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AnHOTanusa

Crarbs nocBsmena namstu ['eoprust Bopororo. OmuchIBatoTCst HOBbIE W30PAHHBIE PE3YJIbTA-
THI 0 psizax DifzeHmnreiina, o (MOTUBHBIX), (p—aIudecKnx), (KpATHBIX) 3HAYEHUAX (KPYTOBBIX)
a3era v L—@yHKIUH, 1 UX TPUIOKEHUs], MOy YeHHBIE HUKE TIEPEIUCTITIEMbIMEI ABTOPAMHE, & TAK-
7K€ DJIEMEHTAPHOE BBEJEHUE B 9TU pe3ysbrarbl. Jlan Kparkuii 0630p HOBBIX Pe3yJbTaroB O (MO-
TUBHBIX), (p—auuveckux), (KparHbix) 3HadeHusX (Kpyrosbix) azera dbyskuusax, L—dyHxuusx
u psmax Jizenmreiina. CraTbs OpueHTUPOBAHA HA N3OpAHHBIE 33aYU U HE SIBJISETCS MCUEP-
nbiBaomieii. Hagasao crarbyu coep:KuT KpaTKoe W3JI0yKeHue Pe3yIbTAaTOB O 4ncjaax BepHymim,
CBS3AHHBIX C uccaenoBanusymu leopruss Boponoro. Pe3ymbprarsl 0 KpaTHBIX 3HAYEHUSX 13€TA
dyurumit 66umu mpeacrasiaenst 1. 3arupowm, 1. Jenunem u A. Tonwaposbiv, A. ToHuapoBbIM,
®. Bpaynowm, K. Iiisnocom (Glanois) u apyrumu. C. Yusep ( "Unver) uccienosan kparhble p-
aIUvecKue J3eTa-3HaueHns TayOuHbl ABa. TaHHAKMEBA WHTEPIPETAINs KPATHBIX P-aIuIeCKUX
n3era-3nadvennit nana X. @ypymo. Kparkas ucropus u cBs3m Mexxay rpynnavu lanya, Gyrma-
MEHTAJILHBIMU TPYIIaMi, MOTUBAME U apUPMETHIECKUMU (DYHKITUSIMU TPEICTABIEHbI B JOKJIa-
qe FO. Nxapa. Pe3ynbraThbl 0 KpATHBIX JI3€Ta-3HAYEHUSAX, TPyIIax [anrya u reoMeTpu MO Tsip-
HBIX MHOroOOpa3uit mpeacraBienbl [ onaaposbiM. HTEpecHas yHUTIOTEHTHAS MOTHBHAS PyHIA-
MEHTaJIbHAs TPYIIIa ompeaeena u uccaeaosana Jlenunem u [ongaposbiv. B mannoit pabore Mbr
KPaTKO yIIOMUHAEM B pamkax (p -amudeckux) L -byukimii u (p -agudeckux) (KpaTHBIX) I13€Ta-
3HaueHnit npuMenenus moaxonos Kyborsr-Jleomossara u ViBacaBsr, KOTOpbie OCHOBAHHBI HA P -
ammaeckux L -byaknuax Kyborsr-Jleomonbaa, u apudmernieckux p— agudeckux L -pyHKImsax
Usacasbl. [Ipopedepuposan psij HejaBuux paboT (U COOTBETCTBYIOIIUX PE3YJIHTATOB): KPATHbIE
JI3€Ta~-3HAYCHNS B KOPHSIX U3 €MHUIIBI, IOCTPOCHUE CEMEHCTB MOTUBHbBIX UTEPUPOBAHHBIX HHTE-
rpaJIoB C TIpeAMUcaHHbIME cBolicTBamu 1o Lmsnocy (Glanois); aBHbIE BRIpaXKEHUS 1151 KDYTOBBIX
p— aJINYECKUX KPATHBIX /13eTa-3Hadenuiil rryounnt qsa o Yusepy (Unver); cBsa3u apudmernde-
ckux cremeneil mukioB Kymnnei-Pamonopra na waTerpanbuoit mogenu Mmaoroodpasus Hlumypsr,
coorBercTByOLIEi yHuTapHOoiil rpynne curnarypst (1,1), ¢ koaddunuenramu Pypobe nenTpasb-
HbIX [POM3BOAHBIX DssoB Difzeninreiina poga 2 no Caukapany (Sankaran). Bosee nosno ¢
COIEPYKAHMEM CTATHU MOYKHO O3HAKOMHTHCS MO TPUBOAMMOMY HUYKE OTJIABIEHUIO: BBemenue. 1.
CpaBuenus Tuna Boponoro ans uucen Bepuynnu. 2. Pumanossr n3era-3uadenus. 3. O rpymmax
KJIACCOB KOJIeI ¢ Teopueil auBm30poB. MHUMBIE KBAIPATUIHbBIE U KPYTOBbIe mois. 4. Psabr Dii-
gerrrreiina. 5. I'pynnbl KIaccoB, o KIaccoB U a3era-gyukimu. 6. KparHbie n3era-3nadeHus.
7. DJIeMeHTbI HeapXUMeJOBbIX JIOKATBHBIX MMOJIeH U HeapxuMe0Ba anamm3a. 8. VrepupoBannbie
uHrerpaibl U (Kparuble) nzera-3uadenus. 9. @opmasibubie u p—aenumble rpyuibl. 10. Morusst
u (p—amuueckue) (Kparnbie) n3era-suadenus. 11. O pagax DiizeHmreiina, acCOMUUPOBAHHBIX
¢ muoroobpasusamu lumypsr. Pasgenst 1-9 u noapaszzaen 11.1 (O HEKOTOPBIX MHOr0OOpa3UIX
Mumypst u Momyaspabix dhopmax 3uresis) MOXKHO PACCMATPUBATH KaK SJIEMEHTAPHOE BBEIE-
Hue B pesyiabrarsl padzgena 10 u noxpasgena 11.2 (O HecobCTBEHHOM mepecevYeHuu JIUBU30POB
Kymipi-Panonopra u psiuax iizenunreiina).

