ЧЕБЫШЕВСКИЙ СБОРНИК

Том 16 Выпуск 1 (2015)

УДК 511.524

ОБОБЩЁННАЯ ТЕРНАРНАЯ ПРОБЛЕМА ЭСТЕРМАНА ДЛЯ НЕЦЕЛЫХ СТЕПЕНЕЙ С ПОЧТИ РАВНЫМИ СЛАГАЕМЫМИ

П. З. Рахмонов (г. Москва)

Аннотация

Доказана асимптотическая формула в обобщенной тернарной проблеме Эстермана для нецелых степеней с почти равными слагаемыми о представлении достаточно большого натурального числа в виде суммы двух простых и целой части нецелой степени натурального числа.

Ключевые слова: тригонометрические суммы, тернарная проблема Эстермана для нецелых степеней, почти равные слагаемые.

Библиография: 9 названий.

GENERALIZED ESTERMANN'S TERNARY PROBLEM FOR NONINTEGER POWERS WITH ALMOST EQUAL SUMMANDS

P. Z. Rakhmonov (Moscow)

Abstract

An asymptotic formula is obtained in generalized Estermann's ternary problem for noninteger powers with almost equal summands on the representations of a sufficiently large natural number as a sum of two primes and integer part of noninteger power of a natural number.

Keywords: exponential sums, Estermann's ternary problem with noninteger exponents, almost equal summands.

Bibliography: 9 titles.

1. Введение

Estermann [1] доказал асимптотическую формулу для числа решений уравнения

$$p_1 + p_2 + n^2 = N, (1)$$

где p_1, p_2 — простые числа, n — натуральное число (см. также [2, 3]).

В. Н.Чубариков поставил следующую задачу. Рассмотрим уравнение (1), в котором слагаемое n^2 заменится на $[n^c]$, где c — нецелое фиксированное число. Исследовать его при более жестких условиях, а именно, когда слагаемые почти равны. Эту задачу мы называем обобщённой тернарной проблемой Эстермана для нецелых степеней c почти равными слагаемыми.

ТЕОРЕМА 1. Пусть N- достаточно большое натуральное число, $\mathcal{L} = \ln N, \, c$ — нецелое фиксированное число с условиями

$$||c|| \ge 3c \left(2^{[c]+1} - 1\right) \frac{\ln \mathcal{L}}{\mathcal{L}}, \quad c > \frac{4}{3} + \mathcal{L}^{-0,3}.$$

Тогда при $H\geqslant N^{1-\frac{1}{2c}}\mathscr{L}^2$ для I(N,H) — числа решений уравнения

$$p_1 + p_2 + [n^c] = N, \quad \left| p_i - \frac{N}{3} \right| \leqslant H, \quad i = 1, 2, \quad \left| [m^c] - \frac{N}{3} \right| \leqslant H$$

в простых числах p_1 , p_2 и натуральном m справедлива асимптотическая формула:

$$I(N,H) = \frac{18}{3^{\frac{1}{c}}c} \cdot \frac{H^2}{N^{1-\frac{1}{c}}\mathscr{L}^2} + O\left(\frac{H^2}{N^{1-\frac{1}{c}}\mathscr{L}^3}\right)$$

2. Вспомогательные леммы

ЛЕММА 1. Пусть $x \geqslant x_0, \ y \geqslant x^{\frac{5}{8}} \exp(\ln x)^{0.67} \ u \ |\alpha| \leqslant \frac{x}{y^2}$. Тогда справедливо равенство:

$$S(\alpha; x, y) = \sum_{x-y < n \le x} \Lambda(n) e(\alpha n) = \frac{\sin \pi \alpha y}{\pi \alpha} e\left(\alpha \left(x - \frac{y}{2}\right)\right) + O\left(y \exp(-\ln^4 \ln x)\right).$$

ДОКАЗАТЕЛЬСТВО. Не ограничивая общности, считаем $y=x^{\frac{5}{8}}\exp(\ln x)^{0.67}$. Вводим вспомогательные параметры

$$H = \frac{x}{y} + \alpha y, \quad T_0 = \frac{x(1 + \alpha y) \ln^2 x}{y} \exp(\ln^4 \ln x),$$

между которыми имеет место неравенство $H\geqslant T_0^{1/3}.$

Применяя к $S(\alpha, x, y)$ преобразование Абеля в интегральной форме и пользуясь представлением функции Чебышёва в виде суммы по нулям $\zeta(\rho+i\gamma)$, (см. [6], стр.80) при $T=T_0$ имеем:

$$S(\alpha, x, y) = \frac{\sin \pi \alpha y}{\pi \alpha} e\left(\alpha \left(x - \frac{y}{2}\right)\right) - W(\alpha, x, y) + O\left(\frac{(1 + |\alpha|y)x \ln^2 x}{T_0}\right),$$

$$W(\alpha, x, y) = \sum_{|\gamma| \leqslant T_0} \int_{x - y}^x u^{\rho - 1} e(\alpha u) du \leqslant \sum_{|\gamma| \leqslant T_0} |I(\rho)|,$$

$$I(\rho) = \int_{x - y}^x u^{\beta - 1} e\left(\alpha u + \frac{1}{2\pi}\gamma \ln u\right) du.$$

