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Аннотация

Обсудим некоторые тождества с участием 𝜇(𝑛) и 𝑀(𝑥) =
∑︀

𝑛≤𝑥 𝜇(𝑛), функции Мё-
биуса и Мертенса. Они позволяют вычислить 𝑀(𝑁𝑑) для 𝑑 = 1, 2, 3, . . . как сум-
му 𝑂𝑑

(︀
𝑁𝑑(log𝑁)2𝑑−2

)︀
членов, каждое произведение вида 𝜇(𝑛1) · · ·𝜇(𝑛𝑟) с 𝑟 ≤ 𝑑 и

𝑛1, . . . , 𝑛𝑟 ≤ 𝑁 . Докажем более общее тождество, в котором 𝑀(𝑁𝑑) заменяется на
𝑀(𝑔,𝐾) =

∑︀
𝑛≤𝐾 𝜇(𝑛)𝑔(𝑛), где 𝑔(𝑛) – произвольная полностью мультипликативная функ-

ция, тогда как каждое 𝑛𝑗 имеет собственный диапазон суммирования 1, . . . , 𝑁𝑗 . Это не
ново, за исключением того, что в 𝑁1, . . . , 𝑁𝑑 произвольны, но наше доказательство (вдох-
новленное тождественным равенством Э. Майсселя, 1854) является новым. Мы главным
образом заинтересованы в случае 𝑑 = 2, 𝐾 = 𝑁2, 𝑁1 = 𝑁2 = 𝑁 , где тождество име-
ет вид 𝑀(𝑔,𝑁2) = 2𝑀(𝑔,𝑁) − mT𝐴m, при этом 𝐴 является матрицей 𝑁 × 𝑁 элементов
𝑎𝑚𝑛 =

∑︀
𝑘≤𝑁2/(𝑚𝑛) 𝑔(𝑘), в то время как m = (𝜇(1)𝑔(1), . . . , 𝜇(𝑁)𝑔(𝑁))T. Наши результа-

ты в разделах 2 и 3 данной статьи предполагают, что 𝑔(𝑛) равно 1 для всех 𝑛. Теорема
Фробениуса—Перрона применяется в этом случае: мы находим, что 𝐴 имеет одно большое
положительное собственное значение, приблизительно (𝜋2/6)𝑁2, с собственным вектором
приблизительно f = (1, 1/2, 1/3, . . . , 1/𝑁)T T и что при больших значениях 𝑁 второе наи-
большее собственное значение лежит в (−0.58𝑁,−0.49𝑁). Раздел 2 включает оценки для
следов 𝐴 и 𝐴2 (хотя для Tr(𝐴2), мы пропустим часть доказательства). В разделе 3 об-
суждаются способы аппроксимации mT𝐴m, используя спектральное разложение 𝐴 или
(альтернативно) формулу Перрона: последний подход приводит к контурному интегралу,
включающему дзета-функцию Римана. Мы также рассматриваем использование тожде-
ства 𝐴 = 𝑁2 f f𝑇 − 1

2uu𝑇 + 𝑍, а 𝑍 — матрица 𝑁 × 𝑁 элементов 𝑧𝑚𝑛 = −𝜓(𝑁2/(𝑚𝑛)),
причем 𝜓(𝑥) = 𝑥− ⌊𝑥⌋ − 1

2 . Наши выводы представлены в разделе 4.
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Abstract

We discuss certain identities involving 𝜇(𝑛) and 𝑀(𝑥) =
∑︀

𝑛≤𝑥 𝜇(𝑛), the functions of
Möbius and Mertens. These allow calculation of 𝑀(𝑁𝑑), for 𝑑 = 1, 2, 3, . . . , as a sum
of 𝑂𝑑

(︀
𝑁𝑑(log𝑁)2𝑑−2

)︀
terms, each a product of the form 𝜇(𝑛1) · · ·𝜇(𝑛𝑟) with 𝑟 ≤ 𝑑

and 𝑛1, . . . , 𝑛𝑟 ≤ 𝑁 . We prove a more general identity in which 𝑀(𝑁𝑑) is replaced by
𝑀(𝑔,𝐾) =

∑︀
𝑛≤𝐾 𝜇(𝑛)𝑔(𝑛), where 𝑔(𝑛) is an arbitrary totally multiplicative function, while

each 𝑛𝑗 has its own range of summation, 1, . . . , 𝑁𝑗 . This is not new, except perhaps in that
𝑁1, . . . , 𝑁𝑑 are arbitrary, but our proof (inspired by an identity of E. Meissel, 1854) is new.
We are mainly interested in the case 𝑑 = 2, 𝐾 = 𝑁2, 𝑁1 = 𝑁2 = 𝑁 , where the identity
has the form 𝑀(𝑔,𝑁2) = 2𝑀(𝑔,𝑁) − mT𝐴m, with 𝐴 being the 𝑁 × 𝑁 matrix of elements
𝑎𝑚𝑛 =

∑︀
𝑘≤𝑁2/(𝑚𝑛) 𝑔(𝑘), while m = (𝜇(1)𝑔(1), . . . , 𝜇(𝑁)𝑔(𝑁))T. Our results in Sections 2

and 3 of the paper assume that 𝑔(𝑛) equals 1 for all 𝑛. The Perron-Frobenius theorem applies
in this case: we find that 𝐴 has one large positive eigenvalue, approximately (𝜋2/6)𝑁2, with
eigenvector approximately f = (1, 1/2, 1/3, . . . , 1/𝑁)T, and that, for large 𝑁 , the second-largest
eigenvalue lies in (−0.58𝑁,−0.49𝑁). Section 2 includes estimates for the traces of 𝐴 and 𝐴2

(though, for Tr(𝐴2), we omit part of the proof). In Section 3 we discuss ways to approximate
mT𝐴m, using the spectral decomposition of 𝐴, or (alternatively) Perron’s formula: the latter
approach leads to a contour integral involving the Riemann zeta-function. We also discuss using
the identity 𝐴 = 𝑁2 f f𝑇 − 1

2uu𝑇 + 𝑍, where u = (1, . . . , 1)T and 𝑍 is the 𝑁 × 𝑁 matrix of
elements 𝑧𝑚𝑛 = −𝜓(𝑁2/(𝑚𝑛)), with 𝜓(𝑥) = 𝑥− ⌊𝑥⌋ − 1

2 .

Keywords: Möbius function, Mertens function, completely multiplicative function, Meissel,
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Chebyshevskii sbornik, vol. 19, no. 3, pp. 20–34.

Dedicated to the memory of Yu. V. Linnik

1. Introduction

The sieve of Eratosthenes will find the prime numbers in 𝑁 + 1, . . . , 𝑁2 provided that we know
all the primes in 2, . . . , 𝑁 . In particular the sieve gives a relation for the function 𝜋(𝑥) that counts
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the number of primes less than or equal to 𝑥:

𝜋(𝑁2) = 𝜋(𝑁) − 1 +
∑︁
𝑑≤𝑁2

𝑃 (𝑑)≤𝑁

𝜇(𝑑)

[︂
𝑁2

𝑑

]︂
, (1)

where 𝜇(𝑑) is the Möbius function (which is (−1)𝜈 when 𝑑 has 𝜈 prime factors, all different, but 0
when 𝑑 has any prime factor repeated), while 𝑃 (𝑑) is the greatest non-composite divisor of 𝑑, and
[𝑥] = max{𝑚 ∈ Z : 𝑚 ≤ 𝑥}. The numbers 𝑑 in (1) are constructed as products of the known primes
in 2, . . . , 𝑁 , so the values 𝜇(𝑑) can be read off. In general, given a number 𝑛, it is very difficult to
factorise 𝑛 and so find 𝜇(𝑛). Thus the Mertens sum

𝑀(𝑥) =
∑︁
𝑛≤𝑥

𝜇(𝑛) (2)

is difficult to calculate from the definition. The Dirichlet series
∑︀
𝜇(𝑛)/𝑛𝑠 is 1/𝜁(𝑠) (the reciprocal

of the Riemann zeta function), and, according to folklore, the fastest method of calculating 𝑀(𝑥)
is by Perron’s contour integral formula for the sum of the coefficients of a Dirichlet series.

