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Аннотация

В работе дается описание гамильтоновых алгебр в некоторых подклас-
сах класса тернарных алгебр с одним оператором. Универсальная алгебра
называется гамильтоновой, если носитель любой ее подалгебры является
классом некоторой ее конгруэнции. Алгеброй с операторами называет-
ся универсальная алгебра с дополнительной системой унарных операций,
действующих как эндоморфизмы относительно основных операций (пере-
становочных с основными операциями). Алгебра с операторами называ-
ется тернарной, если она имеет единственную основную операцию, и эта
операция является тернарной.

Получено достаточное условие гамильтоновости для произвольных ал-
гебр с операторами. Полностью описаны гамильтоновы алгебры в классах
тернарных алгебр с одним оператором, основная операция которых явля-
ется либо функцией Пиксли, либо функцией меньшинства, либо функцией
большинства, заданными специальным образом на произвольном унаре.

Пусть V — многообразие алгебр с операторами, имеющее сигнатуру
Ω1 ∪ Ω2, где Ω1 — произвольная сигнатура, содержащая функцию почти
единогласия, а Ω2 — множество операторов. Доказано, что в многообразии
V алгебра является абелевой тогда и только тогда, когда она одноэлемент-
на.
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Abstract

In this work is given the description of Hamiltonian algebras in some
subclasses of class of algebras with operators having one ternary basic opera-
tion and one operator. Universal algebra A is a Hamiltonian algebra if every
subuniverse of A is the block of some congruence of the algebra A. Algebra
with operators is an universal algebra with additional system of the unary
operations acting as endomorphisms with respect to basic operations. These
operations are called permutable with basic operations. An algebra with opera-
tors is ternary if it has exactly one basic operation and this operation is ternary.

It is obtained the sufficient condition of Hamiltonity for arbitrary universal
algebras with operators. It is described Hamiltonian algebras in classes of
ternary algebras with one operator and with basic operation that is either
Pixley operation, or minority function, or majority function of special view.

Let V be a variety of algebras with operators and V has signature Ω1∪Ω2,
where Ω1 is an arbitrary signature containing near-unanimity function and
Ω2 is a set of operators. It is proved that V not contains nontrivial Abelian
algebras.

Keywords: Hamiltonian algebra, Abelian algebra, algebra with operators,
ternary operation, near-unanimity function

1. Введение
Свойство гамильтоновости для универсальных алгебр было введено в рас-

смотрение B. Csákány [1] и K. Shoda [2], как естественное обобщение понятия
гамильтоновой группы.

Универсальная алгебра ⟨A, Ω⟩ называется гамильтоновой, если носитель
любой ее подалгебры является классом некоторой конгруэнции алгебры ⟨A, Ω⟩.
Многообразие алгебр называется гамильтоновым, если любая его алгебра га-
мильтонова. Гамильтоновыми являются, в частности, абелевы группы, модули,
унарные алгебры.

Гамильтоновы алгебры и многообразия изучались в ряде работ R. McKenzie,
M. Valeriot, E. Kiss, L. Klukovits (см.. напр., [3] – [6]). Как оказалось, гамильто-
новость тесно связана со свойствами абелевости и сильной абелевости алгебр.

Абелевость является одним из центральных понятий в теории коммутаторов
конгруэнций [7] и, в свою очередь, имеет глубокие связи со свойством полино-
миальной (функциональной) полноты алгебр (см. [8], [9]). Изучение абелевости
и сильной абелевости оказало значительное влияние на возникновение теории
ручных конгруэнций [10], которая в настоящее время служит основным инстру-
ментом исследования конечных алгебр.

В [5] показано, что если декартов квадрат алгебры гамильтонов, то сама ал-
гебра абелева. В той же работе доказано, что из гамильтоновости многообразия
следует его абелевость, а для локально конечных многообразий свойства абе-
левости и гамильтоновости эквивалентны. L. Klukovits [6] охарактеризовал га-
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мильтоновы многообразия в терминах строгих мальцевских условий. M. Valeriot
[4] показал, что если конечная простая алгебра абелева, то она является гамиль-
тоновой. В [11] изучены связи сильной абелевости и гамильтоновости в локально
конечных многообразиях.

Внимание исследователей уделяется также изучению гамильтоновых алгебр,
имеющих конкретные сигнатуры. В частности, в [12] описаны гамильтоновы
алгебры в классах абелевых полугрупп, конечных и абелевых группоидов с
единицей, а также доказано, что любая конечная абелева квазигруппа является
гамильтоновой.

В настоящей работе изучаются гамильтоновы алгебры в некоторых подклас-
сах класса алгебр с операторами (см. [13], §13).