4 riry6oko mpusuaresern H. M. JIo6poBOIECKOMY 38 TIOMOIIb U MTOIIEPYKKY B MPOIECCE IO~
TOTOBKH CTAThW K TIEYATH.
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Abstract

The article is dedicated to the memory of George Voronoi. It is concerned with (p-
adic) L-functions (in partially (p-adic) zeta functions) and cyclotomic (p-adic) (multiple) zeta
values. The beginning of the article contains a short summary of the results on the Bernoulli
numbers associated with the studies of George Voronoi. Results on multiple zeta values have
presented by D. Zagier, by P. Deligne and A.Goncharov, by A. Goncharov, by F. Brown, by C.
Glanois and others. S. Unver have investigated p-adic multiple zeta values in the depth two.
Tannakian interpretation of p-adic multiple zeta values is given by H. Furusho. Short history and
connections among Galois groups, fundamental groups, motives and arithmetic functions are
presented in the talk by Y. Ihara. Results on multiple zeta values, Galois groups and geometry
of modular varieties has presented by Goncharov. Interesting unipotent motivic fundamental
group is defined and investigated by Deligne and Goncharov. The framework of (p-adic) L-
functions and (p-adic) (multiple) zeta values is based on Kubota-Leopoldt p-adic L-functions
and arithmetic p-adic L-functions by Iwasawa. Motives and (p-adic) (multiple) zeta values
by Glanois and by Unver, improper intersections of Kudla-Rapoport divisors and Eisenstein
series by Sankaran are reviewed. More fully the content of the article can be found at the
following table of contents: Introduction. 1. Voronoi-type congruences for Bernoulli numbers. 2.
Riemann zeta values. 3. On class groups of rings with divisor theory. Imaginary quadratic and
cyclotomic fields. 4. Eisenstein Series. 5. Class group, class fields and zeta functions. 6. Multiple
zeta values. 7. Elements of non-Archimedean local fields and p—adic analysis. 8. Tterated
integrals and (multiple) zeta values. 9. Formal groups and p-divisible groups. 10. Motives and
(p-adic) (multiple) zeta values. 11. On the Eisenstein series associated with Shimura varieties.
Sections 1-9 and subsection 11.1 (On some Shimura varieties and Siegel modular forms) can be
considered as an elementary introduction to the results of section 10 and subsection 11.2 (On
improper intersections of Kudla-Rapoport divisors and Eisenstein series). Numerical examples
are included.

Keywords: p-adic interpolation; (p-adic) L-function; Eisenstein Series; comparison isomor-
phism; crystalline Frobenius morphism; de Rham fundamental group; (p-adic) multiple zeta
value; Iwasawa theory; Shimura variety; arithmetic cycles.
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Introduction

The article is dedicated to the memory of George Voronoi. It is concerned with (p-adic) L-
functions (in partially (p-adic) zeta functions) and cyclotomic (p-adic) (multiple) zeta values. The
beginning of the article contains a short summary of the results on the Bernoulli numbers associated
with the studies of George Voronoi. Results on multiple zeta values have presented by D. Zagier [1],
by P. Deligne and A.Goncharov [5], by A. Goncharov [6], by F. Brown [7], by C. Glanois [§]
and others. Tannakian interpretation of p-adic multiple zeta values is given by H. Furusho [10].
Short history and connections among Galois groups, fundamental groups, motives and arithmetic
functions are presented in the talk by Y. Thara [12]. Results on multiple zeta values, Galois groups
and geometry of modular varieties has presented by Goncharov [6]. Interesting unipotent motivic
fundamental group is defined and investigated by Deligne and Goncharov [5]. S. Unver [9, 11] have
investigated p-adic multiple zeta values in the depth two. The framework of (p-adic) L-functions and
(p-adic) (multiple) zeta values is based on Kubota-Leopoldt p-adic L-functions [13]| and arithmetic p-
adic L-functions by Iwasawa [14]. Motives and (p-adic) (multiple) zeta values, improper intersections
of Kudla-Rapoport divisors and Eisenstein series by Sankaran [37]| are reviewed. More fully the
content of the article can be found at the following table of contents: Introduction. 1. Voronoi-type
congruences for Bernoulli numbers. 2. Riemann zeta values. 3. On class groups of rings with divisor
theory. Imaginary quadratic and cyclotomic fields. 4. Eisenstein Series. 5. Class group, class fields
and zeta functions. 6. Multiple zeta values. 7. Elements of non-Archimedean local fields and p—adic
analysis. 8. Tterated integrals and (multiple) zeta values. 9. Formal groups and p-divisible groups.
10. Motives and (p-adic) (multiple) zeta values. 11. On the Eisenstein series associated with Shimura
varieties. Sections 1-9 and subsection 11.1 (On some Shimura varieties and Siegel modular forms)
can be considered as an elementary introduction to the results of section 10 and subsection 11.2
(On improper intersections of Kudla-Rapoport divisors and Eisenstein series). Numerical examples
are included.

