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AnHOTanusa

B 1975 r. C. M. BopoHun OTKpBLI 3aMedaTesibHOe CBOMCTBO YHUBEPCATBHOCTH A3€Ta (PyHK-
uuu Pumana ((s). On nokasas, 410 LIMPOKOIO KJACCA aHAJUTUYECKUE (DYHKIMU MOrYT ObIThb
MPUOJINKEHBI C YKeJaeMoii ToYHOCThIo capuramu ((s + i7), 7 € R, oguoit n Toil ke GyHK-
muu ((s). Orkpbitne BopoHUHA BIOXHOBUJIO MPOJIOIKUTE UCCIEIOBAHNS B 9TOM HAIPABJICHUH.
Oxka3zanoch, 9T0 yHHBEPCAIBHOCTD SIBJISIETCS CBONCTBOM MHOIUX APYrUX A3eta u L-QyHKiumii, a
TaKzKe HEKOTOPBIX KJIaccoB psifoB Jupuxie. Cpean uux L-dyukiuun Jupuxie, 13era GyHKIun
Henexkunpna, l'ypeuna u Jlepxa. B 2001 r. A. Jlaypunuukac u K. Marcymoro nosy4uiau yausep-
casbHOCTh f3era-byHkunii ((s, F'), CBA3aHHBIX ¢ HEKOTOPBIMU Tapabonnaecknmu dbopmamvn F.
B crarne mosyueno pacnmmpenue Teopembl Jlaypurankaca—MaTcyMOTO € MCHOJB30BAHUEM [IJIs1
npubnKeHus aHamnTraeckKnx dbysknuii capuros ((s+ip(7), F). 3aecs ¢(7) — qmuddepennupy-
emast QYHKIWS, IPU T 2> T, UMEIOIIAs HEIPEPbIBHYO MOHOTOHHYIO MOJOXKUTETbLHY IO TTIPOU3BO/I-
Hy10 ¢’ (T), YIOBIETBOPSAIONIYIO IPH T — 0O OIEHKAM ﬁ = o(T) 1 ¢(27) max,<i<or ﬁ(t) <L T.
Boiee TouHO, B cTaThe MOKA3aHO, 9TO €C/IM K — BeC mapabosnydeckoit opmbr F', K — KOMIAKT-
HOe MHOzKecTBO Tosockl {5 € C: § < o < £} obnazaomee csa3HbIM gononHerneM, u f(s) —
HeIpepbIBHAsI, HeuMeromas Hyaeid B K u ananurudeckas suytpu K QyHKIMs, TO [Jis BCAKOrO
e > 0 muoxecrBo {7 € R:sup,cx [C(s +ip(T),F) — f(s)| < €} uMeer HOMOKUTEIBHYIO HUXK-
HIOIO TJTOTHOCTb.

Kaouesnie caosa: n3era-dyuknus mapaboanaeckoit popmbl, mapadonmdeckas popma ['ekke,
YHUBEPCAJILHOCT.
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Abstract

In 1975, S.M. Voronin discovered the remarkable universality property of the Riemann
zeta-function ((s). He proved that analytic functions from a wide class can be approximated
with a given accuracy by shifts ((s + i), 7 € R, of one and the same function ((s). The
Voronin discovery inspired to continue investigations in the field. It turned out that some other
zeta and L—functions as well as certain classes of Dirichlet series are universal in the Voronin
sense. Among them, Dirichlet L-functions, Dedekind, Hurwitz and Lerch zeta-functions. In
2001, A. Laurin¢ikas and K. Matsumoto obtained the universality of zeta-functions ((s, F')
attached to certain cusp forms F. In the paper, the extention of the Laurinc¢ikas-Matsumoto
theorem is given by using the shifts ((s+ip(7), F') for the approximation of analytic functions.
Here o(7) is a differentiable real-valued positive increasing function, having, for 7 > 79, the
monotonic continuous positive derivative, satisfying, for 7 — oo, the conditions ﬁ = o(7)
and ¢(27) max,<i<or ﬁ < 7. More precisely, in the paper it is proved that, if x is the
weight of the cusp form F', K is the compact subset of the strip {s ceC: 5 <o< ”TH} with
connected complement, and f(s) is a continuous non-vanishing function on K which is analytic
in the interior of K, then , for every ¢ > 0, the set {7 € R : sup g [((s + i(7), F) — f(s)| < €}
has a positive lower density.
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1. Introduction

In 1975 the remarkable property of universality was discovered by Voronin [25]. By analyzing
the Riemann zeta-function, he noticed that with certain shifts of one and the same function a whole
class of analytic functions can be approximated. This fact inspired further research of functions with
similar properties and became a subject of interest for number theory specialists, among them Reich
[14], Gonek [4], Good [6], Bagchi [1], Laurin¢ikas [8], [9] and others. The aim of this paper is certain
extended results on the universality for zeta-functions attached to certain cusp forms.

