138 A. Laurin¢ikas, A. Mincevic

YEBBIINEBCKNN CEOPHUK
Tom 19. Boimyck 1

VIK 511.3 DOI 10.22405/2226-8383-2018-19-1-124-137
CoBMecTHad ANCKPETHas yHUBEPCAJBHOCTH a3era-dpyHKnuii Jlepxa

Awnurtanac JlaypuHYnKac — 10KT0P (PUBUKO-MATEMATHIECKUX HAYK, TTpodeccop, JleficTBUTeIbHBIM
wred AH Jluteel, 3aBenyromnmit Kadeapoit Teopun BepOATHOCTEH W Teopuu ducen BuabHIOCCKOTO
VHUBEPCUTETA.

e-mail: antanas.laurincikas@mif.vu.lt

Acra MunHneBuY — nokTopanT Kadeapbl TEOPUNn BEPOATHOCTEN U Teopuu 4uces1, BuibHioCCKnit
YHUBEDPCUTET.

AnaHOTanUs

ITocse 1975 r. paborsr BopoHnnna n3BeCTHO, 9TO HEKOTOPbBIE A3eTa U L-byHKINK YyHHBEPCATIb-
HBI B TOM CMBICJI€, 9YTO UX CABUTaMK IPUOJIAKAETCI MUPOKUI KJIACC aHAJIATHIECKAX (PYHKINMN.
PaccmarpuBatorcs /iBa THIIA CABUIOB: HEIPEPBLIBHLIA U JUCKPETHLIH.

B pabore msyuaercs yruepcanbHocTh azera-pynxkumit Jlepxa L(A, a, s), s = o + it, Koro-
pbIe B TOJYTIJIOCKOCTH ¢ > 1 ompefensiorcsa pagaMu upuxie ¢ dieHaMu eQ”iA"L(m +a)fc
dukcuposanubiMn mapamerpamMun A € R n «, 0 < a < 1, 1 MmepomMopdHO HMPOJOIKAIOTCS HA
BCIO KOMILJIEKCHYIO ILJIOCKOCTh. 110Iy4eHbl COBMECTHBIE JUCKPETHBIE TEOPEMBL YHUBEPCAIBLHOCTH
s n3era-byukuuit Jlepxa. Vmenno, nabop ananurudeckux bysxuuit f1(s),. .., fr(s) oxHo-
BpemenHo upubsmkatorcs casuramu L(Ai, a1, s + ikh), ..., L(Ay, o, s +ikh), k= 0,1,2,...,
re h > 0 - durcupoBanuoe uncyo. [Ipu sTom Tpebyercs JuHelHas HE3ABUCUMOCTD HAJI TOJIEM
panmonansHerx uncesn muoxkecrsa { (log(m + a;) :m € No, j =1,...,7), 2% }. JlokasarenncTso
TEOpeM YHUBEPCAJbHOCTH HCIOJb3yeT BEPOSTHOCTHBIE Ipee/bHbIe TeOpeMbl O CIaboi CXOomu-
MOCTH BEPOATHOCTHBIX MEP B IPOCTPAHCTBE aHATUTHYECKUX (DYHKINMN.

Kamouesnie caosa: n3era-bynkius Jlepxa, IpoCTPAHCTBO aHAIUTHICCKUX (DYHKINM, ciabast
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Abstract

After Voronin’s work of 1975, it is known that some of zeta and L-functions are universal in
the sense that their shifts approximate a wide class of analytic functions. Two cases of shifts,
continuous and discrete, are considered.