The subject matter of this review has deep historical roots, with contributions of many
mathematiciens. [ apologize for any oversights and any misrepresentations, which are not intentional
but rather due to my ignorance.

REMARK 1. Let me now present very briefly the background of my interest on the subject of
the values of zeta and L—functions. In 1970-1971 years Yu. Manin gave courses of lectures and
seminars on Algebraic Geometry, Diophantine Geometry in MGU and in Steklov mathematical
institute. In his lectures and talks Yu. Manin presented and discussed the Birch-Swinnerton-Dyer
conjecture concerning L— functions of elliptic curves and abelian varieties. In particular Yu. Manin
have proposed in these talks modular symbols for computation of values of L—functions of elliptic
curves at s = 1 [2, 3]. Author of the text attended the lectures and seminars of Yu. Manin. Following
of the kind conversation with Yu. Manin the author has implemented the computer program and has
computed Manin’s modular symbols [39] for elliptic curve Ep 11y follow to Manin article [2].

1. Voronoi-type congruences for Bernoulli numbers

We follow to [18, 19].
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1.1. Bernoulli numbers

Bernoulli numbers B,, are determined for integers m > 0 by the expansion

exp(t)
REMARK 2. For m > 0, Byp4+1 = 0.

1 1 1 1
So we have 30:1731:_5732:67B4:_%736:@7-“

1.2. Voronoi‘s congruences

Let N be an natural number (the modulus), a coprime with N and let By, = 5";: be the
Bernoulli number with coprime P, and (Q2,,. Then

N-1
(a®™ — 1) Py, = 2ma®™ Qo Z g¥m=1 [%} mod N.

s=1

1.3. Kummer congruences

If p is prime and p — 1 not divide even positive m then the number BW’" is p-integer and there

is the congruence

Brip— B
Dmiptl _ Pmooq,
m+p—1 m

2. Riemann zeta values

Here we follow to [15, 16, 17, 18].
Let s = o +it be a complex number and let {(s) be the Riemann zeta function which is presented
for ¢ > 1 by the series

1
¢(s) = n:1 s
By Euler for m > 1
3 (27T)2m
o2m) = (—1)m""! Bom
Clam) = (-1 By

where Bs,, are Bernoulli numbers; recall also that

forodd n=1,3,5,....

REMARK 3. (By Euler ),

772 7T4 7T6
C(2) = g- C(4) = %, 5(6) = ma
ceny=-22_ 1 =1
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Define polylogarithm
(o.9]
Ly (z) = Z 2"nm.

n=1

REMARK 4.

¢(2) = La(1).

3. On class groups of rings with divisor theory. Imaginary quadratic
and cyclotomic fields

The study of class groups of rings and corresponding schemes is an actual scientific problem
(see |18, 20] and references therein). For regular local rings, according to the Auslander-Buchsbaum
theorem, the (divisors) class group is trivial. But in most interesting cases the group is nontrivial.
The Heegner approach, together with the results of Weber, Birch, Baker and Stark, makes it possible
to calculate and even parametrize rings with a given (small) class number in some cases. Let R be a
commutative ring with identity for which there exists the theory of divisors [18]. The order of the
class group is calculated on the basis of the use of L-functions. We investigate one of the aspects
of this problem, consisting in finding the moduli spaces of elliptic curves defined over the rings R
with the given class number.

Problem. To investigate the case of elliptic curves over rings of integers of quadratic fields
(rings of integers O of quadratic algebraic extensions k of the field of rational numbers Q) with a
small class number, see [18].