In this paper we discuss a family of identities which allow 𝑀(𝑁𝑑) to be calculated for each
positive integer 𝑑 as a sum of no more than 𝑂𝑑

(︀
𝑁𝑑(log𝑁)2𝑑−2

)︀
terms, each a product of the form

𝜇(𝑛1) · · ·𝜇(𝑛𝑟) with 𝑟 ≤ 𝑑 and {𝑛1, . . . , 𝑛𝑟} ⊆ {1, . . . , 𝑁}. In Theorem 1, below, we state a more
complicated form of these identities, in which each of the variables of summation 𝑛𝑗 (𝑗 = 1, . . . , 𝑟)
can have its own independent range of summation: 1, . . . , 𝑁𝑗 (say).

We actually treat the more general Möbius sum

𝑀(𝑔, 𝑥) =
∑︁
𝑛≤𝑥

𝜇(𝑛)𝑔(𝑛), (3)

where 𝑔(𝑛) can be any totally multiplicative arithmetic function, that is, 𝑔(𝑟𝑠) = 𝑔(𝑟)𝑔(𝑠) holds for
any positive integers 𝑟 and 𝑠. The relevant identity when 𝑑 = 1 is (of course) the definition (3). The
case 𝑑 = 2 is the next simplest. Let m(𝑔,𝑁) be the column-matrix (𝜇(1)𝑔(1), . . . , 𝜇(𝑁)𝑔(𝑁))T, and
let 𝐴(𝑔,𝑁) be the 𝑁 ×𝑁 matrix with elements

𝑎𝑚𝑛(𝑔,𝑁) =
∑︁

𝑘≤𝑁2

𝑚𝑛

𝑔(𝑘) (𝑚,𝑛 ∈ {1, . . . , 𝑁}). (4)

Then

𝑀(𝑔,𝑁2) = 2𝑀(𝑔,𝑁) − (m(𝑔,𝑁))T𝐴(𝑔,𝑁)m(𝑔,𝑁) . (5)

In the general case, when 𝑑,𝐾,𝑁 ∈ N satisfy 𝑑 ≥ 2 and 𝐾 ≥ 𝑁 > 𝐾1/𝑑 − 1, we have:

𝑀(𝑔,𝐾) = 𝑑𝑀(𝑔,𝑁)

−
𝑑∑︁

𝑟=2

(−1)𝑟 𝑑𝐶𝑟

∑︁
𝑛1≤𝑁

· · ·
∑︁
𝑛𝑟≤𝑁

∑︁
𝑘1

· · ·
∑︁
𝑘𝑟−1

𝑛1𝑛2...𝑛𝑟𝑘1𝑘2...𝑘𝑟−1≤𝐾

𝑔(𝑘1 · · · 𝑘𝑟−1)

𝑟∏︁
𝑖=1

𝜇(𝑛𝑖)𝑔(𝑛𝑖) , (6)

where 𝑑𝐶𝑟 = 𝑑(𝑑− 1) · · · (𝑑− (𝑟 − 1))/(𝑟!).
Note that (5) is just the special case 𝑑 = 2, 𝐾 = 𝑁2 of (6). Moreover, (6) is itself a special

case of another identity (that stated in Theorem 1, below), in which the single range of summation
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1, . . . , 𝑁 is replaced by 𝑑 independent ranges of summation. In order to state this more general
identity we require some more notation.

Let 𝑑 be a positive integer greater than 1. Let 𝑉 = 𝑣1𝑣2 . . . 𝑣𝑑 be a word of length 𝑑 in the
alphabet {0, 1}. The support of a word 𝑉 is the set of indices 𝑖 for which 𝑣𝑖 = 1. The weight 𝑤(𝑉 )
of a word 𝑉 is the size of the support, so that 𝑤(𝑉 ) =

∑︀
𝑣𝑖. The combinatorial Möbius function,

which we write as 𝜇* to distinguish it from the number-theoretic function 𝜇, is 𝜇*(𝑉 ) = (−1)𝑤(𝑉 ).

Let 𝑁1, . . . , 𝑁𝑑 be positive integers. For each word 𝑉 , and each 𝐿 ∈ N, let the notatation
∑︀𝐿

1 (𝑉 )
signify summation over 𝑛1, . . . , 𝑛𝑑 in the ranges 𝑛𝑖 = 1, . . . , 𝐿 when 𝑣𝑖 = 0, but 𝑛𝑖 = 1, . . . , 𝑁𝑖 when
𝑣𝑖 = 1. When 𝐿 = 1 and 𝑣𝑖 = 0, the variable of summation 𝑛𝑖 effectively becomes ‘frozen’, meaning
that its range of summation is then just the single-element set {1}.

Let 𝐾 be a positive integer that is less than (1 + 𝑁1)(1 + 𝑁2) . . . (1 + 𝑁𝑑). If 𝑛1, . . . , 𝑛𝑑 are
integers satisfying the condition 𝑛1𝑛2 . . . 𝑛𝑑 ≤ 𝐾, then 𝑛𝑖 ≤ 𝑁𝑖 holds for at least one index 𝑖. It
therefore follows by the inclusion-exclusion principle of combinatorics that if 𝑓 : N𝑑 → C is such
that one has |𝑓(𝑛1, . . . , 𝑛𝑑)| > 0 only when 𝑛1𝑛2 · · ·𝑛𝑑 ≤ 𝐾, then

𝐾∑︁
1

(00 . . . 0)𝑓(𝑛1, . . . , 𝑛𝑑) =
𝑑∑︁

𝑟=1

(−1)𝑟−1
∑︁

𝑉 :𝜔(𝑉 )=𝑟

𝐾∑︁
1

(𝑉 )𝑓(𝑛1, . . . , 𝑛𝑑) , (7)

or, to put it more elegantly,
∑︀

𝑉 𝜇
*(𝑉 )

∑︀𝐾
1 (𝑉 )𝑓(𝑛1, . . . , 𝑛𝑑) = 0.

Theorem 1. When 𝑔(𝑛) is a totally multiplicative arithmetic function, and 𝑑, 𝑁1, . . . , 𝑁𝑑 and
𝐾 are as above, we have:

𝑀(𝑔,𝐾) =

𝑑∑︁
𝑖=1

𝑀(𝑔,min{𝑁𝑖,𝐾})

−
∑︁

𝑉 :𝑤(𝑉 )≥2

(−1)𝑤(𝑉 )
1∑︁
1

(𝑉 )
∑︁
𝑘1

· · ·
∑︁

𝑘𝜔(𝑉 )−1

𝑘1...𝑘𝜔(𝑉 )−1≤
𝐾

𝑛1...𝑛𝑑

𝑔(𝑘1 · · · 𝑘𝜔(𝑉 )−1)
𝑑∏︁

𝑖=1

𝜇(𝑛𝑖)𝑔(𝑛𝑖) . (8)

Proof. We apply (7) with 𝑓 given by:

𝑓(𝑛1, . . . , 𝑛𝑑) =
∑︁
𝑘1

· · ·
∑︁
𝑘𝑑−1

𝑘1...𝑘𝑑−1≤ 𝐾
𝑛1...𝑛𝑑

𝜇(𝑛1) . . . 𝜇(𝑛𝑑)𝑔(𝑘1 . . . 𝑘𝑑−1𝑛1 . . . 𝑛𝑑). (9)

For the word 𝑉 = 11 . . . 1 with 𝑤(𝑉 ) = 𝑑, we have

𝐾∑︁
1

(11 . . . 1) =

1∑︁
1

(11 . . . 1).

