ЧЕБЫШЕВСКИЙ СБОРНИК

Том 18 Выпуск 2

УДК 512.579

DOI 10.22405/2226-8383-2017-18-2-154-172

О КОНГРУЭНЦ-КОГЕРЕНТНЫХ АЛГЕБРАХ РИСА И АЛГЕБРАХ С ОПЕРАТОРОМ

А. Н. Лата (г. Москва)

Аннотация

В работе описываются конгруэнц-когерентные алгебры Риса и алгебры с оператором. Концепция когерентности была предложена Д. Гейгером.

В разделе 3 найдены условия отсутствия свойства конгруэнц-когерентности для алгебр имеющих собственные подалгебры. Для алгебр Риса получено необходимое условие конгруэнц-когерентности. Для произвольной алгебры с оператором найдены достаточные условия конгруэнц-когерентности. Кроме того, полностью описаны конгруэнц-когерентные унары.

В разделе 4 рассматриваются модификации свойства конгруэнц—когерентности. Понятия слабой и локальной когерентности были предложены И. Хайда. Установлены достаточные условия слабой и локальной когерентности алгебр с оператором.

В разделе 5 рассматриваются алгебры $\langle A,d,f\rangle$, сигнатура которых состоит из тернарной операции d(x,y,z) и унарной операции f, являющейся эндоморфизмом относительно первой операции. Тернарная операция d(x,y,z) определена в соответствии с подходом, предложенным В. К. Карташовым. Для алгебр $\langle A,d,f\rangle$ получены необходимые и достаточные условия конгруэнц-когерентности. Для алгебр $\langle A,d,f,0\rangle$ с нульарной операцией 0 для которой f(0)=0, найдены необходимые и достаточные условия слабой и локальной когерентности.

Ключевые слова: решетка конгруэнций, конгруэнц-когерентность, слабая когерентность, локальная когерентность, алгебра Риса, конгруэнция Риса, алгебра с операторами, унар с мальцевской операцией, операция почти единогласия, слабая операция почти единогласия.

Библиография: 33 названия.

ON CONGRUENCE-COHERENT REES ALGEBRAS AND ALGEBRAS WITH AN OPERATOR

A. N. Lata (Moscow)

Abstract

The paper contains a classification of congruence-coherent Rees algebras and algebras with an operator. The concept of coherence was introduced by D. Geiger. An algebra A is called coherent if each of its subalgebras containing a class of some congruence on A is a union of such classes.

In Section 3 conditions for the absence of congruence-coherence property for algebras having proper subalgebras are found. Necessary condition of congruence-coherence for Rees algebras are obtained. Sufficient condition of congruence-coherence for algebras with an operator are obtained. In this section we give a complete classification of congruence-coherent unars.

In Section 4 some modification of the congruence-coherent is considered. The concept of weak and locally coherence was introduced by I. Chajda. An algebra A with a nullary operation 0 is called weakly coherent if each of its subalgebras including the kernel of some congruence

on A is a union of classes of this congruence. An algebra A with a nullary operation 0 is called locally coherent if each of its subalgebras including a class of some congruence on A also includes a class the kernel of this congruence. Section 4 is devoted to proving sufficient conditions for algebras with an operator being weakly and locally coherent.

In Section 5 deals with algebras $\langle A,d,f\rangle$ with one ternary operation d(x,y,z) and one unary operation f acting as endomorphism with respect to the operation d(x,y,z). Ternary operation d(x,y,z) was defined according to the approach offered by V. K. Kartashov. Necessary and sufficient conditions of congruence-coherent for algebras $\langle A,d,f\rangle$ are obtained. Also, necessary and sufficient conditions of weakly and locally coherent for algebras $\langle A,d,f,0\rangle$ with nullary operation 0 for which f(0)=0 are obtained.

Keywords: congruence lattice, coherence, weakly coherence, locally coherence, Rees algebra, Rees congruence, algebra with operators, unar with Mal'tsev operation, near-unanimity operation, weak near-unanimity operation.

Bibliography: 33 titles.

Посвящается 80-летию профессора Владимира Константиновича Карташова.

1. Введение

Универсальная алгебра *А конгруэнц-когерентна*, если любая подалгебра в *А*, содержащая класс произвольной конгруэнции в *А*, является объединением классов этой конгруэнции. Таковыми являются конгруэнц-простые алгебры и алгебры без собственных подалгебр. Кроме того, свойством конгруэнц-когерентности обладают группы, кольца.