In some cases, for instance under computer algebra computations, we have to enumerate
investigated objects. Some simple parametric spaces and moduli spaces in the case of imaginary
quadratic fields are presented below [40]. We present an elementary introduction to this problem
and give the moduli spaces as trivial bundles over affine part of the groups of rational points of
some elliptic curves over the ring of integers Z. Below we present parameter spaces and moduli for
class number one and two. Let

E:y? =23+ ax +b, Disc(E) = 4a® 4 27b%, Disc(E) # 0, (*)

be an elliptic curve over the ring O . Let A; be the affine part of the group of rational points over
Z of the Heegner elliptic curve y? = 2x(2® + 1). With results by Heegner, Deuring, Birch, Baker,
Stark, Kenku, Abrashkin, we deduce

PROPOSITION 1. Let O be the ring of integers of the imaginary quadratic field with class number
one. Then the parameter space of elliptic curves of the form (*) is the trivial bundle

(O x O/(Disc(E) =0)) x A;.

PROPOSITION 2. Let k be the imaginary quadratic field with class number one. Then the moduli
space of elliptic curves of the form (*) is the trivial bundle

kXAl.

Let Ay be the affine part of the group of rational points over Z of the elliptic curve
X3 +3X = —Y?2, let A3 be the affine part of the group for the elliptic curve X3 — 3X = 2Y2, and
Ay respectively for 9X4 — 1 = 2Y?2.

PROPOSITION 3. Let O be the ring of integers of the imaginary quadratic field with class number
two. Then the parameter spaces of elliptic curves of the form (*), without an exceptional case, are
trivial bundles
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(O x O/(Disc(E) = 0)) x As, (O x O/(Disc(E) = 0)) x Az, (O x O/(Disc(E) = 0)) x Ay.

PROPOSITION 4. Let k be the imaginary quadratic field with class number two. Then the moduli
spaces of elliptic curves of the form (*), without an exceptional case, are the trivial bundles

kx A, kx As, k x Ay.

THEOREM 1. (The Kronecker-Weber theorem) Every finite abelian extension of Q is contained
in a cyclotomic field.

With results by Heegner, Deuring, Birch, Baker, Stark, Shafarevich we have

PROPOSITION 5. Imaginary quadratic fields with class number one and with descriminants
—D =4,8,3,7,11,19,43,67,163 are contained, respectively, in cyclotomic fields
Q(V1),Q(V1),Q(V1),Q(V1),Q( V1), 0
Q VD). VD). Q( VD). (VD).

4. Eisenstein Series

Here we follow to [15, 16, 17, 18|.
Let 7 belong to the modular figure of the modular group I" = I'(1).

DEFINITION 1. In these notations with k > 1 the Fisenstein series is defined as

1
w= 2 (n + m7)2F

m#£0,k>1

PROPOSITION 6. FEisenstein series have the representation

2(—2mi)** 2%—1
cr =2C(2k) + E n q",
(2]43 o 1)' n>0,m>0

where ¢ = e>™T £ 0.

If we will use functions of the sums of divisors oor_1 we obtain
cr = 2C(2k) + 2/,327”1)1 Yo 02k—1(n)q"

or shortly

Ck; = 2C(2k> %SQ}C 1-

As ((2k) = (—1)F1 (22(9:; By, we have

COROLLARY 1. ¢ = 2¢(2k)(1 — é—fh o L o2k—1(n)q").
Put g5 = 60c2, g3 = 140c3.

PROPOSITION 7. A = g3 —27g3 # 0.

‘mu

As A # 0 it is possible to define J =
DEFINITION 2. Modular invariant of the elliptic curve y* = 4a3 — gox — g3 is equal to j = 2033 J.

ProrosiTION 8. j = % 4+ u1q + - - - where u; are integers, ug = 0.



118 H. M. I'nazynos

Let us transform ¢ in such a way that corresponding Fourier coefficients under ¢, n > 1 will
rational numbers. Dividing ¢, on 2((2k) and denoting the obtained result as Fj we have by the
Corollary 1

PROPOSITION 9. Ej, =1 — 1% > ook—1(n)g".
REMARK 5. -
Ey=1+240) a3(n)q",

n=1

o
Es=1- 504205(n)q”.

n=1

5. Class group, class fields and zeta functions

Here we follow to [16, 18].
Let K be an imaginary quadratic field and let Clk be its class group.

DEFINITION 3. Let N(a) be the norm of the ideal a. The Dedekind (-function for K is defined
for all s > 1 by the series

1
Ck(s) =) N
where the sum is taken over all nonzero ideals a € Ok .

Let R be a subring (R # Z) of the ring of integers Ok of the imaginary quadratic field K.
Let My, ... My be pairwise nonequivalent modules of K with the same ring of multipliers R.

PrROPOSITION  10. j(My),...,j(My) are integer algebraic numbers which are conjugate over

PROPOSITION 11. The field K(j(M;))/K is the normal field.
DEFINITION 4. The field K(j(M;))/K is called the ring class field.

Follow to [16] it is possible to define ray class field. As in an imaginary quadratic field there is
no real infinite primes so modulus of the field is an ideal of the ring of integers of the field.

Let m be a modulus of the an imaginary quadratic field K, let Cl} be the ray class group, let
Tw be the Weber function .

Let R € Clg and let R* € CI be the ideal class whose image in Clk is equal to (m)R~L.

