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AnHOTanusa

OT1a cTarhd cBA3bIBaeT Kiaccudukanuio Kypuxapbl 0 MOTHBIX TUCKPETHBIX OIEHOYHBIX IM0-
JISX U TEOPUH YCTPAHEHUS JUKOTO BETBJIEHUS DIIIIA.

s 1106010 MOJIHOrO NUCKPETHOrO 10Jisd OneHKU K ¢ MPOM3BOJILHBIM IIOJIEM BBIYETOB IIPO-
CTOM XapaKTEPUCTUKN MOYXKHO OTPENeINTh HEKOTOPbIH uncienubiii nasapuanT I'(K), KoTopsbrii
JIEKUT B OCHOBe Kjaccuduranuu Kypuxapbl Takux mojeil Ha 2 tuma: nojse K umeer tum 1
TOrZIa U TOJNBKO Toraa, Koraa I'(K) mosokuTe/bHO. 3HAUEHHE TOr0 MHBAPUAHTA YKA3bIBAET,
HACKOJIbKO JIAJIEKO JAHHOE TI0JI€ OT CTAHJAAPTHOrO, T. €. OT M0JisA, KOTOPOEe HEPA3BETBJIEHO HAJ
€ro MOCTOSHHBIM IOAIOJEM k, KOTOPOE $sBJISEeTCsl MAKCUMAJIbHBIM IOJIIOJEM C COBEPIIEHHBIM
II0JIEM BbIYETOB. (CTaH}lapTHbIe 2—MeprIe JIOKQJIbHBIE I10JIA ABJIAIOTCA TOYHBIMU IIOJIAMU BUIA
k{t3})

Mpb1 goka3biBaeM (Ipu HEKOTOPOM MATKOM OrpaHuyeHun Ha K), 9ro s CMEIIanHOro XapakK-
TEPUCTHYECKOrO 2-MEPHOro JIOKaJIbHOro nojs tuna I K cymecrsyer onenka cuusy mis [l : kl,
rue [/k aBnsercsa pacimpenueM, takuM 4to (K sBisiercd CTaHAAPTHBIM 110JieM (CyLIecTBYIO-
wuM u3-3a reopuu Epp); sorapudm 31oit crenenu Moxker Obirb OLEHEH JIMHEHHO B TEPMHUHAX
I'(K) ¢ xoapdpummenTom, 3aBUCAIIIM TOIBKO OT €k /-
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Abstract

This article links Kurihara’s classification of complete discrete valuation fields and Epp’s
theory of elimination of wild ramification.

For any complete discrete valuation field K with arbitrary residue field of prime characteristic
one can define a certain numerical invariant I'(X) which underlies Kurihara’s classification of
such fields into 2 types: the field K is of Type I if and only if T'(K) is positive. The value of this
invariant indicates how distant is the given field from a standard one, i.e., from a field which is
unramified over its constant subfield & which is the maximal subfield with perfect residue field.
(Standard 2-dimensional local fields are exactly fields of the form k{{¢}}.)

We prove (under some mild restriction on K) that for a Type I mixed characteristic 2-
dimensional local field K there exists an estimate from below for [l : k] where [/k is an extension
such that [ K is a standard field (existing due to Epp’s theory); the logarithm of this degree can
be estimated linearly in terms of I'(K') with the coefficient depending only on eg ;.
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1. Introduction

In the current paper we develop and compare two approaches to the classification of 2-
dimensional local fields in the mixed characteristic case. Here a 2-dimensional local field is a complete
discrete valuation field K such that its residue field K has, in its turn, a structure of a complete
discrete valuation field with perfect residue field of characteristic p > 0.

If char K = char K, the field K can be identified (non-canonically) with the field of formal
Laurent series K ((X)). However, if char K = 0 and char K = p, there is no explicit description and
exhausting classification of such fields K. Here are some known results in this direction.