Алгеброй с операторами называется универсальная алгебра ⟨A,Ω⟩ сигна-
туры Ω = Ω1 ∪ Ω2, где Ω1 произвольна, а Ω2 состоит из унарных операций,
перестановочных с любой операцией из Ω1, то есть, действующих как эндо-
морфизмы относительно операций из Ω1. Унарные операции из Ω2 называются
операторами, а операции из Ω1 — основными операциями алгебры ⟨A,Ω⟩.

Алгебры с операторами естественным образом связаны с другим важным
классом универсальных алгебр — унарами, то есть, алгебрами с одной унарной
операцией. Если f — унарная операция из сигнатуры Ω, то унар ⟨A, f⟩ называ-
ется унарным редуктом алгебры ⟨A, Ω⟩. К настоящему времени теория унаров
достаточно хорошо развита (см., например, [14] – [16]), что позволяет исполь-
зовать ее аппарат для изучения алгебр с операторами в терминах их унарных
редуктов.

Алгебра с операторами называется тернарной, если она имеет единственную
основную операцию, и эта операция является тернарной. Среди тернарных опе-
раций особое внимание уделяется операциям, перечисленным ниже.

Мальцевской называется тернарная операция d(x, y, z), удовлетворяющая
тождествам Мальцева

d(x, y, y) = d(y, y, x) = x. (1)

Для многообразий алгебр существование мальцевского терма от основных опе-
раций равносильно конгруэнц-перестановочности.

Будем называть мальцевскую операцию d функцией Пиксли, если она удо-
влетворяет тождествам Пиксли d(y, y, x) = d(x, y, y) = d(x, y, x) = x. Извест-
но [17], что для многообразия существование тернарного терма d от основных
операций, удовлетворяющего тождествам Пиксли, эквивалентно арифметично-
сти (то есть, конгруэнц-перестановочности и конгруэнц-дистрибутивности) это-
го многообразия.

Мальцевская операция d называется функцией меньшинства (minority func-
tion), если для нее выполняются тождества d(y, y, x) = d(x, y, y) = d(y, x, y) = 
x. Из определения функции меньшинства следует, что она является слабой
функцией почти единогласия (weak near-unanimity function), то есть опера-
цией f , удовлетворяющей тождествам f(x, . . . , x, y) = f(x, . . . , x, y, x) = . . . = 
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f(y, x, . . . , x). Интерес к алгебрам, имеющим термальную слабую функцию по-
чти единогласия, во многом обусловлен их приложениями в области исследова-
ния вычислительной сложности ограничений задачи CSP (Constraint Satisfac-
tion Problem) и в смежных областях (см., напр., [18]).

Тернарная операция d(x, y, z) называется функцией большинства (majority
function), если она удовлетворяет тождествам

d(x, x, y) = d(x, y, x) = d(y, x, x) = x. 

Функция большинства является тернарным вариантом функции почти едино-
гласия (near-unanimity function), то есть операции ϕ, для которой выполняются
тождества

ϕ(x, . . . , x, y) = ϕ(x, . . . , x, y, x) = . . . = ϕ(y, x, . . . , x) = x. (2)

Алгебрам с термальной функцией почти единогласия уделяется много вни-
мания в современной универсальной алгебре (см., напр., [19]), теории графов и
исследованиях CSP-задач.

В настоящей работе рассматриваются некоторые подклассы многообразий
тернарных алгебр с одним оператором, заданных тождествами, определяющи-
ми функции Пиксли, меньшинства и большинства (унары с мальцевской опе-
рацией и подобные им алгебры).

2. Основные определения и конструкции
Через ConA обозначается решетка конгруэнций алгебры A, через ▽ и △ —

единичная и нулевая конгруэнции алгебры A соответственно. Класс конгруэн-
ции θ, порожденный элементом x, обозначается через [x]θ. Неодноэлементная
алгебра называется простой, если она имеет в точности две конгруэнции (▽ и
△).

Пусть α, β ∈ ConA. Определим конгруэнцию Dα
β на подалгебре алгебры

A2 с носителем α как наименьшую конгруэнцию, порожденную множеством
{((x, x), (y, y))|(x, y) ∈ β}. Коммутатором конгруэнций α, β называется такое
отношение [α, β] на A, что (x, y) ∈ [α, β] выполнено тогда и только тогда, когда
((x, x), (x, y)) ∈ Dα

β .
Алгебра называется абелевой, если для нее выполняется условие [▽,▽] = △.