В работе [1] показано, что конгруэнц-когерентное многообразие, задается мальцевскими условиям и является конгруэнц-регулярным. Однако, обратное неверно. В [2] показано, что многообразие, порождаемое квазипримальной алгеброй, является конгруэнц-когерентным. В [3] получено полное описание конгруэнц-когерентных алгебр де Моргана и *p*-алгебр. В [4] описаны конгруэнц-когерентные дистрибутивные двойные *p*-алгебры. В работе [5] доказано, что если декартов квадрат алгебры конгруэнц-когерентен, то сама алгебра конгруэнц-регулярна и потому конгруэнц-перестановочна. В [6] описаны конгруэнц-когерентные двойные де Морган-Стоуновы алгебры. В работе [7] получено полное описание конгруэнц-когерентных алгебр в классе симметричных расширенных алгебр де Моргана.

Подалгебра B алгебры A называется *подалгеброй Риса*, если объединение диагонали и квадрата $B \times B$ является конгруэнцией в A. Указанная конгруэнция называется *конгруэнцией Риса*. Алгебра A является *алгеброй Риса*, если любая ее подалгебра является подалгеброй Риса. *Класс Риса* состоит из алгебр Риса. Алгебры Риса охарактеризованы в работах [8, 9, 10], см. также [11, 12].

Алгеброй с операторами называется алгебра с выделенной системой унарных операций, действующих как эндоморфизмы для остальных основных операций. Указанные алгебры изучались в работах [13, 14, 15, 16, 17].

2. Необходимые определения

Подалгебра алгебры называется собственной, если она отлична от самой алгебры. Неодноэлементная алгебра называется конгруэнц-простой (простой), если она имеет в точности две конгруэнции (наибольшую ∇ и наименьшую \triangle). Через $\operatorname{Con} A$ обозначается решетка конгруэнций алгебры A, через $\operatorname{Sub} A$ обозначается решетка подалгебр алгебры A. Класс конгруэнции θ , порожденный элементом x, будем обозначать через $[x]\theta$.

Другие определения и утверждения теории решеток можно найти в [18, 19].

Пусть $\langle A, f \rangle$ — произвольный унар. Далее для любых целых чисел h > 0, $t \geqslant 0$ через $C_h^t = \langle a|f^t(a) = f^{h+t}(a) \rangle$ обозначается унар с образующим a и определяющим соотношением $\langle a|f^t(a) = f^{h+t}(a) \rangle$. Унар C_n^0 называется *циклом длины n*. Через F_1 обозначается свободный однопорожденный унар. *Цепью* C^∞ называется унар, изоморфный унару $\langle \mathbb{Z}, f \rangle$, где \mathbb{Z} — множество целых чисел и f(n) = n+1 для любого $n \in \mathbb{Z}$. Элемент a унара называется *циклическим*, если подунар, порожденный этим элементом, является циклом.

Элемент a унара называется nepuoduческим, если $f^t(a) = f^{t+n}(a)$ для некоторых $t \geqslant 0$ и $n \geqslant 1$. Через T(A) обозначается множество периодических элементов унара A. Если a — периодический элемент, то наименьшее из чисел t, для которых $f^t(a) = f^{t+n}(a)$ при некоторых $n \geqslant 1$, называется snybunoù элемента a и обозначается через t(a). Глуbunoù t(A) унара A называется наибольшая из глуbun его периодических элементов, если $T(A) \neq \emptyset$. Если множество $\{t(a) \mid a \in T(A)\}$ не ограничено, глуbuna унара считается бесконечной.

Элемент a унара называется узловым, если найдутся такие различные элементы b и c, отличные от a, что f(b) = a = f(c).

Объединение двух непересекающихся унаров B и C называется их cymmoй и обозначается через B+C. Унар $\langle A,f\rangle$ называется c g g называется g

Далее через σ_n , где $n \in \mathbb{N}$, обозначается $\operatorname{Ker} f^n$; при этом полагаем $\sigma_0 = \triangle$. В [21] на произвольном унаре $\langle A, f \rangle$ определяется бинарное отношение σ : $x\sigma y \Leftrightarrow \exists n > 0 \ (f^n(x) = f^n(y))$, и показано, что это отношение является конгруэнцией любой алгебры $\langle A, \Omega \rangle$ с оператором $f \in \Omega$.

