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AnHOTanua

B cornacum ¢ ¢punocodcko-mMareMaTnIeckoi MBICTBIO PAHHAX HU(ArOPeies, mid 33 aH-
HBIX OTPE3KOB § M t MOr ObITh HAMJIEH OTPE30K U, COAEP>KAIIMICA POBHO N pa3 B S U m pa3
B | NpM HEKOTOPBIX MOAXOIAIINX Yucaax n u m. COpaBeqInBOCTb ITOrO TOJOXKEHUS ObLIA
TO/IBEPTHYTA CAMUMU Ke muaropeinaMmu Ipu OOHAPYKEHUHN MU HECOU3MEPUMOCTU CTOPOHBI
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3aBEPINUBINASCST PA3PAOOTKON M3BECTHONW TEXHUKW JOKA3ATEIHCTBA «IETHOE-HEUETHOEY, SIBIIS-
ercs 00bEKTOM HAIleil «TBOPYECKOH mHTepmpuTanuuy ucciaemopannii [ludaropa, KoTopyo Mo
MPUBOAMM B 3TOi cTarbe. B gacTHOCTH, OyJeT BBISBIEHA CHIbHAS CBS3b MEXKIY Mudaropeii-
ckum ToxkzaectsoM b(b + a) — a? = (0 OTHOCHTETBHO CTOPOHBI b W JMATOHATH @ TPABHILHOTO
ngruyronbHuka u toxkaecrsom Kaccunu FiF o — Ff_H = (—l)i I TPeX IMOCTIeI0BATE b=
b yncen Oubonaudn. Bosjee Toro, st nBa ToxkmecTBa ObiIn obHapykenb [Iudaropeiickoit
IITKOJION «MTOYTH OJHOBPEMEHHO», U, CJIeI0BATEIbHO, ncia Pubonauun u ToxkaecrBo Kaccuau
umeroT nudaropeickoe mpoucxoxkaeHue. HaMm He u3BECTHBI apXUBHBIE JOKYMEHTHI (yiKe CTOJIb
PelKKe Jis U3y4aeMoro rnepuonal), Kacaroumecs 3Toro yTBep K IeHus, HO B CTaThe IPUBOIATCS
PsiT MATEeMAaTUIECKUX 3aKJIIOYEHU B €ro IoaATBep:K/aenne. [IpuBereHnbIit B paboTe aHAIN3 JAeT
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Abstract

For the early Pythagoreans, in perfect agreement with their philosophical-mathematical
thought, given segments s and ¢ there was a segment u contained exactly n times in s and
m times in ¢, for some suitable integers n and m. In the sequel, the Pythagorean system is been
put in crisis by their own discovery of the incommensurability of the side and diagonal of a
reqular pentagon. This fundamental historical discovery, glory of the Pythagorean School, did
however “forget’ the research phase that preceded their achievement. This phase, started with
numerous attempts, all failed, to find the desired common measure and culminated with the
very famous odd even argument, is precisely the object of our “creative interpretation” of the
Pythagorean research that we present in this paper: the link between the Pythagorean identity
b(b+a) — a? = 0 concerning the side b and the diagonal a of a regular pentagon and the Cassini
vdentity F;Fyp0 — Ff+1 = (—1)*, concerning three consecutive Fibonacci numbers, is very strong.
Moreover, the two just mentioned equations were “almost simultaneously’ discovered by the
Pythagorean School and consequently Fibonacci numbers and Cassini identity are of Pythagorean
origin. There are no historical documents (so rare for that period!) concerning our audacious
thesis, but we present solid mathematical arguments that support it. These arguments provide
in any case a new (and natural!) characterization of the Fibonacci numbers, until now absent
in literature
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1. Introduction

Let Fp =1, F} = 1 and, for n > 2, F,, = F,,_9 + F,_1 be the Fibonacci numbers. 1t is well
Fn+1
F,

known that lim,_.s = = b = 1‘*'2—‘/5 and that in theoretical computer science the Fibonacci
word f =101101011011010110. .. is a cutting sequence representing the golden ratio ® (also called
Divina Proportione by Luca Pacioli). Concerning the Fibonacci numbers, the Fibonacci word and
the golden ratio, see [3], [7], [14], [9], [10], [11], [12], [13], [15], [16], [17], [18], [19], [20] and [24].

It is also well known that, given three consecutive Fibonacci numbers F; < Fi41 < Fjio, the
following Cassing identity F;Fiio — Ffﬂ = (—1)? holds. In this paper we support our thesis that
the discovery of incommensurability and of the previous equalities came “almost simultaneously”,
most likely first the Pythagorean identity and immediately after the Cassini identity.

