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AnHOTanusa

O6cynum HexoTopble TokAecTBa ¢ yuactueMm p(n) m M(x) = > . pu(n), dyskimun Mé-
6uyca u Meprenca. Oun mossonsior seraumcauts M(NY) ans d = 1,2,3,... xak cywm-
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HOBO, 33 UCKJIIOYEHHEM TOTO, 4TO B N1, ..., Ny IPOU3BOJIBHBI, HO HAIIE JOKA3aTEILCTBO (BIOX-
HOBJIEHHOE TOXKJECTBEHHBIM paBeHCTBOM . Maiiccens, 1854) siBisiercss HOBBIM. MbI TJIaBHBIM
obpazoM 3amHTepecoBaHbl B ciyuae d = 2, K = N2, N; = Ny = N, rJie TOXIeCTBO HMe-
er sug M(g, N?) = 2M (g, N) — mT Am, npu sTom A apngerca marpumeir N x N 31eMeHTOB
Umn = D p<n2/(mn) 9(K), B TO Bpems kax m = (n(1)g(1),...,u(N)g(N))T. Ham pesymnbra-
Thl B pasjejax 2 u 3 JAHHON crarbu upeanosaraior, 4ro g(n) pasuo 1 musa Beex n. Teopema
®pobennyca—IleppoHa TPUMEHSIETCS B 9TOM CIydae: Mbl HAXOAWM, 9TO A uMeeT OfHO GOJILIToe
TOJIOKUTEIbHOE COOCTBeHHOE 3HaYeHue, npubmusuTeabuo (72/6) N2, ¢ coGCTBEHHBIM BEKTOPOM
npubmmsurensao f = (1,1/2,1/3,...,1/N)T T u g9ro npn 6oabmmux 3Hadennax N BTOpoe Hau-
6ouibiiiee cobcrennoe 3unadenue jexkuT B (—0.58N, —0.49N). Pasznmen 2 BRIIOUAET OLEHKU I
cienos A u A? (xora agna Tr(A?), mbr npomycTum HWacTh jokazarTenbctsa). B pasmene 3 06-
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BKJIIOYalonemMy j3era-GyHkimio Pumvana. Mbl Tak:Ke paccMaTpuBaeM HUCHOJIb30BaHUE TOXKIE-
crea A = N2ffT — luu” + Z, a Z — marpuna N x N 3/1€MeHTOB Zp, = —t¢(N?/(mn)),
upuuenm () = — || — 3. Haruu BbiBosibl Ipe/icTasienbl B pasede 4.
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Abstract

We discuss certain identities involving p(n) and M(x) = ) .. u(n), the functions of
Mébius and Mertens. These allow calculation of M(N9), for d = 1,2,3,... , as a sum
of Oq(N%(logN)2¢=2) terms, each a product of the form p(ni)---p(n,) with r < d
and ny,...,n, < N. We prove a more general identity in which M (N9) is replaced by
M(g,K) = ), < 1(n)g(n), where g(n) is an arbitrary totally multiplicative function, while
each n; has its own range of summation, 1,..., N;. This is not new, except perhaps in that
Ny, ..., Ny are arbitrary, but our proof (inspired by an identity of E. Meissel, 1854) is new.
We are mainly interested in the case d = 2, K = N2, N; = N, = N, where the identity
has the form M (g, N?) = 2M (g, N) — mT Am, with A being the N x N matrix of elements
Umn = Dpen? ) (mn) 9(K), While m = (u(1)g(1), ..., u(N)g(N))T. Our results in Sections 2
and 3 of the paper assume that g(n) equals 1 for all n. The Perron-Frobenius theorem applies
in this case: we find that A has one large positive eigenvalue, approximately (72/6)N?, with
eigenvector approximately f = (1,1/2,1/3,...,1/N)T, and that, for large N, the second-largest
eigenvalue lies in (—0.58N, —0.49N). Section 2 includes estimates for the traces of A and A2
(though, for Tr(A2), we omit part of the proof). In Section 3 we discuss ways to approximate
mT Am, using the spectral decomposition of A, or (alternatively) Perron’s formula: the latter
approach leads to a contour integral involving the Riemann zeta-function. We also discuss using
the identity A = N2ff” — Juu” + Z, where u = (1,...,1)T and Z is the N x N matrix of

elements zyu, = —1(N?/(mn)), with 9(x) =z — |2] — 1.
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Dedicated to the memory of Yu. V. Linnik

1. Introduction

The sieve of Eratosthenes will find the prime numbers in N +1, ..., N2 provided that we know
all the primes in 2,..., N. In particular the sieve gives a relation for the function 7(z) that counts
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the number of primes less than or equal to z:

2
AV =) -1+ 3 )| )
d<N?2
P(d)<N

where p(d) is the Mobius function (which is (—1)” when d has v prime factors, all different, but 0
when d has any prime factor repeated), while P(d) is the greatest non-composite divisor of d, and
[z] = max{m € Z : m < z}. The numbers d in (1) are constructed as products of the known primes
in 2,..., N, so the values u(d) can be read off. In general, given a number n, it is very difficult to
factorise n and so find p(n). Thus the Mertens sum

M(x) = Z wu(n) (2)

n<x

is difficult to calculate from the definition. The Dirichlet series > u(n)/n® is 1/{(s) (the reciprocal
of the Riemann zeta function), and, according to folklore, the fastest method of calculating M (x)
is by Perron’s contour integral formula for the sum of the coefficients of a Dirichlet series.

In this paper we discuss a family of identities which allow M (N?) to be calculated for each
positive integer d as a sum of no more than Oy (Nd(log N)Qd_2) terms, each a product of the form
p(ny) -« p(ny) with < d and {ni,...,n.} C {1,...,N}. In Theorem 1, below, we state a more
complicated form of these identities, in which each of the variables of summation n; (j=1,...,7)
can have its own independent range of summation: 1,..., N; (say).

We actually treat the more general Mobius sum

M(g,x) =Y n(n)g(n), (3)

n<zx

where g(n) can be any totally multiplicative arithmetic function, that is, g(rs) = g(r)g(s) holds for
any positive integers 7 and s. The relevant identity when d = 1 is (of course) the definition (3). The
case d = 2 is the next simplest. Let m(g, N) be the column-matrix ((1)g(1),...,u(N)g(N))T, and
let A(g, N) be the N x N matrix with elements

amn(gaN): Z g(k) (m,ne{l,... 7N}) (4)

Then
M(g,N?) = 2M(g, N) — (m(g, N))" A(g, N)m(g, N) . (5)
In the general case, when d, K, N € N satisfy d > 2 and K > N > K'Y _ 1 we have:

M(g,K)=dM(g,N)

r

d
_Z(_l)rdcr Z Z Z"'Zg(kl"'krfl)l_‘[ﬂ(ni)g(ni)a (6)
r=2

n1<N nr<N ki kr_1 =1
ning..nrkiko.. . kr—1 <K

where 4C, =d(d—1)---(d— (r—1))/(r)).
Note that (5) is just the special case d = 2, K = N2 of (6). Moreover, (6) is itself a special
case of another identity (that stated in Theorem 1, below), in which the single range of summation
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1,..., N is replaced by d independent ranges of summation. In order to state this more general
identity we require some more notation.

Let d be a positive integer greater than 1. Let V = vjvs...vg be a word of length d in the
alphabet {0,1}. The support of a word V' is the set of indices ¢ for which v; = 1. The weight w(V)
of a word V' is the size of the support, so that w(V) = > v;. The combinatorial Mdbius function,
which we write as p* to distinguish it from the number-theoretic function u, is pu*(V) = (=1)2(V),

Let N, ..., Ng be positive integers. For each word V', and each L € N, let the notatation Zf(V)
signify summation over nj,...,nq in the ranges n; = 1,..., L when v; =0, but n; = 1,..., N; when
v; = 1. When L =1 and v; = 0, the variable of summation n; effectively becomes ‘frozen’, meaning
that its range of summation is then just the single-element set {1}.

Let K be a positive integer that is less than (1 + Nqp)(1 + Na)...(1 + Ny). If ny,...,ng are
integers satisfying the condition nins...ng < K, then n; < N; holds for at least one index 7. It
therefore follows by the inclusion-exclusion principle of combinatorics that if f : N® — C is such

that one has |f(n1,...,n4)| > 0 only when ning---ng < K, then
K d
> (00...0)f(n, ..., ng) = Z(—l)r_l Z Z f(na,... na) , (7)
1 r=1 =r

or, to put it more elegantly, >, p* (V) Ef(V)f(nl, ..,ng) = 0.