Конгруэнция $\overline{\alpha}$ унара $\langle A, f \rangle$ называется расширением конгруэнции α подунара B унара A, если условие $x\overline{\alpha}y$ для $x,y \in A$ выполняется тогда и только тогда, когда $x\alpha y$ в B, либо x=y.

Пусть v — узловой элемент унара $\langle A, f \rangle$. Через θ_v обозначается бинарное отношение на унаре $\langle A, f \rangle$, определенное по правилу [20]: $x\theta_v y$ тогда и только тогда, когда x = y, или $x, y \in f^{-1}(v)$.

В [21] на связном унаре, имеющем одноэлементный подунар, определено бинарное отношение β_n по правилу: $x\beta_n y$ тогда и только тогда, когда x=y или $t(x), t(y) \leqslant n$. По лемме 15 [21], при любом $n \geqslant 0$ отношение β_n является конгруэнцией унара с мальцевской операцией p(x,y,z), определенной по правилу (1).

3. Конгруэнц-когерентные алгебры

Пусть B — собственная подалгебра алгебры A. Обозначим через $\theta_{A \setminus B}$ конгруэнцию удовлетворяющую условию: существуют $x, z \in B$ и $y \in A \setminus B$ такие, что $(x, y) \in \theta_{A \setminus B}$ и $[z]\theta_{A \setminus B} \subseteq B$.

Из определения следует, что если алгебра A имеет конгруэнцию $\theta_{A \setminus B}$ для некоторой подалгебры B, то она не является конгруэнц-когерентной. Кроме того, если алгебра A не имеет конгруэнцию $\theta_{A \setminus B}$ для любой подалгебры B, то она является конгруэнц-когерентной. Таким образом, алгебра A конгруэнц-когерентна тогда и только тогда, когда она не имеет конгруэнций $\theta_{A \setminus B}$ для любой подалгебры B.

Необходимо отметить, что конгруэнция $\theta_{A \setminus B}$ определена неоднозначно.

ПРИМЕР 1. Пусть $\langle A, f \rangle$ — унар с узловым элементом v. Тогда существуют различные элементы $x,y \in A$ такие, что f(x) = v = f(y). Рассмотрим $\langle B, f \rangle$, где $B = \{z \in A | f^k(z) \neq y, k \geqslant 0\}$ и конгруэнцию:

- 1. $\sigma_1 = \operatorname{Ker} f$. Имеем $x, y \in [x]\sigma_1$ u $[v]\sigma_1 \subset B$, $i \partial e$ $x \in B$ u $y \in A \setminus B$.
- 2. θ_v . Имеем $x, y \in [x]\theta_v$ $u[v]\theta_v \subset B$, $ide x \in B$ $u y \in A \setminus B$.

Таким образом, если подунар $\langle B, f \rangle$ унара $\langle A, f \rangle$ расширяется до подалгебры $\langle B, \Omega \rangle$ алгебры $\langle A, \Omega \rangle$ и $\theta_v \in \text{Con}\langle A, \Omega \rangle$, то имеем дополнительные примеры существования конгруэнции $\theta_{A \setminus B}$.

ПРИМЕР 2. Пусть унар $\langle A, f \rangle$ содержит такой элемент a, что f(x) = a для любого $x \in A$ $u \mid A \mid \geqslant 3$. Рассмотрим различные двухэлементные подунары $\langle B, f \rangle$ $u \mid \langle C, f \rangle$, где $B \cap C = \{a\}$. При этом в качестве конгруэнции $\theta_{A \setminus B}$ может быть конгруэнция Риса $\theta_C = C^2 \cup \triangle_A$.

Приведем условия отсутствия свойства конгруэнц-когерентности для алгебр имеющих собственные подалгебры.

 Π ЕММА 1. Пусть B_1, B_2 — собственные подалгебры A. При этом B_1, B_2 пересекаются u не совпадают. Если существует конгруэнция Риса по подалгебре B_1 или B_2 , то алгебра A не является конгруэнц-когерентной.