Indeed the Cassini identity is strictly related to the studies and the fundamental results of the
Pythagorean School (hereafter simply School) on the incommensurability: side and diagonal of the
reqular pentagon are incommensurable (see Figure 1). The result: if b is the side and a is the diagonal
of a reqular pentagon, then b:a =a : (b+a) and b(b+ a) — a® = 0 precedes of a very short period

of time the discoveries of Fibonacci numbers and Cassini identity F;Fj1o — F7, = (—1)" see [19].

2. The irrational number ¢

The School tried for a long time to find a common measure between the diagonal and the side
of the regular pentagon. In the proof of these fundamental results (that we shortly recall hereafter)
the following Pythagorean Proposition 1 (see [18]) plays a crucial role (and the same will happen in
the first proof of the main result of this paper, Proposition 7).

PropOSITION 1. (Pythagorean Proposition.) A strictly decreasing sequence of positive
integers is necessarily finite.

A common measure of diagonal and side of a regular pentagon implies the existence of a segment
U and two positive integers 5 and « such that U is contained § times in b, the side, and « time
in a, the diagonal. Using elementary results on similar triangles, we easily reach the equalities
B:a=a:(B+a)and B(B+a)=a?

But, two such integers 5 and « do not exist by an old well-known odd-even argument: i)
and a both odd implies 3(8 + «) even and a? odd (contradiction), ii) 8 odd and « even implies
B(B + ) odd and a? even (contradiction), iii) 3 even and a odd implies 3(8 + a) even and o?
odd (contradiction), iv) 5 and a both even then, using the Pythagorean Proposition 1, we retrieve
one of the three previous cases i), ii) and iii) (contradiction). So § and « cannot be both integers.
So side and diagonal of the regular pentagon cannot have a common measure and the following
theorem is proved.

(=1 A

Puc. 1: Regular pentagon

TEOPEMA 1. Side and diagonal of the reqular pentagon are incommensurable.
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3. Fibonacci numbers and their relation with incommensurability

We will present hereafter an argument that shows how the Fibonacci numbers and the Cassini
identity appeared naturally during the development of the argument of the incommensurability.
Several attempts to find a common measure of side and diagonal of the regular pentagon were not
successful and will hereafter be examined in depth. Consider two Propositions on the triangle well
known today and also well known to the School:

PROPOSITION 2. The greatest side of a triangle is that opposite to the greatest angle.
PROPOSITION 3. The sum of two sides is greater than the third side.

Considering the isosceles triangle formed by two consecutive sides and by a diagonal of a regular
pentagon, the School would have noticed, by Proposition 2, the inequality 8 < « and, by Proposition
3, the inequality o < 28. This is enough to immediately eliminate the side as a common measure

(8 =1).
Now, let 8 > 2. Being 8 and « integers, from
8 < a<28,
we have

b+1<a<26—1.

Considering the necessary equality (8 + a) = o2 and using the above lower bound and upper
bound, the School easily eliminated the following segments as common measure: the half of the side
(2(2+3) — 32 # 0), the third of the side (3(3 +4) — 42 # 0 and 3(3 +5) — 52 # 0), the fourth part
of the side (4(4 +5) — 52 #0, 4(4+6) —62 # 0 e 4(4 + 7) — 7% # 0) and so on.

On the other hand, continuing in this way the calculation is increasingly long and difficult as,
for each > 1, one must consider 8 — 1 candidates for . The departing geometric problem (find a
common measure U) is now an arithmetic problem: given an integer B does there exist an integer
a > B such that B(B+ a) —a? =07

When the recalled argument of incommensurability was completed and consequently it was
clear that the answer to this question would be “NO” for each (3, we believe that the School has
considered the just obtained result as a motivation for a new research and has been argumented as
follows: as B(8+a) —a? is never 0, we wish to see for what values of 8 and « the difference between
the greatest and the smallest of the numbers 3(3 + a) and o? assumes the value 1, which is the
minimum possible one. This is a typical curiosity of mathematicians: when they solve a problem,
their attention is immediately attracted by the new and often numerous problems that the solution
always carries with it. So, we simply believe that, after the discovery of the incommensurability,
the School has focused on this new problem.

