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Let oy, and 5, be two sequences of real numbers supported on [M,2M] and [N, 2N] with
M = X279 and N = X/2+%_ We show that there exists a §; > 0 such that the multiplicative
convolution of a,, and (3, has exponent of distribution % + 0 — ¢ (in a weak sense) as long as
0 < § < dg, the sequence 5, is Siegel-Walfisz and both sequences «,,, and f3,, are bounded above
by divisor functions. Our result is thus a general dispersion estimate for “narrow” type-II sums.
The proof relies crucially on Linnik’s dispersion method and recent bounds for trilinear forms
in Kloosterman fractions due to Bettin-Chandee. We highlight an application related to the
Titchmarsh divisor problem.
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1. Introduction

An important theme in analytic number theory is the study of the distribution of sequences in
arithmetic progressions. A representative result in this field is the Bombieri-Vinogradov theorem
[2], according to which for any A > 0,

1
Somax |3 1 31| <y a(loga) (1)
=1l vla) ==

p=a (mod q)

provided that Q < \/z(logz)~? for some constant B = B(A) depending on A > 0.
Nothing of the strength of (1) is known in the range Q > /2% for any fixed £ > 0 and already
establishing for any fixed integer a # 0 and for all A > 0 the weaker estimate,

1 —
Z’ Z 1_80(‘1)21‘ Kq,4 z(logz) A (2)

q<Q p<z p<z
p=a (mod q)

with Q = 2/2*% and some & > 0 is a major open problem. If we could show (2) then we would say
that the primes have exponent of distribution % + 6 in a weak sense. However we note that there
are results of this type if one allows to restrict the sum over ¢ < @ in (2) to integers that are x¢
smooth, for a sufficiently small € > 0 (see [16, 5]).

Any known approach to (2) goes through combinatorial formulas which decompose the sequence
of prime numbers as a linear combination of multiplicative convolutions of other sequences (see for
example [13, Chapter 13]). If one attempts to establish (2) by using such a combinatorial formula
then one is led to the problem of showing that for any A > 0,

S ‘ Y amBu— Y amba] € X(logX)™4, X = MN (3)
¢<Q  M<m<2M M<m<2M
N<n<2N N<n<2N
mn=a (mod q) (mn,q)=1

with @ > X1/2%¢ for some ¢ > 0. In [14] Linnik developed his “dispersion method” to tackle such
expressions. The method relies crucially on the bilinearity of the problem, followed by the use of
various estimates for Kloosterman sums of analytic or algebraic origins. For a bound such as (3) to
hold one needs to impose a “Siegel-Walfisz condition” on at least one of the sequences a, or (5.
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DEFINITION 1. We say that a sequence B3 = (f3,,) satisfies a Siegel-Walfisz condition (alter-
natively we also say that B is Siegel-Walfisz), if there exists an integer k > 0 such that for any fized
A >0, uniformly in x> 2, q > |a| > 1,7 > 1 and (a,q) = 1, we have,

Z Bn — (p(lq) Z Bn = O(1(r) - z(log z) ™).

r<n<2z r<n<2z
n=a (mod q) (n,gr)=1
(n,r)=1

where T(n) :==3>_, . _, 1 is the kth divisor function.

It is widely expected (see e.g [3, Conjecture 1]) that (3) should hold as soon as min(M, N) > X¢
provided that at least one of the sequences «,,, B, is Siegel-Walfisz, and that there exists an integer
k > 0 such that |a,,| < 7x(m) and |5,| < 7%(n) for all integers m, n > 1. We are however very far
from proving a result of this type.

When Q > X/?%¢ for some e > 0, there are only a few results establishing (3) unconditionally
in specific ranges of M and N (precisely [9, Théoreme 1|, [3, Theorem 3|, [11, Corollaire 1], [12,
Corollary 1.1 (i)]). All the results that establish (3) unconditionally place a restriction on one of the
variable N or M being much smaller than the other. We call such cases “unbalanced convolutions”
and this forms the topic of our previous paper [12].

