ЧЕБЫШЕВСКИЙ СБОРНИК Том 19. Выпуск 1

УДК 511.3

DOI 10.22405/2226-8383-2018-19-1-124-137

Совместная дискретная универсальность дзета-функций Лерха

Антанас Лауринчикас — доктор физико-математических наук, профессор, Действительный член АН Литвы, заведующий кафедрой теории вероятностей и теории чисел Вильнюсского университета.

 $e ext{-}mail: antanas.laurincikas@mif.vu.lt$

Аста Минцевич — докторант кафедры теории вероятностей и теории чисел, Вильнюсский университет.

Аннотация

После 1975 г. работы Воронина известно, что некоторые дзета и *L*-функции универсальны в том смысле, что их сдвигами приближается широкий класс аналитических функций. Рассматриваются два типа сдвигов: непрерывный и дискретный.

В работе изучается универсальность дзета-функций Лерха $L(\lambda,\alpha,s), s=\sigma+it$, которые в полуплоскости $\sigma>1$ определяются рядами Дирихле с членами $e^{2\pi i\lambda m}(m+\alpha)^{-s}$ с фиксированными параметрами $\lambda\in\mathbb{R}$ и $\alpha,\ 0<\alpha\leqslant 1$, и мероморфно продолжаются на всю комплексную плоскость. Получены совместные дискретные теоремы универсальности для дзета-функций Лерха. Именно, набор аналитических функций $f_1(s),\ldots,f_r(s)$ одновременно приближаются сдвигами $L(\lambda_1,\alpha_1,s+ikh),\ldots,L(\lambda_r,\alpha_r,s+ikh),\ k=0,1,2,\ldots$, где h>0 - фиксированное число. При этом требуется линейная независимость над полем рациональных чисел множества $\left\{(\log(m+\alpha_j): m\in\mathbb{N}_0,\ j=1,\ldots,r),\frac{2\pi}{h}\right\}$. Доказательство теорем универсальности использует вероятностные предельные теоремы о слабой сходимости вероятностных мер в пространстве аналитических функций.

Ключевые слова: дзета-функция Лерха, пространство аналитических функций, слабая сходимость, теорема Мергеляна, универсальность.

Библиография: 18 названий.

Для цитирования:

А. Лауринчикас, А. Минцевич. Совместная дискретная универсальность дзета-функций Лерха // Чебышевский сборник. 2018. Т. 19, вып. 1, С. 138–151.

CHEBYSHEVSKII SBORNIK Vol. 19. No. 1

UDC 511.3

DOI 10.22405/2226-8383-2018-19-1-124-137

Joint discrete universality for Lerch zeta-functions¹

Antanas Laurinčikas — doctor of physics-mathematical sciences, professor, Member of the Academy of Sciences of Lithuania, Head of the chair of probability theory and number theory, Vilnius university.

 $e ext{-}mail: antanas.laurincikas@mif.vu.lt$

Asta Mincevič — doctoral student in the department of probability theory and number theory, Vilnius u niversity.

Abstract

After Voronin's work of 1975, it is known that some of zeta and L-functions are universal in the sense that their shifts approximate a wide class of analytic functions. Two cases of shifts, continuous and discrete, are considered.

The present paper is devoted to the universality of Lerch zeta-functions $L(\lambda,\alpha,s), s=\sigma+it$, which are defined, for $\sigma>1$, by the Dirichlet series with terms $e^{2\pi i\lambda m}(m+\alpha)^{-s}$ with parameters $\lambda\in\mathbb{R}$ and $\alpha,\ 0<\alpha\leqslant 1$, and by analytic continuation elsewhere. We obtain joint discrete universality theorems for Lerch zeta-functions. More precisely, a collection of analytic functions $f_1(s),\ldots,f_r(s)$ simultaneously is approximated by shifts $L(\lambda_1,\alpha_1,s+ikh),\ldots,L(\lambda_r,\alpha_r,s+ikh),$ $k=0,1,2,\ldots$, where h>0 is a fixed number. For this, the linear independence over the field of rational numbers for the set $\left\{(\log(m+\alpha_j): m\in\mathbb{N}_0,\ j=1,\ldots,r),\frac{2\pi}{h}\right\}$ is required. For the proof, probabilistic limit theorems on the weak convergence of probability measures in the space of analytic function are applied.

Keywords: Lerch zeta-function, Mergelyan theorem, space of analytic functions, universality, weak convergence.

Bibliography: 18 titles.

For citation:

A. Laurinčikas, A. Mincevič, 2018, "Joint discrete universality for Lerch zeta-functions", Chebyshevskii sbornik, vol. 19, no. 1, pp. 138–151.

¹The research of the first author is funded by the European Social Fund according to the activity "Improvement of researchers" qualification by implementing world-class R&D projects' of Measure No. 09.3.3-LMT-K-712-01-0037.

Dedicated to the 100th birthday of Nikolai Mikhailovich Korobov

1. Introduction

In [18], see also [4], S.M. Voronin discovered the universality of the Riemann zeta-function $\zeta(s), s = \sigma + it$, that a wide class of analytic functions can be approximated by shifts $\zeta(s+i\tau), \tau \in \mathbb{R}$. After Voronin's work, various authors extended his universality theorem for some other zeta- and L-functions, and classes of Dirichlet series. One of universal zeta-functions is the Lerch zeta-function $L(\lambda, \alpha, s)$ with parameters $\lambda \in \mathbb{R}$ and $\alpha, 0 < \alpha \leq 1$, which is defined, for $\sigma > 1$, by the Dirichlet series

$$L(\lambda, \alpha, s) = \sum_{m=0}^{\infty} \frac{e^{2\pi i \lambda m}}{(m+\alpha)^s}.$$

The function $L(\lambda, \alpha, s)$ was introduced and studied independently by R. Lipschitz [14] and M. Lerch [13]. The analytic properties of $L(\lambda, \alpha, s)$ depend on the parameters λ and α , and in particular case, this is true for the analytic continuation to the whole complex plane. If $\lambda \notin \mathbb{Z}$, then $L(\lambda, \alpha, s)$ is an entire function, while, for $\lambda \in \mathbb{Z}$, $L(\lambda, \alpha, s)$ reduces to the Hurwitz zeta-function

$$\zeta(s,\alpha) = \sum_{m=0}^{\infty} \frac{1}{(m+\alpha)^s}, \quad \sigma > 1,$$

which is analytically continued to the whole complex plane, except for a simple pole at the point s=1 with residue 1. In virtue of the periodicity of $e^{2\pi i\lambda m}$, it suffices to suppose that $0<\lambda\leqslant 1$. The theory of the Lerch zeta-function is given in [7].