Today, to find the above recalled values of § and « is very easy using a computer. It is possible
to write a program that searches, finds and puts all these values in the following table. Our brother
Mario wrote the program and this is what happens:

Puc. 2: Pythagoreans at work
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B a [a+B]Bla+p) | o
1 1 2 1241 12
1 2 3 22 -1 22
2 3 5 32 +1 32
3 5 8 52 —1 57
5 8 13 82 +1 82
8 13 21 132 -1 132

13 | 21 34 212 +1 212
21 | 34 55 347 — 1 342
34 | 55 89 552 + 1 552
55 | 89 144 892 — 1 892
89 | 144 | 233 | 1442 +1 | 1442
144 | 233 | 377 | 2332 -1 | 2332
233 | 377 | 610 | 377 +1 | 3772
377 | 610 | 987 | 610°—1 | 6107
610 | 987 | 1597 | 9872 +1 | 9872
987 | 1597 | 2584 | 1597> —1 | 15977

If, as we think, the School has really tried to find these values of 5 and « then they have all
noticed the peculiarity of the numbers in the table. The Fibonacci numbers are in the first, second
and third column and, in addition, the square of the Fibonacci numbers are in the fifth column
while the fourth column contains alternately the predecessor and the successor of these squares, see
[19].
Now, let 4 > 0 and F; the i** Fibonacci number. Does there exist an integer o > F; such that
the difference between the greatest and the smallest of the numbers Fy(F; + «) and o® assumes the
value 12 Sure, it exists. The table shows that, for each i, 1 < F; < 1000, the required number «
is exactly Fiy1 and Fi(F; + Fipq) — Fi2+1 = (—1)%. Being F; + F;11 = Fj,2, this equality becomes

FiFiyo — F2, = (—1)" and, as it is well-known, the following lemma holds (see for instance [14]).

LeMMA 1. Cassini identitity. For each non negative integer i and for each Fibonacci number

F; the following equality holds
FiFiyo — F2, = (—1)"

As we have seen before, step by step the School has picked up new Fibonacci numbers. Each
new one discovered corresponded to a more accurate (but not exact!) measurement of the side
and diagonal of the regular pentagon. In this sense, the School has discovered and proved the

equality lim,,_ F;;—:l = @, certainly not in the very precise form of the current modern epsilon-
delta definition that it has today, but surely in the sense that the difference ® — F};—:l became ever

smaller and smaller.
4. Cassini identity and characterization of Fibonacci numbers

We introduce a definition which will be crucial in the rest of the paper.

ONPEAENEHUE 1. Let 8 a positive integer. When there exists a positive integer o such that, for

some non-neqative integer v, the equality
B(B+a) —a®=(-1)7

holds, then we say that B is a Hippasus number and that « is o Hippasus successor of 3.
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1

For the aims of this paper, using the previous definition *, we can obtain a more suitable

reformulation of the Cassini identitity.

PROPOSITION 4. If an integer B > 2 is a Hippasus number then any its Hippasus successor «
satisfies f+1 < a <26 —1.

JOKA3ATEJILCTBO. . By way of contradiction suppose « < B. There exist a positive integer (
such that 8 = a+(. Then B(B+a)—a? = (a+({)(2a+() —a? = a? +3al +¢? > 5. Contradiction.
By way of contradiction, suppose a28. There exist a positive integer n > 0, such that o = 26 + 7.
Then B(B+28+n) — (28 +n)? = —p% — 38n —n* < —11. Contradiction. Moreover, the equalities
BB+ B)—(B)* = (-1)7
B(B+28) — (28)% = (—1)"

are impossible for each integer ~.

So if « exist we must have

B+1<a<26—1.

O

Proposition 4 underlines a clear relation with the geometric origin of the Hippasus number
definition.

The proof of the following proposition is very easy.

ProrosiTioN 5. For each i > 0 the Fibonacci number F; is a Hippasus number and Fi4; is a
Hippasus successor of it.

The following Proposition 6 offers an even more precise reformulation of the Cassini identitity.
In order to prove Proposition 7 we need several lemmas.

LeMMA 2. The number 1 is a Hippasus number and 1 itself is one of its Hippasus successor.
JTOKABATE/ILCTBO. The equality 1(1+ 1) — 12 =1 holds. O

LEMMA 3. The number 1 has also 2 as a Hippasus successor.
JTOKABATE/ILCTBO. The equality 1(1 4 2) — 22 = —1 holds. O

LEMMA 4. No positive integer different from 1 and 2 is a Hippasus successor of 1.
JIOKABATEJILCTBO. For n > 2, we have 1(1 +n) —n? < —5. O

LeMMA 5. A Hippasus number greater than 1 has a unique Hippasus successor.

