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AnBOoTanusa

B pabore mbI paccmarpuBaeMm 0000IIeHHBIE MHOrO0Opa3us KeHMmoIly, Mbl BBOAUM YETBED-
TOe M TATOe (PyHIAMEHTAIbHBIE TOXKIECTBA OOOOIEHHBIX MHOroobpasmit Kenmorry, BBOIATCS
MEePBBIii U BTOPOH CTPYKTYPHBIE TEH30pPbI 0O0DOIIEHHBIX MHOrooOpasmuit Kenmory u moka3aHbl
UX CBOHCTBA, BBOAUTCS HOHATHE LIPUCOEAUHEHHON QQ-aireOpbl Jjisd 0600IEHHBIX MHOrOOOpa3uii
Kenwmorry. /lokazano, uro 06001merHoe MEOr00Opasne Kernmolry, a Takke CremuaabHbie 0000IeH-
ubie MmEOro0oOpasus Kenmorny 11 poma nMeroT aHTHKOMMYTaTUBHY O TPUCOEInHEHHYT0 (Q-areopy.
A wmuoroobpasust Kenmory u cnenuasbabie 00001enHbe MEOrOOOpasus Kenmorry I poma mme-
for abeseBy mpucoenuHernyo Q-anre6py. BBoauTcsi KOHTAKTHBIM aHATIOP MOCTOSHCTBA TUTA U
TOAPOOHO HCCIEAYIOTCs 0000IeHHbIe MHOTOOOpa3us Kenmory moctosHHOro Tuma. llomyderst
YCJIOBUST TOUEYHOTO MOCTOSTHCTBA TUTIA ODODIIEHHBIX MHOTO00Opa3uii Kenmolry Ha mpocTpaHcTBe
npucoenuaenuoit G-crpykrypsi. Jlokasamno, uro kiacc GK-mHOr0006pa3uii Hy/1€BOro moCTOSHHO-
r'0 THUIA COBMAJIAET C KjaccoMm mMuHOTo0Opasuii Kenmorry, a kiaacc GK-muOroo6pasuit HeHy1eBoro
MTOCTOSTHHOTO TUTIA KOHIIUPKYISPHBIM MPEe0OPA30BAHUEM MEPEBOJUT-CSI B IOUTH KOHTAKTHOE MET-
puYeckoe MHOrooOpasue JOKATbLHO YKBUBAJIEHTHOE TPOU3BEIECHUIO [IIECTUMEPHOTIO COOCTBEHHOIO
NK-muOroo6pasus Ha BEMIECTBEHHYIO MIPAMYIO.

Karwuesvie caosa: muoroodpasus Kenmorry, o6obmennbie MEOT000Opa3us Kenmorry, creru-
aJbHBIe 00001eHHbIe MHOT00Opasus Kenmory 1 poma, creruanpabie 0000IIIEHHBIE MHOIO0Opa-
aua Kenmorty IT poma, GK-MHOr00OGpasus moCTOSTHHOrO THUIA, TOYHEHIE KOCHMILIEKTHIECKOe
MHOT000pa3ue.

Bubauoepagus: 15 HazBaHuUii.
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Abstract

In this work we consider generalized Kenmotsu manifolds, we introduce: the fourth and
the fifth fundamental identities of generalized Kenmotsu manifolds; the first and the second
structural tensors of generalized Kenmotsu manifolds (and we prove their properties); the
concept of adjoint Q-algebra for generalized Kenmotsu manifolds. We prove that gene-
ralized Kenmotsu manifolds and the II kind special generalized Kenmotsu manifolds have
anticommutative adjoint Q-algebra. And the Kenmotsu manifolds and the I kind special
generalized Kenmotsu manifolds have Abelian adjoint Q-algebra. The type constancy contact
analog is introduced and the constant-type generalized Kenmotsu manifolds are thoroughly
examined. We have identified the type point constancy conditions of the generalized Kenmotsu
manifolds in the adjoint G-structure space. We prove that the zero constant type GK-
manifold class coincides with the Kenmotsu manifold class and the non-zero constant type
GK-manifold class can be concircularly transformed into the almost contact metric manifolds
locally equivalent to the product of the six dimensional NK-eigenmanifold and the real straight
line.
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1. Introduction

Contact and almost contact structures are one of the most substantial examples of differential
geometrical structures. Nevertheless the most important geometrical properties of almost contact
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metric manifolds are revealed when the additional limitations are applied to them. The most natural
limitation is the isotropy condition.