The first universality result for the function $L(\lambda, \alpha, s)$ was obtained in [5]. Let

$$D = \left\{ s \in \mathbb{C} : \frac{1}{2} < \sigma < 1 \right\},\,$$

 \mathcal{K} be the class of compact subsets of the strip D with connected complements, and let H(K) with $K \in \mathcal{K}$ denote the class of continuous functions on K that are analytic in the interior of K. Let meas A denote the Lebesgue measure of a measurable set $A \subset \mathbb{R}$. Then it was obtained in [5] that if α is transcendental, then for $K \in \mathcal{K}$, $f(s) \in H(K)$, $0 < \lambda \leq 1$ and every $\varepsilon > 0$,

$$\liminf_{T\to\infty}\frac{1}{T}\mathrm{meas}\left\{\tau\in[0,T]:\sup_{s\in K}|L(\lambda,\alpha,s+i\tau)-f(s)|<\varepsilon\right\}>0.$$

The case of rational α is more complicated. Some conditional result in this direction has been obtained in [7]. If both α and λ are rational, then the function $L(\alpha, \lambda, s)$ becomes the periodic Hurwitz zeta-function, and, for it, an universality theorem of type of [9] is true. In this case, a certain condition connecting α and λ is involved.

The universality of $L(\alpha, \lambda, s)$ with algebraic irrational α is an open problem. The case of α with linearly independent set $L(\alpha) = \{\log(m + \alpha) : m \in \mathbb{N}_0 = \mathbb{N} \cup \{0\}\}$ over the field of rational numbers \mathbb{Q} can be viewed as a certain approximation to that problem, see [17] and [6].

For the function $L(\alpha, \lambda, s)$, also a discrete universality when τ in $L(\alpha, \lambda, s+i\tau)$ takes values from a certain discrete set is considered. One of the simplest discrete sets is the arithmetic progression $\{kh: k \in \mathbb{N}_0\}$ with h > 0. Denote by #A the cardinality of the set A. If α is transcendental and the number $\exp\{\frac{2\pi}{k}\}$ is rational, then it is known [3], [8] that, for $K \in \mathcal{K}$, $f(s) \in H(K)$, $0 < \lambda \leq 1$ and every $\varepsilon > 0$,

$$\liminf_{N\to\infty}\frac{1}{N+1}\#\left\{0\leqslant k\leqslant N: \sup_{s\in K}|L(\lambda,\alpha,s+ikh)-f(s)|<\varepsilon\right\}>0.$$

Let, for h > 0,

$$L(\alpha, h, \pi) = \left\{ (\log(m + \alpha) : m \in \mathbb{N}_0), \frac{2\pi}{h} \right\}.$$

Then, in [12], the transcendence of α and rationality of $\exp\{\frac{2\pi}{h}\}$ were replaced by the linear independence over \mathbb{Q} of the set $L(\alpha, h, \pi)$.

The aim of this paper is joint discrete universality theorems for Lerch zeta-functions. We note that the joint universality for Lerch zeta-functions is an interesting problem connecting algebraic properties of the parameters $\alpha_1, \ldots, \alpha_r$ and $\lambda_1, \ldots, \lambda_r$ with analytic properties of a collection $L(\lambda_1, \alpha_1, s), \ldots, L(\lambda_r, \alpha_r, s)$, therefore, there are many results of such a kind. The first joint universality theorem for Lerch zeta-functions was proved in [10], [11].

THEOREM 1. Suppose that the parameters $\alpha_1, \ldots, \alpha_r$ are algebraically independent over \mathbb{Q} , $\lambda_1 = \frac{a_1}{q_1}, \ldots, \lambda_r = \frac{a_r}{q_r}$, $(a_1, q_1) = 1, \ldots, (a_r, q_r) = 1$, are rational numbers, k is the least common multiple of q_1, \ldots, q_r , and that the rank of the matrix

$$\begin{pmatrix} e^{2\pi i\lambda_1} & e^{2\pi i\lambda_2} & \dots & e^{2\pi i\lambda_r} \\ e^{4\pi i\lambda_1} & e^{4\pi i\lambda_2} & \dots & e^{4\pi i\lambda_r} \\ \dots & \dots & \dots & \dots \\ e^{2k\pi i\lambda_1} & e^{2k\pi i\lambda_2} & \dots & e^{2k\pi i\lambda_r} \end{pmatrix}$$

is equal to r. For j = 1, ..., r, let $K_j \in \mathcal{K}$ and $f_j \in H(K_j)$. Then, for every $\varepsilon > 0$,

$$\liminf_{T \to \infty} \frac{1}{T} \operatorname{meas} \left\{ \tau \in [0, T] : \sup_{1 \le j \le r} \sup_{s \in K_j} |L(\lambda_j, \alpha_j, s + i\tau) - f_j(s)| < \varepsilon \right\} > 0.$$

Let

$$L(\alpha_1, \dots, \alpha_r) = \left\{ (\log(m + \alpha_1) : m \in \mathbb{N}_0), \dots, (\log(m + \alpha_r) : m \in \mathbb{N}_0) \right\}.$$

Then in [16], under the hypothesis that the set $L(\alpha_1, \ldots, \alpha_r)$ is linearly independent over \mathbb{Q} , it was obtained that the inequality of Theorem 1 is true for all $0 < \lambda \leq 1, j = 1, \ldots, r$.

We will focus on joint discrete analogues of the above results. For h > 0, define the set

$$L(\alpha_1, \dots, \alpha_r; h, \pi) = \left\{ \left(\log(m + \alpha_1) : m \in \mathbb{N}_0 \right), \dots, \left(\log(m + \alpha_r) : m \in \mathbb{N}_0 \right), \frac{2\pi}{h} \right\}.$$

Then we have

THEOREM 2. Suppose that the set $L(\alpha_1, \ldots, \alpha_r; h, \pi)$ is linearly independent over \mathbb{Q} . For $j = 1, \ldots, r$, let $K_j \in \mathcal{K}$, $f_j \in H(K_j)$ and $0 < \lambda_j \leq 1$. Then, for every $\varepsilon > 0$,

$$\liminf_{N \to \infty} \frac{1}{N+1} \# \left\{ 0 \leqslant k \leqslant N : \sup_{1 \leqslant j \leqslant r} \sup_{s \in K_j} |L(\lambda_j, \alpha_j, s + ikh) - f_j(s)| < \varepsilon \right\} > 0.$$

Theorem 2 has the following modification.