Denote by s = o + it a complex variable. Let

SL(2,Z) := {fy— (Z Z) ca,b,¢c,d € Z,ad — be = 1}

be the full modular group. We say that the function F(z), z € C, is a holomorphic cusp form of
weight k for SL(2,Z) if it is holomorphic for Im(z) > 0, for all v € SL(2,Z) satisfies the functional
equation
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We assume additionally that F(z) is an eigen form of all Hecke operators

1 az+b
— k-1 —
ThF(z)=m E o g F( 7 >7 m € N.

a,d>0 b (mod d)
ad=m

Then ¢(m) # 0, and, therefore, F(z) can be normalized to have the Fourier coefficient ¢(1) = 1.

Having all the aforementioned assumptions, the zeta-function ((s, F') associated with the cusp

form F(z) of weight  is defined, for o > "%rl, by absolutely convergent Dirichlet series

(s, F) =Y Cfgj).
m=1

K41

It is proved [5] that ((s, I') is analytically continued to an entire function. Moreover, for o > %32,

the function ((s, F') has the Euler product expansion over primes, i.e.,

nm(-2) (-2

peP

where P is the set of all prime numbers, and «(p) and 3(p) are complex conjugate numbers satisfying
a(p) + B(p) = c(p)-

The first result on the universality of ((s, F') was obtained by the Laurin¢ikas and Matsumoto
in 2001 [10]. For the formulation of the theorem, we need some notation.

Let D=Dp = {s €C:5<o< %1}, K = Kg be the class of compact subsets in the strip D
with connected complements, and Hy(K), K € K, stand for the class of continuous non-vanishing
functions on K that are analytic in the interior of K. The Lebesgue measure of a measurable set
A C R is denoted by measA. Then the Laurin¢ikas-Matsumoto universality theorem for (s, F') can
be formulated as follows.

THEOREM 1 ([10]). Suppose that K € K and f(s) € Ho(K). Then, for every € > 0, the

following inequality

1
lim inf —meas {7‘ €10,T] :sup [((s + i, F) — f(s)] < 5} >0
T—o0 T seK

holds.

In the theorem, the shifts 7 take arbitrary real values. However, it turns out that more general
shifts can be considered. The aim of this paper is taking shifts for the universality theorem from
a certain class of functions U(rp). We say that a function ¢(7) € U(1p), 70 > 0, if the following
conditions are satisfied:

1. ¢(7) is a differentiable real-valued positive increasing function on [7, 00);
2. ¢/(7) is monotonic, continuous, positive on [y, 00) satisfying ﬁ =o(7), T = 05
3. ©(27) max-<i<or ﬁ(t) LT, T — 00.

Then the following result is true.

THEOREM 2. Suppose that o(1) € U(1y), K €K, f(s) € Hyo(K). Then, for every ¢ > 0,

lim inf
T—o00 — 70

meas {7‘ € [r0,T]: su};;\C(s—i—icp(T),F) — f(s)] < 5} > 0.
s€
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It is known [11], [12] that universality theorems can be stated in a slightly different form.
Theorem 2 has the following modification which will be proved in the paper.

THEOREM 3. Suppose that (1) € U(1y), K €K, f(s)€ Hyo(K). Then the limit

lim
T—oo T — Ty

meas {T € [0, 7] : sulg IC(s+ip(T), F) — f(s)| < 5} >0
s€

exists for all but at most countably many € > 0.

In the following section, some lemmas necessary for the proof of the above mentioned theorems
will be introduced.

2. Auxiliary results

Denote by B(X) the Borel o-field of the space X, and by  the unit circle on the complex plane.

Define
o
0= H o>
peP

where v, =y for all primes p € IP. By the Tikhonov theorem, with product topology and pointwise
multiplication, the infinite-dimensional torus {2 is a compact topological Abelian group. Therefore,
the probability Haar measure my on (€2, 3(£2)) can be defined, and so we have a probability space
(2, B(?),mp) . Denote by w(p) the projection of an element w € Q to the coordinate space ~p,
p € P, by H(D) the space of analytic functions on D endowed with the topology of uniform
convergence on compacta, and on probability space (2, B(€2), mg) define the H(D)-valued random
element ((s,w, F') by the formula

((s,w, F) = H (1 _ 0‘(1’)“@)>_1 <1 _ ﬂ(p)w(p)>_1'

peEP P P
Denote by P , the distribution of {(s,w, F), i.e.,
Pep(A) = mu{w € Q: ((s,0,F) € A}, A€ B(H(D)),

Proof of the universality theorem is based on the weak convergence, as T'— oo, for

1
Prr(4) = =

— 70

meas {1 € [10,T] : ((s +ip(T),F) € A}, AeB(H(D)).