In applications a recurring range is one where M and N are roughly of the same size. This often
corresponds to the case of “type II sums” in which one is permitted to exploit bilinearity but not
much else. This is the range to which we contribute in this paper.

THEOREM 1. Let k > 1 be an integer and M, N > 1 be given. Set X = M N. Let a,, and By, be
two sequences of real numbers supported respectively on [M,2M)] and [N,2N]. Suppose that 3 = (5,)
is Siegel-Walfisz and suppose that |an,| < 17(m) and |Bn| < 1(n) for all integers m,n > 1. Then,
for every € > 0 and every A > 0,

1
Z ‘ Z amﬁn_@ Z o Bn,

Q<q<2Q mn=a (mod q) (mn,q)=1
(g,0)=1

<4 X(log X)™4 (4)

uniformly in N°6/23X=17/23%e < Q < NX~¢ and 1 < |a| < X.

Setting N = X /219 and M = X'/279 in Theorem 1 it follows from Theorem 1 and the Bombieri-
Vinogradov theorem that (4) holds for all @ < NX ¢ with 0 < § < &y := {75. Previously the
existence of such a dg > 0 was established conditionally on Hooley’s R* conjecture on cancellations
in short incomplete Kloosterman sums in [8, Théoreme 1] and in that case one can take dy = ﬁ.
Similarly to our previous paper, we use the work of Bettin-Chandee [1] and Duke-Friedlander-
Iwaniec [7] as an unconditional substitute for Hooley’s R* conjecture. In fact the proof of Theorem
1 follows closely the proof of the conditional result in [8, Théoreme 1] up to the point where Hooley’s
R* conjecture is applied. Incidentally we notice that the largest @ that Theorem 1 allows to take
is Q = X17/33-5¢ provided that one chooses N = X 17/33—4e,

Unfortunately the type-II sums that our Theorem 1 allows to estimate are too narrow to make
Theorem 1 widely applicable in many problems (however see [15] for an interesting connection with
cancellations in character sums). We record nonetheless below one corollary, which is related to
Titchmarsh’s divisor problem concerning the estimation of > _ 72(p — 1) (for the best results on
this problem see [10, Corollaire 2|, [3, Corollary 1| and [6]). The proof of the Corollary below will
be given in §5.

COROLLARY 1. Let k > 1 and let o and 3 be two sequences of real numbers as in Theorem 1.
Let § be a constant satisfying

1
5 _
0<0<1p
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and let
X>2 M=XY?"? and N = X1/249,

Then for every A > 0 we have the equality

Z Zamﬂnm(mn Z Z Z amﬂn—i—O (logX)_A).

m~M n~N mn~M,n~N, mn>q
(mn,q)=1

2. Conventions and lemmas

2.1. Conventions

For M and N > 1, we put X = MN and £ = log2X. Whenever it appears in the subscript
of a sum the notation n ~ N will means N < n < 2N. Given an integer a # 0 and two sequences
o = (m) M<m<2m and B = (By) N<n<2n supported respectively on [M,2M] and [N, 2N] we define
the discrepancy

E(a>/87M7NaQ7 : Z Z mﬁn_iz Zamﬁn>

m~M n~N mNJM n~N
mn=a mod q (mn,q)=1
and we also define the mean-discrepancy,
Ala,8,M,N,q,a) = Y _ |E(a,3,M,N,q,a)|. (5)
q~Q
(g,a)=1

Throughout 7 will denote any positive number the value of which may change at each
occurence. The dependency on 7 will not be recalled in the O or <—symbols. Typical examples are
7e(n) = O(n") or (logx)'® = O(z"), uniformly for = > 1.

If f is a smooth real function, its Fourier transform is defined by

- [ swet-gnar

where e(-) = exp(2mi-).

2.2. Lemmas

Our first lemma is a classical finite version of the Poisson summation formula in arithmetic
progressions, with a good error term.