THEOREM 1. When g(n) is a totally multiplicative arithmetic function, and d, Ni,..., Ny and
K are as above, we have:

d
M(g,K) =) M(g,min{N;, K})
=1
d
=Y (e Z D ) | U R
Viw(V)>2 w(v) 1 i=1

k‘1.~~kw(V)—1S—mmnd

Proof. We apply (7) with f given by:

f(nl,..., Z Z nd)g(kl...kd,lm...nd). (9)
ka— 1

k.. kd 1577585

—ni-- nd

For the word V' =11...1 with w(V') = d, we have

All other words V' have v; = 0 for at least one index j, so the corresponding summand n; runs over
the full range from 1 to K. For these words V we carry out the following ‘contraction step’. Take
an index j for which v; = 0. We sum over n; and k4—; first, observing that by Md&bius inversion we
have:
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M=

> pu(ng)g (ki

=1 K
" kd*lgnl...ndk’l...k’d_g
= g(m) > u(n;)
m< K njlm
=n1..nj_1nj11...ngk1..kg_o
. g(l) = M(l)g(l) Zf ny.. .nj_lnj_H NN ndk1 NN kd,Q S K,
0 otherwise.
We thereby find that the value of the relevant sum over nq,...,nq and ki,..., kg1 is unchanged
when we omit kg1 and freeze n; as the fixed value n; = 1.

We repeat the contraction step for every index j with v; = 0, freezing the corresponding
variable as n; = 1, and removing the last variable k;. Exceptionally, when V' is 00...0, we can
remove kq_1,kq—o, ..., k1, and freeze ng,ng_1,...,n2, but the sum over n; remains over the range

., K, giving the term M (g, K) on the left of (8). The summation identity (7), when applied
with f given by (9), contracts to give (8). [ |

In (5), (6) and Theorem 1, we require the total multiplicativity of ¢ only in order to
‘separate variables’ (as, in (6) for example, we separate ki,...,k,—1 from nq,...,n, by means
of the identity g(ki---kr—ini---,n,) = g(k1---kr—1)g(n1)---g(n,)). Indeed, (8) gives a for-
mula for the Mobius function itself, for we can apply (8) to each term in the difference
M(g,K)—M(g, K —1) = u(K)g(K), and we can then divide through by ¢g(K) to obtain a formula
for u(K) that is independent of g. This formula for u(K) may also be deduced from the identity

N;

1 - p(n H
C(S)H<1_C(S) s ) ¢ H Z Re(s) > 1), (10)

j=1 n=1 j=1 n=1+N;

through multiplying out the brackets on the left-hand side, and then computing the coefficient
of K7 on each side of the resulting identity, subject to the hypothesis that the product
(1+ Np1)---(1+ Ng) be greater than K. This approach yields a second proof of Theorem 1. We
prefer the first proof due to its more obvious connection with Meissel’s identity [8 p 303,

T 1 af x>,
Z{n]ﬂ(n)_{o if 1>z>0, (11)

n<x

which was the initial source of inspiration for our work.

Given any K € N, any integer d > 2, and any 61,...,05 > 0 with 6;+---+64 = 1, it follows from
Theorem 1 that (8) will hold when one has also N; = [K%], for j = 1,...,d. Theorem 1 therefore
offers considerably more flexibility of application than (6) does. Although we believe Theorem 1
to be new (in respect of the flexibility in the choice of Ny,..., Ng), the special cases of it that are
displayed in (5) and (6) are known results. The result (5) is contained in Vaughan’s (slightly more
complicated) identity [13 equation (18)] (essentially the special case when u = v/ X, and so S3 = 0),
and one can find in equation (13.38) of [5], for example, a formula for p(n) that is equivalent to
what we have in (6). It is, moreover, clear that even our identity in (8) is akin to formulae of
Heath-Brown for sums involving A(n), the von Mangoldt function: compare (10), from which (8)
may be deduced, with Lemma 1 of [2]. The earliest formula of this type is due to Linnik himself
in [6,7].
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We shall refer to the case of (3) (or of (4), (5), (6), or (8)), where the function g(n) takes the
constant value 1, as the principal case. The main focus of our work has been on the principal case
of the identity (5). Indeed, all subsequent sections of this paper are exclusively devoted to matters
connected with this single topic, such as (for example) questions concerning certain properties of
the N x N matrix A = A(N) that occurs in the principal case of (5) and has, by (4), elements
amn = [N?/(mn)] € N. In Section 2 we discuss matters related to the spectral decomposition of
A = A(N). In the third (and final) section we discuss decompositions (spectral and otherwise) of
the quadratic form m” Am, where m = m(N) is the column-matrix (u(1),...,u(N))T that occurs
in the principal case of (5).

We consider especially the principal case of (5), in the hope that it (modified as necessary)
might lead to a new proof of the prime number theorem, or even some new upper bound for the
Mertens sum | M (z)|. The following parts of this paper report what we have discovered in the search
for such an application of (5).