THEOREM 4. Suppose that o(1) € U(ry). Then Prp converges weakly to Prp as T — oo.
Moreover, the support of Pr p is the set Sp = {g € H(D) : g(s) # 0 or g(s) = 0}.

We divide the proof of Theorem 4 into several lemmas. The first of them is a limit theorem on
the torus Q. For the proof of this lemma, properties of the function ¢(7) are needed.
For A € B(£?), define

1 .
Qr(A) = T Tomeas {7’ €, T]: (p~ ) :peP)e A} .

LEMMA 1. Suppose that (1) € U(19). Then Qr converges weakly to the Haar measure my as
T — .
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JIOKABATENBCTBO. [Proof| For the proof, we will apply the Fourier transform method. Let gr(k),
k= (ky:ky, € Z, p € P), be the Fourier transform of Qr, i.e.,

gr(k) = /Q IT ") | dor,

peP

W/l

where means that only a finite number of k, are distinct from zero. Thus, from the definition
of Qr, we have

1 T / . 1 T /
k) — —itkpe(T) | g7 = / —i E kyl d 1
gr (k) T — 19 /TO op b TTTo T0 Jrg o ) peP [ .

Obviously,
gr(0) = 1. (2)
Since the set {logp : p € P} is linearly independent over the field of rational numbers Q, we have
that ,
a:= Z kylogp #0

peP
for all £ # 0.
Clearly,
T T T
/ exp {—iap(T)}dr :/ cos(ap(T))dr —i/ sin(ap(T))dr. (3)
70 70 70
Suppose that ¢'(7) is decreasing. Then, ﬁ is increasing, and therefore, by the mean value theorem,
T T 1 T
L [7 a@'(7) cos(ap(T)) 1 / /
cos(ap(T dT:/ dr = ay (1) cos(ap(T))dT
| costagtrnar = | [ HEETE 7T ), ) eosan(r)
1

T
= o (D) /g dsin(ap(T)) = o(T)

as T — oo, where 79 < £ < T. The same is also true for the second integral in (3). Thus, by (3),

T
/ exp {—iap(7)} dr = o(7), T — oo. (4)

70

Similarly, if ¢/(7) is increasing, then

T .
/TO p {—iap(T)} dr < uomy

From (4) and (5) together with (1), we get that
Jim gr(k) =0,

whenever k # 0. Therefore, in view of (2),

—-
-

lim gr(k) = {1

T—o0 0

EENENS
o 1©

-
e
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The right-hand side of the latter equality is the Fourier transform of the Haar measure mp.
Therefore, the lemma follows from the continuity theorem for probability measures on compact
groups. U

Now, some absolutely convergent Dirichlet series will be analysed. Let 6 > % be a fixed number,
and m,n € N. We define series

mS
m=1
and
— c(m)w(m)v,(m)
n ) 7F - )
Gl w, F) mZ:jl o
where

The latter series are absolutely convergent for ¢ > & [10]. Define the function wu, r: Q — H(D)
by the formula u, p(w) = (u(s,w, F'). Due to absolute convergence of (,(s,w, F), we have that the
function w, p(w) is continuous, hence (B(2), B(H(D)))-measurable. Therefore, the Haar measure
mg on (2, B(Q)) induces the unique probability measure P, p on (H(D), B(H(D))) defined by

P p(A) = mpu, p(A) =mpy(u, ,A), A€ B(H(D))).

LEMMA 2. Suppose that o(1) € U(ry). Then

Prp,r(A) : meas {7 € [10,T] : Cu(s +ip(7), F) € A}, AeB(H(D))),

T To
converges weakly to Pnf as T — oo.

JIOKABATENBLCTBO. |[Proof]| The lemma is derived by standard arguments from Lemma 1 and the
continuity of the function u, p. O

Our aim is to prove that Prp converges weakly to the limit measure Pp of the measure an F
as n — 00. For the proof of Theorem 4, approximation in the mean of ((s, F') by (,(s, F') is used.
Thus, the following estimate of the mean square is needed.

LEMMA 3. Suppose that o(7) € U(mo), and 0, § < 0 < ”TH, is fized. Then, for all t € R,

T
/ (o + it + ip(r), F)2dr < T(1 + |t]).