Алгебра называется нейтральной, если для любых α, β ∈ ConA выполняется
соотношение [α, β] = α ∩ β. Многообразие называется нейтральным, если все
его алгебры нейтральны.

Пусть ⟨A, f⟩ — произвольный унар. Для любого элемента z ∈ A через fn(z) 
обозначается результат n-кратного применения операции f к элементу z; также
положим f 0(z) = z.

Для любых чисел n > 0, m > 0 положим Cm = ⟨a|fm(a) = fn+m(a)⟩. Унар C0 
n n 

называется циклом длины n. Элемент a унара называется циклическим, если по-
дунар, порожденный этим элементом, является циклом. Через Cn 

∞ обозначается
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объединение возрастающей последовательности унаров Cn
t1 ⊆ Cn

t2 ⊆ . . . (ti > 0),
t1 < t2 < . . . . Элемент a унара называется периодическим, если f t(a) = f t+n(a) 
для некоторых t > 0 и n > 1. Унар называется периодическим, если любой его
элемент является периодическим. Через T (A) обозначается множество перио-
дических элементов унара A.

Если a — периодический элемент, то наименьшее из чисел t, для которых
f t(a) = f t+n(a) при некоторых n > 1, называется глубиной элемента a и обо-
значается через t(a). Глубиной t(A) унара A называется наибольшая из глубин
его периодических элементов, если T (A) ̸ ∅. Если множество {t(a) |= a ∈ T (A)}
не ограничено, то говорят, что унар имеет бесконечную глубину.

Объединение двух непересекающихся унаров B и C называется их суммой
и обозначается через B + C. Унар ⟨A, f⟩ называется связным, если для любых
x, y ∈ A выполняется условие fn(x) = fm(y) для некоторых n,m > 0. Мак-
симальный по включению связный подунар унара A называется компонентой
связности унара A.

Элемент a унара называется узловым, если найдутся такие различные эле-
менты b и c (возможно, циклические), отличные от a, что f(b) = a = f(c).
Элемент a унара ⟨A, f⟩ называется неподвижным, если f(a) = a.

Через F1 обозначается свободный однопорожденный унар. Связный унар с
неподвижным элементом называется корнем. Через ⟨a⟩f обозначается подунар
унара ⟨A, f⟩, порожденный элементом a.

Пусть n ∈ N . Через σn обозначается конгруэнция унара ⟨A, f⟩, определен-
ная по правилу [21]: xσny для x, y ∈ A выполнено тогда и только тогда, когда
fn(x) = fn(y). Положим также σ0 = △.

Унаром с мальцевской операцией [22] называется алгебра ⟨A, d, f⟩ с унар-
ной операцией f и тернарной операцией d, на которой выполняются тождества
Мальцева (1) и тождество перестановочности f(d(x, y, z)) = d(f(x), f(y), f(z)).
Таким образом, унар с мальцевской операцией является тернарной алгеброй с
одним оператором.

В [22] показано, что на любом унаре ⟨A, f⟩ можно так задать тернарную
операцию p, что алгебра ⟨A, p, f⟩ становится унаром с мальцевской операцией.
Эта операция определяется следующим образом. Пусть ⟨A, f⟩ — произвольный
унар и x, y ∈ A. Положим Mx,y = {n ∈ N ∪ {0} | fn(x) = fn(y)}, а также
k(x, y) = min Mx,y, если Mx,y ̸= ∅ и k(x, y) = ∞, если Mx,y = ∅. Положим далее

def z, если k(x, y) 6 k(y, z)
p(x, y, z) = (3)

x, если k(x, y) > k(y, z). 

Из определения вытекает, что операция p(x, y, z) удовлетворяет тождествам
Пиксли. Как следствие, алгебры данного класса конгруэнц-перестановочны и
конгруэнц-дистрибутивны.

В [23] показано, что на любом унаре ⟨A, f⟩ можно задать тернарную опе-
рацию s(x, y, z) (называемую симметрической), так, что алгебра ⟨A, s, f⟩ 
становится унаром с мальцевской операцией, удовлетворяющим тождеству
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s(x, y, x) = y. Предложенная конструкция восходит к [22] и задает функцию
меньшинства:   z, если k(x, y) < k(y, z);

def 
s(x, y, z) = y, если k(x, y) = k(y, z); (4) 

x, если k(x, y) > k(y, z). 

Аналогичным способом на произвольном унаре ⟨A, f⟩ можно задать функ-
цию большинства m(x, y, z) [24], перестановочную с унарной операцией f :

def z, если k(x, y) > k(y, z);
m(x, y, z) = (5)

x, если k(x, y) < k(y, z). 

В результате, снова получаем тернарную алгебру с одним оператором ⟨A, m, f⟩.