PROPOSITION 12. The field K(j(R), 7w (R*))/K is the ray class field.
Let C be an ideal class.
DEFINITION 5. The ideal class zeta function is the expression of the form

1
CC(S) = Z N(Cl)s

acC
a integral

s=o+1it, o> 1.

Below we present values of zeta and L-functions connecting with imaginary quadratic fields.
Let d be a squarefree integer number, K = Q(\/Zﬂ) a quadratic field, y be the character of the
quadratic field K. Let L(s,x) be the L—series with a nonunit character x modulo |D|. Here D is
the discriminant of the field K.
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PROPOSITION 13.

Cxe(s) = C8) (s 0) = () [T - X2),

pS
Let m be the number of roots of unity of the imaginary quadratic field [K : Q).

REMARK 6. m =4 for K = Q(v/—1), m =6 for K = Q(v/—3), m = 2 for all other imaginary
quadratic fields.

Let h be the class number of the field K.

PROPOSITION 14. )
27
L(1,x) =

m+/|D]
COROLLARY 2. For imaginary quadratic fields with class number one (h = 1) we have
%7 K= Q( V _1)

T D =8,711,19,43,67,163.
VD]

6. Multiple zeta values

DEFINITION 6. Let x1,...x, be natural numbers with x, > 2. The multiple zeta value of the
weight w and the depth p s called the expression of the form

1
C(xl,...(I,'p): Z ﬁ,w:sz
0<ny <—<ny "1 "p

REMARK 7.

€(2,2) = Z nglng,w:Zaji:ZL.

O<ni<ng 1

REMARK &.

1
€(2,2) = 5(€(2)¢(2) = ¢(4)).
Let pn be the group of roots of unity.

DEFINITION 7. Let x1,...x, be natural numbers with x, > 2. The multiple zeta value relative
to un of the weight w and the depth p is called the expression of the form

n1 Tp
€ &
T1,.--Tp\ __ 1 Y .
C(El7""76p) - E nIl nxp , € € UN,
0<ny<-<np 1 p

w = in, (xp, €p) # (1,1).

7. Elements of non-Archimedean local fields and p—adic analysis

Here we present elements of p—adic local fields, their algebraic extensions and p—adic interval
analysis. We follow to [18, 21].
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7.1. Elements of non-Archimedean local fields

A non-Archimedean local field is a complete discrete valuation field with finite residue field.
Further, for brevity, we call these fields local. In other words, a field K is called local if it is
complete in a topology determined by the valuation of the field and if its residue field k is finite.
We assume further that the valuation v is normalized, i.e. the homomorphism of the multiplicative
group of the field to the additive group of rational integers v : K* — Z is surjective.

The structure of such fields is known: if the field K has the characteristic zero, then it is a
finite extension of the p—adic field Q,, which is the completion of the field of rational numbers with
respect to the p—adic valuation.

If [K: Q,] =n, then n = ef, where f is the degree of classes of residues, (i.e. f = [k :TFp]) and
e = vi(p) is the ramification index of K..

If the field K has the characteristic p, then it is isomorphic to the field k((7)) of formal power
series, where T is a uniformizing parameter.

Let L be a finite extension of a local field K with their residue fields [ and k, p = char k and
er/k be the ramification index of L over K.

An extension L/K is called unramified if a) ey /x = 1; b) the extension [/k is separable. An
extension L/K is called tamely ramified if a) p does not divide ey k; b) the extension [/k is
separable.

An extension L/K is called wildly ramified if ey = p°, s > 1;

Denote by Ty /i and by Normp, g respectively the trace and the norm of the extension L /K.
We drop indices, when it is clear what kind of extension we are talking about.

Denote by K, the maximal unramified extension of the field K (in a fixed algebraic closure of
the field K') with a residue field kg, which is the algebraic closure of a field k.

In a non-Archimedean local field K each of its elements « has a representation o = en™, where
e is a unit of the ring of integers of the field K and = its uniformizing element, that is v(7) =1,
m is an integer rational number. A unit is called principal if e =1 (mod 7).

LEMMA 1. If the local field contains a primitive p—th root &, of unity, then v(&, — 1) = pfl 18
an integer number.

Proof. £,—1 is the root of the equation (z+1)P~'+(z+1)P" 2+ -+ (z+1)+1 = 2P~ 4+p(- - )+p.
The value of the p—adic valuation at the root of this equation is pfl which proves the required. O
A complete discrete valuation field with an algebraically closed residue field is called a quas-ilocal

field.

7.2. p—adic intervals and p—adic distributions

Let X be a topological space. A distribution on X with values in an abelian group A is a finitely
additive function from the compact-open subsets of X to A. Let | |, be the p—adic norm.
Define (o, N], = {z € Q||z — o, < piN}, acQ, NeN

DEFINITION 8. We call sets [o, N, the p—adic intervals (disks) and define by these p—adic
intervals the basis of open sets on Q.

It is easy to test that axioms of open sets are satisfied.
REMARK 9. p—adic intervals [, N1, open and closed simultaneously.