LEMMA 1. There exists a smooth function p : R — R, with compact support equal to
[1/2,5/2], larger than the characteristic function of the interval [1,2], equal to 1 on this interval
such that, uniformly for integers a and ¢ > 1, for M > 1 and H > (q/M)log* 2M one has the

equality
> () =0T+ S (i) o). ©)

m=a mod ¢ 0<|h|<H

Furthermore, uniformly for ¢ > 1 and M > 1 one has the equality

> v () = P90 1 0ol tog 201). M)

(mog)=1 4
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JIOKABATEJBCTBO. See Lemma 2.1 of [12], inspired by [4, Lemma 7]. O We now recall a classical
lemma on the average behavior of the 7,-function in arithmetic progressions (see [14, Lemma 1.1.5],
for instance).

LEMMA 2. For every k > 1, for every € > 0, there exists C(k,e) such that, for every x > 2,
for every a2t < y < x, for every 1 < q < yx™¢, for every integer a coprime with q, one has the
inequality

> 7(n) < C(k,s)@?q) (log 22)+!

r—y<n<zx
n=a mod g

The following lemina is one of the various forms of the so—called Barban-Davenport—Halberstam
Theorem (for a proof see for instance [3, Theorem 0 (a)].

LeEMMA 3. Let k > 0 be an integer. Let 3 = (5,) be a Siegel-Walfisz sequence such that
1Bn| < Ti(n) for all integer n > 1. Then for every A > 0 there exists B = B(A) such that,
uniformly for N > 1 one has the equality

> Y| Y o XA

_ 1~ N n~N
qSN(lOgZN) ( 7Q) 1 n ’:zmodq (n q)=1

=04 (N(log2N)~ )

We now recall an easy consequence of Weil’s bound for Kloosterman sums.

LeEMMA 4. Let a and b two integers > 1. Let T an interval included in [1,a]. Then for every
integer £ for every € > 0 we have the inequality

n%; Jn)e(%) = O, ((ﬁ, a)%(ab)aa%)
(n,ab)=1

n

JIOKABATEJIBCTBO. We begin we the case b = 1. We write the factor a0 38
=2 vi=2 v
v|no° k(V)n

where k(v) is the largest squarefree integer dividing v (sometimes x(v) is called the kernel of v).
This gives the equality

@)X S D)= X 3 ()|

nel ne’l v>1 meZ/k(v
(n,a)—1 ( w(v ))\_nl (v,a)=1 (S»L,a/)z(l)

In the summation we can restrict to the v such that x(r) < a. Applying the classical bound for
short Kloosterman sums, we deduce that

_ I\
‘ Z Le(€ﬁ> ‘ < (£, a)%a%ﬁ H(l - 7> < (£, a)% 2t2e
o pn) Va % p
pssa
(n,a)=1

This proves Lemma 4 in the case where b = 1. When b # 1, we use the Md&bius inversion formula
to detect the condition (n,b) =1. O

Our central tool is a bound for trilinear forms for Kloosterman fractions, due to Bettin and
Chandee [1, Theorem 1|. The result of Bettin-Chandee builds on work of Duke-Friedlander-Iwaniec
[7, Theorem 2] who considered the case of bilinear forms. These two papers show cancellations in
exponential sums involving Kloosterman fractions e(am/n) with m < n. We state below the main
theorem of Bettin-Chandee.
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LEMMA 5. For every e > 0 there exists C(g) such that for every non zero integer ¥, for every
sequences let a, B and v be of complex numbers, for every A, M and N > 1, one has the inequality

T Y atmpmpra (0™ | <@

a~Am~M n~N

|19|A % 2l+€ 1 34e 1
(1+W) ((AMN)O (M + N)i + (AMN)R(AM + AN)3).