3. Основные результаты
Достаточное условие гамильтоновости для произвольных алгебр с операто-

рами дает следующее

Предложение 1. Пусть ⟨A,Ω⟩ — произвольная алгебра с оператором f ∈ Ω.
Если ⟨A, f⟩ ∼= Ct, где t ∈ N ∪ {∞}, или ⟨A, f⟩ ∼= 

, то алгебра ⟨A, Ω⟩ является гамильтоновой.
1 , где n ∈ N , или ⟨A, f⟩ ∼= 0Cn

C1
0 + C0 

1

Доказательство. Пусть ⟨A, f⟩ ∼= 0 для некоторого n ∈ N . Так как fn(x)C =n 

x для всех x ∈ A, то ⟨A, Ω⟩ не имеет собственных подалгебр. Тогда ее един-
ственная (несобственная) подалгебра является классом конгруэнции ▽, откуда
⟨A,Ω⟩ — гамильтонова.

Пусть ⟨A, f⟩ ∼= 0
1

0 C+1 {a, b}. Если ⟨{a},Ω⟩ или ⟨{b},Ω⟩ являются
подалгебрами алгебры ⟨A, Ω⟩, то они являются и классами ее конгруэнции △,

C , A =

а несобственная подалгебра — классом конгруэнции ▽. Таким образом, ⟨A, Ω⟩ 
— гамильтонова.

Пусть теперь ⟨A, f⟩ ∼= 1C
t, где t ∈ N∪{∞}, и B — подалгебра алгебры ⟨A, Ω⟩.

Так как B замкнута относительно операции f , то ⟨B, f⟩ — подунар унара ⟨A, f⟩.
Отсюда, если t < ∞, то ⟨B, f⟩ ∼= для некоторого s 6 t. Если же t =sC1

для некоторого s > 0, либо ⟨B, f⟩ ∼= 
∞,

то либо ⟨B, f⟩ ∼= 11C
s C∞ 

случае B — несобственная подалгебра алгебры ⟨A, Ω⟩ и, значит, B является
классом конгруэнции ▽, поэтому далее достаточно рассмотреть случай, когда

. В последнем

⟨B, f⟩ ∼= sC1

Обозначим неподвижный элемент унара ⟨A, f⟩ через a, а порождающий эле-
мент подунара ⟨B, f⟩ — через b. По замечанию 1 [21], отношение σs является
конгруэнцией алгебры ⟨A,Ω⟩. Докажем, что B = [a]σs.

Пусть x ∈ B. Тогда x = fd(b) для некоторого d 6 t(b). Поскольку t(b) = s, то
t(x) 6 s, откуда f s(x) = a. С другой стороны, f s(a) = a. Отсюда, f s(x) = f s(a),
что влечет xσsa и x ∈ [a]σs. Таким образом, B ⊆ [a]σs.

Пусть теперь x ∈ [a]σs. Тогда f s(x) = f s(a) = a, и следовательно, t(x) 6 s = 
t(b), откуда x ∈ B. Окончательно, B = [a]σs, и ⟨A, Ω⟩ — гамильтонова. ✷ 

.
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Лемма 1. Пусть ⟨A, p, f⟩ — алгебра с мальцевской операцией p(x, y, z),
определенной по правилу (3), и неинъективным оператором f . Если унар ⟨A, f⟩ 
содержит подунар, изоморфный C0 для некоторого n > 1, то алгебра ⟨A, p, f⟩ 
не является гамильтоновой.

n 

Доказательство. Пусть алгебра ⟨A, p, f⟩ удовлетворяет условиям леммы, а
D — компонента связности унара ⟨A, f⟩, содержащая подунар ⟨B, f⟩, изоморф-
ный Cn

0, где n > 1. Из определения (3) следует, что ⟨B, p, f⟩ — подалгебра ал-
гебры ⟨A, p, f⟩. Предположим, что ее носитель B является классом некоторой
конгруэнции θ ∈ Con⟨A, p, f⟩.
Случай 1. B — собственный подунар компоненты связности D.

Тогда найдется такой элемент a ∈ D \B, что f(a) ∈ B. Обозначим b = f(a),
c = f 2(a). Поскольку n > 1, то b ̸= c. Заметим, что поскольку B — класс
конгруэнции θ, то bθc. Если k(a, b) = m для некоторого m > 0, то fm(a) = fm(b),
откуда fm(a) = fm(f(a)) = f(fm(a)). Обозначив d = fm(a), имеем d = f(d), что
противоречит условию n > 1. Таким образом, k(a, b) = ∞, а поскольку операция
f инъективна на B, то и k(b, c) = ∞. Отсюда, по определению (3), p(a, b, c) = c.
С другой стороны, из (1) следует p(a, b, b) = a. Тогда c = p(a, b, c)θp(a, b, b) = a,
откуда aθc, что противоречит условию a /∈ B.
Случай 2. D = B.

