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1. Introduction

Denote by P, the class of integer polynomials P of degree n. For a given polynomial
P = ap2™ + ap12" ' + ...+ a1z + ag € Py, define H(P) = maxo<j<y |a;| to be the height of
P.

Given a parameter @ € N5, let

Pn(Q) ={P(x) € Z[z],deg P = n, H(P) < Q}

denote the set of integer polynomials P of degree n and height H(P) < Q. Throughout, D(P) will
stand for the discriminant of a polynomial P which is defined by

1<i<j<n

where ai,as,...,a, € C are the roots of P (see [15]). The discriminant contains the information
regarding the distance between different algebraic numbers, and it was important tool for the solving
Mabhler’s conjecture by Sprindzuk [14] as well for a various generalisations of Sprindzuk’s techniques
3,4, 5,8, 11].

In what follows we will use the Vinogradov symbols < (and >>) where a < b implies that there
exists a constant C such that a < Cb. If a < b < a then we write @ < b. The cardinality of a set B
will be denoted by #B. Positive constants which depend only on n will be denoted by ¢(n); where
necessary these constants will be numbered ¢;j(n), j =1,2,....

Given v € Ry, define the subset of P, (Q) as follows:

Pa(Q,v) = {P(z) € Pa(Q) : 1 <|D(P)| < Q¥ 7?72},

Establishing exact upper bounds and lower bounds for #P,,(Q, v) have been the subject of numerous
papers in recent years, and became a new branch of Diophantine approximation. We now briefly
recall the results that have been obtained to date. In the case of quadratic polynomials it was
shown in [13] that #P2(Q,v) =< Q372" for 0 < v < 3/4 and in the case of cubic polynomials it
was established in [12] that #P3(Q,v) =< Q*5/3 for 0 < v < 3/5. Establishing the lower bounds
for an arbitrary n has been the subject of numerous papers including [1, 2, 6]. The most general
and best estimate for the lower bound with arbitrary n was found in [2] where it was shown that
#Pn(Q,v) > Qnti-(t2v/n 0 < v < n — 1. It is much harder to get the upper bounds for
#Pn(Q,v) with arbitrary n.

There are also p-adic [7] and mixed analogues [9, 10] of the above problem, which along with
the size of the discriminant take into account their arithmetic structure.

Let aq,ao,...,a, € C be the roots of P € P,(Q,v) ordered so that

lag —ag| < |lag —az| < ... < ag — ay, (1)

and satisfy
a1 — | <1, 3<j<n. (2)

Also, define the real number p such that
lay —aa| =Q7", p20. (3)

Let P/ (Q,v) denote the set of irreducible polynomials P € P,(Q,v) which have only one root
ag close to aj. Thus, we investigate the set of irreducible polynomials P € P,(Q,v) with the
roots satisfy (1)—(3). In this paper we obtain an upper bound and lower bound for the number of
polynomials P € P/ (Q,v).
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TrEOPEMA 1. Let n € N, n > 2 be given. For any € > 0 and for any sufficiently large Q) the
following estimates

#P(Q,v) > Qi
BP0 < QU g

hold if
0<v<(n+2)/4—e¢,

where the constant implied by the Vinogradov symbol depends on n only.

2. Lower Bound

2.1. Preliminary results

Now we give several lemmas which are used to obtain lower bounds for the Lebesgue measure
of certain sets. In what follows given a Lebesgue measurable set A C R, |A| stand for its Lebesgue
measure.

LEMMA 1. [2] Let n > 2 and vy, v1,...,v, be a collection of real numbers such that
vo+vi+...+v,=0and vo=vi>=...=>v, > —1. (4)

Then there are positive constants dyg and co depending on n only with the following property. For
any interval J C [—1/2,1/2] there is a sufficiently large Qo such that for all Q > Qo there is a
measurable set Gy C J satisfying |G j| = |J|/2 such that for every x € Gy there are n+ 1 linearly
independent primitive irreducible polynomials P € Z[x] of degree exactly n such that

50Q " < |P(2)| < 0@, 60Q ™% < [PY(2)| Q™™ (1<) <n). (5)
LEMMA 2. [2] Let n and v; be the same as in Lemma 1. Let
dj =vj_1—v; (1<j<n). (6)

Suppose that
dizdy>2...2d, 20 (7)

and that for some x € C and Q > 1 inequalities (5) are satisfied by some polynomial P over C of
degree deg P = n. Then there are roots aq,...,a, € C of P such that

|z — oy < QY (1< j<n) (8)
where

2¢con! 2¢;n!
do(j + Dn—j =1 jin—j!)

clzncodo_l and cj+1:max< ) (1<j<n—-1).

2.2. Obtaining a lower bound in Theorem 1

Let v, v1,...,v, be given and satisfy (4) and let the parameters d; be given by (6) and (7).
Consider the system

50Q7" < |P(x)] < coQ™, §Q ™" < |P(2)] < coQ "60Q < [PV (2)| < co@ (2<j<n). (9)

Therefore, we have v9 = v3 = ... = v, = —1. From (4), we have

n
Uo—l—vlz—Zvi:n—l. (10)
i=2
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Let J = [—%, %}, Q be sufficiently large and x € G, where G is the same as in Lemma 1. By
Lemma 1, inequalities (9) are satisfied for some irreducible polynomial P € Z[z] of degree n. Then
by Lemma 2 we have (8). Hence, for any pair of integers (i, j) satisfying 1 < ¢ < j < n we have by
(8) that

i = ay] < |z — aif + [ — oy < QY. (11)
By (9), we have that H(P) < @, where the implicit constant depends on n only. Therefore, using
D(P) = a?"2 [Ticicjcn(ci — a;)?, we have that