3. Proof of Theorem 1

All along the proof we will suppose that the inequality 1 < |a| < X holds and that we also have
XS <M<X2<NandQ<N. (8)

3.1. Beginning of the dispersion

Without loss of generality we can suppose that the sequence 3 satisfies the following property
nla= p,=0. (9)
Such an assumption is justified because the contribution to A(a, 3, M, N, Q, a) of the (¢, m,n) such

that n | a is
L QXT+X"Y N m(lmn —a]) + MX® < (M + Q)X"

nla m~ M
mn#a

By (5), we have the inequality

A(avﬁvaNva Z Z |am|‘ Z 571_ Z Bn

~@Q m~M n~N
a (m,q)=1 n= ammodq (nq) 1

Let ¢ be the smooth function constructed in Lemma 1. By the Cauchy—Schwarz inequality, the
inequality |a;,| < 7x(m) and by Lemma 2 we deduce

A%(a, B, M, N,Q,a) < MQLI " {W(Q) - 2v(Q) +UQ)}, (10)
with

- Y (S a) Y w(5) i

(q,0)=1 (:;)Nl (m,q)=1
(2)1“/@ (2 )X ) T (5)
oo (e (e = mecd
W@ =Y @ X )X B) D w(i) (12)
(@a)=1 i i TR

3.2. Study of U(Q)
A direct application of (7) of Lemma 1 in the definition (11) gives the equality

U(Q) Z w Q/Q ( Z ﬁn)2+O(N2Q_1Xn)
¢:0)=1 (et
= UMT(Q) +O(N?Q7 X", (13)

by definition.
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3.3. Study of V(Q)

Let € be a fixed positive number. We now apply (6) of Lemma 1 with
H=M1QXx°. (14)
This leads to the equality
V(Q) =VMHQ) + VETH(Q) + VE(Q), (15)

where each of the three terms corresponds to the contribution of the three terms on the right
hand-side of (6). We directly have the equality

VE(Q) = O(MIN?X"). (16)
For the main term we get
- Y(q/Q) 2
VMT(Q) = (0)M — = ) 17
Q) = b(0) (Z): o 2 B) (17)
’ (n,q)=1

By the definition of V™ (Q) we have the equality

Errl _ L/}(Q/Q)
v (Q)—M(q%:l o (X2 6u)

q g N
(ng,q)=1

(2 o X i(om)e(™™))

ni~N 0<|h|<H
(n1,9)=1
from which we deduce the inequality
VE@Q) < MQ ™2 Y Bl D 1Bl Y [Vini,ng, )| (18)
ni~N na~N 0<|h|<H

with

2 . ahni
Vo, h) = (W;m):lwq/cz)qf(q)w(q fir)e(m).

Since (g,n1) = 1 Bézout’s relation gives the equality
ahny q

h
= —ah— + an mod 1.
q ni niq

By the inequality 1 < |a| < X and by the definition of H, the derivative of the bounded function

oot/ L (e ()

is < X°t~! when t < Q. This allows to make a partial summation over the variable ¢ with the loss
of a factor X¢. After all these considerations, we see that there exists a subinterval J C [Q/2,5Q/2]
such that we have the inequality

‘ V(nl,ng, h) ‘ < X¢

> el

elah— | |.
o el N m
(g,n1ng)=1
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Lemma 4 leads to the bound

[un

| V(n1,n2,h) | < X’S(ah,nl)%(nlng)”nf.

Inserting this into (18), we obtain

VEL(Q) <« MN2QT2XT 3T (B Y. (homa)?,

ni~N 0<|h|<H
which finally gives
VErrl(Q) < NgQ71X25+77 (19)

using the inequality |3,| < 7x(n) and the definition of H. Combining (15), (16), (17) and (19) we
obtain the equality

V(Q) = VMT(Q) + O.(M™'N? + N2Q 1) X2+n). (20)

where VMT(Q) is defined in (17) and where the constant implicit in the O.~symbol is uniform for
a satisfying 1 < |a| < X.

4. Study of W (Q)

4.1. The preparation of the variables

The conditions of the last summation in (12) imply the congruence restriction
n1 = ng mod ¢ and (ning,q) = 1. (21)

In order to control the mutual multiplicative properties of nq and ny we decompose these variables
as

(nl,TLQ) - da
ny = dlll, ng = dl/g, (I/l,ljg) = 1, (22)
v1 = dyvy with dy | d*° and (v}, d) = 1.