The almost Hermitian manifold isotropy can be characterized by the constancy of their type
[1], [2]- The type constancy of approximately Keller manifolds was introduced by A. Gray [2] and
proved to be very useful for approximately Keller manifold studying. The complete characteristics
of approximately Keller manifolds were obtained by V.F. Kirichenko [3].

In this work we consider the type constancy contact analog for generalized Kenmotsu manifolds
which were introduced in the thesis work of Umnova S.V. [4]. In the work [4] Umnova S.V. singles
out two subsets of generalized Kenmotsu manifolds, called special generalized Kenmotsu manifolds
(shorter, SGK-) of the T and II kind. In the work [4] it’s proved that generalized Kenmotsu manifolds
of the constant curvature are the Kenmotsu manifolds [5] of the constant curvature (-1). Moreover,
it’s proved that the class of SGK- manifolds of the IT kind coincides with the class of almost contact
metrical manifolds received from the most precise cosymplectic manifolds [6] through canonical
transformation of the most precise cosymplectic structure and the local construction of these
manifolds is given. In this article we explore the generalized Kenmotsu manifolds of the constant
type and give their complete local characteristics.

This article is organized in the next way. In Section 2 we present the preliminaries for the
next statements, build the space of adjoint G-structure and put down the first structural equation
group on the adjoint G-structure space. In Section 3 we give the definition of generalized Kenmotsu
manifolds, give the full structural equation group, we prove that a generalized Kenmotsu manifold
in a dimension different from 5 is a special generalized Kenmotsu manifold of the II kind and we
provide fundamental identities of generalized Kenmotsu manifolds.

In the Section 4 we consider the adjoint Q-algebra of a generalized Kenmotsu manifold. We
establish the theorem which is the basic result of the present paragraph and which means that the
adjoint Q-algebra of a generalized Kenmotsu manifold is anticommutative. Three Conclusions are
given for this theorem; they characterize the adjoint Q-algebras of generalized Kenmotsu manifold
special cases.

In the Section 5 we explore the generalized Kenmotsu manifolds of a constant type. It’s
proved that the generalized Kenmotsu manifolds of the non-zero constant type are the generalized
Kenmotsu manifolds of the 1T kind and we received their local structure. Generalized Kenmotsu
manifolds of the non-zero type coincide with the Kenmotsu manifolds.

2. Preliminaries

Assume, that M is a smooth manifold of dimension 2n+ 1, X (M) — C* is a module of smooth
vector fields on the manifold M. Further all manifolds, tensor fields and the like are supposed to
be smooth of the class C*.

DEFINITION 1. [7] An almost contact structure on the manifold M is the triplet (n, &, ®) of tensor
fields on this manifold where n is a differential 1-form which is called a contact form of structure,
¢ is a vector field which is called characteristical, ® is the endomorphism of module X (M) which is
called structural endomorphism. Here

1) n(€) =1; 2) no®=0; 3) &) =0; 4) &' = —id +n®¢&. (1)
Besides, if such a Riemannian structure g = (-, -) is fixed on M that
(@X,0Y) = (X,Y) —n(X)n(Y), X,Y €X(M). @)

quadruple (n,&, ® g = (-, ) is called almost contact metrical (shorter, AC-) structure. The manifold
where an almost contact (metrical) structure is fixed is called an almost contact (metrical (shorter,

AC-)) manifold.
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Skew-symmetric tensor Q(X,Y) = (X,®Y), X, Y € X (M) is called the fundamental form of
an AC-structure [7].

Assume, that (n,&,® g = (-,-)) is an almost contact metrical structure on the manifold M?"+1.,
In the module X'(M) two mutually complementing projections m = 7 ® ¢ and [ = id — m = —®>
[8]; are internally defined in the way that X(M)=L & M, where £ = Im(®) = kern — a so-called
contact distribution, dim£=2n, M = Imm = ker(®) = L(£) — a linear span of a structure vector
(also [ and m are the projectors for submodules £, M accordingly). Obviously that distributions £
and M are invariant towards ® and are mutually orthogonal. It’s also obvious that ®2 = —id,
<<i>X, <i>Y> = (X,Y), X,YE X(M), where & = ®|;. Consequently {®,,g,|c} is a Hermitian
structure on the space £, (p — some point of M).