The present paper is devoted to the universality of Lerch zeta-functions L(\, a, s), s = o +it,
which are defined, for o > 1, by the Dirichlet series with terms e (m+a)~* with parameters
A€ Rand «, 0 < a < 1, and by analytic continuation elsewhere. We obtain joint discrete
universality theorems for Lerch zeta-functions. More precisely, a collection of analytic functions
f1(s), ..., fr(s) simultaneously is approximated by shifts L(\1, a1, s+ikh), ..., L(A., a,, s+ikh),
k=0,1,2,..., where h > 0 is a fixed number. For this, the linear independence over the field
of rational numbers for the set {(log(m + a;) :m € No, j =1,...,r), 2%} is required. For the
proof, probabilistic limit theorems on the weak convergence of probability measures in the space
of analytic function are applied.
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Dedicated to the 100th birthday of Nikolai Mikhailovich Korobov

1. Introduction

In [18], see also [4], S.M. Voronin discovered the universality of the Riemann zeta-function
((s),s = o+it, that a wide class of analytic functions can be approximated by shifts ((s+i7), 7 € R.
After Voronin’s work, various authors extended his universality theorem for some other zeta- and
L-functions, and classes of Dirichlet series. One of universal zeta-functions is the Lerch zeta-function
L(\, a, s) with parameters A € R and o, 0 < o < 1, which is defined, for o > 1, by the Dirichlet

series
0 eQm')\m

L\ a,s) = Z

m=0

The function L(\, «, s) was introduced and studied independently by R. Lipschitz [14] and M. Lerch

[13]. The analytic properties of L(\, o, s) depend on the parameters A and «, and in particular case,

this is true for the analytic continuation to the whole complex plane. If A € Z, then L(\, o, s) is an
entire function, while, for A € Z, L(\, «, s) reduces to the Hurwitz zeta-function

(m+ a)s’

1
s, ) = —_—, > 1,
C(s,0) =) i ©
m=0
which is analytically continued to the whole complex plane, except for a simple pole at the point
s = 1 with residue 1. In virtue of the periodicity of e>™*™_ it suffices to suppose that 0 < A < 1.
The theory of the Lerch zeta-function is given in [7].

The first universality result for the function L(\, a, s) was obtained in [5]. Let

1
D:{SEC:2<0<1},
KC be the class of compact subsets of the strip D with connected complements, and let H(K) with
K € K denote the class of continuous functions on K that are analytic in the interior of K. Let
meas A denote the Lebesgue measure of a measurable set A C R. Then it was obtained in [5] that
if o is transcendental, then for K € K, f(s) € H(K), 0 < A < 1 and every € > 0,

lim inf lmeas {T € 10,77 : sup |[L(\, 0, s +i7) — f(3)| < 6} > 0.
T—oo T seK
The case of rational « is more complicated. Some conditional result in this direction has been
obtained in [7]. If both « and A are rational, then the function L(a, A, s) becomes the periodic
Hurwitz zeta-function, and, for it, an universality theorem of type of [9] is true. In this case, a
certain condition connecting o and A is involved.

The universality of L(w, A, s) with algebraic irrational « is an open problem. The case of «
with linearly independent set L(a) = {log(m + a) : m € Ng = NU {0}} over the field of rational
numbers Q can be viewed as a certain approximation to that problem, see [17] and [6].

For the function L(a, A, s), also a discrete universality when 7 in L(a, A\, s+i7) takes values from
a certain discrete set is considered. One of the simplest discrete sets is the arithmetic progression
{kh : k € No} with A > 0. Denote by # A the cardinality of the set A. If « is transcendental and
the number exp{%} is rational, then it is known [3], [8] that, for K € I, f(s) € H(K),0 <A< 1
and every € > 0,

lim inf
Nosoo N+ 1

#{Og k < N :sup |L(\ «a,s+ikh) — f(s)] <€} > 0.
seK
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Let, for h > 0,

L(a, h,m) = {(log(m +a):meN), 2}7} .

Then, in [12]|, the transcendence of « and rationality of exp{ T} were replaced by the linear
independence over Q of the set L(a, h, ).

The aim of this paper is joint discrete universality theorems for Lerch zeta-functions. We
note that the joint universality for Lerch zeta-functions is an interesting problem connecting
algebraic properties of the parameters aj,...,a, and Aq,..., A, with analytic properties of a
collection L(Ay,a1,5),..., L(Ar, ar,s), therefore, there are many results of such a kind. The first
joint universality theorem for Lerch zeta-functions was proved in [10], [11].

