splitting field for the group G of quaternions, then [K : Q] is even.

(3) K is a splitting field for the group G of quaternions and K/Q is abelian, then K has a
quadratic subfield Q(v/d).

For the convenience of the reader we include the proof of proposition 4.

Proof. By the theorem of Hasse-Brauer-Noether, K is a splitting field for (G)q if and only if the
localization K, is a splitting field locally for (G)q, = QpG for all prime divisors v of p. Since the
quaternion algebra has invariants 1/2 at 2 and oo in the Brauer group, and 0 at all other primes p,
K is a splitting field for G if and only if K is totally imaginary and for all localizations K, for all
prime divisors v of 2 the local degree [K, : Q2] is even [5], Satz 2, ch. VII, sect. 5.

Since [K : Q] is the sum of [K, : Qz], it must be even, and this implies (2).

If K/Q is abelian, its degree is even, and its Galois group has a subgroup of index 2, therefore,
the fixed subfield of this subgroup is a quadratic extension of Q.

This completes the proof of proposition 4.

Let us consider the following

Assumption 2. Let G be a finite group and let x be an irreducible character of a finite group
with mq(x) > 1,Q(x) = Q and deg(x) = 2.

Consider the simple component D of QG, corresponding to the irreducible character y, which
was used in proposition 3 above. Below we consider classes of sublattices L(R) of a maximal order
R of D. Recall that a quaternion algebra is just a 4-dimensional Q-algebra with center Q. We have
the following equivalence:

(1) A quadratic field K is a splitting field of ¥,

(2) all places v of Q with mq, (x) = 2 do not split in K over Q,

(3) the field K can be embedded as a maximal subfield of D,

(4) For all places v of Q at which D is ramified, the field K, splits D, for all places w of K
lying above v.
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Let K be an imaginary quadratic field which splits D. Then we can view D as a KG-module,
which we denote by Mg, and we have seen that a maximal order R of D containing O is an OG-
lattice of M. To determine integrality, it is now sufficient to consider the set cl(L(R)) of classes of
sublattices of R or, since ey is injective, the set ex (cl(L(R))). Let K be a minimal splitting field
of the character x. Let us denote by Sk the set of prime ideals of O = Og such that a Brauer
reduction of Mk is reducible, let S” = S be the set of rational primes lying over ideals in Sk. Let
S be the intersection of all S” = S’ over all minimal splitting fields K; following [28], we denote by
e(D,K) = ex(cl(R)) for a maximal order R of D containing O. Remind that —d is the discriminant
of K.

Lemma 1.
ek (cl(L(Mk))) C e(D, K) - {Ilpes, (p, —d)|So C S}

Proof. 1t follows from [26], theorem 2.5, and the observation that the class of a sublattice of
R can only change by a square or the class of [I] € Clx/Cl%, where I is a prime ideal whose
I-reduction is reducible, that c/(L(Mk)) C cl(R) - {Il,es,[{]|So C S}. By applying the map ex to
the equation obtained, we get e (cl(L(Mk))) C e(D, K) - {Iyes, (p'1), —d)|So C S}, where f(I)
is the inertia index of f(I) in K/Q. Assume that I € Sk, but not in S and I is a prime ideal of K
above p. Then there exists a minimal splitting field L and a prime ideal ¢ of L lying above p such
that the reduction of My modulo [ is reducible, while the reduction of Mg modulo g is irreducible.
This is only possible if the residue field of I is strictly larger than the residue field of I. Thus the
norm N(I) = p? and therefore (p/(1), —d) = 1.

This completes the proof of lemma 1.

Lemma 2 (/3/, Theorem 5.3.2, see also [24], Theorem 2.8, compare also [16], sect 81, p.144,
Theorem 112). Let (a;)icr be a finite set of elements of Q*, and let (€;4)icrvep be a set of numbers
equal to £1. There exist an infinite number of x € Q* such that (a;,x) = €, for all i € I and all
v € P if and only if the following three conditions are satisfied:

(1) Almost all of the €, are equal to 1, say, €, =1 for v ¢ Py and a finite subset Py C P.

(2) For all i € I we have I,cp(€;y) = 1.

(3) For all v € P there exists x, € Q3 such that (a;,zy)y = €, for all i € 1.

Note that infiniteness of the number of  follows from Dirichlet’s theorem on primes in arithmetic
progressions which is involved in the proof.

Lemma 3. There is an infinite number of splitting fields K = Q(v/—d) of x such that
Clk /Cl3 = 1.

Proof. 1t follows from [12] that Clk/Cl3 = 1 for quadratic fields K = Q(,/—p) for
—p = 1(mod4). Let T = U;q; be the set of rational primes such that Schur indices of x at ¢;
are 2. An extension K of the character field Q is a splitting field of if all places of K above the
p € T have inertia degrees divisible by 2. The Legendre symbol (‘Z—f) = (—1)(@—1)/2 (%) for the
discriminant dg = —p. It follows from proposition 4 that for primes ¢; # 2 the character x splits
iff (%) = (=1)@*D/2 For ¢; = 2 we can see that the inertia degree is 2 iff dj, = —p = 1(mod8).
Now we can use Dirichlet’s theorem on primes in arithmetic progression to conclude that there are
infinitely many primes p satisfying the above congruence conditions for all p;. This completes the
proof of lemma, 3.