Thanks to |Bn] < 7x(n) and to (9) the contribution of the pairs (n1,n2) with d > X¢ to the
right—hand side of (12) is negligible since it is

SR AND DD DD DD DD DI

Xe<d<2N m~M vi~N/d q~Q vo~N/d
dmvy—a#0 gqldvim—a vy=vrq mod q

< X" Z Z Z Tg(ldl/lm—a])<;£2+1)

Xe<d<2N m~M vi~N/d
dmuv| —a#0

< MN?Q71Xx"=¢ 4 X1, (23)

Now consider the contribution of the pairs (n1,n2) with d < X¢ and d; > X*¢ to the right-hand
side of (12). Tt is
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AP UD DD SENED DD DI

d<Xe X¢<d1<2N m~M VlNN/(ddl) a~Q u2~N/d
dp |d> ddlmul a#0 qlddl”1"" a vo= d11/ mod q

<<X”Z Z Z Z To(|dd1vim — |)<;C;+1)

d<Xe X€<d1<2N m~M v{~N/(ddq)
dp|d™® dd /
1myy —a#0

<<X’7MN2Q12 Zd—JrX”MNZ Zd
1

d<X6 d>X¢ d<Xxe " dy>xe
dq |[d>® dq|d>®
< MN?Q7'X"5 4 X'z, (24)
Consider the conditions
d< X°®and di < X°, (25)

and the subsum W (Q) of W(Q) where the variables n; and no satisfy the condition (25). By (23)
and (24) we have the equality

W(Q) = W(Q) +O(MN?Q ' X""5 4 X+n), (26)

4.2. Expansion in Fourier series

We apply Lemma 1 to the last sum over m in (12) with H defined in (14). This decomposes
W(Q) into the sum
W(Q) = WMH(Q) + WET Q) + WH™(Q), (27)
where each of the three terms corresponds to the contribution of each term on the right—hand side
of (6).
The easiest term is WET2(Q) since, by |8,| < 7x(n) and (8), it satisfies the inequality

() RSV > D mm)m(ne)

Q/2<q<5Q/2 m1 M~
n1=ng mod g

< MTINZX" (28)
According to the restriction (21), we see that the main term is

WMT( 1& Z IUCI/Q Z ( Z Z BmBm)’ (29)
(0,9)=

( ny, no~N
n1=ng=4 mod ¢

where the variables ny and ng satisfy the conditions (25). By a similar computation leading to
(23) and (24) we can drop these conditions at the cost of the same error term. In other words the
equality (29) can be written as

WMT(Q) = WMT(Q) + O(MN2Q™' X5 4 X 1H7), (30)

where WMT(Q) is the new main term, which is defined by

WNT(Q) = pO)M 3 MQ/Q Z( > 6 (31)
(6,9)=

n~N
(q7 ) n=4 mod ¢
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4.3. Dealing with the main terms
We now gather the main terms appearing in (13), (17), (26), (27), (30), and in (31). The main
term of W(Q) — 2V (Q) + U(Q) is
WHHQ) =2V Q) + UMH(Q)

o ¥(q/Q) 1 2
= H(O)M (X By 2 B0)

@a=t 1 @a=1 _ew @ =

n=4§ mod q (n,q)=1

Appealing to Lemma 3 we deduce that, for any A, we have the equality
WMT(Q) — 2V T (Q) + UMT(Q) = O(M - Q7'+ N*(log 2N) ™) (32)

provided that
Q < N(log2N)= 5, (33)

for some B = B(A).
4.4. Preparation of the exponential sums
By the definition (27), we have the equality