All other words 𝑉 have 𝑣𝑗 = 0 for at least one index 𝑗, so the corresponding summand 𝑛𝑗 runs over
the full range from 1 to 𝐾. For these words 𝑉 we carry out the following ‘contraction step’. Take
an index 𝑗 for which 𝑣𝑗 = 0. We sum over 𝑛𝑗 and 𝑘𝑑−1 first, observing that by Möbius inversion we
have:
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𝐾∑︁
𝑛𝑗=1

∑︁
𝑘𝑑−1≤

𝐾
𝑛1...𝑛𝑑𝑘1...𝑘𝑑−2

𝜇(𝑛𝑗)𝑔(𝑛𝑗𝑘𝑑−1

=
∑︁
𝑚≤ 𝐾

𝑛1...𝑛𝑗−1𝑛𝑗+1...𝑛𝑑𝑘1...𝑘𝑑−2

𝑔(𝑚)
∑︁
𝑛𝑗 |𝑚

𝜇(𝑛𝑗)

=

{︃
𝑔(1) = 𝜇(1)𝑔(1) 𝑖𝑓 𝑛1 . . . 𝑛𝑗−1𝑛𝑗+1 . . . 𝑛𝑑𝑘1 . . . 𝑘𝑑−2 ≤ 𝐾,

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

We thereby find that the value of the relevant sum over 𝑛1, . . . , 𝑛𝑑 and 𝑘1, . . . , 𝑘𝑑−1 is unchanged
when we omit 𝑘𝑑−1 and freeze 𝑛𝑗 as the fixed value 𝑛𝑗 = 1.

We repeat the contraction step for every index 𝑗 with 𝑣𝑗 = 0, freezing the corresponding
variable as 𝑛𝑗 = 1, and removing the last variable 𝑘𝑖. Exceptionally, when 𝑉 is 00 . . . 0, we can
remove 𝑘𝑑−1, 𝑘𝑑−2, . . . , 𝑘1, and freeze 𝑛𝑑, 𝑛𝑑−1, . . . , 𝑛2, but the sum over 𝑛1 remains over the range
1, . . . ,𝐾, giving the term 𝑀(𝑔,𝐾) on the left of (8). The summation identity (7), when applied
with 𝑓 given by (9), contracts to give (8). �

In (5), (6) and Theorem 1, we require the total multiplicativity of 𝑔 only in order to
‘separate variables’ (as, in (6) for example, we separate 𝑘1, . . . , 𝑘𝑟−1 from 𝑛1, . . . , 𝑛𝑟 by means
of the identity 𝑔(𝑘1 · · · 𝑘𝑟−1𝑛1 · · · , 𝑛𝑟) = 𝑔(𝑘1 · · · 𝑘𝑟−1)𝑔(𝑛1) · · · 𝑔(𝑛𝑟)). Indeed, (8) gives a for-
mula for the Möbius function itself, for we can apply (8) to each term in the difference
𝑀(𝑔,𝐾)−𝑀(𝑔,𝐾− 1) = 𝜇(𝐾)𝑔(𝐾), and we can then divide through by 𝑔(𝐾) to obtain a formula
for 𝜇(𝐾) that is independent of 𝑔. This formula for 𝜇(𝐾) may also be deduced from the identity

1

𝜁(𝑠)

𝑑∏︁
𝑗=1

(︂
1 − 𝜁(𝑠)

𝑁𝑗∑︁
𝑛=1

𝜇(𝑛)

𝑛𝑠

)︂
= 𝜁𝑑−1(𝑠)

𝑑∏︁
𝑗=1

∞∑︁
𝑛=1+𝑁𝑗

𝜇(𝑛)

𝑛𝑠
(Re(𝑠) > 1), (10)

through multiplying out the brackets on the left-hand side, and then computing the coefficient
of 𝐾−𝑠 on each side of the resulting identity, subject to the hypothesis that the product
(1 + 𝑁1) · · · (1 + 𝑁𝑑) be greater than 𝐾. This approach yields a second proof of Theorem 1. We
prefer the first proof due to its more obvious connection with Meissel’s identity [8 p 303],

∑︁
𝑛≤𝑥

[︁𝑥
𝑛

]︁
𝜇(𝑛) =

{︃
1 𝑖𝑓 𝑥 ≥ 1,

0 𝑖𝑓 1 > 𝑥 > 0,
(11)

which was the initial source of inspiration for our work.
Given any 𝐾 ∈ N, any integer 𝑑 ≥ 2, and any 𝜃1, . . . , 𝜃𝑑 > 0 with 𝜃1+· · ·+𝜃𝑑 = 1, it follows from

Theorem 1 that (8) will hold when one has also 𝑁𝑗 = [𝐾𝜃𝑗 ], for 𝑗 = 1, . . . , 𝑑. Theorem 1 therefore
offers considerably more flexibility of application than (6) does. Although we believe Theorem 1
to be new (in respect of the flexibility in the choice of 𝑁1, . . . , 𝑁𝑑), the special cases of it that are
displayed in (5) and (6) are known results. The result (5) is contained in Vaughan’s (slightly more
complicated) identity [13 equation (18)] (essentially the special case when 𝑢 =

√
𝑋, and so 𝑆3 = 0),

and one can find in equation (13.38) of [5], for example, a formula for 𝜇(𝑛) that is equivalent to
what we have in (6). It is, moreover, clear that even our identity in (8) is akin to formulae of
Heath-Brown for sums involving Λ(𝑛), the von Mangoldt function: compare (10), from which (8)
may be deduced, with Lemma 1 of [2]. The earliest formula of this type is due to Linnik himself
in [6,7].



Mertens Sums requiring Fewer Values of the Möbius Function 25

We shall refer to the case of (3) (or of (4), (5), (6), or (8)), where the function 𝑔(𝑛) takes the
constant value 1, as the principal case. The main focus of our work has been on the principal case
of the identity (5). Indeed, all subsequent sections of this paper are exclusively devoted to matters
connected with this single topic, such as (for example) questions concerning certain properties of
the 𝑁 × 𝑁 matrix 𝐴 = 𝐴(𝑁) that occurs in the principal case of (5) and has, by (4), elements
𝑎𝑚𝑛 = [𝑁2/(𝑚𝑛)] ∈ N. In Section 2 we discuss matters related to the spectral decomposition of
𝐴 = 𝐴(𝑁). In the third (and final) section we discuss decompositions (spectral and otherwise) of
the quadratic form m𝑇𝐴m, where m = m(𝑁) is the column-matrix (𝜇(1), . . . , 𝜇(𝑁))T that occurs
in the principal case of (5).

We consider especially the principal case of (5), in the hope that it (modified as necessary)
might lead to a new proof of the prime number theorem, or even some new upper bound for the
Mertens sum |𝑀(𝑥)|. The following parts of this paper report what we have discovered in the search
for such an application of (5).

One of our findings is that the matrix 𝐴(𝑁), which (clearly) is real and symmetric, has one
exceptionally large positive eigenvalue, approximately 𝑁2𝜁(2), with eigenvector approximately
(1, 1/2, 1/3, . . . , 1/𝑁)T. Calculations by the second author show that the second-largest eigenvalue
of 𝐴(𝑁) lies in an interval of the form [𝑑4𝑁+𝑜(𝑁), 𝑐4𝑁+𝑜(𝑁)], where 𝑐4 and 𝑑4 are constants that
are approximately −0.496 and −0.572, respectively: for more details, see (18), (25), (31) and (32)
below. Hence, for 𝑁 sufficiently large, the quadratic form on the right-hand side of (5) is neither
positive definite nor negative definite in the principal case.

By the principal case of (6), we have a sequence of formulae through which each of
𝑀(𝑁2),𝑀(𝑁3),𝑀(𝑁4), . . . is expressed in terms of 𝜇(1), . . . , 𝜇(𝑁). Although the first of these
formulae, the principal case of (5), may be considered analogous to the sieve of Eratosthenes (1),
there seems to be no version of (1) for 𝜋(𝑁3), because unwanted numbers of the form 𝑝𝑞, where
𝑝 and 𝑞 are both primes greater than 𝑁 , survive the sieve process (“Gnoggensplatts” in Greaves’s
lectures on Sieve Methods).