The complexification X (M)® of the module X' (M) disintegrates into a direct sum

X(M)° =Dy oDV e DY

of structural endomorphism ® own spaces corresponding to their own values v/—1, —/—1 and 0
accordingly. Besides, the projectors for the summands of this direct sum will be endomorphisms
(7, B): # =00l =3+ V/=10), 7 = 5ol = 3(—0? + \/=1®), m = id + 2, where
o= 3(id — /=1®), 6 = 3(id + V/—1®).

The depictions o), : £, — Df and 0, 1 L) — D;ﬁ are the isomorphism and the anti-
isomorphism of Hermitian spaces, accordingly. That’s why to every point p € M?"*! it’s possible
to add a family of reference frames of space Tp(M)C of the kind (p, €9, €1,-..,€n, €, .., €,) where
€ = V20,(eq), €2 = V25,(eq), 00 = &, where {e,} is the orthonormalized base of the Hermitian
space Lp,. This reference frame is called an A-reference frame [8]. It’s clear that matrices are the
element of tensors ®, and g, in the A-reference frame; they have the according forms of:

| 0 0 0 10 0
(@) =1| 0 -1I, 0 (gij)=10 0 I, |, (3)
0 0 —/ =11, 0 I, O

where I, is the unity matrix of the n-order. It is well known [7], [8] that the aggregate of such
reference frames determines the G-structure on M with structural group {1} x U(n) represented by

1 0 0
such matricesas [ 0 A 0 |, where A € U(n). This G-structure is called adjoint [7], [8].
0 0 A

Assume that (M?"*+1 & &g = (-,-)) is an almost contact metrical manifold. We will make a
convention that in this entire work indices 4, j, k, [ run through values from 1 to 2n, indices a, b, ¢, d,
— through values from 1 to n, and let’s assume that ¢ = a + n, a= a, 0 = 0, unless it is stated
otherwise. Let (U, ¢) be a local chart on manifold M. According to the tensor analysis fundamental
theorem the assignment of the structural endomorphism ® and the Riemann structure g = (-,-)
on the manifold M inspires on the total BM space of a bundle of frames above M a system of
functions {@3}, {gij}, complying in the coordinate neighborhood W = 7=}(U) C BM with a
differential equation system of the following form

d®% + D50;, — LY = D4, k)'wF, dgij — gri0f — gind} = gijaw”, (4)

where {w'}, {9;} are the components of the solder forms and the Riemannian connection,

correspondingly; <I>§- o 9ij.k are the components of the covariant tensor differential ® and g in this
connection correspondingly. Moreover, because of the Riemannian connection definition Vg = 0,
and it means that

9ij .k = 0. (5)
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With account of (3) and (5) relations (4) on the adjoint G-structure space can be put down as
17, 18]
oy, =0, @‘g’k =0, ¥f, =0,

o = V5 1or Wk, 07 = —YTlaf Wk,

6?0 = V-1@5 Wwh, 08 = —\/— <I>O Lwh, (6)
—/= <I>27kw , «9& = V—l@%kw ,
0 +6.=0, 65=0.
J

Besides note that because of the real type nature of the corresponding forms and tensors
wi = W, 9’ = 62 VCIﬂ k= V<I> , where t — £ is a complex conjugation operator.

Wlth regard to the obtalned relations the first structural equation group of the Riemannian
connection dw* = 0; Aw’ on the adjoint G-structure space of the almost contact metrical manifold
can be formulated as the first group of almost contact metrical manifold structural equations [7],

[8]:
dw = Coupw® A WP + C%w, A wy 4+ CPw® A wy 4 Caw A w® + C% A wg;

dw® = =09 Aw® + B%®.w® A wp + B%wy, A we + By, + B%yw A w; (7)
dw, = 92 A wp 4+ Bapwe A w? + Bapew? A w€ + Bapw A w® 4+ Balw A wy,

0

where w = w
o
M7 Wi = gijw-,

= 7*(n); 7 is a natural projection of the adjoint G-structure space on the manifold

B, = —ﬂqﬂ o Bat=YHel, B = @@@,,

B = — W@gc, B = V=184, B’ =—/~1¢¢

0,0’
B = V=L@ - lqbﬁ‘ o) Bav=—V=1(2f, — 3P5,), (8)
— /10 /_— b __ ./ 0 0
= 1¢[&j)]7 @[a b Ca —_— 1((1)5,0, + (pa’B)7

—V/— (I)&,07 Cy = \/—1<I>2,0

3. Generalized Kenmotsu manifolds

Assume that (M2, ®, £, n,g = (-,-)) is an almost contact metrical manifold.
DEFINITION 2. [4]. The class of almost contact metrical manifolds characterized by equality
Vx (@)Y +Vy(P)X = —nY)PX —n(X)PY; X, Y € X(M), (9)
is called generalized Kenmotsu manifolds (shorter, GK- manifolds).