Omne of our findings is that the matrix A(NN), which (clearly) is real and symmetric, has one
exceptionally large positive eigenvalue, approximately N2((2), with eigenvector approximately
(1,1/2,1/3,...,1/N)T. Calculations by the second author show that the second-largest eigenvalue
of A(N) lies in an interval of the form [dyN +0(N), caN +o(N)], where ¢4 and dy are constants that
are approximately —0.496 and —0.572, respectively: for more details, see (18), (25), (31) and (32)
below. Hence, for N sufficiently large, the quadratic form on the right-hand side of (5) is neither
positive definite nor negative definite in the principal case.

By the principal case of (6), we have a sequence of formulae through which each of
M(N?), M(N3), M(N*%),... is expressed in terms of u(1),...,u(N). Although the first of these
formulae, the principal case of (5), may be considered analogous to the sieve of Eratosthenes (1),
there seems to be no version of (1) for m(NN3), because unwanted numbers of the form pg, where
p and ¢ are both primes greater than N, survive the sieve process (“Gnoggensplatts’ in Greaves’s
lectures on Sieve Methods).

A connection between Mertens sums and certain symmetric matrices U, (n € N), that bear
some resemblance to our matrices A(N) (N € N) has previously been established by Cardinal [1].

To define Cardinal’s matrix U,,, one first takes 01 < 092 < --- < 05 to be the elements of the set
S=RU{[n/p] : p€ R}, where R = {p € N : p < /n} (it follows that 0 < 2[\/n] — s < 1).
Then U, is the s x s matrix with elements w;; = [n/(0;0;)]. In Propositions 21 and 22 of [1],

it is shown that one has TnUngn = V,, where T,, and V,, are the s X s matrices with elements
ti; =112,s + 1) N {i + j}| and v;; = M (u;;), respectively.

In the cases where n is a perfect square, so that n = N2 for some integer N, then |R| = N,
and the N x N principal submatrix of U,, consisting of the array of elements from the first N rows
and first N columns of U, is our matrix A(N): since 2N — 1 < s < 2N, we can say that A(N)
constitutes (exactly, or approximately) the top left-hand quarter of Cardinal’s matrix U,. In these
same cases, Cardinal’s identity T,,U,, 'T,, = V;, implies that v11, which is M (N?), will be equal to
the sum of all s? of the elements of the inverse of the matrix U,, = Up2: we obtain a formula for
M (N?) thereby that seems quite different from what we see in the principal case of (5).

As Cardinal observes in Theorem 24 and Remark 25 of [1], information about small eigenvalues
of the matrix V! = T, U, T,;! might lead to new upper bounds on M (z). In this respect, the
connection that we have found between M (x) and A(N) is quite different from Cardinal’s connection
between M (x) and U, for it is the larger eigenvalues of A(N) and their eigenvectors that matter
most in the principal case of (5): see, for example, equation (35), below.

We have scarcely considered non-principal cases of (5), (6), or (8). Certain non-principal cases
of (5) may merit further investigation. The first case is when g(n) = x(n), a non-principal
Dirichlet character to some modulus ¢ > 1. The sums ), x(¢) that we use to construct the
matrix elements @, (x, N) in (4) are periodic step functions of x, whose period is ¢ or some
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proper factor of g. In contrast to the principal case, where the set of elements of the matrix

A(N) in (5) contains at least N different integers, namely [N2/1],[N?/2],...,[N?/N], there is
a single finite set, {d> g,y x(¢) : L € (0,q] N Z}, that contains all the elements of all the
matrices A(x, 1), A(x,2), A(x,3),... . For x real, A(x, N) will, of course, be real and symmetric

just like A(N).

A case of (3) known to be related to the prime number theorem is when g(n) = 1/n (see
page 248 of 9], for example). More generally, when g(n) = n~* for some fixed complex number s,
then the sum M(g,x) in (3) becomes a partial sum for the Dirichlet series for 1/{(s). If, for some
oo € [1/2,1), the only zeros of {(s) with real parts greater than o are a pair of simple zeros, p and p
(say), and if we put g(n) = n=? (n € N), then the sum M(g,z) in (3) will grow logarithmically
in .

Another interesting case of (3) to (5) is when g(n) = A(n), the Liouville function, which is the
projection of the Mobius function p onto the space of totally multiplicative arithmetic functions.
In this case M (g, z) grows like x/{(2).