Доказательство. Пусть существует конгруэнция Риса $\theta_{B_1} = {B_1}^2 \cup \triangle_A$. По определению конгруэнции θ_{B_1} , подалгебра B_2 содержит хотя бы один одноэлементный класс, но не является объединением классов конгруэнции θ_{B_1} . Таким образом, алгебра A не является конгруэнцикогерентной. \square

ЛЕММА 2. Если алгебра имеет более двух непересекающихся подалгебр и существует конгруэнция Риса по прямой сумме двух подалгебр отличная от единичной конгруэнции, то она не является конгруэнц-когерентной.

Доказательство. Возможны два случая.

 $\mathit{Cлучай}\ 1:\ B,\ C$ и D попарно непересекающиеся подалгебры алгебры A.

Пусть $\theta_{C\oplus D}$ — конгруэнция Риса алгебры A. Прямая сумма $B\oplus C$ — подалгебра алгебры A. Подалгебра $B\oplus C$ содержит класс $[b]\theta_{C\oplus D}=\{b\}$ для любого $b\in B$, но не содержит класс $[c]\theta_{C\oplus D}=C\oplus D$ для любого $c\in C$. Откуда, подалгебра $B\oplus C$ не является объединением классов конгруэнции $\theta_{C\oplus D}$. Таким образом, алгебра A не является конгруэнц—когерентной.

Случай 2: В и D, а также C и D непересекающиеся подалгебры алгебры A, причем $B \subset C$. По условию $\theta_{B\oplus D}$ — конгруэнция Риса алгебры A. Подалгебра C содержит класс $[b]\theta_{C\oplus D}=\{b\}$ для любого $b\in C\setminus B$, но не содержит класс $[d]\theta_{B\oplus D}=B\oplus D$ для любого $d\in D$. Откуда, подалгебра C не является объединением классов конгруэнции $\theta_{B\oplus D}$. Таким образом, алгебра A не является конгруэнц—когерентной. \square

Из лемм 1 и 2 вытекает

ПРЕДЛОЖЕНИЕ 1. Если алгебра $Puca\ A$ является конгруэнц-когерентной, то она удовлетворяет одному из условий:

- 1. Алгебра A не имеет собственных подалгебр;
- 2. $A = B \oplus C$, где B и C без собственных подалгебр;
- 3. $\langle \operatorname{Sub} A, \subseteq \rangle uenb.$

Следующее утверждение дает ответ на вопрос, при каких условиях многообразие является многообразием Риса.

ТЕОРЕМА 1 ([8]). Многообразие V является многообразием Pиса тогда и только тогда, когда каждая фундаментальная операция зависит не более, чем от одной переменной.

ЛЕММА 3. Если унар $\langle A,f\rangle\cong C_n^0$ или $\langle A,f\rangle\cong C_n^0+C_m^0$, где $n,m\in\mathbb{N}$, то $\langle A,f\rangle$ является конгруэнц-когерентным.

Доказательство. Случай когда $\langle A,f\rangle\cong C_n^0$ очевиден.

Пусть $\langle A,f\rangle\cong C_n^0+C_m^0$, где $n,m\in\mathbb{N}$, и $\langle B,f\rangle$ — поунар унара $\langle A,f\rangle$. Если $\langle B,f\rangle$ собственный, то очевидно, либо $\langle B,f\rangle\cong C_n^0$, либо $\langle B,f\rangle\cong C_m^0$. Пусть θ — нетривиальная конгруэнция алгебры $\langle A,f\rangle$. Тогда возможны два случая:

 $\mathit{Случай}\ 1:\ \theta$ является расширением некоторой конгруэнции подунара $\langle B,f\rangle$. Тогда утверждение очевидно.

Случай 2: θ не является расширением некоторой конгруэнции подунара $\langle B, f \rangle$. Тогда $\langle A, f \rangle$ разбивается на классы, причем, ни один класс полностью не принадлежит $\langle B, f \rangle$. Таким образом, $\langle A, f \rangle$ является конгруэнц-когерентным.

В случае если $\langle B,f\rangle$ несобственный, то утверждение очевидно. \square

ЛЕММА 4. Если унар $\langle A, f \rangle \cong F_1$ или $\langle A, f \rangle$ содержит подунар изоморфный F_1 , то $\langle A, f \rangle$ не является конгруэнц-когерентным.

Доказательство. Случай 1: $\langle A, f \rangle \cong F_1$.