First of all, there is an important subclass of such fields K, so called standard fields. For any
complete discrete valuation field K with the residue field of characteristic p > 0, one can introduce
its constant subfield k£ which is a maximal subfield of K with perfect residue field. It can be proved
that in the mixed characteristic case such k is unique. The field K is said to be standard if ex/, = 1,
where eg /. is defined in 2.1.

This rather abstract definition working for any complete discrete valuation field with imperfect
residue field, takes a very explicit form if K is a 2-dimensional local field. Namely, if K is standard
and k is its constant subfield, then

K~ E{t}} = {f: ait', wv(a;) > —oo, wv(a;) - oo};
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conversely, if K = k{{t}} for a (one-dimensional) local field k, then K is standard, and k is its
constant subfield (see [8] or [14]). Note that in the very classical case, when the residue field of K
is finite, k£ can be constructed as the maximal algebraic extension of QQ, inside K.

Obviously, any 2-dimensional local field K with local parameters (m, ) is a finite totally ramified
extension of its standard subfield Ky = k{{t}}, where k is the constant subfield of K, and 7, t are
as in 2.2 A non-trivial result following from Epp’s theorem on elimination of wild ramification (see
[1], [13]) is that for any such K there exists a constant (i. e. defined over k) finite extension K'/K
such that K’ is a standard field. In fact, there is a huge freedom in the choice of such K’/ K, see [6].
However, the minimal degree d,,,(K) of such K'/K can be arbitrarily large even in the simplest case
[K : Ko] = p. Thus, d,,(K) seems to be an interesting invariant in the classification of 2-dimensional
local fields.

Another approach to classification of mixed characteristic complete discrete valuation fields was
initiated by Kurihara in [7| to study Milnor K-groups (see [9] or [4]), These groups are applied
in class field theory (see [10], [11], [4], [5]). Kurihara subdivides such fields into 2 types. For this,
one considers any non-trivial relation a - dm + b - dt in the module of differentials of the given field
K over its constant subfield k, where (m,t) are any local parameters of K. The field K belongs
to Type I if vk (a) < vk (b) and to Type Il otherwise (see |7], corollary 1.2 and definition 1.3). In
particular, all standard fields belong to Type I since m can be chosen from k, and one can take
a =1, b = 0. Kurihara showed that the structure of extensions for the fields of Type I and Type 11
is very different. For example, K has cyclic wild (resp. ferocious) p-extensions of any degree if and
only if K is of Type I (resp. Type II).

A refinement of this classification along with a number of new properties has been given in |2, 3].
It was suggested to consider values like

1

A(ﬂ', t) = — (UK (dﬂ'tL) — VK (dttL>),
eK

where t7, is a second local parameter in a certain standard field L containing K, and the partial

derivatives are used in the usual sense via identification L = [{{t1}}. It is easy to see that

A1) =~ (oke(b) — vic(a).
€K
so, the field K is of Type I if and only if A(nw,t) > 0 for any choice of local parameters 7, ¢. It can
be shown that for the fields of Type I A(m,t) does not depend on the choice of ¢. For such fields,
the value
I'(K)= sup A(m,t)
v(m)=1

is an invariant of K measuring resemblance between K and standard fields. In particular, I'(K) = oo
if and only if K is “almost standard": a certain unramified extension of K is a standard field.

In this article we obtain a lower bound for d,,(K) for a mixed characteristic 2-dimensional local
field of Type I, in terms of I'(K') and ramification index of the field over its standard subfield. This
is accomplished under a certain mild restriction on K (Corollary 5.3.1).

We are grateful to the referee of the first version of this article for valuable remarks.

2. Notation and basic definitions

The following notation is used throughout the paper:
p always denote a prime integer;
vp(z) is the p-adic exponent of an integer number z.
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2.1. Discrete valuation fields

For a discrete valuation field F, we denote its valuation by vy and its residue field by F. For
any such F it will be always assumed that char F = p > 0. If char F = p > 0, we put er = vp(p).
An element 7 such that vp(mp) = 1 is said to be a uniformizer or F.