Так как оператор f инъективен на D, но не инъективен на A, то унар ⟨A, f⟩ 
несвязен, и значит, существует элемент a ∈ A \ D. Кроме того, так как n > 1,
то найдутся различные элементы b, c ∈ B. Тогда из a ∈/ D имеем k(a, b) = 
∞, а поскольку операция f инъективна на B, то и k(b, c) = ∞. Отсюда, по
определению (3), p(a, b, c) = c. По предположению, bθc. Отсюда, учитывая, что
(1) влечет p(a, b, b) = a, получаем aθc. Из предположения и условия a ∈/ B 
следует, что θ ̸ ▽. Тогда, по лемме 5 [20], имеем k(a, c)= < ∞, что противоречит
выбору элемента a. ✷ 

Замечание 1. Для алгебр ⟨A, s, f⟩, ⟨A, m, f⟩, где операции s и m заданы по
определениям (4) и (5) соответственно, верны аналоги леммы 1.

Доказательство. Для алгебры ⟨A, s, f⟩, в Случае 1 из доказательства леммы
1, из (4) имеем s(a, b, c) = b. Так как s(a, b, b) = a, то aθb, что противоречит
условию a /∈ B. В Случае 2 из s(a, b, c) = b снова имеем aθb.

Для алгебры ⟨A, m, f⟩ противоречие в обоих случаях также следует из утвер-
ждения aθb, которое здесь обусловлено соотношениями

m(c, b, a) = a, m(b, b, a) = b, 

вытекающими из (5). ✷ 

Лемма 2. Пусть ⟨A, p, f⟩ — алгебра с оператором f и мальцевской опера-
цией p(x, y, z), определенной по правилу (3). Если унар ⟨A, f⟩ содержит поду-
нар, изоморфный F1, то алгебра ⟨A, p, f⟩ не является гамильтоновой.
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Доказательство. Пусть алгебра ⟨A, p, f⟩ удовлетворяет условиям леммы,
а B — подунар унара ⟨A, f⟩, изоморфный F1. Обозначим его порождающий
элемент через b. Положим также c = f(b), d = f 2(b). Из (3) следует, что подунар
⟨c⟩f является подалгеброй алгебры ⟨A, p, f⟩. Предположим, что носитель этой
подалгебры является классом некоторой конгруэнции θ ∈ Con⟨A, p, f⟩. Тогда
cθd и (b, d) ∈/ θ. Поскольку операция f на B инъективна, то k(b, c) = k(c, d) = 
∞. Отсюда, по определению (3), p(b, c, d) = d. С другой стороны, p(b, c, c) = 
b, откуда dθb, что противоречит условию (b, d) ∈/ θ. Таким образом, алгебра
⟨A, p, f⟩ не является гамильтоновой. ✷ 

Замечание 2. Для алгебр ⟨A, s, f⟩, ⟨A, m, f⟩, где операции s и m заданы по
определениям (4) и (5) соответственно, верны аналоги леммы 2.

Доказательство. Для алгебры ⟨A, s, f⟩ искомое противоречие следует из
утверждения bθc, которое обусловлено соотношениями s(b, c, d) = c, s(b, c, c) = b.

Для алгебры ⟨A, m, f⟩ к противоречию ведет утверждение bθd, вытекающее
из соотношений m(d, c, b) = b, m(d, d, b) = d. ✷ 

Лемма 3. Пусть ⟨A, p, f⟩ — алгебра с оператором f и мальцевской опера-
цией p(x, y, z), определенной по правилу (3). Если унар ⟨A, f⟩ имеет не менее
трех компонент связности, содержащих одноэлементные циклы, то алгебра
⟨A, p, f⟩ не гамильтонова.

Доказательство. Пусть унар ⟨A, f⟩ удовлетворяет условиям леммы. Обо-
значим элементы, образующие одноэлементные циклы в соответствующих ком-
понентах связности, через a, b и c.