THEOREM 3. Suppose that the set $L(\alpha_1, \ldots, \alpha_r; h, \pi)$ is linearly independent over \mathbb{Q} . For $j = 1, \ldots, r$, let $K_j \in \mathcal{K}$, $f_j \in H(K_j)$ and $0 < \lambda_j \leq 1$. Then the limit

$$\lim_{N\to\infty} \frac{1}{N+1} \# \left\{ 0 \leqslant k \leqslant N : \sup_{1\leqslant j\leqslant r} \sup_{s\in K_j} |L(\lambda_j,\alpha_j,s+ikh) - f_j(s)| < \varepsilon \right\} > 0$$

exists for all but at most countably many $\varepsilon > 0$.

The proofs of Theorems 2 and 3 are based on statistical properties of Lerch zeta-functions, more precisely, on limit theorems of weakly convergent probability measures in the space of analytic functions.

2. Discrete limit theorems

Denote by $\mathcal{B}(X)$ the Borel σ -field of the space X. We recall that $D = \{s \in \mathbb{C} : \frac{1}{2} < \sigma < 1\}$. Denote by H(D) the space of analytic functions on D endowed with the topology of uniform convergence on compacta. In this section, we consider the weak convergence of probability measures defined on $(H(D), \mathcal{B}(H(D)))$.

We use the notation $\gamma = \{s \in \mathbb{C} : |s| = 1\}$, and define

$$\Omega = \prod_{m=0}^{\infty} \gamma_m,$$

where $\gamma_m = \gamma$ for all $m \in \mathbb{N}_0$. Then, by the famous Tikhonov theorem, the torus Ω with the product topology and pointwise multiplication is a compact topological Abelian group. Putting

$$\Omega^r = \Omega_1 \times \cdots \times \Omega_r,$$

where $\Omega_j = \Omega$ for j = 1, ..., r, by the Tikhonov theorem again, we have that Ω^r is a compact topological Abelian group. Therefore, on $(\Omega^r, \mathcal{B}(\Omega^r))$, the probability Haar measure m_H can be defined. This gives the probability space $(\Omega^r, \mathcal{B}(\Omega^r), m_H)$. Denote by m_{jH} the probability Haar measure on $(\Omega^j, \mathcal{B}(\Omega^j))$, j = 1, ..., r. Then we have that

$$m_H = m_{1H} \times \cdots \times m_{rH}$$
.

Let ω_j be the elements of Ω_j , $j=1,\ldots,r$, and $\omega=(\omega_1,\ldots,\omega_r)$ denote the elements of Ω^r . Moreover, denote by $\omega_j(m)$ the projection of an element $\omega_j \in \Omega_j$ to the circle γ_m , $m \in \mathbb{N}_0$, $j=1,\ldots,r$. Now, on the probability space $(\Omega^r, \mathcal{B}(\Omega^r), m_H)$, define the $H^r(D)$ -valued random element $L(\underline{\lambda}, \underline{\alpha}, s, \omega)$, where $\underline{\lambda}=(\lambda_1,\ldots,\lambda_r)$ and $\underline{\alpha}=(\alpha_1,\ldots,\alpha_r)$, by

$$L(\underline{\lambda},\underline{\alpha},s,\omega) = (L_1(\lambda_1,\alpha_1,s,\omega_1),\ldots,L_r(\lambda_r,\alpha_r,s,\omega_r)),$$

where

$$L_j(\lambda_j, \alpha_j, s, \omega_j) = \sum_{m=0}^{\infty} \frac{e^{2\pi i \lambda_j m} \omega_j(m)}{(m + \alpha_j)^s}, \quad j = 1, \dots, r.$$

We note that the latter series are uniformly convergent on compact subsets of the strip D [7], thus, they define the H(D)-valued random elements.

Having the above definitions, we state a joint discrete limit theorem for Lerch zeta-functions.

THEOREM 4. Suppose that the set $L(\alpha_1, \ldots, \alpha_r; h, \pi)$ is linearly independent over \mathbb{Q} . Then

$$P_N(A) \stackrel{def}{=} \frac{1}{N+1} \# \{ 0 \leqslant k \leqslant N : L(\underline{\lambda}, \underline{\alpha}, s+ikh) \in A \}, \quad A \in \mathcal{B}(H^r(D)),$$

converges weakly to the distribution P_L of the random element $L(\underline{\lambda},\underline{\alpha},s,\omega)$ as $N\to\infty$.

We remind that, for $A \in \mathcal{B}(H^r(D))$,

$$P_L(A) = m_H \{ \omega \in \Omega^r : L(\lambda, \alpha, s, \omega) \in A \}.$$

We divide the proof of Theorem 4 into lemmas. The first of them deals with the weak convergence of probability measures on $(\Omega^r, \mathcal{B}(\Omega^r))$, and for that the linear independence of the set $L(\alpha_1, \ldots, \alpha_r; h, \pi)$ is essentially applied.

Let, for $A \in \mathcal{B}(\Omega^r)$,

$$Q_N(A) = \frac{1}{N+1} \# \left\{ 0 \leqslant k \leqslant N : ((m+\alpha_1)^{-ikh} : m \in \mathbb{N}_0), \dots, ((m+\alpha_r)^{-ikh} : m \in \mathbb{N}_0) \right\}.$$

LEMMA 1. Suppose that the set $L(\alpha_1, \ldots, \alpha_r; h, \pi)$ is linearly independent over \mathbb{Q} . Then Q_N converges weakly to the Haar measure m_H as $N \to \infty$.

Proof.