Denote

Op ={z € F|vp(x) >0}

Up ={z € F|vp(x) =0}

Ur(n) ={z € F |vp(x —1) > n} forn € N.

Let L/F be an extension of valuation fields, vy, be a valuation on L, and vy, induces the valuation
w on F'. We denote by ey, /r the index of w(F*) in vy, (L*).

A finite extension E/F of discrete valuation fields is said to be

e unramified, if ep,p = 1, and E/F is separable;

e tame, if p{ eg/p, and E/F is separable;

e ferocious, if eE/F = 1, and E/F is purely inseparable;

e totally ramified, if eg/p = [E : F|.

By vg we denote the valuation on any field normalized so that vo(p) = 1.

For a Galois extension L/F of degree p we denote by s(L/F') the (Swan) ramification number
of any generator o of Gal(L/K):

s(L/F) = :ciean* vp(o(x)z™t —1).

2.2. Two-dimensional local fields

Let K be a two-dimensional local field; denote by K1) = K its first residue field, and
by K© = K@) its last residue field. It is always assumed in this article that char K = 0,
char K = p > 0, and K© is perfect.

Any two-dimensional mixed-characteristic local field K satisfies the conditions of 2.1. We will
use the same notation, that is ex = vk (p), Ox = {x € K | vg(x) > 0} and vy is such that
vo(p) = 1.

For the valuation of rank 2 on K we use notation vx = (vi, vk): K — Z?; here Z? is linearly
ordered as follows: (a,b) < (¢,d),if b<dorb=dand a < c.

Since 8 € K© is a perfect subfield in K = K, for § € KO its Teichmiiller representative in
Ok is well defined. We denote it by [6].

Given vg, we can define local parameters: a uniformizer = with vx(7) = (0,1), and a “second
local parameter"t with U (t) = (1,0).

The constant subfield of K is its maximal subfield such that its residue field (with respect to
vk ) is perfect. In particular, if the last residue field of K is finite, the constant subfield of K is the
algebraic closure of Q, in K.

In what follows K denotes always a two-dimensional local field, and k is its constant subfield.

The field K is said to be standard, if ey, = 1.

A finite extension L/K is said to be constant if L = [K where [ is an algebraic extension of k.

2.3. Kurihara’s classification and related invariants

Let Ko = k{{t}} be a standard 2-dimensional field. For = € K its formal derivative % is defined
as follows. If x = > a;t with a; € k, then

0 ,
78? = E iaitlil .
ox

It is easy to see that %7 is a well defined element of Ko.
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Let Ko and Lg be standard fields with Ky C Lo, and let ¢, be second local parameters of these

fields. Then
ox B Oox Ot

ot ot ot
where the first factor in the right hand side is the image in Lg of the respective element of Kj.
Let Ko be a standard field, ¢ a second local parameter of Ko, and a,b € K{j. Introduce

0 ab
cla,b) = vo( g5 ) —vo( 55 ) — vola) + v (D)
Now we check that c(a,b) is independent of the choice of K and the second local parameter t.
Let K; and K be standard fields with the second local parameters ¢; and to, and let ¢;1(a,b) and
ca2(a, b) be functions corresponding to these fields. There exists a standard field E containing both
K1 and Ks. Let tg be any second local parameter of . We have

() =u(g) +ulg) i1

therefore,

c1(a,b) — ca(a,b) = Uo((§z> — g ((gtbl) — g <§ta2> + U()(gtl;) =
= (i)~ (gs) ~ 0 (ary) +0((iy) =0
Note that for any x,y, z we have

c(:c,y) - C(SC,Z) - C(y,Z), C(.%',y) = _C(yvx)'

In [2, 3] the notation A (m,t) was used for vg (dth) —Vg (dttL), where 7, t are local parameters
of K, and ¢y, is a second local parameter of a standard field L which is a finite extension of K. In
this article we redefine Ag (7, t) using vy instead of vy, i. e.,

A(m,t) = Ag(m,t) = v (dﬂ'tL> — g (dttL>.