The full group of GK-manifold structural equations takes the form [9]:

1) dw = Fypw® A w? 4+ F®w, A wy;
2) dw® = =07 A Wb 4+ Oy A w, — SF“bw A wb +djw A w®
3) dwg = 0% A wp + Capew® A W€ — %Fabw AwP 4 6w A wy;
4) dog = —0% N 05 + (AW — 209U Oy — SFUF )0 A wy +
+(—3208Feq + 200 Fgp + 268 Fpe)w’ Aw?d 4 (300Fd — 25¢Fda — 250 1), A wy;
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5) doabe 4 Cdbceg T Cadceg n Cabdeg _ (abedy,, 25([111 Fbelyd — cabey,. (10)
6) dCape — Capetd — Coged? — Capad? = Capeaw® — 25fszbc]wd — Capew;
7) dF® + F9e + Focgh = —2F %y,

8) dFyy, — Fpll — Fucly = —2F jpw;

where

Cobe = Y12 5 Cupe = — Y5105 Ol = 0 Clypg = Cles
Cobe = Capey F* = /=100 15 Fop = —v/ =100 ;
Fob 4 FY = 0; Fop+ Fho = 0; F = Fp; Al = 470 = 0;
colbed) = Spalbped Copeg = 3FypFug; FaaC™® = F*Cg, = 0.

PROPOSITION 1. [9]. If C%¢ = Cp. = 0 and F® = Fy, = 0, then a GK-manifold is a Kenmotsu
manifold.

Differentiating externally (104 - 10g) we get:

1) dAgd + Ahdoe + Aghgd — Agdoh — Agdoh = Agd wh 4+ Agdhw, + A4
) dcabcd 4 CthdQZ 4 Cahcda}l; 4 Cabhdez 4 Cabchez —
— Cabcdhwh 4 Cabcd(]w; (11)
3) dCuaped — Chbedd? — Cancadlt — Caphad? — Copendt =

h
= Capedhw" + Coapedow-
Herewith:

dh
1) Agd, =0; 2) A =0,
3) Agd = —2A99 4 FUFy, — 200 FU Fy — 260 F Fyy, — 200 F F;

4) (A4, = 2097 Cy1)Clglan) = 0; 5) (A ale _ galelf| ¢y, )Clold) = 0

6) (Aff[h SFFyo) Fipyg =05 7) (Aa[d SFeldpy,) Fitle = o;
8) Cuabeldn] — _g(Cabe pdh 4 1(cadh fhe | Cbdn frea | credh prab
L Cabh fde | acd prhb | Cahc Fib 4 dbe pah | (hbe pdayy,
9) Cabedd — _(gcabed  pabped | pocpds | pad pbe).
10) C9C 4y, = 0; 11) C¥hFyy = 0; (12)
12) Copefan) = —2{CavcFan + 5(CadnFoe + CoanFea + CednFap + CaveFan +
+ChveFaa + CacaFrv + CancFav + CapaFen + CapnFae) };
13) Caped” = (AT — 209" C,) Cope + (AL} — 209" C11) Coge +
+(AZ) — 2091 Cpeq) Capy;
14) Capedo = —(2Caped + FapFea + FacFap + FaaFye);
15) CapegC9%h = 0; 16) Copen F' = 0.

Differentiating externally (107) and (10g), we get:
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1) A%CCthb o AZCéFha — %Faththb _ %deicFha;
2) 2F®F.q = (04F., — 62 Fy,)FM" + (80 Fyp, — 69 F.) Fh;
3) 2Fachd — Fachb 4 Fadec; (13>
4) Fop APd — By Ald = 3(FqFyn — FoaFon)Fhe;
5) 2Fp F = (S5 F — §LF") Frq + (03F — 65 F) Fyy;
6) 2FpFeq = FacFap + FaqgFpe.

As a useful consequence (132) we prove the next theorem.

THEOREM 1. [9] A GK-manifold of dimension different from 5 is a SGK-manifold of the II
kind.

The identity
(Agﬁ: — QCangfb[C)C‘gwh] =0 (14)

we call the first fundamental equality of GK-manifolds [10].
The identity

(Aff ~ SFhFye) Fpjg = 0 (15)

we call the second fundamental equality of GK-manifolds [10].
The identity

2Fachd — Fachb + Fadec (16)

we call the third fundamental equality of GK-manifolds [10].
The identity

FoqyCe = pedCy . =0 (17)

we call the forth fundamental equality of GK-manifolds.
The identity

CabegC9" = 0 (18)

we call the fifth fundamental equality of GK-manifolds.