We consider the Fourier transform of Q_N . Since characters of the group Ω^r are of the form

$$\prod_{j=1}^{r} \prod_{m=0}^{\infty} \omega_j^{k_{jm}}(m),$$

where only a finite number of integers k_{jm} are distinct from zero, we have that the Fourier transform $g_N(\underline{k}_1,\ldots,\underline{k}_r), \underline{k}_j = (k_{jm}:k_{jm} \in \mathbb{Z}, \ m \in \mathbb{N}_0), \ j=1,\ldots,r, \text{ of } Q_N \text{ is}$

$$g_{N}(\underline{k}_{1}, \dots, \underline{k}_{r}) = \int_{\Omega^{r}} \prod_{j=1}^{r} \prod_{m=0}^{\infty} \omega_{j}^{k_{jm}}(m) dQ_{N} = \frac{1}{N+1} \sum_{k=0}^{N} \prod_{j=1}^{r} \prod_{m=0}^{\infty} (m+\alpha_{j})^{-ikhk_{jm}}$$

$$= \frac{1}{N+1} \sum_{k=0}^{N} \exp \left\{ -ikh \sum_{j=1}^{r} \sum_{m=0}^{\infty} k_{jm} \log(m+\alpha_{j}) \right\}, \tag{1}$$

where \sum' means that only a finite number of integers k_{jm} are distinct from zero. Clearly,

$$g_N(\underline{0},\ldots,\underline{0}) = 1. \tag{2}$$

Since the set $L(\alpha_1, \ldots, \alpha_r; h, \pi)$ is linearly independent over \mathbb{Q} ,

$$\exp\left\{-ih\sum_{j=1}^{r}\sum_{m=0}^{\infty'}k_{jm}\log(m+\alpha_j)\right\}\neq 1$$

for $(\underline{k}_1,\ldots,\underline{k}_r)\neq(\underline{0},\ldots,\underline{0})$. Actually, if this inequality is not true, the

$$h \sum_{j=1}^{r} \sum_{m=0}^{\infty} k_{jm} \log(m + \alpha_j) - \frac{2\pi l}{h} = 0$$

with $l \in \mathbb{Z}$, and this contradicts the linear independence of the set $L(\alpha_1, \ldots, \alpha_r; h, \pi)$. Thus, in this case, we find by (1) that

$$g_N(\underline{k}_1, \dots, \underline{k}_r) = \frac{1 - \exp\left\{-(N+1)ih \sum_{j=1}^r \sum_{m=0}^{\infty} k_{jm} \log(m+\alpha_j)\right\}}{(N+1)\left(1 - \exp\left\{-ih \sum_{j=1}^r \sum_{m=0}^{\infty} k_{jm} \log(m+\alpha_j)\right\}\right)}.$$

This and (2) show that

$$\lim_{N \to \infty} g_N(\underline{k}_1, \dots, \underline{k}_r) = \begin{cases} 1 & \text{if } (\underline{k}_1, \dots, \underline{k}_r) = (\underline{0}, \dots, \underline{0}), \\ 0 & \text{if } (\underline{k}_1, \dots, \underline{k}_r) \neq (\underline{0}, \dots, \underline{0}). \end{cases}$$

Since the right-hand side of the latter equality is the Fourier transform of the Haar measure m_H , the lemma is proved. \Box

Now, we will apply Lemma 1 to obtain a joint limit theorem in the space of analytic functions for functions given by absolutely convergent Dirichlet series connected to Lerch zeta-functions. Let $\hat{\sigma} > \frac{1}{2}$ be a fixed number, and, for $m \in \mathbb{N}_0$ and $n \in \mathbb{N}$,

$$v_n(m, \alpha_j) = \exp\left\{-\left(\frac{m + \alpha_j}{n + \alpha_j}\right)^{\hat{\sigma}}\right\}, \quad j = 1, \dots, r.$$

Define

$$L_n(\underline{\lambda},\underline{\alpha},s) = (L_n(\lambda_1,\alpha_1,s),\ldots,L_n(\lambda_r,\alpha_r,s))$$

and

$$L_n(\underline{\lambda},\underline{\alpha},s,\omega) = (L_n(\lambda_1,\alpha_1,s,\omega_1),\ldots,L_n(\lambda_r,\alpha_r,s,\omega_r)),$$

where

$$L_n(\lambda_j, \alpha_j, s) = \sum_{m=0}^{\infty} \frac{e^{2\pi i \lambda_j m} v_n(m, \alpha_j)}{(m + \alpha_j)^s}, \quad j = 1, \dots, r,$$

and

$$L_n(\lambda_j, \alpha_j, s, \omega) = \sum_{m=0}^{\infty} \frac{e^{2\pi i \lambda_j m} \omega_j(m) v_n(m, \alpha_j)}{(m + \alpha_j)^s}, \quad j = 1, \dots, r,$$

It is known [7] that the series for $L_n(\lambda_j, \alpha_j, s)$ and $L_n(\lambda_j, \alpha_j, s, \omega_j)$ are absolutely convergent for $\sigma > \frac{1}{2}$.

The next lemma deals with weak convergence for

$$P_{N,n}(A) \stackrel{\text{def}}{=} \frac{1}{N+1} \# \{ 0 \leqslant k \leqslant N : L_n(\underline{\lambda},\underline{\alpha},s+ikh) \in A \}, \quad A \in \mathcal{B}(H^r(D)).$$

Define the function $u_n: \Omega^r \to H^r(D)$ by the formula

$$u_n(\omega) = L_n(\underline{\lambda}, \underline{\alpha}, s, \omega), \quad \omega \in \Omega.$$

Since the series for $L_n(\lambda_j, \alpha_j, s, \omega_j)$, j = 1, ..., r, are absolutely convergent for $\sigma > \frac{1}{2}$, the function u_n is continuous, hence it is $(\mathcal{B}(\Omega^r), \mathcal{B}(H^r(D)))$ -measurable. Therefore, the measure m_H induces [1] on $(H^r(D), \mathcal{B}(H^r(D)))$ the unique probability measure $\hat{P}_n \stackrel{\text{def}}{=} m_H u_n^{-1}$, where, for $A \in \mathcal{B}(H^r(D))$,

$$\hat{P}_n(A) = m_H u_n^{-1}(A) = m_H(u_n^{-1}A).$$

LEMMA 2. Suppose that the set $L(\alpha_1, \ldots, \alpha_r; h, \pi)$ is linearly independent over \mathbb{Q} . Then $P_{N,n}$ converges weakly to \hat{P}_n as $N \to \infty$.

Proof.