Тогда по предложению 1 [22], любая конгруэнция $\theta \in Con\langle A, f \rangle$ задается парой $(f^k(a), f^{k+d}(a))$, где $k, d \in \mathbb{Z}$. Рассмотрим нетривиальную конгруэнцию θ_1 порожденную парой $(a, f^3(a))$ и подунар B порожденный элементом f(a). Очевидно, подунар B содержит класс $[f(a)]\theta_1$, но $a \notin B$. Таким образом, подунар B не является объединением классов конгруэнции θ_1 . Следовательно, унар $\langle A, f \rangle$ не является конгруэнц-когерентным.

Cлучай 2: $\langle A, f \rangle$ содержит подунар $\langle B, f \rangle \cong F_1$.

Рассмотрим расширение нетривиальной конгруэнцию θ_1 порожденной парой $(a, f^3(a))$ на унаре $\langle B, f \rangle$. Дальнейшие рассуждения аналогичны случаю 1. \square

Замечание 1. Пусть $\langle A, f \rangle$ — неодноэлементный связный унар с одноэлементным подунаром, либо не имеющий узловых элементов, либо имеющий единственный узловой элемент, являющийся неподвижным. Пусть также a — неподвижный элемент унара $\langle A, f \rangle$.

Тогда
$$\beta_n = \sigma_n \ u \ [a]\sigma_m = [a]\sigma_{m-1} \cup \left(\bigcup_{t(y)=m} [y]\sigma_{m-1}\right), \ npuчем \ |[y]\sigma_{m-1}| = 1.$$

ДОКАЗАТЕЛЬСТВО. Из определения конгруэнций β_n, σ_n , следствия 3 [21] и леммы 12 [21] вытекает $\beta_n = \sigma_n$, где n > 0 (По определению $\beta_0 = \triangle = \sigma_0$).

Пусть $0 \leqslant n \leqslant t(A)$, $0 \leqslant m \leqslant t(A)$ и n < m. Тогда σ_n и σ_m — несовпадающие конгруэнции унара $\langle A, f \rangle$. Так как $0 \leqslant n \leqslant t(A)$, $0 \leqslant m \leqslant t(A)$, то найдутся такие элементы $b, c \in A$, для которых t(b) = n и t(c) = m, причем, $b \neq c$, поскольку n < m. Предположим, что $[a]\sigma_n \supset [a]\sigma_m$. Так как t(c) = m, то $t^m(c) = a$. Учитывая, что $t^m(a) = a$, имеем $t^m(c) = t^m(a)$, откуда $t^m(c) \in [a]\sigma_m$. Тогда $t^m(c) \in [a]\sigma_m$. Следовательно, $t^m(c) = a$, и значит, $t^m(c) \in a$, что противоречит условию $t^m(c) \in a$. Окончательно, $t^m(c) \in a$, и значит, $t^m(c) \in a$, что противоречит условию $t^m(c) \in a$. Окончательно, $t^m(c) \in a$, и значит, $t^m(c) \in a$, что противоречит условию $t^m(c) \in a$, то для элемента $t^m(c) \in a$ глубины $t^m(c) \in a$ имеем $t^m(c) \in a$. Пак

Пусть унарная операция f на A неинъективна, $\langle A_1, f \rangle$ подунар унара $\langle A, f \rangle$ и f(x) = f(y) = v для некоторых различных элементов $x, y \in A_1$. Обозначим через $M = \{a \in A_1 | f(a) = v\}$. Для непустого собственного подмножества C множества M обозначим через

$$B_1 = \{b \in A_1 | f^k(b) = a, k > 0, \forall a \in C\} \text{ if } B_2 = \{b \in A_1 | f^k(b) = a, k > 0, \forall a \in M \setminus C\}.$$

Обозначим через $D = A_1 \setminus (C \cup B_1 \cup B_3)$, где $B_3 \subseteq B_2$ (возможно $B_3 = \emptyset$). Таким образом, получили подунар $D_v = \langle D, f \rangle$ унара $\langle A, f \rangle$. Причем, если унар $\langle A, f \rangle$ связен, то $|\{x, y, v\}| = 3$ и глубина унара D_v больше 1.