The system of functions (C%¢ Cgup.) determines the tensor (2,1) which is called the first
structural tensor, the system of functions (F%, F;) determines the tensor (1,0) which is called
the second structural tensor. The structural tensors of a GK-structure have the following
equations [10]:

1) C(X,Y) = —3® 0 Voy (®)®X = —1®% 0 Voy (®)P2X;; (19)
2) F(X)=®0Vgrx(P) — P2X = —Po Vy(P)f — P2X = —Vyé — 02X =
= P20 Vex ()¢ — P2X = —D o Vgyx(P)E — P2X; X,Y € X(M).

DEFINITION 3. [4] A generalized Kenmotsu manifold with a zero first structural tensor is called
a special generalized Kenmotsu manifold (SGK-, for short) of the I kind.

DEFINITION 4. [4] A generalized Kenmotsu manifold with a zero second structural tensor is
called a special generalized Kenmotsu manifold (SGK-, for short) of the II kind.
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4. Q-algebras of generalized Kenmotsu manifolds

In this section we discuss the Q-algebra adjoint to a GK-manifold.

DEFINITION 5. [11] A Q-algebra is a triplet {V,((-,-)),*} where V is a module of the
commutalive associative ring K with nontrivial involution; ({-,-)) is a non-degenerated Hermitian

form on V; *is a binary operation x : V. x V. — V antilinear for each argument for which the
Q-algebra axiom is accomplished ((X «Y,Z))+ ((Z+x X,Y)) =0, X,Y, Z € V.

If K=C, then Q-algebra V is called complex.

DEFINITION 6. [12] Q-algebra V is called:

- Abelian, or commutative Q-algebra, if X «Y =0, (X, Y € V);

- K-algebra, or anti-commutative Q-algebra, if X xY = -Y x X, (X,Y € V);
- A-algebra, or pseudo-commutative Q-algebra, if

(XY, 2) + (Y« Z,X) + (Z+ X,Y) =0, (X,Y,Z€V).

We recall [13] that in the module X(M) of an almost contact metrical manifold the structure
of Q-algebra Re is naturally introduced over the ring of complex-valued smooth functions with the
operation

X+Y = T(X,Y) = i{wéx(@)@y C BVgey BBV} XY € X (M) (20)
and metrics
(X, 7)) = (X, V) +V-1(X,®Y); X,Y € X(M). (21)

This Q-algebra is called adjoint.
Assume that M is a GK-manifold. In the C*°(M) — module X (M) of smooth vector fields of
manifold M a binary operation ” x” is introduced by the formula

X+Y = T(X,Y) = i{@qu((I))‘I)Y C BVgey (P)DIY): XY € X (M)

THEOREM 2. The GK-structure has an anti-commultative adjoint Q-algebra, h.e. a K-algebra.

Proof. From Definition 2 it is easy to follow that ®Vex (®)PY +PVey (P)PX; X, Y € X (M),
SO @V@X((I))CI)Y = —@V@y(@)@X; XY e X(M)
And it means that ®Vge y (2)02Y = —®Vgey (9)82X; X,Y € X(M). Then

T(X,Y) = 1{O®Vox(P)PY — Vg x (P)P*Y} =
= —HOVaey (@)X — PV4gey (@)22X} = ~T(Y, X); X,Y € X(M).
H.e. the adjoint Q-algebra of GK-structures is a K-algebra.

COROLLARY 1. SGK-manifolds of the I kind and Kenmotsu manifolds have Abelian adjoint
Q-algebra.

Proof. For SGK-manifolds of the I kind and Kenmotsu manifolds the identity is realized ([9])
DVax(P)PY = —DdVay (®)PX = 0; X,Y € X(M), and it means that

1
T(X,Y) = Z{@bvcpx(cb)@by — OV 24 (®)P2Y} = 0;

X,Y € X(M), h.e. adjoint Q-algebra is Abelian.
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COROLLARY 2. SGK-manifolds of the Il kind have anti-commutative adjoint (Q-algebra.

Proof. From (9) we have ®Vgx (P)PY 4+ ®Vaey (P)PX; X,Y € X(M), than according to the
obtained equality

XY =T(X,Y) = {{®Vax(P)PY — ®Vg2x(P)P?Y} =
= —HoOVey (2)2X — ®Vg2y ()D2X} =
=-TY,X)=-XxY; XY € X(M),
h.e. the adjoint Q-algebra is commutative, h.e. a K-algebra.