A connection between Mertens sums and certain symmetric matrices 𝑈𝑛 (𝑛 ∈ N), that bear
some resemblance to our matrices 𝐴(𝑁) (𝑁 ∈ N) has previously been established by Cardinal [1].
To define Cardinal’s matrix 𝑈𝑛, one first takes 𝜎1 < 𝜎2 < · · · < 𝜎𝑠 to be the elements of the set
𝒮 = ℛ ∪ {[𝑛/𝜌] : 𝜌 ∈ ℛ}, where ℛ = {𝜌 ∈ N : 𝜌 ≤

√
𝑛} (it follows that 0 ≤ 2[

√
𝑛 ] − 𝑠 ≤ 1).

Then 𝑈𝑛 is the 𝑠 × 𝑠 matrix with elements 𝑢𝑖𝑗 = [𝑛/(𝜎𝑖𝜎𝑗)]. In Propositions 21 and 22 of [1],
it is shown that one has 𝑇𝑛𝑈−1

𝑛 𝑇𝑛 = 𝑉𝑛, where 𝑇𝑛 and 𝑉𝑛 are the 𝑠 × 𝑠 matrices with elements
𝑡𝑖𝑗 = |[2, 𝑠+ 1] ∩ {𝑖+ 𝑗}| and 𝑣𝑖𝑗 = 𝑀(𝑢𝑖𝑗), respectively.

In the cases where 𝑛 is a perfect square, so that 𝑛 = 𝑁2 for some integer 𝑁 , then |ℛ| = 𝑁 ,
and the 𝑁 ×𝑁 principal submatrix of 𝑈𝑛 consisting of the array of elements from the first 𝑁 rows
and first 𝑁 columns of 𝑈𝑛 is our matrix 𝐴(𝑁): since 2𝑁 − 1 ≤ 𝑠 ≤ 2𝑁 , we can say that 𝐴(𝑁)
constitutes (exactly, or approximately) the top left-hand quarter of Cardinal’s matrix 𝑈𝑛. In these
same cases, Cardinal’s identity 𝑇𝑛𝑈−1

𝑛 𝑇𝑛 = 𝑉𝑛 implies that 𝑣11, which is 𝑀(𝑁2), will be equal to
the sum of all 𝑠2 of the elements of the inverse of the matrix 𝑈𝑛 = 𝑈𝑁2 : we obtain a formula for
𝑀(𝑁2) thereby that seems quite different from what we see in the principal case of (5).

As Cardinal observes in Theorem 24 and Remark 25 of [1], information about small eigenvalues
of the matrix 𝑉 −1

𝑛 = 𝑇−1
𝑛 𝑈𝑛𝑇

−1
𝑛 might lead to new upper bounds on 𝑀(𝑥). In this respect, the

connection that we have found between𝑀(𝑥) and 𝐴(𝑁) is quite different from Cardinal’s connection
between 𝑀(𝑥) and 𝑈𝑛, for it is the larger eigenvalues of 𝐴(𝑁) and their eigenvectors that matter
most in the principal case of (5): see, for example, equation (35), below.

We have scarcely considered non-principal cases of (5), (6), or (8). Certain non-principal cases
of (5) may merit further investigation. The first case is when 𝑔(𝑛) = 𝜒(𝑛), a non-principal
Dirichlet character to some modulus 𝑞 > 1. The sums

∑︀
ℓ≤𝑥 𝜒(ℓ) that we use to construct the

matrix elements 𝑎𝑚𝑛(𝜒,𝑁) in (4) are periodic step functions of 𝑥, whose period is 𝑞 or some
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proper factor of 𝑞. In contrast to the principal case, where the set of elements of the matrix
𝐴(𝑁) in (5) contains at least 𝑁 different integers, namely [𝑁2/1], [𝑁2/2], . . . , [𝑁2/𝑁 ], there is
a single finite set, {

∑︀
0<ℓ≤𝐿 𝜒(ℓ) : 𝐿 ∈ (0, 𝑞] ∩ Z}, that contains all the elements of all the

matrices 𝐴(𝜒, 1), 𝐴(𝜒, 2), 𝐴(𝜒, 3), . . . . For 𝜒 real, 𝐴(𝜒,𝑁) will, of course, be real and symmetric
just like 𝐴(𝑁).

A case of (3) known to be related to the prime number theorem is when 𝑔(𝑛) = 1/𝑛 (see
page 248 of [9], for example). More generally, when 𝑔(𝑛) = 𝑛−𝑠 for some fixed complex number 𝑠,
then the sum 𝑀(𝑔, 𝑥) in (3) becomes a partial sum for the Dirichlet series for 1/𝜁(𝑠). If, for some
𝜎0 ∈ [1/2, 1), the only zeros of 𝜁(𝑠) with real parts greater than 𝜎0 are a pair of simple zeros, 𝜌 and 𝜌
(say), and if we put 𝑔(𝑛) = 𝑛−𝜌 (𝑛 ∈ N), then the sum 𝑀(𝑔, 𝑥) in (3) will grow logarithmically
in 𝑥.

Another interesting case of (3) to (5) is when 𝑔(𝑛) = 𝜆(𝑛), the Liouville function, which is the
projection of the Möbius function 𝜇 onto the space of totally multiplicative arithmetic functions.
In this case 𝑀(𝑔, 𝑥) grows like 𝑥/𝜁(2).

2. Elementary Estimates for Eigenvalues and an Eigenvector

Let 𝑁 be a given positive integer. Since the matrix 𝐴 = 𝐴(𝑁), in the principal case of (5),
is both real and symmetric, it has eigenvalues 𝜆1 ≤ 𝜆2 ≤ . . . ≤ 𝜆𝑁 with corresponding eigen-
(column-)vectors of unit length e1, . . . , e𝑁 that form an orthonormal basis of R𝑁 . When v ∈ R𝑁 ,
one has

v𝑇𝐴v =
𝑁∑︁
𝑘=1

𝜆𝑘 (e𝑘 · v)2 (12)

as a consequence of the spectral decomposition 𝐴 =
∑︀𝑁

𝑘=1 𝜆𝑘e𝑘e
𝑇
𝑘 , and Parseval’s identity gives

𝑁∑︁
𝑘=1

(e𝑘 · v)2 = v · v = ‖v‖2. (13)

In order to study the terms appearing in (12) and (13), we estimate:

(a) Tr(𝐴) =
∑︀
𝑎𝑛𝑛 (the trace of the matrix 𝐴),

(b) Tr(𝐴2) = Tr(𝐴𝑇𝐴) =
∑︀∑︀

𝑎2𝑚𝑛,

(c) f𝑇𝐴f , where f = (1, 12 ,
1
3 , . . . ,

1
𝑁 )𝑇 ,

(d) w𝑇𝐴w, where w = u − ‖f‖−2(f · u)f , with u = (1, 1, . . . , 1)𝑇 ∈ R𝑁 .