JIOKABATEJILCTBO. Let 8 > 1 a Hippasus number and « and o/, « # o/, both Hippasus successors
of 5. By the previous Lemma, we have a > 8 and o/ > 3.
Without loss of generality, suppose o < o’. There exists 6 > 0 and 7,+’ non negative integers
such that o/ = a 46, B(B+a) —a? = (=1)" and B(B+ a + 8) — (o + §)% = (=1)"". Now,
B(B+a+d)—(a+6)?=
B(B+ )+ B — (a® 4+ 226 + 62) =
(B(B+a) —a?) + (85 — 2a6 — 62) =
()" —=6(=f+2a+6) =
(—1)7 = (@ — B) +a + ).
Being o« >3 (asa > >2),a—p>1(asa > p)and 6 > 1 (as & > «), we have
(a—B)+a+d>=5and —6((a—B)+a+4d) < —5. So

!This terminology seems suitable. Tradition, see [23], attributes to Hippasus the discovery of incommensurability
and our thesis is the following: the discoveries of incommensurability and of a particular class of numbers came
simultaneously, see [19]. So these numbers that we show here to be Fibonacci numbers can provisionally be called
Hippasus numbers.
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BB+ a+6)—(a+0)?<(-1) =5< (1)
and o’ = a 4 § cannot be a Hippasus successor of 8. Contradiction. Then two different integers
a, o’ cannot be both Hippasus successors of the same 3. O

So, with the exception of 1 (that is, in a sense, ambiguous) any other Hippasus number 3 has a
unique Hippasus successor « that is strictly greater than .
Now, we can precise Proposition 5

PROPOSITION 6. For the Fibonacci numbers the following statements hold:
i) Fo =1 is an Hippasus number and Fy =1 is an Hippasus successor of it,
it) F1 = 1 is an Hippasus number and Fy = 2 is an Hippasus successor of it,
i11) for each i > 1, F; is an Hippasus number and Fjiq is its unique Hippasus successor.

JOKABATEJBCTBO. i) follows by Lemma 2, ii) follows by Lemma 3 and finally, as for ¢ > 1 we
have F; > 2, iii) follows by Proposition 5. O

LEMMA 6. Let 8 be a Hippasus number and « be a Hippasus successor of 5. Then o — 3 < .

JHOKABATEJIBCTBO. By a trivial verification if 3 =1 and e =1 and if 8 =1 and o = 2 and by
Proposition 4 for § > 1. O

In some sense 0 is a “Hippasus number” having 1 as one of its Hippasus successors (indeed we
have 0(0 + 1) — 1 = —1) but by our choice, a Hippasus number must be positive, see Definition
1. For this reason in the next lemma we add the condition o > 8 with which we exclude the case
f=1and a=1.

LeEMMA 7. Let 8 be a Hippasus number and « be a Hippasus successor of 8 with a > 3. Then
a — B is a Hippasus number and 3 is a Hippasus successor of a — 5.

JTOKA3ATEJILCTBO. By Lemma 6 we have 0 < a — < . Moreover, we know that for some v we
have B(8+a) —a? = (~1)7. So, (a—B)((a—B) +8) — B2 = (a—B)a— 52 = (~1)[8(B+a) —a?] =
= (=1)"*! that exactly says that o — 3 is a Hippasus number and 3 is a Hippasus successor of
a—p. O

LEMMA 8. Let 8 > 1 be a Hippasus number and o o Hippasus successor of 8. If a — = (3
thena—08=1,3=1 and a = 2.

HOKA3ATEJILCTBO. Consider three cases:
a)f=1,a=1; b)f=1a=2 and c¢)p>1.
We have a = 2. Case a): a = 2f3 is not true. Case ¢): @ = 2 is not true by Lemma 4. So, it
remains only case b) in which the statement trivially holds. O
Now, we are ready to prove the following proposition of which we present two proofs.

PROPOSITION 7. Any Hippasus number is a Fibonacci number.

JHOKABATENBLCTBO. Let S be a Hippasus number and let « be a Hippasus successor of it. If § =1
and a = 1 then S is a Fibonacci number. If 5 = 1 and a = 2 then § is a Fibonacci number too.
(The set of Hippasus numbers contain two times the value 1, see Lemma 2 and 3, as well as the
sequence of Fibonacci numbers.)

So, we have to prove that a Hippasus number greater than 1 is a Fibonacci number. Let 5 be
such a number. We know, by Definition 1, that 8 has a Hippasus successor « and, being 8 > 1, we
also know that o« > 8 (by Lemma 4) and that « is unique (by Lemma 5).

We know, by Lemma 7, that o — § is a Hippasus number and that g is a Hippasus successor of
a — . By Lemma 6 we have that o — 8 < 3, i.e., there are two possibilities

a—pB=p or a—p<p.
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If @« — 8 = 3, then by Lemma 8, 8 = 1. Contradiction.

So we must have a — < . Put = 1 and a — 8 = (s.

It may happen that 51 — B < B2. Put B3 = 61 — Bo.

It may similarly happen that 8y — 83 < 83. Put 84 = B2 — Bs.

And so on indefinitely.