Поскольку f(a) = a, f(b) = b, то подмножество {a, b} является подунаром
унара ⟨A, f⟩, а следовательно, из (3), и подалгеброй алгебры ⟨A, p, f⟩. Предполо-
жим, что ее носитель является классом некоторой конгруэнции θ ∈ Con⟨A, p, f⟩.
Поскольку элементы a, b, c лежат в разных компонентах связности, то k(c, b) = 
∞ и k(b, a) = ∞. Тогда из (3) следует, что p(c, b, a) = a. В то же время, из (1)
вытекает p(c, a, a) = c. Тогда, учитывая, что aθb, из двух последних равенств
имеем aθc, что противоречит предположению. ✷ 

Замечание 3. Для алгебр ⟨A, s, f⟩, ⟨A, m, f⟩, где операции s и m заданы по
определениям (4) и (5) соответственно, верны аналоги леммы 3.

Доказательство. Для алгебры ⟨A, s, f⟩ искомое противоречие следует из
утверждения bθc, которое обусловлено соотношениями s(c, b, a) = b, s(c, a, a) = 
c.

Для алгебры ⟨A,m, f⟩ к противоречию ведет утверждение cθa, вытекающее
из соотношений m(a, b, c) = c, m(a, a, c) = a. ✷ 

Лемма 4. Пусть ⟨A, p, f⟩ — алгебра с оператором f и мальцевской опера-
цией p(x, y, z), определенной по правилу (3), причем унар ⟨A, f⟩ является кор-
нем. Алгебра ⟨A, p, f⟩ гамильтонова тогда и только тогда, когда ⟨A, f⟩ ∼ C1

t ,= 
где t ∈ N ∪ {0} ∪ {∞}.
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Доказательство. Достаточность утверждения следует из предложения 1.
Докажем необходимость леммы. Пусть унар ⟨A, f⟩ является корнем, не изо-

морфным унару Ct ни при каком t ∈ N ∪ {0} ∪ {∞}.1 

По условию, ⟨A, f⟩ содержит неподвижный элемент a, причем A ̸ {a}. Кро-= 
ме того, из неизоморфности ⟨A, f⟩ унару C1 

t вытекает, что ⟨A, f⟩ имеет узловой
элемент v, и следовательно, найдутся такие элементы b, c ∈ A, что |{v, b, c}| = 3 
и f(b) = v = f(c). Обозначим через ⟨B, f⟩ подунар ⟨b⟩f унара ⟨A, f⟩.

Поскольку ⟨B, f⟩ однопорожден, то он должен быть изоморфен либо F1,
либо Ch

0, либо Ch
t для некоторых h > 0, t > 0. Так как ⟨A, f⟩ связен и содержит

подунар C1
0, то исключаются случаи, когда ⟨B, f⟩ ∼ F1 и h > 1. Поскольку= 

f(b) = v ̸ b, то случай ⟨B, f⟩ ∼ C1
0 == = также исключен. Таким образом, ⟨B, f⟩ ∼

t(b)
C .1 

Докажем, что c /∈ B. Предположив обратное, получаем, что c = fk(b) для
fk+1(b) и f(b)некоторого k > 0. Тогда из f(b) = f(c) следует f(b) = = fk(f(b)).

Отсюда, f(b) = a и, следовательно, v = a, откуда t(b) = 1. Последнее влечет
c ∈ {a, b}, что противоречит условию |{v, b, c}| = 3. Таким образом, c /∈ B.

Из (3) следует, что B — подалгебра алгебры ⟨A, p, f⟩. Предположим, что B 
— класс некоторой конгруэнции θ ∈ Con⟨A, p, f⟩. Отсюда, bθv и (c, v) ∈/ θ. Из
условий b ̸ c и f(b) = f(c) следует, что k(c, b) = 1. В то же время, из v = b= ̸
и f(b) = v вытекает неравенство t(b) > t(v), откуда, по лемме 10 [21] имеем
k(b, v) = t(b) > 1. Тогда, по определению (3), p(c, b, v) = v. С другой стороны,
из тождеств (1) вытекает p(c, v, v) = c. Следовательно, учитывая bθv, получаем
v = p(c, b, v)θp(c, v, v) = c. Отсюда, c ∈ B, что противоречит доказанному ранее
для элемента c. ✷ 

Замечание 4. Для алгебр ⟨A, s, f⟩, ⟨A, m, f⟩, где операции s и m заданы по
определениям (4) и (5) соответственно, верны аналоги леммы 4.

Доказательство. Для алгебры ⟨A, m, f⟩ к противоречию ведет утверждение
cθb, вытекающее из c = m(v, b, c)θm(b, b, c) = b.