THEOREM 1. Suppose that the parameters ai,...,c, are algebraically independent over Q,
A= %""’/\T = %, (a1,q1) = 1,...,(ar,q) = 1, are rational numbers, k is the least common
multiple of q1,...,q,, and that the rank of the matriz

6271'72)q 627TiA2 o e27ri)\r
e47r7;)\1 e47r7i)\2 o e47ri)\r
erTri)q erTri)\z o e2k:7ri/\r

is equal tor. For j=1,...,r, let K; € K and f; € H(K;). Then, for every e > 0,
| .
liminf —meas ¢ 7 € [0,7] : sup sup |L(\j,aj,s+iT) — fi(s)| <ep > 0.
T—oo T 1<j<r s€K;
Let
L(ai,...,ap) = {(log(m + a1) : m € Np), ..., (log(m + a,) : m € Ng)}.

Then in [16], under the hypothesis that the set L(ayq,...,a;) is linearly independent over Q, it was
obtained that the inequality of Theorem 1 is true forall0 <A< 1,5=1,...,r
We will focus on joint discrete analogues of the above results. For h > 0, define the set

2
L(ay,...,ap h,m) = {(log(m—i—al):meNO),...,(log(m—&—ar) m € Ng), }ZT}

Then we have

THEOREM 2. Suppose that the set L(ay,...,ap;h,m) is linearly independent over Q. For
j=1,...,r, let K; € K, f; € H(Kj) and 0 < \j < 1. Then, for every e > 0,

lim inf
Novoo N+ 1

1<j<r se K

# {0 <k N: sup sup |L(N\j, a5,s +ikh) — fi(s)] < 5} > 0.

Theorem 2 has the following modification.

THEOREM 3. Suppose that the set L(ay,...,ap;h,m) is linearly independent over Q. For
j=1,...,r, let K; € K, fj € H(Kj) and 0 < \; < 1. Then the limit
lim —— <k N: sup sup |L(A\j,aj,s+1ikh) — fi(s)| <ep >0
N—>00N+1#{ 1<j2rselgj‘ (Aj» o ) — fi(s)] }

exists for all but at most countably many € > 0.

The proofs of Theorems 2 and 3 are based on statistical properties of Lerch zeta-functions,
more precisely, on limit theorems of weakly convergent probability measures in the space of analytic
functions.



142 A. Laurin¢ikas, A. Mincevic

2. Discrete limit theorems

Denote by B(X) the Borel o-field of the space X. We recall that D = {s € C: 3 <o <1}.
Denote by H(D) the space of analytic functions on D endowed with the topology of uniform
convergence on compacta. In this section, we consider the weak convergence of probability measures
defined on (H(D),B(H(D))).

We use the notation v = {s € C: |s| = 1}, and define

9
Q= H Tm
m=0

where 7, = « for all m € Ny. Then, by the famous Tikhonov theorem, the torus 2 with the product
topology and pointwise multiplication is a compact topological Abelian group. Putting

O =0y x - xQ,

where Q; = Q for j = 1,...,r, by the Tikhonov theorem again, we have that 2" is a compact
topological Abelian group. Therefore, on (27, B(Q2")), the probability Haar measure my can be
defined. This gives the probability space (2",B(Q2"), my). Denote by m;g the probability Haar
measure on (7, B(7)), 7 =1,...,7. Then we have that

mg =mig X - XMrHg.
Let w; be the elements of Q;, 7 =1,...,7,and w = (w1, ..., w, denote the elements of )". Moreover,
denote by w;(m) the projection of an element w; € Q; to the circle v,,, m € No, j =1,...,r. Now,

on the probability space (Q",B(Q"),mp), define the H"(D)-valued random element L(), a, s,w),
where A = (A\1,...,\) and a = (o, ...,q;), by

L(Aa@a Saw) = (Ll()\la aig, Sawl)a s 7L'r()\r7 Qy, 37“7'))7

where ‘
o0 627rz)\jmwj (m)

Lij(Aj, o, s,w5) = W

, J=1,...,7r

m=0
We note that the latter series are uniformly convergent on compact subsets of the strip D [7], thus,
they define the H(D)-valued random elements.