WE“(Q):M%:WZ PILICEDD ﬂq/};\f)e(ahqm)’

ny, ng~N 0<|h|<H

n1=ng mod q

where the variables (n1,n2) are such the associated d and d; satisfy (25).
This implies that any pair (nj,ng) satisfies n; — ny # 0 and since we have n; = ng mod ¢ (see
(21)) these integers cannot be near to each other, indeed they satisfy the inequality

|n1 —no| > Q/2.
Since we have (ning,q) = 1, we can equivalently write the congruence n; — ng = 0 mod q as
vi —vg = div) — vp = qr, (34)
and instead of summing over ¢, we will sum over r. Note that 1 < |r| < R/d, where
R=2NQ . (35)

In the summations, the pair of variables (ni,ng) is replaced by the quadruple (d,d;,v],v2) (see
(22)). The variables d and d; are small, so we expect no substantial cancellations when summing
over them. Hence for some

d, dy < X°, dy | d*,

we have the inequality .
WErrl(Q) < X25MQ—1’ W , (36)

where W = W(d, dy) is the quadrilinear form in the four variables r, v/}, v5 and h defined by

We Y Y Y Augfa, 2 Q)

/ [R—
1<|r|<R/d ddyv), dvg~N (d1V1 v2)/(rQ)

dll/iEU2 mod r
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where e(+) is the oscillating factor

O = (o oey7r)

and where the variables satisfy the following divisibility conditions:
(divy,ve) =1, (V),d) =1 and (dd1vyr,d1vy — va) = 1.
Using Bézout’s reciprocity formula we transform the factor e(-) as follows:

ah ddyv] ah (divf —va)/r ahr

_— = d 1.
(divy —va)/r ddyvy + ddivi (divf — 1) o

Since (ddyi,vq) = (r,v]) = 1 we can apply Bézout formula again, giving the equalities

Gyl — 172)/7“ _ il =)/ ahTCh(lei/— v)/r 41
ddy v} dd, |
:ahyi (divy — ) /7 B hrdd/lyg mod 1

dd, T

The first term on the right-hand side of the above equality depends only on the congruences classes
of a, h, r, v} and v» modulo dd;. As a consequence of the above discussion, we see that there exists
a coefficient £ = £(a, h, r, 1/}, v2) of modulus 1, depending only on the congruence classes of a, h, r,
vy and vo modulo dd; such that we have the equality

()=¢ ( ahr ) (ahrddwg)
e(-)=¢-e e .
ddyvi(div} — 1) vy
Returning to (37), and fixing the congruences classes modulo dd; of the variables h, r, V| and vs,
we see that there exists
0 < ay,a2,a3,a4 < dd;

such that W satisfies the inequality,

|W’ < XG&‘
ahrddyivy
/
Z ‘ Z E delyiﬁdug Z \Ijr(h7 1/177/2)6( o ) ’ (38>
1<|r|<R/d ~ dd1V},,dva~N 1<|h|<H 1
r=a1 mod dd; d1v}=vs mod r h=a4 mod dd;

vi=az mod dd;
vo=asz mod dd;

where W, is the differentiable function

T/J((lei — yg)/(rQ)) R h ahr
(div] — 1)/ (rQ) w((dlui . Vg)/(rM)) e(ddlyg(dlyg - V2)>

In order to perform the Abel summation over the variables 1], vo and h (see for instance [9,
Lemme 5|) we must have information on the partial derivatives of the W,—function. Indeed for
0 < e€p, €1,€2 < 1, we have the inequality

\Pr(h7 Via VQ) ==

3€o+61 +e2

—€ —€ —€ €1+e€
WWT(h?Vi’VQ) <<X50a|h| Oyi L 1y Q(N/(TQ)) 1 27 (39)
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as a consequence of the inequality |div] — va| > rQ/2 (see(34)), of the definition of H (see (14))
and of the inequality 1 < |a| < X.