In principle, we thus have two possibilities:

-either, for each positive integer k, after the selection of the integer Bi we select Brr1 with

Br+1 < Br;
-either the process of selection of By strictly smaller of 5y will fail at a certain stage.
Let us take these two possibilities in turn 2.
By Pythagorean Proposition 1 (an infinite strictly decreasing sequence of positive integers cannot
exist) the first possibility cannot happen. So, the process of selection of Si41 strictly smaller of [

will fail at a certain stage when, for a given integer, say ¢, 8i+1 = [;.

So, we suppose that we have selected 51, B2, - .., Bi—2, Bi—1, Bi, Bir1 with a— 8 =a— 1 < (4,
B1—Ba=P3< P2, Bo—P3=P1<P3 ..., Biza— Bi—1 = Pi < Bi—1 and Bi—1 — Bi = Bit1 = Bi-
By hypothesis 5 = 1 is a Hippasus number and fs, ..., Bi_2, Bi—1, Bi, Bi+1 are all Hippasus
numbers by Lemma 7. Moreover, again by Lemma 7, §; is a successor of £;41, 5;—1 is a successor
of B;, ..., B1 is a successor of B9, « is a successor of f = (1.
Considering £;—1 — 8; = Bi+1 = Bi, by Lemma 8, we have:
Bi+1 =1 = F,
Bi=1=F,
Bi-1=2=Fs.
By construction §,_1 = 2 = F, has a unique Hippasus successor that is 3;_2 but, as the
Fibonacci number F5 has a unique Hippasus successor that is F3 (see Lemma 6), we have that
Bi—2 =3 = F3.
Similarly,
Bi—3 =5 = Fy,
Bi—4 = 8 = F5,

and, continuing in this way,

B3 = Fi_a,
Bo = Fi_1,
B1 = F;.

O

A second proof could be the following. By way of contradiction, suppose that the set of Hippasus
numbers which are not Fibonacci numbers is non empty. By the minimum principle this set admits
a minimum element, say . Necessarily, f is strictly greater than 2 and has a unique Hippasus
successor, say «. Consider a — 8 that, by Lemma 7, is a Hippasus number. If o — 8 = 3 then, by
Lemma 8, 8 = 1 that is a Fibonacci number. Contradiction. If « — 8 < 3 then, by Lemma 7, « — 3
is a Hippasus number and strictly smaller than 5. Contradiction too.

The second proof, that uses the minimum principle, is shorter than the first one, which we prefer
as it uses explicitly the Pythagorean Proposition 1.

Proposition 5 and Proposition 7 imply the following

PROPOSITION 8. A positive integer is a Hippasus number if, and only if, it is a Fibonacci
number.

*Here we try to imitate a clear, elegant and powerful model of exposition that Ramsey presented in [22].
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By our previous results we are convinced that the relations between the Pythagorean identity
b(b+a)—a? = 0 and the Cassini Identity 3(B+a)—a? = (—1)" are really very strict. At least in our
thesis, the School, that discovered the first equality, hardly could have ignored the second one. In
other terms, when the School found a Hippasus number then the same School simultaneusly found a
Fibonacci number, because no other number could have be found. In order to add another argument
to our previous ones (in particular Proposition 4), we prove directly the following proposition.

PROPOSITION 9. Let B be a Hippasus number and o be a Hippasus successor of 5. Then « is
a Hippasus number and o + B is o Hippasus successor of .

JIOKABATE/ILCTBO. For some y we have (—1)7 = 3(8 + a) — a?. So a(a +a+ B) — (a+ B)? =
— a?+a(a+8)—(a+B)? = a?—af— B2 = (~1)(~a?+aB+4%) = (~1)(B(B+a) —a?) = (~1)1*]
i.e. « is a Hippasus number and « + 3 is a Hippasus successor of it. O

CaeacTBUE 1. If « is o Hippasus number and B is its Hippasus successor then a + 5 is a
Hippasus number.

Corollary 1 certifies that the laws of formation of Fibonacci numbers and of Hippasus numbers
are the same! Much better, the Fibonacci law F;, + Fj, 11 = Fj,19 rediscovers the Pythagorean law
given in the previous Corollary 1. Moreover, the Definition 1 of Hippasus numbers is operational
and allows us to find Hippasus numbers one after the other.

The Wasteel result of next section is just a criterion to decide if two integers are consecutive
Fibonacci numbers.

5. With Fibonacci numbers the surprises never end
Dickson recalls in [8] the following result of Wasteels, proved in [24].

PROPOSITION 10. Two positive integers x and y for which y?> — xy — 22 equals +1 or —1 are
consecutive terms of the series of Fibonacci.