Let Q_N be defined in Lemma 1. Then the definitions of $P_{N,n}$, Q_N and u_n show that, for every $A \in \mathcal{B}(H^r(D))$,

$$P_{N,n}(A) = \frac{1}{N+1} \# \left\{ 0 \leqslant k \leqslant N : \left(((m+\alpha_1)^{-ikh} : m \in \mathbb{N}_0), \dots, ((m+\alpha_r)^{-ikh} : m \in \mathbb{N}_0) \right) \in u_n^{-1} A \right\} = Q_N(u_n^{-1} A),$$

i.e., $P_{N,n} = Q_N u_n^{-1}$. This, Lemma 1, the continuity of u_n and Theorem 5.1 from [1] show that $P_{N,n}$ converges weakly to the measure $m_H u_n^{-1}$ as $N \to \infty$.

Now, we will approximate $L(\underline{\lambda},\underline{\alpha},s)$ by $L_n(\underline{\lambda},\underline{\alpha},s)$. For $g_1,g_2\in H(D)$, let

$$\rho(g_1, g_2) = \sum_{l=1}^{\infty} 2^{-l} \frac{\sup_{s \in K_l} |g_1(s) - g_2(s)|}{1 + \sup_{s \in K_l} |g_1(s) - g_2(s)|},$$

where $\{K_l : l \in \mathbb{N}\}$ is a sequence of compact subsets of the strip D such that

$$D = \bigcup_{l=1}^{\infty} K_l,$$

 $K_l \subset K_{l+1}$ for all $l \in \mathbb{N}$, and if $K \subset D$ is a compact subset, then $K \subset K_l$ for some l. The proof of the existence of the sequence $\{K_l : l \in \mathbb{N}\}$ can be found, for example, in [2]. The metric ρ induces the topology of the space H(D) of uniform convergence on compacta. The metric $\underline{\rho}$ in $H^r(D)$ inducing the product topology is defined by

$$\underline{\rho}(\underline{g}_1,\underline{g}_2) = \max_{1 \leqslant j \leqslant r} \rho(\underline{g}_{1j},\underline{g}_{2,j}),$$

where $\underline{g}_1 = (g_{11}, \dots g_{1r}), \quad \underline{g}_2 = (g_{21}, \dots g_{2r}) \in H^r(D)$. \square

Lemma 3. For all $\underline{\lambda}$, $\underline{\alpha}$ and h > 0,

$$\lim_{n\to\infty} \limsup_{N\to\infty} \frac{1}{N+1} \sum_{k=0}^{N} \underline{\rho} \left(L(\underline{\lambda}, \underline{\alpha}, s+ikh), L_n(\underline{\lambda}, \underline{\alpha}, s+ikh) \right) = 0.$$

Proof.

The definition of the metric ρ shows that the equality of the lemma follows from the equalities

$$\lim_{n\to\infty} \limsup_{N\to\infty} \frac{1}{N+1} \sum_{k=0}^{N} \rho\left(L_j(\lambda_j, \alpha_j, s+ikh), L_n(\lambda_j, \alpha_j, s+ikh)\right) = 0,$$

 $j=1,\ldots,r$, that were obtained in Lemma 3 of [12]. \square

We recall that the measure \hat{P}_n was defined in Lemma 2.

LEMMA 4. Suppose that the set $L(\alpha_1, \ldots, \alpha_r; h, \pi)$ is linearly independent over \mathbb{Q} . Then the sequence $\{\hat{P}_n : n \in \mathbb{N}\}$ is tight, i.e., for every $\varepsilon > 0$, there exists a compact subset $K = K(\varepsilon) \subset H^r(D)$ such that

$$\hat{P}_n(K) > 1 - \varepsilon$$

for all $n \in \mathbb{N}$.

Proof.

Consider the marginal measures of \hat{P}_n , i.e., the measures

$$\hat{P}_{n,j}(A) = \hat{P}_n \left(\underbrace{H(D) \times \dots \times H(D)}_{j-1} \times A \times H(D) \times \dots \times H(D) \right), \quad A \in \mathcal{B}(H(D)),$$

where $j=1,\ldots,r$. The linear independence of the set $L(\alpha_1,\ldots,\alpha_r;h,\pi)$ implies that for $L(\alpha_j,h,\pi)$, $j=1,\ldots,r$. Therefore, in view of the proof of Lemma 5 from [12], we have that $\hat{P}_{n,j}$ converges weakly to the distribution P_{L_j} of the random element $L_j(\lambda_j,\alpha_j,s,\omega_j)$ as $n\to\infty$, $j=1,\ldots,r$. Hence, the sequence $\{\hat{P}_{n,j}:n\in\mathbb{N}\}$ is relatively compact, $j=1,\ldots,r$. Since the set H(D) is complete and separable, by the inverse Prokhorov Theorem [1, Theorem 6.2], the sequence $\{\hat{P}_{n,j}:n\in\mathbb{N}\}$ is tight, $j=1,\ldots,r$. Thus, for every $\varepsilon>0$, there exists a compact subset $K_j\subset H(D)$ such that

$$\hat{P}_n(K_j) > 1 - \frac{\varepsilon}{r}, \quad j = 1, \dots, r,$$

for all $n \in \mathbb{N}$. The set $K = K_1 \times \cdots \times K_r$ is compact in $H^r(D)$. Moreover,

$$\hat{P}_n(H^r(D) \setminus K) = \hat{P}_n\left(\bigcup_{j=1}^r (H(D) \setminus K_j)\right) \leqslant \sum_{j=1}^r \hat{P}_{n,j}(H(D) \setminus K_j) < \varepsilon$$

for all $n \in \mathbb{N}$, i.e., the sequence $\{\hat{P}_n : n \in \mathbb{N}\}$ is tight. \square

For convenience, we recall one result from [1]. Suppose that (S, ϱ) -valued random elements $Y_n, X_{1n}, X_{2n}, \ldots$ are defined on the same probability space with measure \mathbb{P} , and that the space S is separable.

Lemma 5. Suppose that, for every k,

$$X_{kn} \xrightarrow[n \to \infty]{\mathcal{D}} X_k$$

and

$$X_k \xrightarrow[k\to\infty]{\mathcal{D}} X.$$

Moreover, for every $\varepsilon > 0$, let

$$\lim_{k \to \infty} \limsup_{n \to \infty} \mathbb{P}\{\rho(X_{kn}, Y_n) \geqslant \varepsilon\} = 0.$$

Then $Y_n \xrightarrow[n\to\infty]{\mathcal{D}} X$.

The lemma is Theorem 4.2 from [1].