Having the above definitions, we state a joint discrete limit theorem for Lerch zeta-functions.
THEOREM 4. Suppose that the set L(aq, ..., o h,m) is linearly independent over Q. Then

def 1

PvA) = g

#{0<k<N:LQ\a,s+ikh) € A}, AeB(H (D)),

converges weakly to the distribution Pr of the random element L(A, a, s,w) as N — oo.

We remind that, for A € B(H" (D)),
Pr(A)=mpg{we Q" : L\ q,s,w) € A}.

We divide the proof of Theorem 4 into lemmas. The first of them deals with the weak
convergence of probability measures on (", B(Q2")), and for that the linear independence of the set
L(aq, ..., ap; h, ) is essentially applied.

Let, for A € B(Q"),

1

Qn(A) = Niil

#{nggN:((m+a1)_ikh:meNg),...,((m+aT)_ikh:meNo))EA}.
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LEMMA 1. Suppose that the set L(aq,...,ap; h, ) is linearly independent over Q. Then QN
converges weakly to the Haar measure mg as N — 00.

Proof.
We consider the Fourier transform of Q. Since characters of the group Q" are of the form

T oo
T IT wj (m).
7j=1m=0

where only a finite number of integers k;,, are distinct from zero, we have that the Fourier transform
gN(El,...,Er),Ej = (k}jm : kjm EZ, mENo),j: 1,...,7’, OfQN 18

ro>® N r oo
gn (ks k,) = /T 1111 wfjm(m)dQN _ NilZH T (m + ay)~hksn

7j=1m=0 k=0 j=1m=0
1 N r o0 ,
= mZexp —ikhzz kjm log(m + ;) 2, (1)
k=0 j=1m=0
where Y~ means that only a finite number of integers kj, are distinct from zero. Clearly,
gn(0,...,0)=1. (2)

Since the set L(aq,...,ap; h,m) is linearly independent over Q,

exp § —ih Z Z/ kjmlog(m +aj) ¢ #1

j=1m=0
for (kq,...,k,) # (0,...,0). Actually, if this inequality is not true, the
Uy 2ml
hzz kjm log(m + «aj) — o = 0
j=1m=0

with [ € Z, and this contradicts the linear independence of the set L(a, ..., ap;h,m). Thus, in this
case, we find by (1) that

1 exp { (N + 1)ih 5y 5/ Kjm log(m + ;) |
gN(El?"wEr): }

(N +1) <1 — exp {fz'h > et SV kjmlog(m + aj) )
This and (2) show that

. (1 if (kg k) =(0,...,0),
NlinoogN(kl"“’kr)_{ 0 if (kys....k,) # (0,...,0).

s up
Since the right-hand side of the latter equality is the Fourier transform of the Haar measure myy,
the lemma is proved. O

Now, we will apply Lemma 1 to obtain a joint limit theorem in the space of analytic functions
for functions given by absolutely convergent Dirichlet series connected to Lerch zeta-functions. Let
o> % be a fixed number, and, for m € Ny and n € N,

m—+ o 7
vn(m,aj)—exp{—(n_i_a?) }, j=1,...,m7
J
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Define
Lo\ a,8) = (Lp(A,01,8), ..oy Ln(Ar, iy 8))
and
Lo\ a,s,w) = (Lpn(A1, 01, 8,w1), .« oy Ln( Ay iy S,07)),s
where = ganitmy, (m. o) |
Ln()\j,aj,s)zmzz:o (m + o) , j=1,...,7
and

2w (m)vn (m, o)

(m +aj)*

) j:17""/r7

oo
e
Ly,(N\j,aj,8,w) = Z
m=0
It is known [7] that the series for L,()\;, o, s) and Ly (A, o, s,w;) are absolutely convergent for
o> 1.
The next lemma deals with weak convergence for

Pyn(A) X 2{0<k<N:Ly\a,s+ikh) € A}, AeB(H(D)).

N+1

Define the function u, : Q" — H"(D) by the formula
Un(w) = Lpy(A, i, 8,w), w € Q.