2. Elementary Estimates for Eigenvalues and an Eigenvector

Let N be a given positive integer. Since the matrix A = A(N), in the principal case of (5),

is both real and symmetric, it has eigenvalues A1 < Ao < ... < Ay with corresponding eigen-
(column-)vectors of unit length ey, ..., ey that form an orthonormal basis of RY. When v € RV,
one has
N
viAv =) "N (e v)? (12)
k=1

as a consequence of the spectral decomposition A = Zi,v:l )\kekef, and Parseval’s identity gives

N
S (er-v) =vov=|v[* (13)

k=1

In order to study the terms appearing in (12) and (13), we estimate:
(a) Tr(A) = > anyn (the trace of the matrix A),
(b)  Te(A%) = Tr(AT4) = T2,
(c) fTAf, where £ = (1,4, 4,..., )7,
(d) wl Aw, where w = u — ||f|72(f - w)f, with u = (1,1,...,1)T € RV.

We use the following notation:
AR {N2/(mn)} 1 N2Y?
=Yt 5= 3 ST wd g= g Y {0
m=1 m<N n<N m<N n<N
where {t} =t — [t] (the fractional part of ¢). Taking (b) first, we simply observe that
2 N27? N? i T 2
W)= Y [ =S 5 (e {m)) m@vtre-mn oy
m<N n<N m<N n<N

Since Tr(A2?) = A2 + -+ + )%, and since § > 0 and ¢ < 1, the identity (14) shows already that
An < CQN2 + (2C2)71.
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Regarding (c), we are content to note that

T A — Z Z N/mn Z Z N2/ (mn) {N/mn }) _ N5, (15)

m<N n<N m<N n<N

We have here ||f||? = (2, so by Rayleigh’s Principle it follows from (15) that

J
GN?— =~ <)\y. (16)
G2
y (16) and the point noted immediately below (14), we conclude that
(14 log N)? , 1
——— <A N < — 17
G e 202 {17)

As 0 < < §12 < (oo = N(3 < N2 22, the lower bound on Ay in (16) is non-negative, and so we
may deduce from it that A3 > (GN? — ¢ 1)? = (BN* — 20N? 4 §2¢, % this, together with the
evaluation of Tr(A42) in (14), is enough to show that

M+ o+ <oN? -8 < N2, (18)
From the way we have ordered the eigenvalues, the bound (18) implies:
N

In view of (17) and (19), it is clear that for N large, Ay will be exceptionally large, compared
with all other eigenvalues of A. Accordingly we consider first the corresponding eigenvector ey,
before discussing the estimation (a) of Tr(A). Putting Fiy = ey - f, where f = ||f||~'f, we find by
(15) and (17), and (12), (19) and (13), that

IXe| < (k=1,2,...,N —1). (19)

1 ~ A
An — <2+(1+10g1v)2> <fTAf <ANFR + N (1-FR) .

For N > 1 we have Ay > N (this follows by (17) when N > 3), and so, by comparison of the upper
and lower bounds for f7 Af that were just obtained, we deduce that

1 2
5+ (1 +logN
12FEV>1—(2 ((AN_]\g[) )

Choosing the +-sign so that £Fx = |F|, we therefore find from (17) that

fov- (s - verTm - R o (52) .

We now come to the task mentioned in (a) above, which is the estimation of the sum
S = Tr(A) = > ann. We pick a positive integer K, and we divide the original sum S into
two parts: S1, which has the terms with n? < N?/(K + 1), and Sy, which has the terms with
N2 >n?> N?/(K +1) (so that an, = [N?/n?] = k for some k € {1,...,K}). We have

Si= Y am= Y (f2+0()>

n2<N?/(K+1) n<N/VE+1

N K N
= N2 — x_2 x — —
=N <<2 /N/«/K—H 4 +O<N2>>+O<\ﬁK)

:@NQ_N\/E+N+O<K+\/]\;?>.
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The sum Sy is more complicated. We have

k=1_N_ _,cN 1<0<k<K
VE+L U= Vk
K /TN N KN KN
:quﬂ}_[ K+1D:£§\/Z—\/K+1+O(K)
Let -
1
g(l) =2Vl =20 — 1 — \[ i1 Vi1 (¢ e N) and azgg(ﬁ)
Then
Ly Vi —2\/1 0) =2vVK oL
> i ;(2 2WI—1-g(0)) =2VE o+ (\/E>
Hence

NK N N
Sy = 2NVK — N—+O(+K>:N\/K_ N+O(+K>,
? “ K+1 VK “ VK

and so, putting K = [N?/3], we get:
Tr(A) = S + S5 = GN? — (a — )N + O <N2/3) . (21)