1< ’D(P)| < Q2n7272 Z?:Q(ifl)di_ (12)

Note that the left hand side inequality is due to the irreducibility of P. By (12), inequalities
1 < |D(P)| < Q?"~27% are fulfilled if we impose the condition

n

D (i - 1)d; =v. (13)

i=2
By (9), we have that
di=v9g—v,do=v1+1,d;=0,3<i<n. (14:)
Thus, from (13), we get d2 = v. By (10) and (14), we have that

vp=v—1, vp=n—w. (15)

Next we obtain that dy = vg — vy = n + 1 — 2v. A quick check shows that di > dy > 0 for
0<wv< "%rl Using (3), (11), (14) and (15), it can be shown that p > v.

Now, we estimate the number of polynomials that can obtain this way. By (8) and Lemma 1,
for every x € G5 we have that |z — a1(P)| < Q~%, where P arises from Lemma 1. Therefore, we
have that

Gy C Upepy(u) Uizt {lz — oj(P)] < Q"1
Hence,
3 3 —d ,
1= Z\J’ L Q™M H#PL(Q,v).
This results in the required lower bound

#PL(Q,v) > QU > @t~

for0<v<”T1.

3. Upper Bound

3.1. Auxiliary results

The following Lemma is a quantitative description of the fact that two relatively prime integer
polynomials cannot both have very small absolute values in an interval.

LEMMA 1. Let §,m,u € RT and let Qo(d,n) be a sufficiently large real numbers. Furthermore,
let P(x),T(x) € Zx] be polynomials of degree n > 1 without common roots such that
max(H(P),H(T)) = Q", where Q@ > Qo(d,n). Assume that the interval I C (—n,n) C R with
|I| = Q~". If there exists T > 0 such that for all x € 1

max(|P(z)],[T(x)]) < Q7

then
T+ p+ 2max(7 + p —n,0) < 2un + 9. (16)
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Lemma 1 is proved in [3].
For a given number ¢; > 0 let T = [e;'] + 1, where [a] is the integer part of a € R. For a
polynomial P € P/ (Q,v) the real number p was defined in (3). Also define the integer [ by

(1—1)/T < p<I/T.

It is not difficult to show that the number of integers [ is finite and depends only on €; and does not
depend on @ and H(P). Define the class P/ ,(Q,v) which consists of the polynomials P € P}, (Q,v)
corresponding to an integer [. ’
In order for the polynomial P(x) to belong to the class P/ (Q,v) it is necessary and sufficient
that the inequality
p=v

holds. By (2)—(3) and using the fact that |D(P)| > 1 for the irreducible polynomial P, we have

p<n—1

3.2. Obtaining an upper bound in Theorem 1
In this section we are going to obtain the upper bound
#Pn(Q,v) < QU2 (17)

for the number of polynomials P € P, (Q,v) with only two close roots a7 and as.
Assume that the estimate (17) does not hold, so

#P(Q,v) > QM2
Then there must exist an interval I C R of size |I| = Q77, v = 0, containing a root of P such that
g
#P(Q,v, I) > QT

where P/ (Q,v, 1) is the set of polynomials P € P, (Q,v) which have a root in the interval I. Since
#1 < 1 there exist an integer [ such that

#P(Q, v, 1) > Q=2

where P! ,(Q,v,I) denotes the subset of P/, ,(Q,v) which have a root in the interval I.
Expand the polynomial P &€ Pq’u(Q, v, I) into its Taylor series in the neighbourhood of a; to
obtain

il

" PO (o) (x — ay)
Px) = Play) + Y tenlr o)t
=1

Using (1)-(3) and estimating each term, gives

Plade-a)] < Q7
PO(a) (@ — )| < Q7 2<i<n,

for x € I. Thus
|P(z)| < Q> if y<p

P@)| < QP if 13p 18)

for z € I.
For sufficiently large @, we have that #P/ ,(Q,v,I) > 2 for v < n+ 1 — 2v. Next we show that
the assumption that at least two irreducible polynomials without common roots have small values
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in the interval I will lead to a contradiction. Suppose that two polynomials Py, Py € 'P;LJ(Q,U)
without common roots belong to I, i.e. ay(P1) € I and a1(P») € I. Then the estimates (18) hold
for P;, i = 1,2, on the interval I.

Consider the following three cases.

Case A: =12V 4 ¢ < p < /2 + 3¢/4.

Choose v = 2n — 3p + 3e. Applying Lemma 1 to polynomials P; and P with 7 = —1 4+ p 47,
n =, i =1, leads to a contradiction in (16) for § < 3e.

Case B: n/2+3¢/d<p<n+1—-2v<n—1forv>1lorn/2+3¢/4<p<n—1forv<l.

Choose v = p. Applying Lemma 1 to polynomials P; and P, with 7= —-14+2y, n=~, u=1
leads to a contradiction in (16) for ¢ < 3e.

Case C:n+1—-2v<p<n—1forv>1

Choose vy = n+ 1 —2v. Applying Lemma 1 to polynomials P; and P, with 7 = —1+2v, n =7,
1t =1, leads to a contradiction in (16) for § < 8¢ and v < 2 —e.

Thus it has been shown that #P/(Q,v) < Q"1~2" for p > % +eand v < ”T‘*'Q — €.
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