Для алгебры ⟨A, s, f⟩ требуется рассмотреть два случая:
k(b, v) = 1 и k(b, v) > 1.
В первом из них b = s(c, b, v)θp(c, b, b) = c.
Во втором v = s(c, b, v)θp(c, b, b) = c.
Оба случая противоречат утверждению c /∈ B. ✷ 

Лемма 5. Пусть ⟨A, p, f⟩ — алгебра с оператором f и мальцевской опера-
цией p(x, y, z), определенной по правилу (3). Если унар ⟨A, f⟩ является суммой
корней, содержащей хотя бы одну неодноэлементную компоненту связности,
то алгебра ⟨A, p, f⟩ не гамильтонова.

Доказательство. Пусть унар ⟨A, f⟩ удовлетворяет условиям леммы. Тогда
он несвязен. Если ⟨A, f⟩ содержит не менее трех компонент связности, то он
удовлетворяет условиям леммы 3, и значит, алгебра ⟨A, p, f⟩ не гамильтонова.
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Таким образом, далее можно считать, что ⟨A, f⟩ имеет в точности две компо-
ненты связности.

Обозначим через D неодноэлементную компоненту связности унара ⟨A, f⟩,
а через E — другую его компоненту. Из условия леммы следует, что f(b) = b и
f(a) = a для некоторых элементов b ∈ D, a ∈ E. Кроме того, так как |D| > 1,
то найдется элемент c ∈ D, для которого f(c) = b.

Поскольку f(a) = a, f(b) = b, то подмножество {a, b} является подунаром
унара ⟨A, f⟩, а следовательно, и подалгеброй алгебры ⟨A, p, f⟩. Предположим,
что ее носитель является классом некоторой конгруэнции θ ∈ Con⟨A, p, f⟩, и
значит, aθb. Поскольку элементы a и b лежат в разных компонентах связно-
сти, то k(a, b) = ∞. Тогда из (3) следует, что p(a, b, c) = a. В то же время,
из (1) вытекает p(a, a, c) = c. Следовательно, учитывая aθb, получаем a = 
p(a, b, c)θp(a, a, c) = c, то есть, aθc, что противоречит предположению. ✷ 

Замечание 5. Для алгебр ⟨A, s, f⟩, ⟨A, m, f⟩, где операции s и m заданы по
определениям (4) и (5) соответственно, верны аналоги леммы 5.

Доказательство. Для алгебры ⟨A, m, f⟩ к противоречию ведет утверждение
cθa, вытекающее из c = m(a, b, c)θm(a, a, c) = a.

Для алгебры ⟨A, s, f⟩ учитываем, что так как b ̸ c и f(c) = b = f(b), то= 
k(b, c) = 1. Отсюда, a = s(a, b, c)θs(a, a, c) = c. ✷ 

Теорема 1. Пусть ⟨A, d, f⟩ — тернарная алгебра с оператором f , где d —
операция, определенная по одному из правил (3)–(5). Алгебра ⟨A, d, f⟩ является
гамильтоновой тогда и только тогда, когда унар ⟨A, f⟩ изоморфен одному из
следующих унаров:
1) C0 

n для некоторого n > 0;
2) C0

1 + C0
1 ;

, для некоторого t ∈ N ∪ {∞}.

Доказательство. Поскольку ⟨A, d, f⟩ — алгебра с оператором, то достаточ-

3) tC1

ность теоремы следует из предложения 1.
Докажем необходимость теоремы. Рассмотрим сначала алгебры ⟨A, d, f⟩, где

операция d(x, y, z) определена по правилу (3). Пусть унар ⟨A, f⟩ неизоморфен
ни одному из унаров, перечисленных в условиях теоремы.

Если унар ⟨A, f⟩ содержит подунар, изоморфный F1, то, по лемме 2, алгебра
⟨A, d, f⟩ не является гамильтоновой. Поэтому далее предполагаем, что каждая
компонента связности унара ⟨A, f⟩ (или сам унар, в случае его связности) со-
держит цикл.

Рассмотрим случай, когда операция f инъективна на A. Так как по условию
унар ⟨A, f⟩ неизоморфен циклу, то в этом случае он несвязен. Тогда, учитывая
инъективность f , получаем, что ⟨A, f⟩ является суммой циклов.

Допустим, что унар ⟨A, f⟩ содержит хотя бы одну неодноэлементную компо-
ненту связности B, то есть, цикл длины m > 1. Из (3) следует, что B является
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подалгеброй алгебры ⟨A, d, f⟩, причем, в силу несвязности унара ⟨A, f⟩, соб-
ственной.

Предполагая, что B является классом некоторой конгруэнции

θ ∈ Con⟨A, d, f⟩, 

получаем, что θ должна быть нетривиальна. Действительно, из условия m > 
1 следует, что θ ̸ △, а поскольку B — собственная подалгебра, то θ ̸ ▽.= = 
Однако, по Теореме 2 [21], из инъективности операции f на A следует, что
алгебра ⟨A, d, f⟩ проста, а это противоречит нетривиальности конгруэнции θ.