Proof of Theorem 3. By Lemma 4 and the Prokhorov theorem [1, Theorem 6.1], the sequence $\{\hat{P}_n : n \in \mathbb{N}\}$ is relatively compact. Hence, every subsequence of \hat{P}_n contains a subsequence $\{\hat{P}_{n_k}\}$ such that \hat{P}_{n_k} converges weakly to a certain probability measure P on $(H^r(D), \mathcal{B}(H^r(D)))$ as $k \to \infty$. Therefore, denoting by $\hat{X}_n = \hat{X}_n(s)$ the $H^r(D)$ -valued random element having the distribution \hat{P}_n , we have that

$$\hat{X}_{n_k} \xrightarrow[k \to \infty]{\mathcal{D}} P.$$
 (3)

Moreover, by Lemma 2,

$$X_{N,n} \xrightarrow[N \to \infty]{\mathcal{D}} \hat{X}_n,$$
 (4)

where the $H^r(D)$ -valued random element $X_{N,n} = X_{N,n}(s)$ is defined by

$$X_{N,n}(s) = L_n(\underline{\lambda}, \underline{\alpha}, s + i\theta_N),$$

and θ_N is a random variable defined on a certain probability space $(\hat{\Omega}, \mathcal{F}, \mathbb{P})$ by the formula

$$\mathbb{P}(\theta_N = kh) = \frac{1}{N+1}, \quad k = 0, 1, \dots, N.$$

Define one more $H^r(D)$ -valued random element

$$Y_N = Y_N(s) = L(\underline{\lambda}, \underline{\alpha}, s + i\theta_N).$$

Then, in view of Lemma 3, for every $\varepsilon > 0$,

$$\lim_{n \to \infty} \limsup_{N \to \infty} \mathbb{P}(\underline{\varrho}(X_{N,n}, Y_N) \geqslant \varepsilon)$$

$$= \lim_{n \to \infty} \limsup_{N \to \infty} \frac{1}{N+1} \# \left\{ 0 \leqslant k \leqslant N : \underline{\rho} \left(L(\underline{\lambda}, \underline{\alpha}, s+ikh), L_n(\underline{\lambda}, \underline{\alpha}, s+ikh) \right) \geqslant \varepsilon \right\}$$

$$\leqslant \lim_{n \to \infty} \limsup_{N \to \infty} \frac{1}{(N+1)\varepsilon} \sum_{k=0}^{N} \underline{\varrho}(L(\underline{\lambda}, \underline{\alpha}, s+ikh), L_n(\underline{\lambda}, \underline{\alpha}, s+ikh)) = 0.$$

This equality together with relations (3) and (4) shows that all hypotheses of Lemma 5 are satisfied. Therefore, we obtain the relation

$$Y_N \xrightarrow[N \to \infty]{\mathcal{D}} P. \tag{5}$$

Thus, we have that P_N converges weakly to P as $N \to \infty$. Moreover, the relation (5) shows that the measure P is independent of the choice of the subsequence \hat{P}_{n_k} . Since the sequence \hat{P}_n is relatively compact, hence we obtain that

$$\hat{X}_n \xrightarrow[n \to \infty]{\mathcal{D}} P.$$

This means that \hat{X}_n converges weakly to P as $n \to \infty$. The latter remark allows easily to identify the measure P. Actually, in [16], it was obtained that, under hypothesis that the set $L(\alpha_1, \ldots, \alpha_r)$ is linearly independent over \mathbb{Q} ,

$$\frac{1}{T}\operatorname{meas}\left\{\tau\in[0,T]:L(\underline{\lambda},\underline{\alpha},s+i\tau)\in A\right\},\quad A\in\mathcal{B}(H^r(D)),\tag{6}$$

also converges weakly to the limit measure P of \hat{P}_n as $n \to \infty$, and that P coincides with P_L . Obviously,the linear independence of the set $L(\alpha_1, \ldots, \alpha_r; h, \pi)$ implies that of the set $L(\alpha_1, \ldots, \alpha_r)$. Therefore, P_N also converges weakly to P_L which is the limit measure of \hat{P}_n . The theorem is proved.

3. Proofs of universality

We remind the Mergelyan theorem on approximation of analytic functions by polynomials [15].

Lemma 6. Let K be a compact subset on the complex plane with connected complement, and let f(s) be a function continuous on K and analytic in the interior of K. Then, for every $\varepsilon > 0$, there exists a polynomial p(s) such that

$$\sup_{s \in K} |f(s) - p(s)| < \varepsilon.$$

We also need the explicit form of the support of the measure P_L . We recall that the support of P_L is a closed minimal set S_L such that $P_L(S_L) = 1$. The set S_L consists of all $\underline{g} \in H^r(D)$ such that, for every open neighbourhood G of g, the inequality $P_L(G) > 0$ is true.

LEMMA 7. The support of the measure P_L is the whole of $H^r(D)$.

Proof.

It was observed above that P_L is the limit measure of (6). Thus, the lemma follows from [16], see the proof of Theorem 2.1. \square

We also recall two equivalents of the weak convergence of probability measures. Let P_n , $n \in \mathbb{N}$, and P be probability measures on $(X, \mathcal{B}(X))$. The set $A \in \mathcal{B}(X)$ is called a continuity set of P if $P(\partial A) = 0$, where ∂A is the boundary of A.

Lemma 8. The following statements are equivalent:

- $1^{\circ} P_n$ converges weakly to P;
- 2° for every open set $G \subset X$,

$$\liminf_{n\to\infty} P_n(G) \geqslant P(G),$$

 3° for every continuity set A of the measure P,

$$\lim_{n \to \infty} P_n(A) = P(A).$$

The lemma is a part of Theorem 2.1 from [1].

Proof of Theorem 2.