We use the following notation:

𝜁𝑗 =

𝑁∑︁
𝑚=1

𝑚−𝑗 , 𝛿 =
∑︁
𝑚≤𝑁

∑︁
𝑛≤𝑁

{︀
𝑁2/(𝑚𝑛)

}︀
𝑚𝑛

and 𝜑 =
1

𝑁2

∑︁
𝑚≤𝑁

∑︁
𝑛≤𝑁

{︂
𝑁2

𝑚𝑛

}︂2

,

where {𝑡} = 𝑡− [𝑡] (the fractional part of 𝑡). Taking (b) first, we simply observe that

Tr
(︀
𝐴2
)︀

=
∑︁
𝑚≤𝑁

∑︁
𝑛≤𝑁

[︂
𝑁2

𝑚𝑛

]︂2
=
∑︁
𝑚≤𝑁

∑︁
𝑛≤𝑁

(︂
𝑁2

𝑚𝑛
−
{︂
𝑁2

𝑚𝑛

}︂)︂2

= 𝜁22𝑁
4 + (𝜑− 2𝛿)𝑁2 . (14)

Since Tr(𝐴2) = 𝜆21 + · · · + 𝜆2𝑁 , and since 𝛿 ≥ 0 and 𝜑 < 1, the identity (14) shows already that
𝜆𝑁 < 𝜁2𝑁

2 + (2𝜁2)
−1.
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Regarding (c), we are content to note that

f𝑇𝐴f =
∑︁
𝑚≤𝑁

∑︁
𝑛≤𝑁

[︀
𝑁2/(𝑚𝑛)

]︀
𝑚𝑛

=
∑︁
𝑚≤𝑁

∑︁
𝑛≤𝑁

(︀
𝑁2/(𝑚𝑛) −

{︀
𝑁2/(𝑚𝑛)

}︀)︀
𝑚𝑛

= 𝜁22𝑁
2 − 𝛿 . (15)

We have here ‖f‖2 = 𝜁2, so by Rayleigh’s Principle it follows from (15) that

𝜁2𝑁
2 − 𝛿

𝜁2
≤ 𝜆𝑁 . (16)

By (16) and the point noted immediately below (14), we conclude that

−(1 + log𝑁)2

𝜁2
< 𝜆𝑁 − 𝜁2𝑁

2 <
1

2𝜁2
. (17)

As 0 ≤ 𝛿 < 𝜁21 ≤ 𝜁0𝜁2 = 𝑁𝜁2 ≤ 𝑁2𝜁22 , the lower bound on 𝜆𝑁 in (16) is non-negative, and so we
may deduce from it that 𝜆2𝑁 ≥ (𝜁2𝑁

2 − 𝛿𝜁−1
2 )2 = 𝜁22𝑁

4 − 2𝛿𝑁2 + 𝛿2𝜁−2
2 : this, together with the

evaluation of Tr(𝐴2) in (14), is enough to show that

𝜆21 + · · · + 𝜆2𝑁−1 ≤ 𝜑𝑁2 − 𝛿2𝜁−2
2 < 𝑁2 . (18)

From the way we have ordered the eigenvalues, the bound (18) implies:

|𝜆𝑘| <
𝑁√︀

min{𝑘,𝑁 − 𝑘}
(𝑘 = 1, 2, . . . , 𝑁 − 1). (19)

In view of (17) and (19), it is clear that for 𝑁 large, 𝜆𝑁 will be exceptionally large, compared
with all other eigenvalues of 𝐴. Accordingly we consider first the corresponding eigenvector e𝑁 ,
before discussing the estimation (a) of Tr(𝐴). Putting 𝐹𝑁 = e𝑁 · f̂ , where f̂ = ‖f‖−1f , we find by
(15) and (17), and (12), (19) and (13), that

𝜆𝑁 −
(︂

1

2
+ (1 + log𝑁)2

)︂
< f̂𝑇𝐴f̂ < 𝜆𝑁𝐹

2
𝑁 +𝑁

(︀
1 − 𝐹 2

𝑁

)︀
.

For 𝑁 > 1 we have 𝜆𝑁 > 𝑁 (this follows by (17) when 𝑁 ≥ 3), and so, by comparison of the upper
and lower bounds for f̂𝑇𝐴f̂ that were just obtained, we deduce that

1 ≥ 𝐹 2
𝑁 > 1 −

(︀
1
2 + (1 + log𝑁)2

)︀
(𝜆𝑁 −𝑁)

.

Choosing the ±-sign so that ±𝐹𝑁 = |𝐹𝑁 |, we therefore find from (17) that

⃦⃦⃦
e𝑁 −

(︁
±f̂
)︁⃦⃦⃦

=
√︀

2 (1 − |𝐹𝑁 |) =

√︃
2
(︀
1 − 𝐹 2

𝑁

)︀
𝑟1 + |𝐹𝑁 |

= 𝑂

(︂
log𝑁

𝑟𝑁

)︂
. (20)

We now come to the task mentioned in (a) above, which is the estimation of the sum
𝑆 = Tr(𝐴) =

∑︀
𝑎𝑛𝑛. We pick a positive integer 𝐾, and we divide the original sum 𝑆 into

two parts: 𝑆1, which has the terms with 𝑛2 ≤ 𝑁2/(𝐾 + 1), and 𝑆2, which has the terms with
𝑁2 ≥ 𝑛2 > 𝑁2/(𝐾 + 1) (so that 𝑎𝑛𝑛 = [𝑁2/𝑛2] = 𝑘 for some 𝑘 ∈ {1, . . . ,𝐾}). We have

𝑆1 =
∑︁

𝑛2≤𝑁2/(𝐾+1)

𝑎𝑛𝑛 =
∑︁

𝑛≤𝑁/
√
𝐾+1

(︂
𝑁2

𝑛2
+𝑂(1)

)︂

= 𝑁2

(︃
𝜁2 −

∫︁ 𝑁

𝑁/
√
𝐾+1

𝑥−2 d𝑥+𝑂

(︂
𝐾

𝑁2

)︂)︃
+𝑂

(︂
𝑁√
𝐾

)︂
= 𝜁2𝑁

2 −𝑁
√
𝐾 +𝑁 +𝑂

(︂
𝐾 +

𝑁√
𝐾

)︂
.
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The sum 𝑆2 is more complicated. We have

𝑆2 =

𝐾∑︁
𝑘=1

∑︁
𝑁√
𝑘+1

<𝑛≤ 𝑁√
𝑘

𝑘 =
∑︁∑︁
1≤ℓ≤𝑘≤𝐾

(︂[︂
𝑁√
𝑘

]︂
−
[︂

𝑁√
𝑘 + 1

]︂)︂

=

𝐾∑︁
ℓ=1

(︂[︂
𝑁

𝑟
√
ℓ

]︂
−
[︂

𝑁√
𝐾 + 1

]︂)︂
=

𝐾∑︁
ℓ=1

𝑁√
ℓ
− 𝐾𝑁√

𝐾 + 1
+𝑂(𝐾).

Let

𝑔(ℓ) = 2
√
ℓ− 2

√
ℓ− 1 − 1√

ℓ
=

1√
ℓ(
√
ℓ+

√
ℓ− 1)2

(ℓ ∈ N) and 𝛼 =
∞∑︁
ℓ=1

𝑔(ℓ).

Then
𝐾∑︁
ℓ=1

1√
ℓ

=
𝐾∑︁
ℓ=1

(︁
2
√
ℓ− 2

√
ℓ− 1 − 𝑔(ℓ)

)︁
= 2

√
𝐾 − 𝛼+𝑂

(︂
1√
𝐾

)︂
.

Hence

𝑆2 = 2𝑁
√
𝐾 − 𝛼𝑁 − 𝑁𝐾√

𝐾 + 1
+𝑂

(︂
𝑁

𝑟
√
𝐾

+𝐾

)︂
= 𝑁

√
𝐾 − 𝛼𝑁 +𝑂

(︂
𝑁√
𝐾

+𝐾

)︂
,

and so, putting 𝐾 = [𝑁2/3], we get:

Tr(𝐴) = 𝑆1 + 𝑆2 = 𝜁2𝑁
2 − (𝛼− 1)𝑁 +𝑂

(︁
𝑁2/3

)︁
. (21)

By (21) and (17), it follows that

𝜆1 + · · · + 𝜆𝑁−1 = −(𝛼− 1)𝑁 +𝑂
(︁
𝑁2/3

)︁
. (22)

By equations (1.11) to (1.13) of [4] and the case 𝐾 = 1 of of equation (B.24) of [9] (itself an
application of the Euler-Maclaurin summation formula), we find that for 𝜎 ∈ (0, 1) ∪ (1,∞) and
𝐾 ∈ N,

𝐾∑︁
ℓ=1

1

ℓ𝜎
=
𝐾1−𝜎

1 − 𝜎
+ 𝜁(𝜎) +

𝜃(𝐾,𝜎)

𝐾𝜎
(23)

=
𝜃(𝐾,𝜎)

𝐾𝜎
+
𝐾1−𝜎 − 1

1 − 𝜎
+ 𝛾 +

∞∑︁
𝑗=1

𝛾𝑗(𝜎 − 1)𝑗 , (24)

where 𝜁(𝑠) is Riemann’s zeta function, each of 𝛾, 𝛾1, 𝛾2, . . . is a certain (real valued) absolute
constant (the first of these, 𝛾, being Euler’s constant) and 𝜃(𝐾,𝜎) is a number lying in the
interval (0, 1). By (23), we have 𝛼 = −𝜁(1/2) in (21), and we can calculate that

𝛼− 1 = −(𝜁(1/2) + 1) = 0.4603545 . . . .