Since the series for L, (), o, s,w;), j =1,...,r, are absolutely convergent for o > %, the function
uy, is continuous, hence it is (B(Q"), B(H"(D)))-measurable. Therefore, the measure my induces [1]

n (H"(D),B(H"(D))) the unique probability measure P, &f mpyu, !, where, for A € B(H"(D)),

Pn(A) = myu, '(A) = mg(u, ' A).
LEMMA 2. Suppose that the set L(ou, ..., ap;h, ) is linearly independent over Q. Then Py,
converges weakly to P, as N — co.

Proof.
Let Qn be defined in Lemma 1. Then the definitions of Py, Qnx and u, show that for every
A€ B(H"(D)),

Py (A) = — { < <N:< —ikh .

N,( ) N—i—l# 0<k ((m—l—oq) mENo)
(m+ o)~ * . m e N0)> € uglA} = Qn(u,'A),

ie, PNy = Qnu;,'. This, Lemma 1, the continuity of u, and Theorem 5.1 from [1] show that Pn oy

converges weakly to the measure myu, ' as N — oc.
Now, we will approximate L(A, «, s) by L,(\, a, s). For g1,92 € H(D), let

p(g1,92) iz | SUDsek, [91(s) — g2(s)]
=1 1 + sup,eg, lg1(s) — g2(s)’

where {Kj : [ € N} is a sequence of compact subsets of the strip D such that

o0
D=|JK,
=1
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K; C Kjpqforalll € Ny and if K C D is a compact subset, then K C K for some [. The proof of the
existence of the sequence {K; : [ € N} can be found, for example, in [2]. The metric p induces the
topology of the space H(D) of uniform convergence on compacta. The metric p in H"(D) inducing
the product topology is defined by a

p(917g2) = lma‘x p(21]7Q2J)7

£ <jgr
where g, = (g11,..-911), g, = (921,-..92r) € H'(D). O

LEMMA 3. For all A\, o and h > 0,

N

1

"7 > (L s 4 ikh), Ly, 0.5 + ikh)) = 0.
k=0

lim lim sup
n—00 N 0o N

Proof.
The definition of the metric p shows that the equality of the lemma follows from the equalities

N

1

+1 > p(Lj(\j, o, s+ ikh), Ln(Xy, @5, s + ikh)) =0,
k=0

lim lim sup
n—00 N 300 N

j=1,...,r, that were obtained in Lemma 3 of [12|. O
We recall that the measure P,, was defined in Lemma 2.

LEMMA 4. Suppose that the set L(aq,...,ap;h,m) is linearly independent over Q. Then
the sequence {P, : m € N} s tight, i.e., for every ¢ > 0, there exists a compact subsel
K = K(e) C H"(D) such that

~

P,(K)>1-¢
for all n € N,

Proof.
Consider the marginal measures of P, i.e., the measures

P, j(A)=P, | HDD)x ---x HD)xAx H(D) x ---x HD) |, A& B(H(D)),

7—1

where j = 1,...,r. The linear independence of the set L(ax, ..., ay; h, 7) implies that for L(aj, h, ),
j = 1,...,r. Therefore, in view of the proof of Lemma 5 from [12], we have that Pn,j converges
weakly to the distribution Pr; of the random element Lij(A\j,0,8,wj) asn — 00, j = 1,...,7.
Hence, the sequence {Pn,j : n € N} is relatively compact, j = 1,...,r. Since the set H(D)
is complete and separable, by the inverse Prokhorov Theorem [1, Theorem 6.2], the sequence
{Pn,j :n € N}istight, j = 1,...,7. Thus, for every ¢ > 0, there exists a compact subset K; C H(D)
such that

Pn(Kj)>1—§, j=1,....m

for all n € N. The set K = K; x --- x K, is compact in H" (D). Moreover,

P D)\ K) = o (0,

(H(D)\ K») <SP (H(D)\K;) <<
j=1

for all n € N, i.e.,the sequence {Pn :n € N} is tight. O

For convenience, we recall one result from [1]. Suppose that (5, p)-valued random elements
Yy, Xin, Xon, ... are defined on the same probability space with measure P, and that the space S
is separable.
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LEMMA 5. Suppose that, for every k,
D
Kien —— Xk
n—oo

and

D
X, -2 X,
k—o0

Moreover, for every € > 0, let

lim limsup P{p(Xgn,Yn) =€} =0.

k—00 n—oo

Then Y, —2— X.

n—oo

The lemma is Theorem 4.2 from [1].