It is shown in [7, 2] that if the condition Ag(m,t) > 0 is satisfied for some local parameters
m and t of K, then it is satisfied for any pair of local parameters. A field K is of Type I if this
condition is satisfied and K is of Type II otherwise (see [2]|, proposition 4.3). For a field of Type I,
A(m,t) is independent of the choice of the second local parameter ¢ (see [2], Cor. 4.4); its value will
be denoted by Ak (m). Note that

Ag(m,t) = c(m,t) +vo(m) — vo(t) = c(m, t) + ;{.

For a field K of Type I, denote
I'NK) = max(Ag(m)|m € K*, vg(m) = 1),

I'.(K) = max(Ag(m)|m € K*, vg(m) =1) — ;.

Then for any second local parameter t of K we have

I'(K) = max(c(m, t)|m € K, vg(m) = 1).
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3. Properties of c(a)

3.1 Proposition. Let a,b € K. Then:
1. min{c(ab, a), c(ab,b)} > 0.
2. c(a=t,a) = 0.
3. ¢c(aP,a) = 1.

Proof. Direct calculation.

3.2 Lemma. Let K = k{{t}} be standard, and let m be a uniformizing element of k. Then any
a € K can be represented (non-uniquely) as

N
4= a0+ Y T fr, (1)
r=0

where aoe € k, N 20, o € Z, and for each r either f, =0 or
fr= Z[er,i]tpri,
1€Z
O € KO egists i such that 0r; #0, pti.
For any such representation we have

v()(@) = min (areg! +7).
ot v oo K

Proof. See |2, Lemma 4.5]|.

3.3 Proposition. Let K be of Type I. Let a € Ok ; assume

a=7"fmod ™ Ok, (2)
F=Y [t
1EL

0; € K(O), exists i such that 0; £ 0. Then

min{c(7™ f,a),c(x™ f,m)} = 0.
Proof. It is sufficient to prove that

(™ f,t) = min(c(a,t), c(m,t)).
Let L be a standard field, L D K, and let ¢, be a second local parameter of L. For any x € L let

d(x) = vg (d:rtL>.
We have
d(a) = c(a,t) +vo(a) — d(t) = M + mej — d(t)

with M = min(c(a,t),c(m,t)). Note that the value of d for each term in the expansion (1) for a
cannot be less than d(a); it follows

TTmer g apM—d®)
(e a € k((t

))- (3)
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In particular,
_ M —d(t)

WZGL/KF € E( (tp

) (4)
Let

r = min{v,(i) | 6; # 0}.
Combining (2), (3) and (4), we conclude that r > M — d(t). Terefore,

c(f,t) =c(f,tp) +dt) =r+d(t) > M.
Applying Lemma 3.1, we obtain
(™ £,8) > min(e(m, 8), o(f,1)) > M.

Let us say that f € k{{T}} is normalized if either f € Uy, or f € Opyry and [ ¢ k(T")).
Let 7, t be any local parameters of K.

3.3.1 Corollary. Let u € Uy, where K is of Type I. Then

w= ]+ £")),

120

where for any i either f; = 0 or f; is normalized and n; > 0, and for any such representation we
have

min{c(1 + 7 f;(t7""), u), c(1 4+ 7' f; "), )} > 0
for any 1.

Proof. This follows from Propositions 3.3 and 3.1 by induction.

4. Behavior of ¢(a) in field extensions

4.1 Lemma. Let K'/K be a finite extension of 2-dimensional local fields, and let x1, vo € K’ be
conjugate over K. Then c(x1,x2) = 0.