Оценивая интеграл $I(\rho)$ по величине первой производной (см. [7], стр. 359), находим:

$$|I(\rho)| \ll x^{\beta} \min_{x-y \leqslant u \leqslant x} \left(\frac{y}{x}, \frac{1}{\min|\gamma + 2\pi\alpha u|} \right). \tag{2}$$

Разбивая нули $\rho = \beta + i\gamma, \ |\gamma| \leqslant T_0$ соответствующим образом и пользуясь 2, получим

$$W(\alpha, x, y) \ll \frac{y \ln x}{x} \max_{|T| \leqslant T_0} W_4, \qquad W_4 = \sum_{T < \gamma \leqslant T + H} x^{\beta}. \tag{3}$$

Далее, пользуясь теоремой о границе нулей $\zeta(s)$ ([6], стр. 100), то есть

$$N(u,T+H)-N(u,T)=0,$$
 если $u\geqslant 1-\delta(T),$ $\delta(T)=rac{c_1}{\ln^{\frac{2}{3}}(|T|+10)\ln\ln(|T|+10)},$

соотношением $N(T+H)-N(T)\ll H\ln T$ ([6], стр. 69), а также плотностной теоремой в коротких прямоугольниках критической полосы для нулей $\zeta(s)$ [8], то есть оценкой

$$N(u, T + H) - N(u, T) \ll H^{\frac{8}{3}} (\ln T)^{50}, \qquad H \gg T^{\frac{7}{22} + \varepsilon}$$

получим требуемую оценку $W(\alpha, x, y) \ll y \exp(-\ln^4 \ln x)$. \square

3. Доказательство теоремы

Не ограничивая общности, будем считать, что $H=N^{1-\frac{1}{2c}}\mathscr{L}^2$. Имеем

$$I(N,H) = \int_{-0,5}^{0,5} T^2(\alpha; N, H) T_c(\alpha; N, H) e(-\alpha N) d\alpha,$$

$$T(\alpha; N, H) = \sum_{|p-N/3| \leqslant H} e(\alpha p), \qquad T_c(\alpha; N, H) = \sum_{|[n^c]-N/3| \leqslant H} e(\alpha [n^c]).$$

Разбивая отрезок интегрирования [-0.5, 0.5] на $\mathfrak{M} = [-\varpi, \varpi], \, \mathfrak{m}_+ = [\varpi, 0.5]$ и $\mathfrak{m}_- = [-0.5, -\varpi]$ где $\mathfrak{w} = (2cH)^{-1} \mathcal{L}^2$ отдельно оценим интегралы $I(N, H) = I(\mathfrak{M}) + I(\mathfrak{m}_+) + I(\mathfrak{m}_-)$.

3.1. Оценка интегралов $I(\mathfrak{m}_+)$ и $I(\mathfrak{m}_-)$

Пользуясь теоремой об асимптотическом распределении простых чисел в промежутках малой длины (см. [7]), промежуток [N/3-H, N/3+H] при $H \geqslant N^{7/12} \exp(\ln N)^{0.8}$ содержит $\ll H \mathcal{L}^{-1}$ простых чисел. Поэтому имея в виду, что

$$H = N^{1 - \frac{1}{2c}} \mathcal{L}^2 > N^{\frac{5}{8}} \mathcal{L}^2 > N^{\frac{7}{12}} \exp(\mathcal{L}^{0,8})$$

найдем

$$I(\mathfrak{m}_{+}) \ll \frac{H}{\mathscr{L}} \cdot \max_{\alpha \in \mathfrak{m}_{+}} |T_{c}(\alpha, N, H)|.$$
 (4)

Оценка $T_c(\alpha, N, H)$ для α сводится к оценке $S_c(\alpha; N_1 + H_1, 2H_1),$

$$\begin{split} S_c(\alpha; N_1 + H_1, 2H_1) &= \sum_{N_1 - H_1 < n \leq N_1 + H_1} e(\alpha[n^c]), \\ N_1 &= \left(\frac{N}{3}\right)^{\frac{1}{c}}, \quad H_1 = \frac{3^{1 - \frac{1}{c}} H}{cN^{1 - \frac{1}{c}}} = \frac{3^{1 - \frac{1}{2c}}}{c} N_1^{\frac{1}{2}} \mathscr{L}^2, \end{split}$$

которая, в свою очередь, оценивается согласно теореме 1 из [4]. Получим

$$I(\mathfrak{m}_+) \ll \frac{H^2}{N^{1-\frac{1}{c}}\mathscr{L}^3}.$$

 $I(\mathfrak{m}_{-})$ оценивается аналогично.