Proof. Any union of open p—adic intervals is open. Intervals [«, N], are closed, because [a, N],
is an addition to the union of open intervals [, N], for all o' € Q, for which o/ = € [, N],. O

Further we will call [«, N, as intervals. More generally we will consider compact-open sets. Let
X be a compact-open set. Recall that a function f : X — Q, is is locally constant if and only if
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f has a representation as a finite linear combination of characteristic functions of compact-open
subsets.

Let U =U; UU U---UU, be a partition of U C X. Recall that the additive mapping p of a
set of compact-open subsets of X with value in Q) is called the p—adic distribution on X:

w(U) = p(Ur) + p(Uz) + -+ - + u(Un).

7.2.1. Bernoulli distributions.

Let By, (x) be the m—Bernoulli polynomial. These polynomials are defined by the decomposition

et o0 m
t
=2 Bul(@)
m=0
We have:
1 ) 1 s 3., 1 1
By(z)=1, Bl(x):m—§, By(z)=x —x—i-é, Bs(z)=xz —35% +§x, By(z)=x2*— 223 + 2 ~3

REMARK 10. If we substitute x = 0 in the m—Bernoulli polynomial we obtain m— Bernoull:

number:
1

Bo(0) = 1, By (0) = —%, By(0) = % By(0) =0, Bi(0) =~ 55

Let now for a the inequality 0 < a < p" —1 is satisfied. Define the function p B,m by the formula

MB,m([O‘7 N}p> = pN(m_l)Bm(a/pN)-

PROPOSITION 15. The function up, is expanded to the distribution on Z,. This distribution
for the given m is called the m—th Bernoulli distribution.

8. Iterated integrals and (multiple) zeta values

Here we follow to[22, 23].

Let C be the complex plane and f;(z) be the holomorphic function on C . Let f;(z)dz be the
differential of the first kind on C. Let S be a Riemann surfaces and w be the differential of the
first kind on S. Parshin has considered iterated integrals of this type on Riemann surfaces [22].
Chen [23] for smooth paths on a manifold M and respective path spaces have investegated iterated
(path) integrals. For differential forms wy, ..., w, on M he has constructed the iterated integrals by
repeating r times the integration of the path space differential forms (and their linear combinations).
Chen [23] has denoted the iterated integrals as [wiws---w, and set [wjws---w, =1 when r =0
and [wiws---w, =0 when r < 0.

REMARK 11.

/ dty /“ dts _w
1—t ’
More generally iterated integrals are path space differential forms which permit further
integration.



122 H. M. I'nazynos

9. Formal groups and p-divisible groups

Recall some definitions. Let K be a complete discrete variation field with the ring of integers
Ok and the maximal ideal My . A complete discrete variation field with finite residue field is called
a local field [24]. A complete discrete variation field K with algebraically closed residue field k is
called a quasi-local field [26]. Below we will suppose that in the case the characteristic of k satisfies
p > 0. Let K be a local or quasi-local field. If K is a local field [24] and has the characteristic 0
then it is a finite extension of the field of p-adic numbers Q,. Let vx be the normalized exponential
valuation of K. If [K : Q] = n then n = e f, where e = vi(p) and f = [k : Fp], where k is the
residue field of K (always assumed perfect ). If K has the characteristic p > 0 then it isomorphic
to the field k((7")) of formal power series, where T is uniformizing parameter. Let L be a finite
extension of a local field K, k,l their residue fields, p = char k and er i ramification index of L
over K. An extension L/K is said to be unramified if ef, /i = 1 and extension [/k is separable. An
extension L/K is said to be tamely ramified if p not devides er/k and the residue extension l/k is
separable. An extension L/K is said to be totally ramified if er i = [L : K] = (char k)*, s > 1.

Let L/K be the finite Galois extension of quasi-local field K with Galois group G, F(z,y) one
dimensional formal group low over the ring of integers O of the field K, F/(Mk) be the G - module,
that is defined by the group low F(x,y) on the maxilal ideal My of the ring O, Mk (t € Z,t > 1)
be the subgroup of ¢-th degrees of elements from My, Fl, := F(Mj},).

(n

DEFINITION 9. For n € Z the function u(n), Np,x(FT) C Py ) s defined by the condition:
F[“((”) is the least of subgroups Fj. (t=1,2,...) containes Ny (F}).

REMARK 12. Please do not confuse with the measure (.

Below we will suppose that char k > 3.

9.1. Norm Maps

Here we use results on formal groups from [27, 25|. Let F, = F/(M) be the G - module that is
defined by the n-dimentional group low F'(x,y) on the product (Mp)" := My x---x My, (n times)
of maximal ideals of the ring Or, of any finite Galois extension L of the field K.

DEFINITION 10. The norm map N : Fr, — Fx of the module Fp, to Fi is defined by the formula
N(a) = (((a+Fpoa)+p ) +F osa), where a +p b denotes the addition of points in the sense of
group structure of the module Fr,, a,b € My, G = Gal(L/K), 05 € G, [G : 1] = s.