Proof. Let L;/K(x1) be a finite extension such that L; = {1 {{t1}} is a standard field. Then there
exists a field Ly D K(x2) and an isomorphism 7 : L1 — Ly over K such that 7(z1) = 2.

The field [; is exactly the set of elements of L, algebraic over k. Therefore, ly = 7(l1) is the
constant subfield of L.

For any z € L1, we have Uz, (7(2)) = Uz, (2), since for any L/K the valuation Tx has a unique
extension to L. Therefore, e, = er,, er,/1, = er,;, = 1, L2 is standard, and t3 = 7(¢1) is a second
local parameter of Lo.

Next, for any z € L it follows from 7(l1) = lo and 7(t1) = t2 that

0z o(t(z
(5) =250

and

(1) =7 (")

Since e, = er,, the same relation is true for vy instead of vy, and vr,. Applying this to z = 1,
we obtain ¢(z1,x2) = 0.

4.1.1 Corollary. Let K'/K be a finite Galois extension. Then the for any x € K' we have
c(Ngr /g (), ) = 0.
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Proof. This follows from Lemma 4.1 and Proposition 3.1.

4.2 Lemma. Let K'/K be a finite totally ramified Galois extension, and let K' be of Type I. Then
K is of Type I, and T.(K') < To(K).

Proof. The field K is of Type I by [7, Proposition 1.7].

Set s = T'o(K'), if T.(K’) is finite, and denote an arbitrary number by s otherwise. We claim
that T.(K) > s. Let t’ be a common second local parameter of K and K’. Let mx be a uniformizer
of K" such that ¢(ng/,t') > s. Then mxg = Ny /g (mg) is a uniformizer of K. Applying Corollary
4.1.1, we obtain

LK) > c(ng,t') = c(ngr, ') + e(ng, mxr) = s + ¢(Ngor e (), ) = 8.

4.3 Lemma. Let K'/K be a tame extension. Then K and K' are of the same type, and, if they
are of Type I, then T'.(K') =T (K).

rank
Our definition of T'(K) is tailored for fields of Type I only, and we do not know how a parallel
result for Type II case can look like.

Proof. The fields K and K’ are of the same type by [7, Corollary 1.6].

Assume they are of Type L. Let M /K be the maximal unramified subextension in K’/K. Then
M/K' is totally ramified. We will prove that I'(M) = T'(K),T'(K’) = I'(M). It is sufficient to check
the inequalities:

[(K) <KTe(M) KT (K') KT (M) <T(K).

Denote by tx and tp; arbitrary second local parameters of K and M. Then ¢, is also a second
local parameter of K’. We will prove that

cltr,tar) = 0. (5)

Let L be any standard field containing M, and t; be its second local parameter. The extension
M /K is separable; therefore,

i -t
tK = Oéitjw7

where o; € M, and there exists i such that p{1i, a; # 0. It follows

o (i) =)

and so C(tK,tM) = C(tK,tL) — C(t]w,tL) =0.

1) We prove I'.(K) < I'o(M). Denote s = I'.(K) if T'.(K) is finite, and let s be arbitrary
otherwise.

Let mx be a uniformizer of K such that ¢(mg,tx) > s. Then 7 is also a uniformizer of M.
Using 5 we obtain

Lo(M) > ce(mg,ty) = (T, ti) = .

2) Now we prove I'o(M) < T (K'), To(M) < To(K). In view of 5, it is sufficient to prove that for
any uniformizer my; of M there exist uniformizers mx and mg+ of K and K’ such that ¢(mx, ) > 0
and c(mgs,mpr) = 0. Let E be either K or K'. Denote

[|M:K|, E=K
C\IK' M|, E=K'"’
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Naygmm, E=K
T = .
TTM E=K'

In both cases we have x € E and vo(z) = ¢eg.