Matiyasevich in [13] with reference to the result of Wasteels says: The fact that successive
Fibonacci numbers give the solution of Eq. (25) was presented by Jean-Dominique Cassini to the
Academie Royale des Sciences as long ago as 1680. It can be proved by a trivial induction. At the
same time the stronger fact that Eq. (25) is characteristic of the Fibonacci numbers is somehow not
given in standard textbooks. The induction required to prove the converse is less obvious, and that
fact seems to be the reason for the inclusion of the problem of inverting Cassini’s identity as Ezercise
6.44 in Concrete Mathematics by Ronald Graham, Donald Knuth, and Oren Patashnik [13]. As the
original source of this problem the authors cite my paper [21], but I have always suspected that such
a simple and fundamental fact must have been discovered long before me. This suspicion turned out
to be justified: I have recently found a paper of M.Wasteels [41] published in 1902 in the obscure
journal Mathesis. >

A pentagon on a portale of “Duomo di Prato” refers to Fibonacci numbers* and a octagon on the
same portale seems to have a reference to a singular construction of an octagon that uses Fibonacci
numbers! This octagon is not regular but very impressively similar to a regular octagon: we design
two concentric circles having diameters F,, and F, 4o, the two horizontal straight line tangent to
the inner circle and the two vertical straight line tangent to the same inner circle. These four lines

®In this citation Eq. (25) is the Cassini identity F;Fi12 — F2; = (—1)*. Paper [13] corresponds to [11] here, paper
[21] is the fundamental and historical paper of Matiyasevich (here [12]) and paper of Wasteels [41] is [24] here.

“Recently, the Fibonacci numbers have been rediscovered in a tarsia of the Church of San Nicola in Pisa (see
Armienti [2] and Albano [1]).
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cut the larger circle into 8 points. We denote by P, and @Q,, the two of them having the following
coordinates and lying in the first quadrant:

2 2 2 2
Fn Fn Fn _ Fn Fn Fn
Pa= (5 (52) - (3)) - = ((52) - (8)).%)
They are the extremes of one of the eigth sides of our octagon. We note that their distance d,
2 2

is ﬁ[\/(%) — (%) — %} We also denote by e, the side of the regular octagon inscribed in
the circle of diameter F,, ;2. We have that:

-the value % tends to the limit %2 [\/q>4 1 1}, i.c. about 1.00375,

-the value % tends to the limit \/%7 [\/1 — o1 @—2}, i.e. about 1.001874,
-the value ;—Z tends to the limit 22_‘/§<I’2, i.e. about 1.001878.
It seems that the architech of the “Duomo di Prato” was Carboncettus marmorarius see [5] and
[6]. For these reasons one can speak about Carboncettus octagon!

#
i |
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i

Puc. 3: The portal of the Duomo of Prato

6. Conclusions

In this paper we reconsider two of our old questions: when, for the first time, the Fibonacci
Numbers were mathematically well defined and who defined them? Conventional wisdom suggests
that the Fibonacci Numbers were first introduced in 1202 by Leonardo of Pisa, better known today
as Fibonacci, in his book Liber abbaci. The intent of this article is to offer a plausible conjecture
on the origin of the Fibonacci Numbers. Indeed, our paper contains comments on the relationship
between golden ratio and the Fibonacci Numbers. We try to imagine the work of the Pythagorean
School and the first steps that led to their discovery of the irrational number @, the golden ratio.
We suppose that before discovering that no common measure was possible for the side and diagonal
of a regular pentagon, in particular they verified that: i) the side was not a common measure, ii) the
half of the side was not a common measure, iii) the third of the side was not a common measure and
so on. We analyze these “unsuccessful” attempts, during this analysis we realize that the Fibonacci
Numbers appear and we conclude that probably the Pythagorean School also noticed ... these same
Fibonacci Numbers! Finally we would like to point out that this paper is solely based on some
remarks about the arguments used by the Pythagorean School and not on historical documents.

In conclusion, during our personal investigation on the discovery of the irrational numbers
(made in the absolute absence of documents), we find enough traces of the Fibonacci numbers and
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of their properties to convince us that these numbers were born in Crotone in the VI-IV century
B.C. On the other hand, stricto sensu we present no historical discovery but we present a new
characterization of the Fibonacci numbers and, perhaps, we provide maths teachers some useful
educational suggestion.

7. Acknowledgements

I thank my brother Mario, lecturer at the Educandato Santissima Annunziata in Firenze, for the

program that permitted us to build the table of this article. I thank also Maurizio Aristodemo, Luigi
Barletti, Gabriele Bianchi, Marco Pellegrini, Carlo Toffalori, Gabriele Villari, for a first reading of
this paper. I thank the Dipartimento di Matematica e Informatica “Ulisse Dini” for his hospitality.

CIIMCOK LIUTUPOBAHHOII JINTEPATYPhI

1.

10.

11.

12.

Albano, A. The Fibonacci sequence and the golden section in a lunette decoration of the
medieval church of San Nicola in Pisa // Territori della Cultura, 21 ottobre 2015 (printed
in 2016), pp. 48-59.