Proof of Theorem 3. By Lemma 4 and the Prokhorov theorem [1, Theorem 6.1], the sequence
{Pn : n € N} is relatively compact. Hence, every subsequence of P, contains a subsequence
{P,,} such that P,, converges weakly to a certain probability measure P on (H"(D),B(H"(D)))
as k — oo. Therefore, denoting by X,, = X,(s) the H"(D)-valued random element having the
distribution Pn, we have that

X, ——P. (3)
" k—oo
Moreover, by Lemma 2,
D A
XNn — X, (4)
N—o0

where the H"(D)-valued random element Xy, = Xn5(s) is defined by
Xnn(s) = Ln(A, @, s + ib),

and Oy is a random variable defined on a certain probability space (€2, F,P) by the formula

1

=0,1,...,N.

Define one more H"(D)-valued random element
Yy = YN(S) = L(A, a, s+ iQN).
Then, in view of Lemma 3, for every € > 0,

lim limsup P(o(Xnp, YN) =€)

n—o0 N—o00 -

1
7 {OS kSN p(LQda,s +ikh), La(A s + ikh)) > &}

= lim limsup
n—=00 N0 N

N
1
< lim limsup N1 De > o(L(A a5+ ikh), Ln(A, a, s + ikh)) = 0.

n—oo N—oo

k
This equality together with relations (3) and (4) shows that all hypotheses of Lemma 5 are satisfied.
Therefore, we obtain the relation

Yy —2— P. (5)
N—oo

Thus, we have that Py converges weakly to P as N — oo. Moreover, the relation (5) shows that the
measure P is independent of the choice of the subsequence P,, . Since the sequence P, is relatively
compact, hence we obtain that
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This means that X, converges weakly to P as n — oo. The latter remark allows easily to identify
the measure P. Actually, in [16], it was obtained that, under hypothesis that the set L(a, ..., o)
is linearly independent over Q,

%meas {r€[0,T]: L\, a,s+iT) € A}, A€ B(H"(D)), (6)

also converges weakly to the limit measure P of B, as n — oo, and that P coincides with Pr.
Obviously,the linear independence of the set L(«y, . .., a,; h, ) implies that of the set L(aq, ..., a;).
Therefore, Py also converges weakly to P, which is the limit measure of P,. The theorem is proved.
O

3. Proofs of universality

We remind the Mergelyan theorem on approximation of analytic functions by polynomials [15].

LEMMA 6. Let K be a compact subset on the complex plane with connected complement, and
let f(s) be a function continuous on K and analytic in the interior of K. Then, for every e > 0,
there exists a polynomial p(s) such that

sup [(5) — p(s)] < c.
sEK
We also need the explicit form of the support of the measure Pr. We recall that the support of
Py, is a closed minimal set Sy, such that Pr(Sr) = 1. The set Sz consists of all g € H"(D) such
that, for every open neighbourhood G of g, the inequality Pr(G) > 0 is true.

LEMMA 7. The support of the measure Py, is the whole of H" (D).

Proof.

It was observed above that P, is the limit measure of (6). Thus, the lemma follows from [16],
see the proof of Theorem 2.1. O

We also recall two equivalents of the weak convergence of probability measures. Let P,, n € N,
and P be probability measures on (X, B(X)). The set A € B(X) is called a continuity set of P if
P(0A) =0, where 0A is the boundary of A.