Таким образом, далее можно считать, что все компоненты связности унара
⟨A, f⟩ — одноэлементные циклы. По условию, ⟨A, f⟩ неизоморфен C1

0 + C1
0, то

есть, содержит не менее трех компонент связности. Тогда он удовлетворяет
условиям леммы 3, и следовательно, алгебра ⟨A, d, f⟩ не гамильтонова.

Пусть теперь операция f не инъективна на A. По лемме 1, из наличия в
0хотя бы одного подунара, изоморфного⟨ ⟩A, f Cn для некоторого n > 1, сле-

дует, что ⟨A, p, f⟩ не гамильтонова. Поэтому далее считаем, что все циклы в
компонентах связности одноэлементны, то есть, унар ⟨A, f⟩ является либо кор-
нем, либо суммой корней.

По условию, унар ⟨A, f⟩ не изоморфен унару Ct 
1 ни при каком t ∈ N ∪

{0} ∪ {∞}, поэтому, если ⟨A, f⟩ — корень, то, по лемме 4, алгебра ⟨A, d, f⟩ не
гамильтонова.

В оставшемся случае, в силу неинъективности f на A, хотя бы одна из ком-
понент связности неодноэлементна. Тогда унар ⟨A, f⟩ удовлетворяет условиям
леммы 5 и, следовательно, алгебра ⟨A, d, f⟩ снова не гамильтонова.

С учетом замечаний 1–5, рассуждения, аналогичные проведенным выше,
приводят к выполнению необходимого условия теоремы для алгебр ⟨A, s, f⟩,
⟨A,m, f⟩, где операции s и m заданы по определениям (4) и (5) соответственно.
✷ 

В [24] были описаны абелевы и полиномиально полные алгебры в классах
тернарных алгебр с одним оператором, основные операции которых задаются
по правилам (3) и (4).

Рассмотрим теперь абелевы алгебры в классе алгебр с операторами, имею-
щих сигнатуру Ω1 ∪ Ω2, где Ω1 — произвольная сигнатура, содержащая функ-
цию почти единогласия ϕ(x1, x2, . . . , xn), а Ω2 — множество операторов, то есть,
унарных операций, перестановочных с каждой операцией из Ω1.

Обозначим через V многообразие алгебр сигнатуры Ω1 ∪ Ω2, заданное тож-
дествами (2) и тождествами перестановочности каждого оператора f ∈ Ω2 с
любой операцией из основной сигнатуры Ω1.

В [19] показано, что для произвольного многообразия из существования тер-
ма почти единогласия от основных операций следует конгруэнц-дистрибутив-
ность этого многообразия. Отсюда, многообразие V дистрибутивно. Известно
[25], что многообразие дистрибутивно тогда и только тогда, когда оно нейтраль-
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но. Таким образом, для любых конгруэнций α и β любой алгебры из V выпол-
няется соотношение [α, β] = α∩β. Тогда, если алгебра A ∈ V неодноэлементна,
то для нее [▽,▽] = ▽ ̸ △.= 

Окончательно, получаем

Предложение 2. Пусть V — многообразие алгебр с операторами, имеющее
сигнатуру Ω1 ∪Ω2, где Ω1 — основная (произвольная) сигнатура, содержащая
функцию почти единогласия, а Ω2 — множество операторов. В многообразии
V алгебра является абелевой тогда и только тогда, когда она одноэлементна.

Следствие 1. Пусть W — многообразие тернарных алгебр с операторами,
имеющее сигнатуру {d} ∪ Ω, где d(x, y, z) — функция большинства, а Ω —
множество операторов. В многообразии W алгебра является абелевой тогда
и только тогда, когда она одноэлементна.

Следствие 2. Пусть ⟨A, m, f⟩ — тернарная алгебра с оператором f , где
операция m(x, y, z) задана по правилу (5). Класс алгебр ⟨A, m, f⟩ не содержит
нетривиальных абелевых алгебр.

4. Заключение
Основным результатом работы являются необходимые и достаточные усло-

вия гамильтоновости для тернарных алгебр с одним оператором, основная опе-
рация которых является либо функцией Пиксли, либо функцией меньшинства,
либо функцией большинства, заданными специальным образом на произволь-
ном унаре.

Получены также достаточное условие гамильтоновости для алгебр с опера-
торами, имеющих произвольную сигнатуру, и описание абелевых алгебр в мно-
гообразии алгебр с операторами, где основная сигнатура содержит функцию
большинства.
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