Let p := char k, e := vi(p), (e = +o0, if characteristic of the field K is equal p and e is positive
integer in the opposide case), L/K be the Galois extension of the prime degree g, F/(z,y) be the
one dimensional group low over Og. Let p := char k > 0.

LEmMMA 2. Ifll; € 7§ - Op, s > 1 then
N(ILy) = Tr(Is) + > o0, ep[Norm IL])" (mod Tr(n?s - Or))
where ¢, € Ok are coefficients of the p - iteration of the group low.

Let R be a commutative ring. Let A, B, C be finite group schemes over R. The sequence

0 — 4 Ly B 9% ¢

is called exact if Im f = Ker g.
Let p be a prime number and h be an integer, h > 0.
Recall the definition of the p-divisible group by J. Tate.
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DEFINITION 11. A p-divisible group over R of height h is an inductive system
G = (Gp,iy),v =0,

where
(i) G, is a finite group scheme over R of order p'",
(#) for each v > 0,

0 — G, % Gy = G

18 exact.

REMARK 13. (G, = (Z/p"Z)", G = (Q,/Z,)".

10. Motives and (p-adic) (multiple) zeta values

Glanois in paper [8] presents the revised and expanded version of his Doctoral thesis [Periods
of the motivic fundamental groupoid of P*{0, uy, o0}, Pierre and Marie Curie University, 2016;],
written under F. Brown.

Let kny = Q(&n) be the cyclotomic field, x4 € pun be a primitive Nth root of unity and Oy be
the ring of integers of k. The corresponding multiple zeta values at arguments x; € N ¢; € un can
be expressed in terms of the coefficients of a version of Drinfeld‘s assosiators by Drinfeld [28], which
in turn, can be expressed in terms of periods of the corresponding motivic multiple zeta values
(MMZV).

These MMZV (™(&/77), € € pn, (xp, €p) # (1,1) relative to uy (of the weight w =Y z; and
the depth p), are elements of an algebra H" over Q and span the algebra.

The algebra HY carries an action of the motivic Galois group of the category of mixed Tate
motives over On[1/N]. The author studies the Galois action on the motivic unipotent fundumental
groupoid of P\{0, un, 00} (or of Gy, \py) for next values of N:

N € {2%3%, a4+ 2b < 3} = {1,2,3,4,6",8}.

His results include: bases of multiple zeta values via multiple zeta values at roots of unity puy for
the above IV; more generally, constructing of families of motivic iterated integrals with prescribed
properties; the new proof, via the coproduct by Goncharov [29] and its extension by Brown [7], of
the results by Deligne [30] that the Tannakian category of mixed Tate motives over On[1/N] ‘for
N = {2,3,4,8} is spanned by the motivic fundumental groupoid of P*\{0, ux, co} with an explicit
basis‘.

In article [11] Unver continues his investigation of p-adic multiple zeta values|9], presenting a
computation of values of the p-adic multiple polylogarithms at roots of unity. The main result of
the paper [11] (Theorem 6.4.3 with Propositions 6.4.1 and 6.3.1) is to give explicit expression for
the cyclotomic p-adic multi-zeta values (,(s1, s2;%1,i2) of depth two. The result is far too technical
to state here.

The proof of the theorem is rather technical; it is based on rigid analytic function arguments
and a long distance analysis of group-like elements of related algebras.

For number fields the category of realizations has defined and investigated by Deligne [4].
Results on multiple zeta values, Galois groups and geometry of modular varieties has presented
by Goncharov [6]. Interesting unipotent motivic fundamental group is defined and investigated by
Deligne and Goncharov [5]. Tannakian interpretation of p-adic multiple zeta values is given by
Furusho [10].

Results obtained in the paper [11] may be applied to the problems of the p-adic theory of higher
cyclotomy.
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11. On the Eisenstein series associated with Shimura varieties

Interesting classes of Shimura varieties form varieties which have an interpretation as moduli
spaces of abelian varieties. Moduli spaces of corresponding p—divisible groups over perfect fields of
characteristic p are used for investigation of the local structure of these Shimura varieties.

11.1. On some Shimura varieties and Siegel modular forms

Let C™ be n—dimensional complex vector space, {e1, ..., €2, } be 2n—linear independent vectors
and
A= {elz, ceey egnZ}

be a lattice. Then
C"/A

is a compact commutative topological group. If &« € GL,,(C) and A; = aA then
C"/A=C"/A;.
If n > 1 then not for every lattice A there exists an abelian variety.
PROPOSITION 16. Let x,y € C" and let F(x,y) be R—bilinear form such that
() F(x,y) = -F(y,x),

(ii) F(x,ix) is the Hermitian positive defined form
and for

(i11) x,y € A it takes integer values: F(A,A) € Z.
Then for this lattice A there exists the abelian variety.

DEFINITION 12. The pair (A, F) is called the polarized abelian variety.
Let M = M(F') be the matrix of the form F.

DEFINITION 13. The abelian variety A = (A, F) is called principally polarized if the bilinear
form F is unimodular or, equivalently, det(M) = det(M(F)) = 1.