By (21) and (17), it follows that

AL+ - —i—)\N_l:—(Oé—l)N—i-O(NQ/g) . (22)
By equations (1.11) to (1.13) of [4] and the case K = 1 of of equation (B.24) of [9] (itself an
application of the Euler-Maclaurin summation formula), we find that for o € (0,1) U (1,00) and
K eN,
K
1 Kl 0(K, o)
i ’ 2
;@, T o)+ = (23)
O(K,0) K'77-1 - ;
T Ko + l1-0 +7+;%‘(0—1)37 (24)
where ((s) is Riemann’s zeta function, each of v, 71, 72, ...is a certain (real valued) absolute

constant (the first of these, 7, being Euler’s constant) and 6(K,o) is a number lying in the
interval (0,1). By (23), we have @« = —((1/2) in (21), and we can calculate that

a—1=—(C(1/2)+1) = 0.4603545. .. .

Given that ¢(2) = 72/6, we find (similarly) that (o = (72/6) — N~1 4+ O(N~2) in (14) to (18). We
also note that (; =log N + v+ O(1/N) (as follows, for example, by letting o — 1 in (24)).

We remark that, by combining methods similar to those used to obtain (21) with certain
applications of the Euler-Maclaurin summation formula, we have been able to determine that the
variable ¢ € [0,1) in (14) and (18) satisfies

(25)

1+ log N
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where § =1 — 72%21 — 2(log(2m) — 1) + 3(1 — v)? = 0.32712... . We omit our proof of (25), which

shows no features that are truly novel (and would require more than just a few pages). By (25), we
can sharpen (19) somewhat, for large values of N.

Finally we consider the estimation problem (d), stated earlier. Noting firstly that w = u—
—(¢1/¢2)f, we are able to deduce that

2
|w|? =N — gl =N+ 0 ((1+1logN)? (26)
2
and that
wlAw = ulAu — 2 (¢1/G) ul Af + (¢1/C)? £TAF . (27)

We have, moreover,

uTAu:ZZ[m:;;[m_zzz[mzpl_wg o). (28)

m<N n<N m>N n
Here
Di= Y () = <§10g2 (N2) + (3 — 1) log (N?) m) NP4O(NTEIE) L (29)
I<N?Z2

where ¢; = 372 — 3y + 371 + 1; see pages 352-4 of [4] for the second equality in (29).
Regarding the sum Dy in (28), we have:

=Y Y Y 1-3(X1) ¥ oo

m>N n k L<N > nlt N<m<N?2/¢
(nk)m<N?
-y 20 Ny :72(5)+0<§ :Tz(z)) .
l
L<N I<N I<N

By partial summation and Huxley’s estimate on page 593 of [3| for the remainder term in Dirichlet’s
divisor problem (namely A(z) =3 ,, 72(¢) — (logx + 2y — 1)x), we deduce from the above that

1 ‘
Dy = <2 log? N + (2y — 1) log N + cz) N2 40 (N547/416(1og N)3-26) ,

where

“- /100 A(gdrg = hm, ((2((;7_—11) G - 22 2(:—_21> =T -+t
(with v and 7 as in (24)). Using this, (28), and (19), we have
u’ Au = (log2 N + 2vlog N + c3) N?24+0 <N547/416(10g N)3'26) , (30)
where ¢3 = ¢; — 2¢9 = 4% + v — v; — 1. Trivial estimates show that one has
ulAf = (1(N? + O((1 + log N)N).
Using this, (15), (30), (27), and estimates already obtained for ¢; and (2, we find that
wl Aw = (log2 N +2vlog N + ¢3 — C12) N?2+0 <N547/416(10g N)3'26>

= N2+ 0 <N547/416(10gN)3.26) : (31)
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where ¢4 = c3 — 72 =y —v — 1 =0.57721566 ... —0.07281584... —1 = —0.495600... (see [10].
Since (26) implies N > ||w||? > N/10, we find, using (26), (31), and Rayleigh’s principle that:
TA
A < W <N +0 (NP 5(log N)20) (N > 2). (32)
w

The coefficient of N in this upper bound may well be close to optimal: when N = 10321, for
example, computations done with the ‘GNU Octave’ software package returned —0.493678... as
an estimate of the value of A\;/N in this case. By reasoning similar to that which gives (20), we
may deduce from (18), (25) and (32) that, as N — oo, we have |\o|/N < (14 o(1))(8 — ¢})/? ~
~ 0.2855539 ... and (e1 - W)2 > (0.5 + o(1))(1 + (23871 — 1)1/2) ~ 0.8540699.. .. . Therefore, for
N sufficiently large, the lines {tw : t € R} and {te; : ¢ € R} will meet at an angle of less than
7/8 radians.