Since (d1vqva,r) = 1 we detect the congruence div] = vo mod r by the ¢(r) Dirichlet characters
x modulo 7. By (39) we eliminate the function V¥, in the inequality (38) which becomes

1
w <X605N2 —2
wixmnigr Y Loy
1<|r|I<R/d x mod r
r=a; mod dd;

Z Z dl/l V2)ﬁdd1ui/8dl/2 Z 6(%)

dd1v, €Ny dva €N 1
V| =az mod dd;
vo=asz mod ddi

, (40)

heH
h=a4 mod ddi

e where V] and N are two intervals included in [N, 2N],
e and where # is the union of two intervals included in [—H, —1] and [1, H] respectively.

Denote by Wi (r, x) the inner sum over v, vo and h in (40). Remark that the trivial bound for
Wi(r,x) is O(X"HN?/(d?dy)). We now can apply Lemma 5 to the sum W(r, x), with the choice
of parameters

9 —ar, A—> H M — N and N — N.

We obtain the bound
Wilr,x) < HENENEX(14 W) ((HN?)FNT 4+ (HN)TF(HN)F),
By the definition (35), (14) and the inequality 1 < |a| < X we deduce the inequality
Wi(r,x) < Xt (HOND + HN¥ ),
and using (14) we finally deduce
Wi(r, x) < X5 H1(M~2 N5 Q2 + M™'N¥ Q).
Returning to (40), summing over y and r and inserting into (36) we obtain the bound
WEH(Q) < XS (MunNBQ 2 + N5 Q2). (41)

4.5. Conclusion

We have now all the elements to bound A(e, 3, M, N, Q, a). By (10), (13), (20), (26), (27), (28),
(30) and (41) we have the inequality

AZ < MQEkQ—l{ (WMT(Q) . QVMT(Q) + UMT(Q)) + N2Q—1X77
+ (M—1N2 + N%Q_1>X28+77
+ (MN2Q 11X 5 4 XU 4 X670 (M NoQ 20 + N5 Q) }

which is shortened in (recall (8))

A? < MQ£k2—1{MN2Q—1(1og ON) At

+ MN2Q ' X% 4 XSt (Ma NBQ 20 + N5 Q2) }
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by (32) and (33) if one assumes
Q< NX. (42)

To finish the proof of Theorem 1, it remains to find sufficient conditions over M, N and @ to ensure
the bound A? < M2N2L£~4. Choosing n = £/5, we have to study the following three inequalities
hold

MQ-MN2Q1X~1 < M2N2X1,
MQ-M=N:Q 20 X% « M2N2X1, (43)
MQ-N%5Q-2x68 < M2N2X "1,
The first inequality is trivially satisfied. The second inequality of (43) is satisfied as soon as
Q> N X~ 5+, (44)

This inequality combined with (42) implies that N < X 5. The last condition of (43) is satisfied
as soon as

23
Q > NgX—1+696.

We can drop this condition since it is a consequence of (44) and of the inequality N < X 5. The
proof of Theorem 1 is now complete.

5. Proof of Corollary 1

Let S(M, N) be the sum we are studying in this corollary. We use Dirichlet’s hyperbola argument
to write

mn — 1 = qr, (45)

and by symmetry we can impose the condition ¢ < r. This symmetry creates a factor 2 unless
mn — 1 is a perfect square. The contribution to S(M, N) of the (m,n) such that mn — 1 is a square
is bounded by O(X%’L”) with n > 0 arbitrary. This is a consequence of |3,| < 7(n).

The decomposition (45), the constraint ¢ < r and the inequalities X —1 < mn —1 < 4X imply
that ¢ < 2X3. In counterpart, if ¢ < X7 we are sure that q < r. Thus we have the equality

S(M,N) =2 Z Zzamﬁn+2 ZZZZ amﬁn“‘o(X%Jrn)

gSX12 oM el e, X P a2
= 250(M, N) + 281 (M, N) + O(X2*7), 1o

by definition. A direct application of Theorem 1 with @ = X 3 gives the equality

SHOLN) = 3 = 30 3 anu+ O(XL), (47)

qul/Q m(:fi,q)lwlN
for any C.
For the second term Si(M,N), we must get rid of the constraint ¢ < r. A technique among
others is to precisely control the size of the variables m, n and ¢. If it is so, then r = (mn —1)/q is
also controlled and one can check if it satisfies r > ¢q. We introduce the following factor of dissection:
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where B = B(A) is a parameter to be fixed later, and where [y] is the largest integer < y. If we
denote by Lo = [LP] we see that A0 = 2 and that A = 14 O(L~5). We denote by My, Ny and
Qo any numbers in the sets