COROLLARY 3. Kenmotsu manifolds have an Abelian adjoint Q-algebra.

Proof. For Kenmotsu manifolds the equality is executed ([11])
1
T(X,Y) = Z{c1>vq1>x(<1>)<I>Y — DVg2x (®)P?Y} =0,X,Y € X (M),

h.e. the adjoint (J-algebra is Abelian.

5. The type constancy of generalized Kenmotsu manifolds

In this section we consider a contact analog of the type constancy and examine it in detail for
generalized Kenmotsu manifolds.

DEFINITION 7. [14] The complex K-algebra Re is called the K-algebra of constant type, if
JeeC VXY €Re: ((X,Y)) = 0= X« Y|P = | X[ Y]

DEFINITION 8. The GK-manifold M is called a pointlike constant type manifold, if its
adjoint (Q-algebra has a constant type in each point of manifold M. Function c, if it exists, is called
the type constant of the GK-manifold. If ¢ = const, than M is called a global constant type
GK-manifold.

Assume that M is a GK-manifold. Let us consider Q-algebra Re, adjoint to manifold M, with
operation * : X(M) x X(M) — X (M), defined by the identity
1
XY =T(X,Y) = {®Vax()0Y — DV g2 x (P)D?Y};

X,Y € X(M). From (9) it follows that on the GK-manifold ®Vgy (®)®Y = —®Vgax (P)P%Y;
X,Y € X(M). Thus X Y = 10Vex(P)PY = —10V4ox(®)D2Y}; X, Y € X(M). Because of
(21), the condition (X,Y) = (X, ®Y) = 0 equals the condition ((X,Y’)) = 0. Thus, the following is
true

THEOREM 3. A GK-manifold is a manifold of pointlike constant type c then and only then, when
VXY € X(M) ((X,Y)) = 0= [[C(X,Y)|* = c[|X|*|[Y]*. (22)
We introduce into consideration a 4-form
CX,Y,Z, W)= (XY, ZxW)) = ((C(X,Y),C(Z,W))).

It is directly verified that it has the following properties:
1) Antilinearity at the first pair of arguments

V=IC(X,Y, Z,W) = —C(®X,Y, Z,W) = —C(X, ®Y, Z,W).
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2) Linearity at the second pair of arguments
V-1C(X,Y, Z,W) = —C(X,Y,®Z, W) = —C(X,Y, Z,®W).

3) Skew symmetry at the first and second pairs of arguments
CX,)Y,Z,W)=-CY,X,ZW)=-C(X,Y,W, Z).

4) Hermicity
C(X,Y,Z,W)=C(Z,W,X,Y),X,Y,ZW € X(M).

Because

XY, X,Y) = (X Y, X x¥)) = ((C(X.Y),C(X,Y))) = |C(X, V)|,
GK-manifold M is of a pointlike constant type ¢ then and only then, when
CX,V,X,Y)=c|X|P|Y|?, X,Y e X(M), ((X,Y))=0. (23)

We polarize this equality, replacing Y with Y + Z, where Z € X (M), ((X,Z)) = O0:
C(X,Y+Z,X,Y+Z)=c|X|?|Y + Z|*. After distribution through its linearity and the required
reduction considering (23), we get

C(X,Y,X,Z)+C(X,Z,X,Y) = c|[X|* (({Y, 2)) + ((Z,Y))). (24)

Replacing Z with ®Z here, while considering the properties 1) and the non-degeneracy of
endomorphism ® we get:

C(X,Y,X,Z) = C(X,Z,X,Y) = c| X|* (- ({Y, 2)) + (Z,Y))). (25)

Summing the identities (24) and (25) term by term we get:
C(X,Y,X,Z) = c|X|*((Z.Y)). (26)
Let now Y, Z € X(M) be arbitrary vectors. Let us distribute them over the linear hull of vector

X and its orthogonal complement: Y = <<H1;)H(2>>X +Y" 7 = <<Hi)ll(2>>X + Z'. Considering (26) and

the property 3) after the required reduction we get:

C(X,Y,X,2)=C(X,Y', X, Z') = c|X|]*((Z,Y")) =

-l (e i)

= {({ZY) IX]* = ((Z, X)) (X, Y))}.