We end this section with some speculations driven by certain numerical evidence, gathered
with the help of ‘GNU Octave’. We omit the detailed evidence, and instead just summarise what
it suggests. Let k be any fixed non-zero integer, and let N now be free to vary in the range
N > |k[. Our numerical evidence suggests that A\;_j/nyn ~ AN as N — oo, where Ay is a real
number that depends only on k, and where each of the two associated sequences, A1, A, Az, ... and
—A_1,—A_o,—A_3,..., decreases monotonically, and converges to 0. Further numerical evidence
suggests that if § € (0,1) is fixed, and if ej, denotes the /-th component of the normalised
eigenvector e;, so that e; = (ej71,ej72,...,ej,N)T for j = 1,...,N, then as N — oo we appear
to see that

e(—enyne ~ (1) NVPNTVEZEL(/N)  for £ = [ON]+1,[0N] +2,..., N,

with Ej here being a certain real function independent of ¢ and N that is continuous on (0, 1],
and with an integer exponent b(N, k) independent of ¢. The occurrence of the functions
Ei1,FEi9, Ey3,... in this might be explained if they were eigenfunctions of a suitable linear operator
A L2[0,1] — L?[0,1].

3. Various Decompositions of m” Am in the principal case

It is our hope (as yet unrealised) that a study of the quadratic form v’ Av (particularly when v
is the vector m = (pu(1), ..., #(N))T), in the principal case of (5), might lead to new results about
the Mertens function M (z). In this section we briefly describe (and compare) several different
approaches to such an investigation, each involving a different decomposition of the quadratic form.
We find it convenient to modify the earlier notation M(g,x) in (3): we use M (s, x), where s is a
complex number, (rather than a function), to mean M (g, x) for the power function g(n) = n=%.

We consider firstly (12) with v = m. We assume throughout that N is large. As the eigenvalue
Ay is exceptionally large among all the eigenvalues of A, we handle the term Ay(ey - m)? with
some care. As substitution of —epy for ey does not alter this term, we can take the ambiguous sign

n (20) to be +. We note that

(ex-m)? = ((ex — ) m) +2((ey ) -m) (F-m) + (F-m)”. (33)
Here
b — (11 m — 1 u(n):M(l,N) o
f [t/ \/CZ;V . e < log N

and, by the Cauchy-Schwarz inequality and (20),

. N log N
(en — ) - m| < flex — ] - |m] =0( ) -

N
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By these results, together with (33) and (17), we have:

Av(en -m)? = O (Nlog? N) + 0 (N*2(log N)|M(1, N)|) + N3(M(1, N))? (34)

Small eigenvalues make a relatively insignificant contribution here, for (13) and (19) imply that

if 1 < K < N/2, then
N-K N
N N N?
M| (e -m)? < — e, -m)’=———|m|*< —=.
kzl:{|k(k ) \/En:1(k ) \/EH H _\/E

By this, and by (34) and (12) (for v = m), we find that

mT m
SR LN (ImN) Y /) (e )’
min{lls]l\cf i]l:[} <K

+0 (K‘W + N"Y2(log N)[M(1, N)| + N~ log? N) , (35)

for K =1,2,..., N2. We remark that, if the second of the three terms on the right-hand side of (35)
is considered in isolation, then we observe trivially from (19) that the absolute value of this term is
O(VK ). Taking account of the context here (the relation (35) and the principal case of (5) and (3)),
and noting also that |[M (1, N)| < |m|?/N (a consequence of (11), the trivial bound |[y] — y| < 1,
and the fact that [N/1] — (IN/1) = 0), it is clear that this term is a bounded function of the pair
(N, K) € N2. This gives some idea of the gap that must be bridged if (35) is to help in the study
of M(z).

To reach (35) we have used the work of Section 2, on Ay and ey. Our next decomposition of
m” Am avoids such results, but nevertheless has much in common with (35).

First we use [z] = 2 —  — 1(z), where 1(z) = {} — 3. We have

1
A= N2ffT — 5uuT + 7, (36)

where Z is the N x N matrix of elements z,,, = —1(N?/(mn)), whilst f and u are as in Section 2.
We have trivially Tr(Z2) < N2/4; with the help of (25), (30), and an estimate for (;, we obtain
the sharper result that Tr(Z2) ~ csN? as N — oo, where ¢5 = 3 + i +c3 — 2 = 0.0815206. .. .
Reasoning as in the derivation of (35), we see from (36) that, for K = 1,2,..., N? (say), one has

m’” Am (m-u)> m?’Zm

T:(m-f)2— vt (37)

_ s (M(N))?