Let 751, tp be arbitrary local parameters of E, and let § € E©) 51 € Z, u € Ug(1) be such
that 7TqE71 = [H]tSEl uz. Denote by t a second local parameter of any standard field which is a finite
extension of K’ and denote by r any integer number with vo(sy — rq) > Uo(%); put s = s; —rq.
We will prove that the uniformizer

TR = t;Jru_l/qﬂE,l

is appropriate. Since 7%, = [0]t%,x, we have

1015 _ O(rh) _ O([0)tye)

qr _ _ 1 atE 8$
E- ot ot ot

Taking into account

Uo<[9]sts_1 %) > vo(s) = vo ((97:10)’

B o ot
we obtain 5 5
TE X
_ > 7
w( Gy ) + (= Dew > ()
and

co(rg,z) = (vo(égf) - vo(ﬂ'E)) - <vg<%§> - vo(x)) > 0.

In the case ' = K’ we obtained the desired inequality, whereas in the case E = K it is a consequence
of the above formula and Corollary 4.1.1.
3) It remains to prove I'.(K’) < T'.(M). This follows from Lemma 4.2.

5. Estimate

We generalize the notion of “being not in touch"introduced in [15] in the prime characteristic
case. Let L;/F and Ls/F be totally ramified Galois extensions of degree p, and denote
s1 = s(L1/F), sa = s(Ly/F). The extensions Li/F and Ls/F are said to be not in touch if
either s1 # s9 or s(L/F) = s1 = sy for any subextension L/F in LiLs/F of degree p.

Next, finite totally ramified Galois p-extensions L;/F and Lg/F are not in touch, if for any
intermediate fields FF C S; C T; C L;, where S;/F is normal and T;/S; is a Galois extension of
degree p (i = 1,2), the extensions 7752/5152 and S17%/S152 are not in touch.

The idea behind this notion is that we consider extensions “in general position"such that the
ramification of their compositum can be computed in terms of ramification of the original extensions,
compare [12, 4.3].

We say that an extension K'/K is constant free, if K'/K is not in touch with any constant
extension of K. For example, for K = k{{t}}, where k contains a primitive pth root of unity, a
Kummer extension K (¢/1+ nja)/K with a € Uk is constant free iff @ ¢ k.

5.1 Lemma. Let L1/K and Lo/ K be Galois extensions of degree p that are not in touch. Assume
that L1La/ K is totally ramified. Then:
1. S(Lng/LQ) 2 S(Ll/K);

2. If S(Ll/K> = gefi, then S(Lng/Lg) > S(Ll/K).

Proof. The first part follows immediately from Lemma 3.3.1 in [12]. (It is assumed there that the
residue field is perfect but the proof goes through assuming only that Ly Ls/K is totally ramified.)
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For the second part it is sufficient to notice that s(La/K) < E%5. Indeed, if

(LK) = s(Lo/K) = 5,

and LjLo/K is totally ramified, then L;/K and Lo/K are always in touch; this can be seen from
the explicit form of Kummer equations (after adjoining a primitive pth root of unity).

5.2 Lemma. Let K contain a primitive pth root of unity. Let K1 /K be a totally ramified extension
of degree p; denote by w1 any uniformizer of Ki. Let u € K be such that K(¥/u) is not in touch
with K1 /K and either vic(u) =1 or 0 <wvg(u—1) < B ptog(u—1). Assume that c(u,tr) > N
and ¢(m1,tr) = N for some integer N > 3 and for some standard field L = [{{t1}} containing K.

Then uw = uibP, where u1,b € Ky are such that p{ vk, (u1 — 1) and c(uy,tr) > N — 1.

Proof. Let ¢(x) = ¢(z,tr) and let ip = vg(u — 1). By Corollary 3.3.1

w=m" O T+ i)

12pig
with f; normalized or f; = 0, and c(1 + @i f;(#?"")) = N. It follows for f; # 0 that
o1+ [ > N
and by Lemma 3.2
n; = c(f;(t""")) = min(c(m), e(xi fi(#7))) = N —ieg.