. Armienti, P. The medieval roots of modern scientific thought. A Fibonacci abacus on the facade

of the church of San Nicola in Pisa // Journal of Cultural Heritage, 2016, vol. 17, pp. 1-6.

. Arnoux, P., Siegel, A. Dynamique du nombre d’or // Actes de 'université d’été de Bordeaux,

http://iml.univ-mrs.fr/~arnoux/articles.html. 2004, In press.

. Alfred, Brother U. An Introduction to Fibonacci Discovery / San Jose, Calif., Fibonacci

Association, San Jose State College, 1965.

. Cerretelli, C. , L’architettura della chiesa // 11 Duomo di Prato, Casa Editrice Le Lettere

(Cariprato), 2009, Firenze, pp. 57-145.

. Fantappie, R. Le carte della propositura di S. Stefano di Prato / I, 1006-1200, Firenze, Leo S.

Olschki Editore, 1977, pp. 332-335.

. Fibonacci, [Leonardo Pisano, Bigollo|, Liber abbaci / Scritti di Leonardo Pisano matematico

del secolo decimoterzo, 1857, vol. 1: Il Liber abbaci di Leonardo Pisano / pubblicato secondo
la lezione del Codice Magliabechiano C. 1., 2616, Badia Fiorentina, n. 73 da Baldassarre
Boncompagni, socio ordinario dell’Accademia pontificia de’ nuovi Lincei, Roma, Tipografia
delle scienze matematiche e fisiche.

. Dickson, L. E. History of the Theory of Numbers / vol. 1, Divisibility and primality, Washington,

1919, Carnegie Institution of Washington.

. Knuth, D. E. The Art of Computer Programming / vol. 1: Fundamental Algorithms, Reading,

Mass., 1968, Addison-Wesley.

Knuth, D.E., Morris, J.H., Pratt, V.R., Jr., Fast pattern matching in strings // SIAM J.
Comput., 1977, vol. 6, no. 2, pp. 323-350.

Graham, R. L., Knuth, D. E.,; Patashnik, O. Concrete Mathematics: a foundation for computer
science / Reading, Addison-Wesley, 1999.

Matiyasevich, Yu. V. Enumerable sets are Diophantine // Soviet. Math. Doklady, 1970, vol. 11,
no. 2, pp. 354-358.



270 G. Pirillo

13. Matiyasevich, Yu. V. Hilbert’s Tenth Problem: Diophantine Equations in the Twentieth Century
/ (translated by R. Cooke), in “Mathematical Events of the Twentieth Century” (edited by A.
A. Bolibruch, Yu. S. Osipov, and Ya. G. Sinai), Springer, Berlin, 2003, 185-213.

14. Meyer, A., Steyaert, C. Le nombre d’or et les nombres de Fibonacci / IREM [Institut de
recherche sur 'enseignement des mathematiques|, Université Paris VII, Paris, 1981.

15. Pirillo, G. Fibonacci numbers and words, // Discrete Math., 1997, vol. 173, no. 1-3, pp. 197-207.

16. Pirillo, G. A curious characteristic property of standard Sturmian words // In: Algebraic
combinatorics and computer science, 2001, Springer Italia, Milan, pp. 541-546.

17. Pirillo, G. Inequalities characterizing standard Sturmian and episturmian words // Theoret.
Comput. Sci., 2005, vol. 341, no. 1-3, 276-292.

18. Pirillo, G. Numeri irrazionali e segmenti incommensurabili // Nuova Secondaria, 2005, vol. 7,
87-91.

19. Pirillo, G. Some recent results of Fibonacci numbers, Fibonacci words and Sturmian words //
TAST Research Report n. 16-07, Southeast Asian Bull. of Math. 2016, To appear.

20. Pirillo, G. La scuola pitagorica ed i numeri di Fibonacci // Archimede, 2017, vol. 2, 66-71.

21. Pirillo, G. Figure geometriche su un portale del Duomo di Prato // Prato Storia e Arte, 2017,
121, 7-16.

22. Ramsey, F.P. On a problem of formal logic // Proc. London Math. Soc., 1929, vol. 30, no. 4,
264-286.

23. von Fritz, K. The discovery of incommensurability by Hippasus of Metapontum // Ann. of
Math., 1945, second series, vol. 46, pp. 242-264.

24. Wasteels, M. J. Quelques Propriétés des Nombres de Fibonacci // troisieme ser., Mathesis, 1902,
vol. 3, pp. 60-62.

REFERENCES

1. Albano, A. 2016, “The Fibonacci sequence and the golden section in a lunette decoration of
the medieval church of San Nicola in Pisa”, Territori della Cultura, 21 ottobre 2015 (printed in
2016), pp. 48-59.