Mo == {M,AM,A°M,A3M, ...  Abo=1pn)
Ny := {N,AN,A2N,A®N, ..., ALo=INY
Qo= {X2,AX2,A2X2 A3X2,... Alo-lxz},
respectively. We split S1(M, N) into

S1(M,N) = Z Z Z S1(Mo, No, Qo), (48)

MoeMo NoeENy QoEQo

where S1(My, Ny, Qo) is defined by

S1(Mo, No, Qo) = > D> > b

(I:QO m~Mg, n~Ng
mn=1 mod ¢

e where the notation y ~ Yy means that the integer y satisfies the inequalities Yy < y < AYj,

e where the variables m, n and ¢ satisfy the extra condition
mn — 1> ¢°. (49)
Note that the decomposition (48) contains
o(L38), (50)

terms.
Since mn—1 > MyNy—1 and ¢ < Q3A? in each sum Sy (Mo, No, Qo), we can drop the condition
(49) in the definition of this sum as soon as we have

MoNy — 1 > Q3A% (51)

When (51) is satisfied, the variables m, n and ¢ are independent and a direct application of Theorem
1 gives for each sum S;(My, Ng, Qo), the equality

1
Sl(M07N07QO) = E N 5 E Oém/Bn+OC(X,C_C)7 (52)
q~Qo So(q) ma~Mg, n~Ng
(mn,q)=1

where C is arbitrary.
It remains to consider the case where (51) is not satisfied, which means that (Mg, Ny, Qo) € &
where

o == {(Mo, No, Qo) ; MoNp — 1 < Q3A%}. (53)

We now show that the variable n considered in such a Sj(My, No, Qo) varies in a rather short
interval. More precisely, since MoA > m, NgA > n and Qo < ¢ we deduce from the definition (53)
that ¢> > mnA~* — A=2 which implies the inequality ¢ > (mn)%A_2 — 1. Combining with (49),
we get the inequality

(mn)%A*2 —-1<g< (mn)%

which implies
(¢°/m) <n < ((g+1)°/m)A".
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Using the inequality
)
X2 < g <2X'P < (Q/M)(AT —1)X 2,

and |3,| < 7x(n) we apply Lemma 2 to see that

>3 Si(My, No, Qo)

(Mo,No,Qo)€E0

< Z Ti(m) Z Z (1)

m~M g~x1/2 (g2 /m)<n<((g+1)2/m)A%
(g,;m)=1
4 k—1 1 4
< (A*=1)C E (M) E —_ =
=, <, Pla) m
~ q~X1/2
< LP2-Bx

Actually, by introducing a main term back, which is less than the error term, we can also write
this bound as an equality

>3 Si(My, No, Qo)

(Mo,No,Qo)€&0

—ZZZZ Z > amBa+O(L*72F) (54)

(Mo,No,Qo)€&0 a=Qo m”Mo n~Ny
(mn,q)=1

where the variables (m,n, q) continue to satisfy (49).
Gathering (46), (47), (48), (50), (52), (54) we obtain

MN_QZ ZZamﬁn

1/2 mm]\[ ~N
q<X / (mn, q)n 1
T2 D D oy 2 2 ombe
MOEMO NOENO QOGQO qNQO WLNJ\IO n~Nq

(mn,q)=1

+O(L3B=CX) + O(L*2-Bx) 4 O(Xz ),

where the variables (m,n,q) continue to satisfy (49). Putting the different summations back
together, we complete the proof of Corollary 1 by choosing B and C in order to satisfy the equalities
—A=3B-C=2k—-2-B.
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