In view of Lemma 6, there exist polynomials $p_1(s), \ldots, p_r(s)$ such that

$$\sup_{1 \le j \le r} \sup_{s \in K_j} |f_j(s) - p_j(s)| < \frac{\varepsilon}{2}. \tag{7}$$

Consider the set

$$G_{\varepsilon} = \left\{ (g_1, \dots, g_r) \in H^r(D) : \sup_{1 \le j \le r} \sup_{s \in K_j} |g_j(s) - p_j(s)| < \frac{\varepsilon}{2} \right\}.$$

Then the set G_{ε} is open, and, by Lemma 7, is a neighborhood of the collection $(p_1(s), \ldots, p_r(s))$ which is an element of the support of the measure P_L . Therefore, the inequality

$$P_L(G_{\varepsilon}) > 0 \tag{8}$$

is satisfied. Hence, by Theorem 4 and 2° of Lemma 8,

$$\liminf_{N \to \infty} P_N(G_{\varepsilon}) \geqslant P_L(G_{\varepsilon}) > 0.$$
(9)

This, and the definitions of P_N and G_{ε} show that

$$\liminf_{N \to \infty} \frac{1}{N+1} \# \left\{ 0 \leqslant k \leqslant N : \sup_{1 \leqslant j \leqslant r} \sup_{s \in K_j} |L(\lambda_j, \alpha_j, s + ikh) - p_j(s)| < \frac{\varepsilon}{2} \right\} > 0.$$
(10)

Let $k \in \mathbb{N}$ satisfy the inequality

$$\sup_{1 \le j \le r} \sup_{s \in K_j} |L(\lambda_j, \alpha_j, s + ikh) - p_j(s)| < \frac{\varepsilon}{2}.$$

Then, for such k, (7) implies the inequality

$$\sup_{1 \le j \le r} \sup_{s \in K_j} |L(\lambda_j, \alpha_j, s + ikh) - f_j(s)| < \varepsilon.$$

Therefore, (10) gives the assertion of the theorem. \square

Proof of Theorem 3.

Consider the set

$$\hat{G}_{\varepsilon} = \left\{ (g_1, \dots, g_r) \in H^r(D) : \sup_{1 \le j \le r} \sup_{s \in K_j} |g_j(s) - f_j(s)| < \varepsilon \right\}.$$

Then the set \hat{G}_{ε} is open. Moreover, the boundary ∂G_{ε} lies in the set

$$\left\{ (g_1, \dots, g_r) \in H^r(D) : \sup_{1 \leqslant j \leqslant r} \sup_{s \in K_j} |g_j(s) - f_j(s)| = \varepsilon \right\}.$$

Therefore, $\partial \hat{G}_{\varepsilon_1} \cap \partial \hat{G}_{\varepsilon_2} = \emptyset$ for positive $\varepsilon_1 \neq \varepsilon_2$. From this, it follows that $P_L(\hat{G}_{\varepsilon}) > 0$ for at most countably many $\varepsilon > 0$, i.e., the set \hat{G}_{ε} is a continuity set of P_L for all but at most countably many $\varepsilon > 0$. Hence, by Theorem 4, and 1° and 3° of Lemma 8, the limit

$$\lim_{N \to \infty} P_N(\hat{G}_{\varepsilon}) = P_L(\hat{G}_{\varepsilon}) \tag{11}$$

exists for all but at most countably many $\varepsilon > 0$. Moreover, it is not difficult to see that if $(g_1, \ldots, g_r) \in G_{\varepsilon}$, where G_{ε} is defined in the proof of Theorem 2, then, taking into account (7), we find that

$$\sup_{1 \leqslant j \leqslant r} \sup_{s \in K_j} |g_j(s) - f_j(s)| \leqslant \sup_{1 \leqslant j \leqslant r} \sup_{s \in K_j} |g_j(s) - p_j(s)| + \sup_{1 \leqslant j \leqslant r} \sup_{s \in K_j} |f_j(s) - p_j(s)| < \varepsilon.$$

This shows that $G_{\varepsilon} \subset \hat{G}_{\varepsilon}$. Since, by (9), $P_L(G_{\varepsilon}) > 0$, the monotonicity of the measure gives the inequality $P_L(\hat{G}_{\varepsilon}) > 0$. This inequality and (11) prove the theorem. \square

4. Conclusions

The Lerch zeta-function $L(\lambda, \alpha, s)$, $s = \sigma + it$, with parameters $\lambda \in \mathbb{R}$ and $0 < \alpha \le 1$ is defined, for $\sigma > 1$, by the series

$$L(\lambda, \alpha, s) = \sum_{m=0}^{\infty} \frac{e^{2\pi i \lambda m}}{(m+\alpha)^s},$$

and by analytic continuation elsewhere. In the paper, it is obtained that a collection of Lerch zetafunctions $(L(\lambda_1, \alpha_1, s), \dots, L(\lambda_r, \alpha_r, s))$ has a discrete universality property, i.e., a wide class of analytic functions can be approximated by shifts $L(\lambda_1, \alpha_1, s + ikh), \dots, L(\lambda_r, \alpha_r, s + ikh), h > 0$, $k = 0, 1, 2, \dots$ For this, the linear independence over \mathbb{Q} of the set

$$\left\{ (\log(m+\alpha_j) : m \in \mathbb{N}_0, j=1,\dots,r), \frac{2\pi}{h} \right\}$$

is required. More precisely, if K_1, \ldots, K_r are compact subsets of the strip $\{s \in \mathbb{C} : \frac{1}{2} < \sigma < 1\}$ with connected complements, and $f_1(s), \ldots, f_r(s)$ are functions continuous on K_1, \ldots, K_r and analytic in the interior of K_1, \ldots, K_r , respectively, then, for every $\varepsilon > 0$,

$$\liminf_{N\to\infty} \frac{1}{N+1} \# \left\{ 0 \leqslant k \leqslant N : \sup_{1\leqslant j\leqslant r} \sup_{s\in K_j} |L(\lambda_j,\alpha_j,s+ikh) - f_j(s)| < \varepsilon \right\} > 0.$$

It is possible to consider a more general situation, i.e., to consider the approximation of $f_1(s), \ldots, f_r(s)$ by different shifts $L(\lambda_1, \alpha_1, s+ikh_1), \ldots, L(\lambda_r, \alpha_r, s+ikh_r)$ with $h_1 > 0, \ldots, h_r > 0$. For this case, a new more general method than that of the paper is required, and it will be developed in a subsequent paper.