2. Armienti, P. 2016, “The medieval roots of modern scientific thought. A Fibonacci abacus on
the facade of the church of San Nicola in Pisa”, Journal of Cultural Heritage, vol. 17, pp. 1-6.

3. Arnoux, P., Siegel, A. 2004, “Dynamique du nombre d’or”, Actes de ['université d’été de
Bordeauz, http://iml.univ-mrs.fr/arnoux/articles.html. In press.

4. Alfred, Brother U. 1965, An Introduction to Fibonacci Discovery, San Jose, Calif., Fibonacci
Association, San Jose State College.

5. Cerretelli, C. 2009, “L’architettura della chiesa” in: Il Duomo di Prato, Casa Editrice Le Lettere
(Cariprato), Firenze, pp. 57-145.

6. Fantappie, R. 1977, Le carte della propositura di S. Stefano di Prato, 1, 1006-1200, Firenze, Leo
S. Olschki Editore, pp. 332-335.



A characterization of Fibonacci numbers 271

10.

11.

12.

13.

14.

15.
16.

17.

18.

19.

20.
21.

22.

23.

24.

. Fibonacci, [Leonardo Pisano, Bigollo|, 1857, “Liber abbaci”, Scritti di Leonardo Pisano

matematico del secolo decimoterzo, vol. 1: Il Liber abbaci di Leonardo Pisano / pubblicato
secondo la lezione del Codice Magliabechiano C. 1., 2616, Badia Fiorentina, n. 73 da Baldassarre
Boncompagni, socio ordinario dell’Accademia pontificia de’ nuovi Lincei, Roma, Tipografia delle
scienze matematiche e fisiche.

. Dickson, L.E. 1919, History of the Theory of Numbers, vol. 1, Divisibility and primality,

Washington, Carnegie Institution of Washington.

. Knuth, D.E. 1968, The Art of Computer Programming, vol. 1. Fundamental Algorithms,

Reading, Mass., Addison-Wesley.

Knuth, D. E., Morris, J. H., Pratt, V.R., Jr., 1977, “Fast pattern matching in strings”, STAM J.
Comput., vol. 6, no. 2, pp. 323-350.

Graham, R.L., Knuth, D.E., Patashnik, O. 1999, Concrete Mathematics: a foundation for
computer science, Reading, Addison-Wesley.

Matiyasevich, Yu. V. 1970, “Enumerable sets are Diophantine”, Soviet. Math. Doklady, vol. 11,
no. 2, pp. 354-358.

Matiyasevich, Yu.V. 2003, Hilbert’s Tenth Problem: Diophantine Equations in the Twentieth
Century (translated by R. Cooke), in “Mathematical Events of the Twentieth Century” (edited
by A. A. Bolibruch, Yu. S. Osipov, and Ya. G. Sinai), Springer, Berlin, 185-213.

Meyer, A., Steyaert, C. 1981, Le nombre d’or el les nombres de Fibonacci, IREM |[Institut de
recherche sur 'enseignement des mathematiques|, Université Paris VII, Paris.

Pirillo, G. 1997, “Fibonacci numbers and words”, Discrete Math., vol. 173, no. 1-3, pp. 197-207.

Pirillo, G. 2001, “A curious characteristic property of standard Sturmian words”. In: Algebraic
combinatorics and computer science, Springer Italia, Milan, pp. 541-546.

Pirillo, G. 2005, “Inequalities characterizing standard Sturmian and episturmian words”,
Theoret. Comput. Sci., vol. 341, no. 1-3, 276-292.

Pirillo, G. 2005, “Numeri irrazionali e segmenti incommensurabili”, Nuova Secondaria, vol. 7,

87-91.

Pirillo, G. 2016, “Some recent results of Fibonacci numbers, Fibonacci words and Sturmian
words”, IASI Research Report n. 16-07, Southeast Asian Bull. of Math. To appear.

Pirillo, G. 2017, “La scuola pitagorica ed i numeri di Fibonacci”, Archimede, vol. 2, 66-71.

Pirillo, G. 2017, “Figure geometriche su un portale del Duomo di Prato”, Prato Storia e Arte,
121, 7-16.

Ramsey, F.P. 1929, “On a problem of formal logic”, Proc. London Math. Soc., vol. 30, no. 4,
264-286.

von Fritz, K. 1945, “The discovery of incommensurability by Hippasus of Metapontum”, Ann.
of Math., second series, vol. 46, pp. 242-264.

Wasteels, M. J. 1902, “Quelques Propriétés des Nombres de Fibonacci”, troisieme ser., Mathests,
vol. 3, pp. 60-62.

[Tosyaeno 11.06.2018
[Mpunsro B meuars 17.08.2018