LEMMA 8. The following statements are equivalent:
1° P, converges weakly to P;

2° for every open set G C X,
hrr_l)inf P,(G) = P(G),

3° for every continuity set A of the measure P,

lim P,(A) = P(A).

n—o0

The lemma is a part of Theorem 2.1 from |[1].
Proof of Theorem 2.
In view of Lemma 6, there exist polynomials pi(s),...,p,(s) such that

£
sup sup |f;(s) —p;(s)| < 7 (7)
1§j§r SEKJ'

Consider the set

G: = {(gl,---,gv-) € H"(D): sup sup |g;j(s) —pj(s)| < 8}-

1<j<r s€K; 2
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Then the set G¢ is open, and,by Lemma 7, is a neighborhood of the collection (p1(s),...,pr(s))
which is an element of the support of the measure Pr. Therefore, the inequality

Pr(Ge) >0 (8)
is satisfied. Hence, by Theorem 4 and 2° of Lemma 8,

liminf Py (Ge) > Pr(G:) > 0. (9)
N—o0

This, and the definitions of Py and G¢ show that

lim inf
N—osoco N +1 1<G<r s€K; 2

# {O <k < N: sup sup |L(Nj,aj,s+ikh) —pj(s)| < 6} > 0. (10)

Let k£ € N satisfy the inequality

g
sup sup |L(Aj, aj, s +ikh) —p;(s)| < 5.
1<j<r seK; 2

Then, for such k, (7) implies the inequality

sup sup |L(Aj, aj, s +ikh) — fi(s)] <e.
1<j<rsEKj

Therefore, (10) gives the assertion of the theorem. O
Proof of Theorem 3.
Consider the set

G, = {(gl,...,gr) € H'(D): sup sup |gj(s) — fi(s)] < 5}.

1<y<r se K

Then the set G, is open. Moreover, the boundary 0G; lies in the set

{(gl,-.-,gr)GH’"(D)r sup sup |9j(3)—fj(5>|:5}-

1<j<r se K

Therefore, 8@'51 N 8652 = @ for positive €1 # e9. From this, it follows that PL(GE) > 0 for at most
countably many € > 0, i.e., the set G; is a continuity set of Pr, for all but at most countably many
€ > 0. Hence, by Theorem 4, and 1° and 3° of Lemma 8, the limit

Am Py(Ge) = Pr(Ge) (11)

exists for all but at most countably many € > 0. Moreover, it is not difficult to see that if
(91,---,9r) € Ge, where G is defined in the proof of Theorem 2, then, taking into account (7), we
find that

sup sup |g;(s) — f;(s)| < sup sup gj(s) —p;(s)| + sup sup [f;(s) —p;(s)| <e.
1<j<r seK; 1<j<r seK; 1<j<r s€K;

This shows that G. C G.. Since, by (9), PL(G:) > 0, the monotonicity of the measure gives the

A~

inequality Pr,(G.) > 0. This inequality and (11) prove the theorem. O
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4. Conclusions

The Lerch zeta-function L(\, a, s), s = o +it, with parameters A € R and 0 < o < 1 is defined,
for ¢ > 1, by the series

> p2midm

L\ = —_—

(A 9) z:(quoz)s7

m=0

and by analytic continuation elsewhere. In the paper, it is obtained that a collection of Lerch zeta-

functions (L(A1,1,8),...,L(A, ap,s)) has a discrete universality property, i.e., a wide class of

analytic functions can be approximated by shifts L(\1, a1, s + ikh), ..., L(Ar, ap, s + ikh), h > 0,
k=0,1,2,.... For this, the linear independence over Q of the set

2
{(log(m+ozj):m€No,j = 17~--77”),}Zr}

is required. More precisely, if K1, ..., K, are compact subsets of the strip {3 eC: % <o < 1} with
connected complements, and f1(s),..., fr(s) are functions continuous on Ki, ..., K, and analytic
in the interior of K1, ..., K,, respectively, then, for every ¢ > 0 ,

lim inf
N—oo 1

# {0 <k < N: sup sup |[L(Nj,aj,s+ikh) — fi(s)| < 5} > 0.

1<,j<7‘ SEKj

It is possible to consider a more general situation, i.e., to consider the approximation of
fi1(s), ..., fr(s) by different shifts L(A1, oy, s+ikhi), ..., L(\,, o, s+ikh,) with hy > 0,...,hy > 0.
For this case, a new more general method than that of the paper is required, and it will be developed
in a subsequent paper.
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