Given that 𝜁(2) = 𝜋2/6, we find (similarly) that 𝜁2 = (𝜋2/6) −𝑁−1 +𝑂(𝑁−2) in (14) to (18). We
also note that 𝜁1 = log𝑁 + 𝛾 +𝑂(1/𝑁) (as follows, for example, by letting 𝜎 → 1 in (24)).

We remark that, by combining methods similar to those used to obtain (21) with certain
applications of the Euler-Maclaurin summation formula, we have been able to determine that the
variable 𝜑 ∈ [0, 1) in (14) and (18) satisfies

𝜑 = 𝛽 +𝑂

(︂
1 + log𝑁

𝑁1/7

)︂
, (25)
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where 𝛽 = 1 − 𝜋2

24 − 1
2(log(2𝜋) − 1)2 + 1

2(1 − 𝛾)2 = 0.32712 . . . . We omit our proof of (25), which
shows no features that are truly novel (and would require more than just a few pages). By (25), we
can sharpen (19) somewhat, for large values of 𝑁 .

Finally we consider the estimation problem (d), stated earlier. Noting firstly that w = u−
−(𝜁1/𝜁2)f , we are able to deduce that

‖w‖2 = 𝑁 − 𝜁21
𝜁2

= 𝑁 +𝑂
(︀
(1 + log𝑁)2

)︀
(26)

and that

w𝑇𝐴w = u𝑇𝐴u − 2 (𝜁1/𝜁2) u𝑇𝐴f + (𝜁1/𝜁2)
2 f𝑇𝐴f . (27)

We have, moreover,

u𝑇𝐴u =
∑︁
𝑚≤𝑁

∑︁
𝑛≤𝑁

[︂
𝑁2

𝑚𝑛

]︂
=
∑︁
𝑚

∑︁
𝑛

[︂
𝑁2

𝑚𝑛

]︂
− 2

∑︁
𝑚>𝑁

∑︁
𝑛

[︂
𝑁2

𝑚𝑛

]︂
= 𝐷1 − 2𝐷2 (say). (28)

Here

𝐷1 =
∑︁
ℓ≤𝑁2

𝜏3(ℓ) =

(︂
1

2
log2

(︀
𝑁2
)︀

+ (3𝛾 − 1) log
(︀
𝑁2
)︀

+ 𝑐1

)︂
𝑁2 +𝑂

(︁
𝑁 𝜀+43/48

)︁
, (29)

where 𝑐1 = 3𝛾2 − 3𝛾 + 3𝛾1 + 1; see pages 352-4 of [4] for the second equality in (29).
Regarding the sum 𝐷2 in (28), we have:

𝐷2 =
∑︁
𝑚>𝑁

∑︁ ∑︁
𝑛 𝑘

(𝑛𝑘)𝑚≤𝑁2

1 =
∑︁
ℓ<𝑁

(︂∑︁
𝑛|ℓ

1

)︂ ∑︁
𝑁<𝑚≤𝑁2/ℓ

1

= 𝑁2
∑︁
ℓ<𝑁

𝜏2(ℓ)

ℓ
−𝑁

∑︁
ℓ<𝑁

𝜏2(ℓ) +𝑂

(︃∑︁
ℓ<𝑁

𝜏2(ℓ)

)︃
.

By partial summation and Huxley’s estimate on page 593 of [3] for the remainder term in Dirichlet’s
divisor problem (namely Δ(𝑥) =

∑︀
ℓ≤𝑥 𝜏2(ℓ) − (log 𝑥+ 2𝛾 − 1)𝑥), we deduce from the above that

𝐷2 =

(︂
1

2
log2𝑁 + (2𝛾 − 1) log𝑁 + 𝑐2

)︂
𝑁2 +𝑂

(︁
𝑁547/416(log𝑁)3.26

)︁
,

where

𝑐2 =

∫︁ ∞

1

Δ(𝑥)d𝑥

𝑥2
= lim

𝜎→2+

(︂
𝜁2(𝜎 − 1)

𝜎 − 1
− 1

(𝜎 − 2)2
− 2𝛾 − 1

𝜎 − 2

)︂
= 𝛾2 − 2𝛾 + 2𝛾1 + 1

(with 𝛾 and 𝛾1 as in (24)). Using this, (28), and (19), we have

u𝑇𝐴u =
(︀
log2𝑁 + 2𝛾 log𝑁 + 𝑐3

)︀
𝑁2 +𝑂

(︁
𝑁547/416(log𝑁)3.26

)︁
, (30)

where 𝑐3 = 𝑐1 − 2𝑐2 = 𝛾2 + 𝛾 − 𝛾1 − 1. Trivial estimates show that one has

u𝑇𝐴f = 𝜁1𝜁2𝑁
2 +𝑂((1 + log𝑁)𝑁).

Using this, (15), (30), (27), and estimates already obtained for 𝜁1 and 𝜁2, we find that

w𝑇𝐴w =
(︀
log2𝑁 + 2𝛾 log𝑁 + 𝑐3 − 𝜁21

)︀
𝑁2 +𝑂

(︁
𝑁547/416(log𝑁)3.26

)︁
= 𝑐4𝑁

2 +𝑂
(︁
𝑁547/416(log𝑁)3.26

)︁
, (31)
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where 𝑐4 = 𝑐3 − 𝛾2 = 𝛾 − 𝛾1 − 1 = 0.57721566 . . . − 0.07281584 . . . − 1 = −0.495600 . . . (see [10].
Since (26) implies 𝑁 > ‖w‖2 ≥ 𝑁/10, we find, using (26), (31), and Rayleigh’s principle that:

𝜆1 ≤
w𝑇𝐴w

‖w‖2
< 𝑐4𝑁 +𝑂

(︁
𝑁131/416(log𝑁)3.26

)︁
(𝑁 ≥ 2). (32)

The coefficient of 𝑁 in this upper bound may well be close to optimal: when 𝑁 = 10321, for
example, computations done with the ‘GNU Octave’ software package returned −0.493678 . . . as
an estimate of the value of 𝜆1/𝑁 in this case. By reasoning similar to that which gives (20), we
may deduce from (18), (25) and (32) that, as 𝑁 → ∞, we have |𝜆2|/𝑁 < (1 + 𝑜(1))(𝛽 − 𝑐24)

1/2 ∼
∼ 0.2855539 . . . and (e1 · ŵ)2 ≥ (0.5 + 𝑜(1))(1 + (2𝑐24𝛽

−1 − 1)1/2) ∼ 0.8540699 . . . . Therefore, for
𝑁 sufficiently large, the lines {𝑡w : 𝑡 ∈ R} and {𝑡e1 : 𝑡 ∈ R} will meet at an angle of less than
𝜋/8 radians.