Denote by II the period matrix of the abelian variety A. This is n X 2n complex matrix
IT = (M, M3) with nondegenerate n x n matrices M; and M.

DEFINITION 14. The period matriz 11 is called normalized if it has the form (E,,Z) where E,
1s the unit n X n matriz and Z € H,,, where.

H,, = {n x n matrices Z|Z* = Z and ImZ > 0},
is the Siegel upper half-plane. Here ZT is the matriz transposed to Z.

REMARK 14. It is clear that the Siegel matriz Z € H,, defines the normalized period matriz I1.

0 E,
r=( 5 )

DEFINITION 15. Siegel modular group I'y, = Spy,(Z) is the set of matrices
A B
v(23)

MTIM = J.

Let

such that
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DEFINITION 16. Siegel modular group Iy, acts on the the Siegel upper half-plane H,, by the
formula

Z v+ (AZ + B)(CZ + D).

PROPOSITION 17. In the framework of Definitions 13, 14 two Siegel matrices define isomorphic
principally polarized abelian varieties if and only if one of them can be obtained from the other by
the transformation of the Definition 15.

Sometimes we will use for Siegel matrices Z an equivalent notations: Z = X +1¢Y, X, Y are
real matrices, X7 = X, Y7 =Y, Y > 0; Y is the matrix of the positive definite quadratic form.

DEFINITION 17. Let f be an analytic function on the Siegel upper half-plane that satisfies the
equality
f((AZ + B)/(CZ + D)) = (CZ + D)"f(2),

and is bounded on the domains of the form
{Z=X+1Y, Z€eH,,Y >cE,, ¢>0.}

Then the function f is called Siegel modular form of the genus n and the weight k.

E, B
(BB

belong to T, (its determinant is equal 1) and

REMARK 15. As the matriz

f(Z + B) = f(2),

so f(Z) has a representation by the Fourier series.

11.2. On improper intersections of Kudla-Rapoport divisors and Eisenstein
series

Let k£ be an imaginary quadratic field, oy, its ring of integers and o, be the ring of integers of
the completion k, of k at p. Sankaran [37]| proves that the arithmetic degrees of Kudla-Rapoport
cycles on an integral model of a Shimura variety attached to a unitary group of signature (1,1) are
Fourier coefficients of the central derivative of an Eisenstein series of genus 2. The main results of the
paper are the following Theorem 4.13 on the value of the Eisenstein series and the Corollary 4.15 on
the relation between the arithmetic degree of special cycle and the Eisenstein series. These results
confirm conjectures by Kudla [31] and by Kudla, Rapoport [32] on relations between intersection
numbers of special cycles and the Fourier coefficients of automorphic forms in the degenerate
setting and for dimension 2. As have pointed out by Kudla [33] and others ‘these relations may
be viewed as an arithmetic version of the classical Siegel-Weil formula, which identifies the Fourier
coefficients of values of Siegel-Eisenstein series with representation numbers of quadratic forms‘. In
the paper by Kudla, Rapoport [34] ‘the Shimura variety is replaced by a formal moduli space of
p-divisible groups, the special arithmetic cycles are replaced by formal subvarieties, and the special
values of the derivative of the Eisenstein series are replaced by the derivatives of representation
densities of hermitian forms.¢ Sankaran defines the local Kudla-Rapoport cycles Z(b) and gives
some applications of results obtained in his earlier paper [38] where he proved the Theorem 3.14 on
cycles Z(b). He allows ‘the polarizations to be non-principal in a controlled way‘. An unpolarized
case of p-divisible groups with the given p™-kernel type and with applications to their Newton
polygons has considered in the paper by Harashita [35]. Sankaran‘s paper [37]| consists of four
sections. The first section presents the purpose of the paper and short description of ideas and



126 H. M. I'nazynos

results of next sections. Second section concerns with local Kudla-Rapoport cycles on the Drinfeld
upper half-plane. The main result of this section is the Theorem 2.14 on values of local intersection
numbers of these cycles. The third section is devoted to the prove of the closed-form formula for
representation densities (S, T"). Author specializes the explicit formula on Hermitian representation
densities by Hironaka [36] to the case at hand: F(S,T,X) € Q[X],T € Herma(oyyp),ord,det(T)
is even, S = diag(p, 1), a(Sy,T) = F(S,T,(—p)~"). In the last section global aspects are discussed
and main result is presented. Let M dl,l denote the Deligne-Mumford (DM) stack over oy of almost-
principally polarized abelian surfaces and £ the DM stack over oy of principally polarized elliptic
curves with multiplication by og. In conditions of the subsection 4.1 of the paper [37] author sets
M = & X specoy M(dl,l) and define for T' € Herma(oy) cycles Z(T). Then in subsection 4.3 the author
prove Theorem 4.13 and Corollary 4.15.

Conclusions

Classical and novel results on (p-adic) L-functions, (p-adic) (multiple) zeta values and Eisenstein
series are presented.
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