СПИСОК ЦИТИРОВАННОЙ ЛИТЕРАТУРЫ

- 1. Billingsley P. Convergence of Probability Measures. N. Y.: Wiley, 1968. 262 p.
- 2. Conway J. B. Functions of one complex variable. Berlin: Heidelberg; N. Y.: Springer, 1978. 167 p.
- 3. Ignatavičiūtė J. Discrete universality of the Lerch zeta-function // Abstracts 8th Vilnius Conference on Prob. Theory. Vilnius, Lithuania, 2002. P. 116–117.
- 4. Воронин С. М., Карацуба А. А. Дзета-функция Римана. М.: Физматлит, 1994. 376 с.
- 5. Laurinčikas A. The universality of the Lerch zeta-function // Liet. Matem. Rink. 1997. Vol. 37. P. 275—280, 367–375
- 6. Laurinčikas A. On the joint universality of Hurwitz zeta-functions // Šiauliai Math. Semin. 2008. Vol. 3(11). P. 169–187.
- 7. Laurinčikas A., Garunkštis R. The Lerch Zeta-Function. Dordrecht; Boston; London: Kluwer Academic Publishers, 2002. 189 p.
- 8. Laurinčikas A., Macaitienė R. The discrete universality of the periodic Hurwitz zeta-function // Integral Transforms. Spec. Funct. 2009. Vol. 20. P. 673–686.
- 9. Laurinčikas A., Macaitienė R., Mochov D., Šiaučiūnas D. Universality of the periodic Hurwitz zeta-function with rational parameter. 2017 (submitted).

- 10. Laurinčikas A., Matsumoto K. The joint universality and functional independence for Lerch zeta-functions // Nagoya Math. Journal. 2000. Vol. 157. P. 211–227.
- 11. Laurinčikas A., Matsumoto K. Joint value-distribution theorems on Lerch zeta-functions. II // Lith. Math. Journal. 2006. Vol. 46. P.332–350.
- 12. Laurinčikas A., Mincevič A. Discrete universality theorems for the Lerch zeta-function // Anal. Probab. Methods Number Theory. A. Dubickas et al. (Eds). P. 87–95.
- 13. Lerch M. Note sur la fonction $K(w, x, s) = \sum_{n \geq 0} \exp\{2\pi i n x\} (n + w)^{-s} // \text{ Acta Math. 1887.}$ Vol. 11. P. 19–24.
- 14. Lipschitz R. Untersuchung einer aus vier Elementen gebildeten Reihe // J. Reine Angew. Math. 1889. Vol. 105. P. 127–156.
- 15. Мергелян С. Н. Равномерные приближения функций комплексного переменного // Успехи мат. наук. 1952. Т. 7, № 2. С. 31—122.
- 16. Mincevič A., Šiaučiūnas D. Joint universality theorems for Lerch zeta-functions // Šiauliai Math. Semin. 2017. Vol. 12(20). P. 31–47.
- 17. Mincevič A., Vaiginytė A. Remarks on the Lerch zeta-function // Šiauliai Math. Semin. 2016. Vol. 11(19). P. 65–73.
- 18. Воронин С. М. Теорема об "универсальности" дзета-функции Римана // Изв. АН СССР. Сер.: Математика. 1975. Т. 39. С. 475–486 ≡ Math. USSR Izv. 1975. Vol. 9. Р. 443–453.

REFERENCES

- 1. Billingsley, P. 1968, Convergence of Probability Measures, Wiley, New York.
- 2. Conway, J.B. 1978, Functions of one complex variable., Springer, Berlin, Heidelberg, New York.
- 3. Ignatavičiūtė, J. 2002, "Discrete universality of the Lerch zeta-function", Abstracts 8th Vilnius Conference on Prob. Theory, pp. 116–117.
- 4. Karatsuba, A. A., Voronin, S. M. 1992, The Riemann zeta-function, Walter de Gruyter, Berlin.
- 5. Laurinčikas, A. 1997, "The universality of the Lerch zeta-function", *Liet. Matem. Rink.*, vol. 37, pp. 367-375 (in Russian) \equiv Lith. Math. J., vol. 37, pp. 275-280.
- 6. Laurinčikas, A. 2008, "On the joint universality of Hurwitz zeta-functions", Šiauliai Math. Semin., vol. 3(11), pp. 169–187.
- 7. Laurinčikas, A., Garunkštis, R. 2002, *The Lerch Zeta-Function*, Kluwer Academic Publishers, Dordrecht, Boston, London.
- 8. Laurinčikas, A., Macaitienė, R. 2009, "The discrete universality of the periodic Hurwitz zeta-function", *Integral Transforms. Spec. Funct.*, vol. 20, pp. 673–686.
- 9. Laurinčikas, A., Macaitienė, R., Mochov, D., Šiaučiūnas, D. 2017, "Universality of the periodic Hurwitz zeta-function with rational parameter", (submitted).
- 10. Laurinčikas, A., Matsumoto, K. 2000, "The joint universality and functional independence for Lerch zeta-functions", Nagoya Math. J., vol. 157. pp. 211–227.

- 11. Laurinčikas, A., Matsumoto, K. 2006, "Joint value-distribution theorems on Lerch zeta-functions. II", *Lith. Math. J.*, vol 46, pp. 332–350.
- 12. Laurinčikas, A., Mincevič, A. 2017, "Discrete universality theorems for the Lerch zeta-function", *Anal. Probab. Methods Number Theory*, A. Dubickas et al. (Eds). pp. 87–95.
- 13. Lerch, M. 1887, "Note sur la fonction $K(w, x, s) = \sum_{n \geq 0} \exp\{2\pi i n x\} (n + w)^{-s}$ ", Acta Math., vol. 11, pp. 19–24.
- 14. Lipschitz, R. 1889, "Untersuchung einer aus vier Elementen gebildeten Reihe", J. Reine Angew. Math., vol. 105, pp. 127–156.
- 15. Mergelyan, S. N. 1952, "Uniform approximations to functions of a complex variable", *Usp. Matem. Nauk*, vol.7 no 2, pp. 31–122(in Russian)≡ *Amer. Math. Trans.*, 1954, vol. 101.
- 16. Mincevič, A., Šiaučiūnas, D. 2017, "Joint universality theorems for Lerch zeta-functions", Šiauliai Math. Semin., vol. 12(20), pp. 31–47.
- 17. Mincevič, A., Vaiginytė, A. 2016, "Remarks on the Lerch zeta-function", Šiauliai Math. Semin., vol. 11(19), pp. 65–73.
- 18. Voronin, S. M. 1975, "Theorem on the "universality" of the Riemann zeta-function", *Izv. Akad. Nauk SSSR.*, vol. 39. pp. 475–486 (in Russian) \equiv *Math. USSR Izv.*, vol. 9, pp.443–453.