We end this section with some speculations driven by certain numerical evidence, gathered
with the help of ‘GNU Octave’. We omit the detailed evidence, and instead just summarise what
it suggests. Let 𝑘 be any fixed non-zero integer, and let 𝑁 now be free to vary in the range
𝑁 > |𝑘|. Our numerical evidence suggests that 𝜆{−𝑘/𝑁}𝑁 ∼ Λ𝑘𝑁 as 𝑁 → ∞, where Λ𝑘 is a real
number that depends only on 𝑘, and where each of the two associated sequences, Λ1,Λ2,Λ3, . . . and
−Λ−1,−Λ−2,−Λ−3, . . . , decreases monotonically, and converges to 0. Further numerical evidence
suggests that if 𝜃 ∈ (0, 1) is fixed, and if 𝑒𝑗,ℓ denotes the ℓ-th component of the normalised
eigenvector e𝑗 , so that e𝑗 = (𝑒𝑗,1, 𝑒𝑗,2, . . . , 𝑒𝑗,𝑁 )T for 𝑗 = 1, . . . , 𝑁 , then as 𝑁 → ∞ we appear
to see that

𝑒{−𝑘/𝑁}𝑁,ℓ ∼ (−1)𝑏(𝑁,𝑘)𝑁−1/2𝐸𝑘(ℓ/𝑁) for ℓ = [𝜃𝑁 ] + 1, [𝜃𝑁 ] + 2, . . . , 𝑁 ,

with 𝐸𝑘 here being a certain real function independent of ℓ and 𝑁 that is continuous on (0, 1],
and with an integer exponent 𝑏(𝑁, 𝑘) independent of ℓ. The occurrence of the functions
𝐸±1, 𝐸±2, 𝐸±3, . . . in this might be explained if they were eigenfunctions of a suitable linear operator
𝒜 : 𝐿2[0, 1] → 𝐿2[0, 1].

3. Various Decompositions of m𝑇𝐴m in the principal case

It is our hope (as yet unrealised) that a study of the quadratic form v𝑇𝐴v (particularly when v
is the vector m = (𝜇(1), . . . , 𝜇(𝑁))𝑇 ), in the principal case of (5), might lead to new results about
the Mertens function 𝑀(𝑥). In this section we briefly describe (and compare) several different
approaches to such an investigation, each involving a different decomposition of the quadratic form.
We find it convenient to modify the earlier notation 𝑀(𝑔, 𝑥) in (3): we use 𝑀(𝑠, 𝑥), where 𝑠 is a
complex number, (rather than a function), to mean 𝑀(𝑔, 𝑥) for the power function 𝑔(𝑛) = 𝑛−𝑠.

We consider firstly (12) with v = m. We assume throughout that 𝑁 is large. As the eigenvalue
𝜆𝑁 is exceptionally large among all the eigenvalues of 𝐴, we handle the term 𝜆𝑁 (e𝑁 · m)2 with
some care. As substitution of −e𝑁 for e𝑁 does not alter this term, we can take the ambiguous sign
in (20) to be +. We note that

(e𝑁 · m)2 =
(︁

(e𝑁 − f̂) · m
)︁2

+ 2
(︁

(e𝑁 − f̂) · m
)︁

(f̂ · m) + (f̂ · m)2 . (33)

Here

f̂ · m = ‖f‖−1f · m =
1√
𝜁2

∑︁
𝑛≤𝑁

𝜇(𝑛)

𝑛
=
𝑀(1, 𝑁)√

𝜁2
≪ log𝑁

and, by the Cauchy-Schwarz inequality and (20),

|(e𝑁 − f̂) · m| ≤ ‖e𝑁 − f̂‖ · ‖m‖ = 𝑂

(︂
log𝑁

𝑁

)︂
·
√︃∑︁

𝑛≤𝑁

𝜇2(𝑛) ≪ log𝑁√
𝑁

.
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By these results, together with (33) and (17), we have:

𝜆𝑁 (e𝑁 · m)2 = 𝑂
(︀
𝑁 log2𝑁

)︀
+𝑂

(︁
𝑁3/2(log𝑁)|𝑀(1, 𝑁)|

)︁
+𝑁2(𝑀(1, 𝑁))2 . (34)

Small eigenvalues make a relatively insignificant contribution here, for (13) and (19) imply that
if 1 ≤ 𝐾 ≤ 𝑁/2, then

𝑁−𝐾∑︁
𝑘=𝐾

|𝜆𝑘| (e𝑘 · m)2 <
𝑁√
𝐾

𝑁∑︁
𝑛=1

(e𝑘 · m)2 =
𝑁√
𝐾

‖m‖2 ≤ 𝑁2

√
𝐾

.

By this, and by (34) and (12) (for v = m), we find that

m𝑇𝐴m

𝑁2
= (𝑀(1, 𝑁))2 +

(︀
‖m‖2/𝑁

)︀ ∑︁
1≤𝑘<𝑁

min{𝑘,𝑁−𝑘}<𝐾

(𝜆𝑘/𝑁) (e𝑘 · m̂)2

+𝑂
(︁
𝐾−1/2 +𝑁−1/2(log𝑁)|𝑀(1, 𝑁)| +𝑁−1 log2𝑁

)︁
, (35)

for 𝐾 = 1, 2, . . . , 𝑁2. We remark that, if the second of the three terms on the right-hand side of (35)
is considered in isolation, then we observe trivially from (19) that the absolute value of this term is
𝑂(

√
𝐾 ). Taking account of the context here (the relation (35) and the principal case of (5) and (3)),

and noting also that |𝑀(1, 𝑁)| ≤ ‖m‖2/𝑁 (a consequence of (11), the trivial bound |[𝑦] − 𝑦| < 1,
and the fact that [𝑁/1] − (𝑁/1) = 0), it is clear that this term is a bounded function of the pair
(𝑁,𝐾) ∈ N2. This gives some idea of the gap that must be bridged if (35) is to help in the study
of 𝑀(𝑥).

To reach (35) we have used the work of Section 2, on 𝜆𝑁 and e𝑁 . Our next decomposition of
m𝑇𝐴m avoids such results, but nevertheless has much in common with (35).

First we use [𝑥] = 𝑥− 1
2 − 𝜓(𝑥), where 𝜓(𝑥) = {𝑥} − 1

2 . We have

𝐴 = 𝑁2 f f𝑇 − 1

2
uu𝑇 + 𝑍 , (36)

where 𝑍 is the 𝑁 ×𝑁 matrix of elements 𝑧𝑚𝑛 = −𝜓(𝑁2/(𝑚𝑛)), whilst f and u are as in Section 2.
We have trivially Tr(𝑍2) < 𝑁2/4; with the help of (25), (30), and an estimate for 𝜁1, we obtain
the sharper result that Tr(𝑍2) ∼ 𝑐5𝑁

2 as 𝑁 → ∞, where 𝑐5 = 𝛽 + 1
4 + 𝑐3 − 𝛾2 = 0.0815206 . . . .

Reasoning as in the derivation of (35), we see from (36) that, for 𝐾 = 1, 2, . . . , 𝑁2 (say), one has

m𝑇𝐴m

𝑁2
= (m · f)2 − (m · u)2

2𝑁2
+

m𝑇𝑍m

𝑁2
(37)

= (𝑀(1, 𝑁))2 − (𝑀(𝑁))2

2𝑁2

+
(︀
‖m‖2/𝑁

)︀ ∑︁
1≤𝑘≤𝑁

min{𝑘,𝑁+1−𝑘}<𝐾

(︁̃︀𝜆𝑘/𝑁)︁ (̃︀e𝑘 · m̂)2 +𝑂
(︁
𝐾−1/2

)︁
, (38)

where ̃︀𝜆1 ≤ ̃︀𝜆2 ≤ · · · ≤ ̃︀𝜆𝑁 are the eigenvalues of 𝑍, while ̃︀e1, . . . ,̃︀e𝑁 form the corresponding
orthonormal basis of eigenvectors. We note the presence of the term −1

2𝑁
−2(𝑀(𝑁))2 in (38), which

is not apparent in (35): in view of our results on Problem (d) of Section 2, one may regard this
term as being an approximation to the term (‖m‖2/𝑁)(𝜆1/𝑁)(e1 · m̂)2 = 𝑁−2𝜆1(e1 · m)2, which
is present in (35) for 𝐾 > 1.
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We remark that (37) permits an alternative, non-spectral, decomposition of m𝑇𝐴m, through
substituting the usual truncated Fourier expansion of the function 𝜓 into each element of the
matrix 𝑍 in (37):

−𝜓(𝑥) =
∑︁

0<ℎ≤𝐻

sin(2𝜋ℎ𝑥)

𝜋ℎ
+𝑂

(︂
𝜂

𝜂 + min{|𝑥− ℓ| : ℓ ∈ Z}

)︂
(𝐻 = 1/𝜂 ≥ 1).