So,

C(X,Y, X, Z) = {((Z,Y) |IX]* = {(Z, X)) (X, Y))}. (27)
Let us replace Z with W in the obtained equality, then

C(X,Y, X, W) = c{(W,Y) | X7 = (W, X)) (X, Y))}.

In the last identity we replace X with X + Z and after removal through linearity and after the
required reduction while considering (27) we get:

CX,Y, Z, W) = c{{((W,Y)) (2, X)) = (W, X)) ((£,Y))}. (28)

Inverse, it is obvious that because (28), (23) is fulfilled, thus, M is a GK-manifold of a pointlike
constant type c.
Thus the following theorem is proved.
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THEOREM 4. A GK-manifold is a manifold of pointlike constant type c then and only then, when
the following is realized

C(X,Y, 2, W) = (C(X,Y),C(Z,W))) {{(W,Y)) ((Z, X)) =
— (W, X)) ((Z, YD)}

We introduce the following theorem giving the structural tensor properties.
THEOREM b. GK-structure structural tensors have the following properties:

1) o C(X,Y) = —C(®X,Y) = —C(X,dY);
2) Do F = —Fo®;

3) (C(X,Y),2)) + (Y, C(X, Z))) = 0; (29)
4) F(§) = 0;
5) no F =0.
Proof. 1) After covariant differentiation of the equality ®* = —id + 7 ® &, we get

Vy(®)PX 4+ PoVey (P)X =EVy(n) X +n(X)Vy€. In the last equality we change X — ®X, and
the received identity will be influenced by operator ®2, then we get ®oVy (®)®X = ®2oVy (P)P2X.
In the received identity we change Y — @Y, then

P o Vay (P)PX = % 0 Voy ()P’ X; VX, Y € X(M). (30)

In the received identity we change X — ®X, then we get ®oVgy (P)P2X = —®20Vay (P)PX;
VX,Y € X(M). Considering the last identity, from (19) we have

1 1
PoC(X,Y) = ficp? o Vay (P)OX = —®o Vay (®)P2X = —C(®X,Y)

and

C(®X,®) = —1P 0 Voy (@) 02X = 100 Vg x ()PY =
= 13?0 Vg2x ()@Y = —18% 0 Vgoy (@) 2 X =
= —2® 0 Vg2y (@)X = C(X, DY).

2) From the analytic expression of the second structural tensor and from the expression
F(X) = =02 0 Vox(®)6 — ®2°X = —P o Vax(P)¢ — ®2X; VX, Y € X(M), it follows that
boF =—-Fod.

3) Considering (18) and (21) we have

(CXY).2)) = (C(X.Y),Z) + V-T(C(X.Y),92) =
= (=300 Vey(®)PX,Z) + V—1(—30 0 Voy (®)0X,0Z) =
= —3(PX,Voy (0)® > 1F<<1>X Voy (®)82Z) =

3 (X, 20Vay(2)2Z) — 3vV—1(X, P 0 Voy (®)P*Z) =
—%(X P o Vey (®)PZ) — 1/—1(X, 020 Voy (P)Z) =
- (X, 0, 2)) - F<X,<I>C(Y72)>=—<<X7C(Y,Z)>>-

4) Because ®(£) = 0, we have F(§) = —® o Ve ()¢ — 92 = 0.
5) Because the almost contact metrical manifold has equalities no ® = 0 and n(Vx¢&) = 0, then
n(F(X))=-n(Vx€&) —n(®2X) =0, he.no F =0.
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Let us find the representation of the equality (28) of the adjoint G-structure. We fix the point
p € M, orthonormal frame r = (p, e1, ..., e,) of space T),(M), that is considered as a C-module, and
the corresponding A-frame

r= (p7 €0,€1,---y€En, 617 ceey 6ﬁ)7

where €, = v20,(eq), €a = V20,(eq), €0 = &p. Putting into (28) X =e,, Y =ep, Z = e, W = e,
we get an equivalent (in point p) identity

Cleq,ep, ec,eq) = ((Cleq,ep),Clec, €q))) =
= c{((ed ev)) ((ec, €a)) — {(€d €a)) ({€c; €n))}- (31)

Because
({easen)) = (7ea, aer) + V=1 (geq, 0es) = 2 (0€q, 0e) = (€are”) = 3L,
which also comes from the orthonormal nature of the frame r. Because C%¢ = %C(ei), €z)*, then

(Cleases)s Cleesea))) = (Cleasen), Clecs ea)) + V=T (Cleas e8), Clecs ea)) =
=2 <O'C(€a, eb)’ 5’0(60, ed)) =2 <C(6€a7 561))7 0(0'607 0'6d)> =
= % <C(6d7 61})7 0(607 6d)> =2 <Chab€h, Cgcd€g> =
= 2C’habc’gcd <€h, €g> = QChangcd = QCathhcd_

Then relations (31) can be formulated as C®"Cjoq = 5698, where 62 = 5264 — 696¢ is a Kronecker

delta of the second order. Through this we prove the following theorem.