= () -
+ (lml?/N) > (W/N) @ m)® + 0 (K712) (38)

1<k<N
min{k,N+1-k}<K

where Xl < Xg < ... < XN are the eigenvalues of Z, while e1,...,ey form the corresponding

orthonormal basis of eigenvectors. We note the presence of the term —2N~2(M(N))? in (38), which
is not apparent in (35): in view of our results on Problem (d) of Section 2, one may regard this

term as being an approximation to the term (|[m||?/N)(A\1/N)(e1 - m)? = N=2)\;(e; - m)?, which
is present in (35) for K > 1.
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We remark that (37) permits an alternative, non-spectral, decomposition of m” Am, through
substituting the usual truncated Fourier expansion of the function 1 into each element of the
matrix Z in (37):

sin(2whx
“a) = ) (wh )+O<n+min{|xi€\ :EeZ}) (H=1/n=1).

0<h<H

This leads (via estimates from [11]) to the decompositions

H

TZ(h N2%(log N)?log H
msz:hZ_:lmwgz)m+O< (OgH) o8 > (for H=1,2,...,N (say)),

where Z(h) is the N x N matrix with elements 2,,,,(h) = sin(2rhN?/(mn)). We have yet to explore
making proper use of this truncation idea.

One further approach to the decomposition of m? Am uses Perron’s formula, Theorem 5.1 of [9],
equation (A.8) of [4]. We apply Perron’s formula as in Lemma 3.12 of [12], adapting the proof to
sharpen certain error terms (parts of the improvement come from results of Shiu [11]). We find
that if, whenever Re(s) > 1, one has

Fo) =3 %= [0 ) (S0 ) () = As)BLs)c(s) (o), (39)

ms
/=1 m<y n<z

where y,z > 1 and oy, B, denote complex constants of modulus less than or equal to 1, then, for
any fixed € > 0, when = = yz, in the ranges 1 < ¢ <2 and 3 < T < z'~¢, we have

c+iT

c—iT t<z

To link this to our matrix A, we observe that (39) implies

SEDIDIPIPMILED I IPIWHED 3P 3 L

<z <z m<ly n<lz m<ly n<z m<y nz
mnk= E mnk<x
Setting ¢ = 1 + (logz)~! in (40), we shift the contour of integration there until it aligns with
the line Re(s) = %: in so doing, we pick up a contribution from the residue of {(s) at its pole, s =1,
and also some remainder terms, which are integrals along the line segments joining %—i—iT to c+1T,
and 3 —iT to ¢ —iT. By Theorem 7.2 (A) of Titchmarsh [12], we deduce that these remainder
term integrals are of size O(z(logz)?\/logT/T) for almost all values of T' (in a certain sense) lying
in any given ‘dyadic interval’ [Ty, 2Tp] C [3,227¢]. Hence we arrive at the conclusion that, for any

given € > 0 when 2 = yz and 3 < Ty < 2'¢, we have
3T

S [ anb = A0BO + o [ AGBE o, <mloz%3x> ,

21
1T

m<y n<z

for some T € [Ty, 2Tp]. We specialise this to the case e = 1/2, y = z = N, where N is a positive
integer, so that * = N2, and o, = 8, = u(n). We find that when 3 < Ty < N, there exists some
T € [T, 2Tp] such that

7 1 i 2
mTAm:<M<1,N>>2+‘m”2/ QN (5 + i) <M(2+ t,N)> at
-7

N2 N (m + 2mit) V(i ||ml|
+ O (T log? N) . (41)
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If we put E(s) = (175,27%,..., N=*)T for a fixed complex number s, then the factor
M(3 + it,N)/(v/Gi||ml|) here may be written as E( + it) - mh: the decomposition in (41) may
therefore be considered similar in form to that in (35), although (41) involves an integration over

the range [—T,T], instead of the summation over a subset of the (discrete) spectrum of A that we
had in (35).

4. Conclusions

Using the principal case of (5), and results such as (35), (38), or (41), we are able to approximate
M (N?) by an expression involving only certain limited data: the numbers u(1), #(2),. .., u(N) and
either the relevant eigenvalues and eigenvectors, or else values of ¢ (% +it) and g¢(n) = n=3 i,
It remains to be seen whether or not such approximations for M(N?) can be an effective tool in
studying the function M (z). With regard to (35) and (38), it would be helpful to find out more
about the relevant eigenvalues and eigenvectors, since that might clarify the possible uses of those
results. More generally, it may be worthwhile to study the eigenvalues and eigenvectors of certain
submatrices of A = A(N), and also (in certain non-principal cases) those of A(g, N) and certain of

its submatrices.
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