Theorem 5. Let x be an irreducible character of a finite group with mq(x) > 1,Q(x) = Q
and deg(x) = 2. Then there exist infinitely many integral minimal splitting fields of x, and there is
infinitely many nonintegral minimal splitting fields of x.
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Proof.

1) We can use proposition 3, (iv) together with lemma 3 to prove that there exist infinitely
many integral minimal splitting fields of . It follows from proposition 4 that the infinite number
of K from lemma 3 are minimal splitting fields of x.

2) Let P be the set of all finite rational primes and oco. Let Ram(D) be the set of all finite
ramified primes in D together with —1 in the case if D is ramified at co. Let for the elements
pi € S U Ram(D) the set ¢, = 1 be prescribed elements. It follows from [11|, ch 5, sect. 6, and
Dirichlet’s theorem on primes in arithmetic progressions that there is an infinite number of primes
q and integers z such that Hilbert symbols (p;, z), = €; for all indices 7.

According to proposition 3, (iv) and lemma 1, it is sufficient to prove that the unit class is
not contained in the set of classes (D) - {Il,es,(p, —d)|So C S} for any Sy C S1 = S U Ram(D)
and for an infinite number of d; D is a non-split algebra, and we can assume that Sy is not

empty. For any Sp C S U Ram(D) take elements €, £ 1,p € S; such that Ilpeg,6, = —1;
according to the above argument there are integers x and a prime ¢ ¢ S; such that D splits
at q1 and (p,@)q, = € for all p € S1, thus ((D) - Hpesy(p, —2))q; = lpes,(p,2)q = —1 since

(p,—1)q = 1. Also we can take g1 # ¢f if the corresponding S; # S7. Now we can use lemma 2 for
I =51,{ai}ict = {p}pes,, €in = €p, Po = {q1}, where ¢; corresponds to Sy C S.

The sufficient conditions for an imaginary quadratic field K = Q(y/—d), where d > 0, to be
a splitting field of D is that for all ¢ € Ram(D) the condition (¢,d), = (—1)@t)/2if ¢ # 2, or
the condition (q,d)2 = 1 if ¢ = 2 hold true; since K is imaginary, the sufficient condition at the
infinite place is also satisfied. We can also assume that since the conditions for K = Q(v/—d) to be
a splitting field affect only v € Ram(D) which do not intersect Py, and the second claim of theorem
5 follows from lemma 2.

Remark 1. A similar theorem holds in a more general settings, we have can find minimal
integral and nonintegral splitting fields for a large number of characters of various groups assuming
that x is an irreducible character of G with mq(x) > 1.

Remark 2. In some earlier papers, see e.g [21]|, the author considered the conditions of
integrality for representations of finite groups together with conditions of stability of Galois action.
The following question has a deep topological motivation, see [1].

Let p: G — GL,(C) be a complex n-dimensional representation of a finite group G. Let 7 be
an automorphism of the field C, not necessarily continuous. For g € G, we act by 7 on the matrix
coefficients of p(g) and obtain a new matrix 7(p(g)).

We obtain a new subgroup 7(p(G)) in GL,(C). Is it possible that the subgroup 7(p(G)) is not
conjugate to p(G) in GL,(C), i.e. there is no matrix X € G L, (C) such that 7(p(G)) = X p(G)X 17

Acknowledgement. The author is grateful to the referee for useful remarks and suggestions.

3. Conclusion

Theory of characters of finite and infinite groups plays the central role in the group theory
and the theory of representations of finite groups and associative algebras. The classical results are
related to some arithmetic problems: the description of integral representations are essential for
finite groups over rings of integers in number fields, local fields, or, more generally, for Dedekind
rings. In this paper we are interested to study the integrality of characters of discrete and finite
subgroups of SLy(C) and related lattices. A substantial part of this paper is devoted to the following
question, coming back to W. Burnside: whether every representation over a number field can be
made integral. To study this question, it is possible to translate integrality into the setting of
lattices.
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Question. (W. Burnside, 1. Schur, later W. Feit, J.-P. Serre). Given a linear representation
p: G — GL,(K) of finite group G over a number field K/Q, is it conjugate to a representation
p: G — GL,(Ok) over the ring of integers O ?

This question is closely related to globally irreducible representations; the concept introduced
by J. G. Thompson and B. Gross, was developed and generalized by Pham Huu Tiep, F. Van
Oystaeyen and A.E. Zalesskii, and there are still many open questions. We are interested in the
arithmetic aspects of the integral realizability of representations of finite groups, and, in particular,
prove the existence of infinite number of splitting fields where the representations are not realizable.
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