This leads (via estimates from [11]) to the decompositions

m𝑇𝑍m =

𝐻∑︁
ℎ=1

m𝑇𝑍(ℎ)m

𝜋ℎ
+𝑂

(︂
𝑁2(log𝑁)2 log𝐻

𝐻

)︂
(for 𝐻 = 1, 2, . . . , 𝑁 (say)),

where 𝑍(ℎ) is the 𝑁×𝑁 matrix with elements 𝑧𝑚𝑛(ℎ) = sin(2𝜋ℎ𝑁2/(𝑚𝑛)). We have yet to explore
making proper use of this truncation idea.

One further approach to the decomposition of m𝑇𝐴m uses Perron’s formula, Theorem 5.1 of [9],
equation (A.8) of [4]. We apply Perron’s formula as in Lemma 3.12 of [12], adapting the proof to
sharpen certain error terms (parts of the improvement come from results of Shiu [11]). We find
that if, whenever Re(𝑠) > 1, one has

𝐹 (𝑠) =
∞∑︁
ℓ=1

𝑎ℓ
ℓ𝑠

=

⎛⎝∑︁
𝑚≤𝑦

𝛼𝑚

𝑚𝑠

⎞⎠⎛⎝∑︁
𝑛≤𝑧

𝛽𝑛
𝑛𝑠

⎞⎠ 𝜁(𝑠) = 𝐴(𝑠)𝐵(𝑠)𝜁(𝑠) (say), (39)

where 𝑦, 𝑧 ≥ 1 and 𝛼𝑚, 𝛽𝑛 denote complex constants of modulus less than or equal to 1, then, for
any fixed 𝜀 > 0, when 𝑥 = 𝑦𝑧, in the ranges 1 < 𝑐 ≤ 2 and 3 ≤ 𝑇 ≤ 𝑥1−𝜀, we have

1

2𝜋𝑖

𝑐+𝑖𝑇∫︁
𝑐−𝑖𝑇

𝐹 (𝑠)𝑥𝑠
d𝑠

𝑠
=
∑︁
ℓ≤𝑥

𝑎ℓ +𝑂

(︂
𝑥𝑐 log2 𝑥

(𝑐− 1)𝑇

)︂
+𝑂𝜀

(︂
𝑥(log 𝑥)2(log 𝑇 )

𝑇

)︂
. (40)

To link this to our matrix 𝐴, we observe that (39) implies∑︁
ℓ≤𝑥

𝑎ℓ =
∑︁
ℓ≤𝑥

∑︁ ∑︁ ∑︁
𝑚≤𝑦 𝑛≤𝑧 𝑘

𝑚𝑛𝑘=ℓ

𝛼𝑚𝛽𝑛 =
∑︁ ∑︁ ∑︁
𝑚≤𝑦 𝑛≤𝑧 𝑘

𝑚𝑛𝑘≤𝑥

𝛼𝑚𝛽𝑛 =
∑︁
𝑚≤𝑦

∑︁
𝑛≤𝑧

[︁ 𝑥

𝑚𝑛

]︁
𝛼𝑚𝛽𝑛 .

Setting 𝑐 = 1 + (log 𝑥)−1 in (40), we shift the contour of integration there until it aligns with
the line Re(𝑠) = 1

2 : in so doing, we pick up a contribution from the residue of 𝜁(𝑠) at its pole, 𝑠 = 1,
and also some remainder terms, which are integrals along the line segments joining 1

2 + 𝑖𝑇 to 𝑐+ 𝑖𝑇 ,
and 1

2 − 𝑖𝑇 to 𝑐 − 𝑖𝑇 . By Theorem 7.2 (A) of Titchmarsh [12], we deduce that these remainder
term integrals are of size 𝑂(𝑥(log 𝑥)2

√
log 𝑇/𝑇 ) for almost all values of 𝑇 (in a certain sense) lying

in any given ‘dyadic interval’ [𝑇0, 2𝑇0] ⊆ [3, 2𝑥1−𝜀]. Hence we arrive at the conclusion that, for any
given 𝜀 > 0 when 𝑥 = 𝑦𝑧 and 3 ≤ 𝑇0 ≤ 𝑥1−𝜀, we have

∑︁
𝑚≤𝑦

∑︁
𝑛≤𝑧

[︁ 𝑥

𝑚𝑛

]︁
𝛼𝑚𝛽𝑛 = 𝐴(1)𝐵(1)𝑥+

1

2𝜋𝑖

1
2
+𝑖𝑇∫︁

1
2
−𝑖𝑇

𝐴(𝑠)𝐵(𝑠)𝜁(𝑠)𝑥𝑠
d𝑠

𝑠
+𝑂𝜀

(︂
𝑥 log3 𝑥

𝑇

)︂
,

for some 𝑇 ∈ [𝑇0, 2𝑇0]. We specialise this to the case 𝜀 = 1/2, 𝑦 = 𝑧 = 𝑁 , where 𝑁 is a positive
integer, so that 𝑥 = 𝑁2, and 𝛼𝑛 = 𝛽𝑛 = 𝜇(𝑛) . We find that when 3 ≤ 𝑇0 ≤ 𝑁 , there exists some
𝑇 ∈ [𝑇0, 2𝑇0] such that

m𝑇𝐴m

𝑁2
= (𝑀(1, 𝑁))2 +

‖m‖2

𝑁

∫︁ 𝑇

−𝑇

𝜁1𝑁
2𝑖𝑡𝜁

(︀
1
2 + 𝑖𝑡

)︀
(𝜋 + 2𝜋𝑖𝑡)

(︃
𝑀
(︀
1
2 + 𝑖𝑡,𝑁

)︀
√
𝜁1‖m‖

)︃2

d𝑡

+𝑂
(︀
𝑇−1
0 log3𝑁

)︀
. (41)
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If we put E(𝑠) = (1−𝑠, 2−𝑠, . . . , 𝑁−𝑠)𝑇 for a fixed complex number 𝑠, then the factor
𝑀(12 + 𝑖𝑡,𝑁)/(

√
𝜁1‖m‖) here may be written as Ê(12 + 𝑖𝑡) · m̂: the decomposition in (41) may

therefore be considered similar in form to that in (35), although (41) involves an integration over
the range [−𝑇, 𝑇 ], instead of the summation over a subset of the (discrete) spectrum of 𝐴 that we
had in (35).

4. Conclusions

Using the principal case of (5), and results such as (35), (38), or (41), we are able to approximate
𝑀(𝑁2) by an expression involving only certain limited data: the numbers 𝜇(1), 𝜇(2), . . . , 𝜇(𝑁) and
either the relevant eigenvalues and eigenvectors, or else values of 𝜁(12 + 𝑖𝑡) and 𝑔𝑡(𝑛) = 𝑛−

1
2
−𝑖𝑡.

It remains to be seen whether or not such approximations for 𝑀(𝑁2) can be an effective tool in
studying the function 𝑀(𝑥). With regard to (35) and (38), it would be helpful to find out more
about the relevant eigenvalues and eigenvectors, since that might clarify the possible uses of those
results. More generally, it may be worthwhile to study the eigenvalues and eigenvectors of certain
submatrices of 𝐴 = 𝐴(𝑁), and also (in certain non-principal cases) those of 𝐴(𝑔,𝑁) and certain of
its submatrices.
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