3.2. Вычисление интеграла $I(\mathfrak{M})$

Найдем сначала асимптотическое поведение суммы

$$S\left(\alpha; \frac{N}{3} + H, 2H\right) = \sum_{\frac{N}{3} - H < n \le \frac{N}{3} + H} \Lambda(n)e(\alpha n), \qquad \alpha \in \mathfrak{M}.$$

пользуясь леммой 1 при $x=\frac{N}{3}+H,\ y=2H.$ Далее найдем асимптотическое поведении суммы

$$S_c(\alpha; N_1 + H_1, 2H_1) = \sum_{N_1 - H_1 < n \le N_1 + H_1} e(\alpha[n^c]), \quad \alpha \in \mathfrak{M},$$

используя следствие 2.1 из [4]. Сводя оценку сумм $T(\alpha; N, H)$ и $T_c(\alpha; N, H)$ к оценку соответствующих сумм $S\left(\alpha; \frac{N}{3} + H, 2H\right)$ и $S_c(\alpha; N_1 + H_1, 2H_1)$, получим утверждение теоремы

$$I(N,H) = \frac{18}{3^{\frac{1}{c}} c} \cdot \frac{H^2}{N^{1-\frac{1}{c}} \mathscr{L}^2} + O\left(\frac{H^2}{N^{1-\frac{1}{c}} \mathscr{L}^3}\right).$$

4. Заключение

Найдена асимптотическая формула для количества представлений достаточно большого натурального числа в виде суммы двух простых и целой части нецелой фиксированной степени натурального числа, при условии, что слагаемые почти равны.

СПИСОК ЦИТИРОВАННОЙ ЛИТЕРАТУРЫ

- 1. T. Estermann Proof that every large integer is the sum of two primes and square // Proc. London Math. Soc. 1937. No. 11, pp. 501-516. doi: 10.1112/plms/s2-42.1.501
- 2. З. X. Рахмонов Тернарная задача Эстермана с почти равными слагаемыми // Мат. заметки. 2003. Т. 74, № 4. С. 534 572. doi: 10.4213/mzm291
- 3. З. Х. Рахмонов Кубическая задача Эстермана с почти равными слагаемыми // Мат. заметки. 2014. Т. 95, № 3. С. 445 456. doi: 10.4213/mzm10204
- П. З. Рахмонов Короткие суммы с нецелой степенью натурального числа // Математические заметки. 2014. Т. 95, № 5. С. 763 – 774. doi: 10.4213/mzm10205
- 5. П. З. Рахмонов Короткие тригонометрические суммы с нецелой степенью натурального числа // Вестн. Моск. ун-та. сер. 1. Математика. Механика. 2012. № 6. С. 51-55. doi: 10.3103/S0027132213010130
- 6. А. А. Карацуба Основы аналитической теории чисел. 2-ое изд. М.: Наука, 1983. 240 с.
- 7. С. М. Воронин, А. А. Карацуба Дзета-функция Римана. М.: Физматлит. 1994. 376 с.
- 8. З. Х. Рахмонов Оценка плотности нулей дзета функции Римана // УМН. 1994. Т. 49. Вып. 1. С. 161 162. doi: 10.1070/RM1994v049n02ABEH002225
- 9. Г. И. Архипов, А. А. Карацуба, В. Н. Чубариков Теория кратных тригонометрических сумм. М.: Наука. 1987. 370 с.

REFERENCES

- 1. Estermann, T. 1937, "Proof that every large integer is the sum of two primes and square", Proc. London Math. Soc., no. 11, pp. 501 – 516. doi: 10.1112/plms/s2-42.1.501
- 2. Rakhmonov, Z. Kh. 2003, "Estermann's Ternary Problem with Almost Equal Summands", Mathematical Notes, vol. 74, Issue 3-4, pp. 534 - 542. (Russian) doi: 10.1023/A:1026199928464
- 3. Rakhmonov, Z. Kh. 2014, "The Estermann cubic problem with almost equal summands", Mathematical Notes, vol. 95, Issue 3-4, pp. 407 - 417. (Russian) doi: 10.1134/S0001434614030122
- 4. Rakhmonov, P. Z. 2014, "Short sums with a noninteger power of a natural number", Mathematical Notes, vol. 95, Issue 5–6, pp. 697 – 707. (Russian) doi: 10.1134/S0001434614050125
- 5. Rakhmonov, P. Z. 2013, "Short exponential sums with a non-integer power of a natural number", Moscow University Mathematics Bulletin, vol. 68, Issue 1, pp. 65 - 68. (Russian) doi: 10.3103/S0027132213010130
- Karatsuba, A. A. 1983, "Fundamentals of Analytic Number Theory.", Nauka, Moscow, 2nd edition. 240 p. (Russian)
- 7. Voronin, S. M. & Karatsuba, A. A. 1994, "The Riemann Zeta-Function.", Moscow, Fizmatlit, 370 p. (Russian)
- 8. Rakhmonov, Z. Kh. 1994, "Estimate of the density of the zeros of the Riemann zeta function", Russian Mathematical Surveys, vol. 49, Issue 2, pp. 168 – 169. (Russian)
 - doi: 10.1070/RM1994v049n02ABEH002225
- 9. Arkhipov, G. I., Karatsuba, A. A. & Chubarikov, V. N. 2004, "Trigonometric sums in number theory and analysis.", Berlin-New-York: Walter de Gruyter, 554 p.

Получено 26.02.2015