JOKABATEILCTBO. [Proof| It is known that, for fixed o, § <o < “TH,

T
/ |C(o +it, F)|*dt < T. (6)

0

For X > 19, we get

2X 2X
/ (o + it + ip(r), F)[2dr = /
X

X

C(o + it +ip(T), F) Pdeo(7)

1
¢'(1)
1 /2X p /|t+<p(f) < )
< max —— o+ 1u, U
X<r2X ¢'(7) Jx 0

1 tl+e(7) . 2
- Xir‘ll'ag};X S0/(7_) /(] ’C(O- + ZU’? )’ U

X
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Consequently, by (6),

[t]+¢(7) o [2X
[ i )P <ol + o2,
0

and thus,
2X .
/X |C(o + it +ip(T), F)|?dr < (|t| + ¢(2X)) Jnax 75
<X+t max <p’17') < X(1+t]).
Taking X = 27F=1T and summing over k = 0,1,... prove the lemma. O

Now, we can approximate (s, F') by (,(s, F') in the mean. For g1,g2 € H(D), take

o
L1 SUPsek; [91(5) — g2(s)]
o) =Y 27 : ’
p(g1,92) ;:1: 1+ sup,ex, |91(s) — g2(5)|

where {K; : 1 € N} C D is a sequence of compact subsets such that

o0
D= U K,
=1

K; C Kjqq for all Il € Ny and if K C D is a compact subset, then K C K; for some [ € N. Then p
is the metric in H(D) inducing its topology of uniform convergence on compacta.

LeEMMA 4. Suppose that (1) € U(1y). Then

T
lim lim sup / p(C(s+ip(T), F),Cu(s +ip(r), F))dr =0.

=0 T 00 —T0 Jry
JTOKA3BATENLCTBO. [Proof| Let 6 be from the definition of v, (m), and
s

ln(s) = 21“ (0> n®, mneN,

where I'(s) denotes the Euler gamma-function. Then the function (,(s, F') has the representation
[10]

04100
Cal(s, F) 1 /+ g(s+z,F)zn(z)@, o>
0

- 2771'7, —ioo z 2

Let K be an arbitrary compact subset of D. Then, from the residue theorem and the above equality,
we get

1 T
e | SRt ier) PG s+ i), P

o0 1 T
<</ (6 + iu)| <T - / ]C(a—l—it—i—iu—i—z’go(T),F)dT) du,
00 — 70

T0

as T'— oo, where 6 <0, § <o < ”“TH, and t is bounded by a constant depending on K. Lemma 3
implies that with ¢ € R, for § <o < ”;17

T T 1/2
/ IC(o + it + iu +ip(T), F)|ldr < (T/ ]C(U—i—’it—l—iu—i—i(p(T),F)\?dT) Lo T(1+ |ul).

0 70
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Therefore,

o0

1 T
T [ S (s () P, Guls + (), ) dr e [l + )1+ )

as T' — oo. Hence,

lim limsup
N0 Too — 70

T
/ sup (C(s +iw(T), F'), Culs +ip(T), F)) dr = 0.

So, the lemma follows from the definition of the metric p. O

HOKABATEJBCTBO. [Proof of Theorem 4| Let £ be a random variable uniformly distributed on
[0,1] and defined on a certain probability space with measure u. Define the H(D)-valued random
element X, r by the formula

X1nr = Xrpr(s) = CGu(s +ip(ET), F).
Then the assertion of Lemma 2 can be written as

D A
X1rnr — X F, (7)
T—00

where = means the convergence in distribution, and Xn, r is the H(D)-valued random element
with the distribution Pn . Here pn F is the same limit probability measure as in Lemma, 2.

Now, we will prove that the family {f’np :n € N} is tight, i.e., for every € > 0, there exists a
compact set K = K(¢) C H(D) such that P, p(K) > 1—¢ for alln € N. Let K C D be a compact
set. Then, by the integral Cauchy formula,

sup (s -+ (). )| < 5 [ 16(e -+ ig(r). Pz,
seK K JLg

where Ly is a simple closed contour lying in D and enclosing the set K, and dg is the distance of
L from the set K. Hence,

T 1 T
/ sup |G (s + ip(r), F)ldr < = / 1d2| / C(Re(2) + Tm(2) + ip(), F)|dr <x T.
790 SEK K JLg T0

This with Lemma 4 shows that

sup lim sup

T
/ sup |Gu(s + (1), F)ldr < C; < o0, (8)
neN T—oo —T0 Jr

0 SEK;

where {Kj : [ € N} is the sequence of compact subsets of D from the definition of metric p.
Now, let the & be an arbitrary positive number, and M; = M;(¢) = C;2'c~!. Then, from (8), we
have