THEOREM 6. Let M be a GK-manifold. Then the following statements are equivalent:
1) M is a GK-manifold of a pointlike constant type c.
2) The first structural tensor of a GK-manifold satisfies the identity

(C(X,Y),C(Z,W))) = (W, Y)) {(Z, X)) = (W, X)) (Z,Y))}.
3) On the adjoint G-structure space the following relation is correct
CPh Oy = gacd%. (32)
Let us differentiate externally the following equality (32)
dCathhcd + Cabhdchcd = 2dc5§fi’.
Considering the structural equations of GK-manifolds we have
(—C9bhge — Coshgh — Cabagh 4 Cabhay, — 2610 FHIl9 —
_Cabhw)chcd + Cabh(Cgch}gL + Chgdeg + Chcgecgl + C’hcdg(")g -
_25fth0d]w9 — Cheqw) = 25ggdc.
Opening the brackets and collecting similar terms considering (32), (1219), (1214), (11), we have
(C'Chega — 2F®Cyeq)w? — (CM9Cheq + 2CPIFg)wy — 4c6% =
= 20% (w9 + Iwy + cow).
From here we have
1) (52‘309 = Cabhchcgd — %F“ngcd; (33)
2) (52‘5’09 = _Cahgbcfhcd — %chCabQ; 3) co = —2c.
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Contracting equalities (331) and (332) at first by indices a and ¢, and then by indices b and
d, considering the equalities F,qC%¢ = F*Cy, = 0 and C“bchgdh = Cabch’gdh = 0, we get
n(n —1)eg = n(n —1)c? =0, h.e. either dimM =3, or ¢y = ¢ = 0.

Thus dc = —2c¢. Differentiating the last equality externally we get cdw = 0, which, considering
(101) will be written as: ¢(Fpw® A w® + F®w, A wy) = 0, hee. cFpw® Awb + cF%w, Awy, = 0.

Therefore either ¢ = 0, or F,, = F* = 0.

Thus the following theorem is proved.

THEOREM 7. AGK-manifold of a constant non-zero type is a SGK-manifold of the II kind.

Assume that M is a SGK-manifold of the II kind then we will perform a complete convolution
(23): X ae |C%c|* = C™Cpe = 2cn(n — 1), where n is a complex dimensionality of the contact
distribution L. This implies that ¢ > 0, ¢ € R, at that ¢ = 0 then and only then, when C%*¢ = 0,
h.e. M is a Kenmotsu manifold. Thus it’s proved that

THEOREM 8. The class of SGK-manifolds of the II kind of the zero constant type coincides with
the class of Kenmotsu manifolds.

We have to investigate SGK-manifolds of the IT kind of the non-zero constant type. According
to [4] SGK-manifolds of the II kind of the non-zero constant type are concircularly transformed
into most precise cosymplectic manifolds which, in turn, are locally equivalent to the product of
own (h.e. non-Keller) almost Keller eigenmanifold and the real straight line. Because the class of
almost Keller manifolds of the non-zero constant type coincides with the class of six-dimensional
almost Keller eigenmanifolds ([3], [14]), we can formulate the following theorem.

THEOREM 9. The class of SGK-manifolds of the II kind of the zero constant type coincides with
the class of Kenmotsu manifolds. The class of SGK-manifolds of the II kind of the non-zero constant
type is concircularly transformed into the almost contact metrical manifolds locally equivalent to the
product of the siz-dimensional NK-eigenmanifold and the real straight line.

Theorems 8 and 9 can be combined into the following Fundamental theorem.

THEOREM 10. Fundamental theorem. The class of GK-manifolds of the zero constant type
coincides with the class of Kenmotsu manifolds. The class of GK-manifolds of the non-zero constant
type s concircularly transformed into the almost contact metrical manifolds locally equivalent to the
product of the siz-dimensional NK-eigenmanifold and the real straight line.

6. Conclusions

In this work fully research generalized Kenmotsu manifolds constancy of type. The local
characteristic of these manifolds is obtained. The main theorem gives a complete solution to the
assigned task.
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