We conclude that n; > 0 for i < Neg;,.

Denote i1 = min{i : f; # 0, p{i}; we have i; < peg,/(p — 1) < Neg, since N > 3. Introduce

Lt 7 i (07)
(1 mify (@)

ur = [[@+ain@™) =< ]
1211 i()<i<%

= (14 S1)(1 + S2).

Here ¢ denotes application of Frobenius automorphism to the coefficients of a power series from
T}

We see from Lemma 5.1 and [12] that

PeK,

vl = 1) < =7 = (K (Gu) /K
< D = s(K (/) /K) (6)
() ek

Since vg, (S1) = i1 and vk, (S2) = ek, + 9, we obtain that the initial terms in S and Sz do
not cancel, whence vg, (S1 + S2) is exactly min(vg, (51), vk, (S2)). If ig # 0, this gives p{ v(u; — 1),
since both 41 and eg, +1ig are not divisible by p. If i9p = 0, we still have p { v(u; —1). Indeed, in this
case we have a strict inequality in (6) by the second part of Lemma 5.1, whence v(u; — 1) = i;.

Obviously, we have u = u1bP with

1

b=m <" T (+aiss @™

’LQS’L<;1

)~
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It remains to estimate ¢(1 + wif}‘f[l (ti’"prl)). Denoting f£71 by g, by definition we have

1

c(1+ Wlig(tpnpi_ ) = min(vg (Wi_lg(tpnm_l)dth),

Yo (p"m'*lw; Y g L) )
> min(ie;é +c(m), (npi — 1) + iel_{i + ¢(t))
> min(ie;! + N, N — pieg! —1+ie;! +c(t) > N —2.
It follows ¢(b) > N — 2, and ¢(u1) = min(c(u),c(b7P)) > N — 1.

5.3 Proposition. Let K be of Type I, not almost standard, with T'.(K) > n+3, where n = vy(eg/i,)-
Assume that K/k{{t}} is constant free (for some choice of t). Let K'/K be a constant extension of
degree p. Then K' is of Type I, not almost standard, and T.(K') > T.(K) —n — 3.

Proof. Let K’ = k'K, where k'/k is an extension of degree p.

By Lemma 4.3 the proof is reduced to the case of cyclic totally ramified k¥'/k and K'/K. We
have K’ = K(z¢), where zf, = a € k*.

Consider a chain of subfields

KyCK C- CK,=K,

where each K;;1/K; is totally ramified of degree p, and Ky/k{{t}} is tame.

Denote by L any standard field containing K'; put ¢(z) = cp(x,t1).

Let m, = 7 be a uniformizer of K with ¢(w) = N, where N = I'.(K), and let m; = N, m; we
have ¢(m;) > N, 0 < i < n (by Corollary 4.1.1).

Applying Lemma 5.2 to K1/Ko, ..., K,/K,—1, we obtain that K/ = K(z), 2 = u € K,
pto(u—1), ¢c(u) > N — n. In particular, K'/K is totally ramified, whence K’ is not almost
standard. We have

clx —1)=c(x) +vo(x) —vo(x — 1) =
:c(u)—l—vo(x—l)2N—n—1—L1>N—n—3.
p J—
Pick integers i and j such that vg:(7') = 1, where ' = (z — 1)*77. Then
c(r') > min(c(x — 1),¢(r)) = N —n — 3,
and this proves that K’ is of Type I with

Fo(K') = e(n’) > Te(K) —n — 3.

5.3.1 Corollary. Let K be as in Proposition 5.3, with T(K) > m(n + 3), where n = vy(eg /i),
m a positive integer. Assume that l/k is an extension such that IK is almost standard. Then the
inequality [l : k] > p™ holds.

Afterword

Thus, we have established, under some restrictions, a relation between two invariants measuring
how far is a given 2-dimensional local field from being standard. We expect that this relation, in
some refined form, can be extended to all higher local fields.
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