1 T €
sup limsup p ¢ sup | X7, r(s)] > € p < suplimsup / sup |Cn(s +ip(7), F)ldr < o,
neN T—oo seK; neN T—oo T — 70 Jry s€K; 2

and, by (7),
1 { sup | X, 7 (s)] > 8} < = (9)

seK;
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for all n € N. Define the set K = K(¢) = {g € H(D) : sup,cg, |9(s)| < M;, I € N} . Then K is a
compact set in H(D), and, by (9),

M{Xn,FeK}>1—a

for all n € N, or, by definition of )A(n,F,

P,r(K)>1-c¢

for all n € N, thus the family {Pn F:nE N} is tight. Therefore, by the Prokhorov theorem (see

Theorem 6.1 in [2]), it is relatively compact, i.e., every sequence of {pnp} contains a weakly
convergent subsequence. Thus, there exists {P,, p} C {Pnr} such that {P, r} converges weakly
to a certain probability measure Pp on (H(D),B(H(D))) as r — o0, or, in terms of convergence in
distribution, we say

~

Xy p —2— Pp (10)
r—00
Define one more H(D)-valued random element
Xrr = X1 p(s) = Culs + (ET), F).
Then, in view of Lemma 4, for every £ > 0,

lim limsup p {p(X1,r, X10,F| > €}

n—oo T—00

= lim limsup meas {7 € [10,T] : p({(s +ip(T), F),Cu(s +ip(T), F)) = €}

n=00 T 400 — 70

T
< lim limsup 8/ p(C(s +i(7), ), Culs + ip(7), F)) dr = 0.

n—0o 70 (T'—1T0)e Jpy

This together with (7) and (10) shows that all hypotheses of Theorem 4.2 of [2] are fulfilled,
therefore,

D
X7 p — Pp,
T—00

or Pr r converges weakly to the limit measure Pr of Pn rasT — oo.
The final step is to identify the measure Pr. For this, we will use a simple observation. It is
known [3], [7] that

%meas (re0,T]:C(s+ir F) € A},  AeB(H(D))),

as T' — oo, converges weakly to the limit measure Pr of ]5” F, and that Pp = P p. Moreover, the
support of P¢ r is the set Sg. Therefore, Pr r also converges weakly to Pr g as T'— oco. O

3. Proofs of universality theorems

JTOKA3ATENBLCTBO. [Proof of Theorem 2| Define the set

6.~ {oe D) suplots) - 9] < £,
seK

[\)

where p(s) is a polynomial satisfying

s 5) -
seK

< g (11)
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The existence of p(s) follows from the Mergelyan theorem on the approximation of analytic functions
by polynomials (see [13]).
By the second part of Theorem 4, the function eP(*) belongs to the support of the measure P p.
Therefore,
PQF(GE) > 0. (12)

Since G, is an open set, by the first part of Theorem 4 and the equivalent of weak convergence of
probability measures in terms of open sets, we have that

lim inf PT7F<G€) > PC,F(GE)'
T—o0
This, the definition of Pr p and inequality (12) give

lim inf
T—oo T — 19

meas {7‘ € [r0,T) : sup |((s + ip(7), F) — eP®)
seEK

€
< -¢>0.
2 }
This together with (11) proves the theorem. O
JOKABATENBLCTBO. [Proof of Theorem 3| Define the set

6.~ {oe ) swplots) - 1) < <.

seK

Then the boundary G of G lies in the set

seK

{oe D) suplate) - )] =<}

Therefore, 8651 N 8652 = & for 1 # &9, €1,69 > 0. Hence, for at most countably many ¢ > 0,
the sets 0G. have a positive P; r measure. Using Theorem 4 and equivalent of weak convergence
of probability measures in terms of continuity sets, we obtain that

lim Prp(Ge) = P p(Ge) (13)
T—00

for all but at most countably many € > 0. Let G be from the proof of Theorem 2. Then, in view

of (11), we obtain that G. C G, and thus, by (12), P¢ p(G.) > 0. This, the definition of Pr r and
(13) prove the theorem. O

4. Conclusions

In the paper, a generalized version of the Laurin¢ikas-Matsumoto universality theorem for zeta
functions of certain cusp forms ((s, F') is proved in two different forms. Namely, it is shown that
the shifts ((s + ip(7), F'), where ¢(7) belongs to a certain class of differentiable functions U(7)
can approximate with a given accuracy all non-vanishing analytic functions defined in the strip
{s €C:5<o< ”T‘H} , where k is the weight of the form F, and the lower density of the set of
such shifts is positive.
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