ЛЕММА 5. Пусть $\langle A, \Omega \rangle$ — алгебра с оператором $f \in \Omega$. Пусть также

1. onepauus f на A неинъективна;

- 2. $\langle A, f \rangle \ncong C_1^t, t \in \mathbb{N} \cup \{\infty\};$
- 3. подунар D_v унара $\langle A, f \rangle$ расширяется до подалгебры алгебры $\langle A, \Omega \rangle$;

Тогда алгебра $\langle A, \Omega \rangle$ не является конгруэнц-когерентной.

Доказательство. Пусть унар $\langle A, f \rangle$ удовлетворяет условиям леммы. Рассмотрим подунар D_v и конгруэнцию σ_1 , где D_v и σ_1 как и выше. Если подунар D_v связен, то существуют различные элементы $a, b \in A$ отличные от v такие, что $f^2(a) = v$ или (и) $f^n(v) = b$, где n > 0. По построению подунар D_v содержит класс $[a]\sigma_1$ (или/ и класс $[b]\sigma_1$), но не является объединением классов конгруэнции σ_1 . Таким образом, $\langle A, \Omega \rangle$ не является конгруэнц-когерентной.

Очевидно, что если подунар D_v несвязен, то D_v содержит некоторый класс конгруэнции σ_1 . С другой стороны, по построению не является объединением классов конгруэнции σ_1 . Следовательно, $\langle A, \Omega \rangle$ не является конгруэнц-когерентной. \square

Следствие 1. Пусть унарная операция f на A неинъективна. Если унар $\langle A, f \rangle \not\cong C_1^t$, $t \in \mathbb{N} \cup \{\infty\}$, то $\langle A, f \rangle$ не является конгруэнц-когерентным.

ПРЕДЛОЖЕНИЕ 2. Пусть $\langle A,\Omega\rangle$ — произвольная алгебра с оператором $f\in\Omega$. Если $\langle A,f\rangle\cong C_n^0$, или $\langle A,f\rangle\cong C_n^0+C_m^0$, или $\langle A,f\rangle\cong C_1^t$, где $n,m\in\mathbb{N}$ и $t\in\mathbb{N}\cup\{\infty\}$, то алгебра $\langle A,\Omega\rangle$ является конгруэнц-когерентной

Доказательство. Случай когда $\langle A,f \rangle \cong C_n^0$ очевиден.

Пусть $\langle A,f \rangle \cong C_n^0 + C_m^0$ и B — подалгебра алгебры $\langle A,\Omega \rangle$. Так как B замкнута относительно операции f, то $\langle B,f \rangle$ — подунар унара $\langle A,f \rangle$. Поскольку f — оператор (эндоморфизм), то $Con\langle A,\Omega \rangle \subseteq Con\langle A,f \rangle$. По лемме 3, подунар $\langle B,f \rangle$ является объединением классов любой неединичной конгруэнции алгебры $\langle A,\Omega \rangle$. Таким образом, подалгебра B алгебры $\langle A,\Omega \rangle$ является объединением классов любой неединичной конгруэнции алгебры $\langle A,\Omega \rangle$. Следовательно, алгебра $\langle A,\Omega \rangle$ является конгруэнц—когерентной.

Пусть теперь $\langle A,f\rangle\cong C_1^t,\,t\in\mathbb{N}\cup\{\infty\}$. Обозначим через a неподвижный элемент унара $\langle A,f\rangle$. Из предложения 1 [23] вытекает, что любая подалгебра B алгебры $\langle A,\Omega\rangle$ является классом $[a]\sigma_s,\,s\in\mathbb{N}\cup\{\infty\}$ и глубина подунара $\langle B,f\rangle$ равна s. По замечанию 1, для n< s имеем, B — объединение классов конгруэнции σ_n . Для ∇_A и σ_m , где m>s, утверждение очевидно. Так как в этом случае B не содержит класса рассматриваемых конгруэнций. \square

Из предложения 2 и предложения 3 [21] вытекает

СЛЕДСТВИЕ 2. Если унар $\langle A,f\rangle\cong C_1^t,\ t\in\mathbb{N}\cup\{\infty\},\ mo\ \langle A,f\rangle$ является конгруэнц-когерентным.

ТЕОРЕМА 2. Унар $\langle A, f \rangle$ является конгруэнц-когерентным тогда и только тогда, когда $\langle A, f \rangle$ — один из унаров следующего вида:

- 1. C_n^0 , $n \in \mathbb{N}$;
- 2. $C_n^0 + C_m^0$ для некоторых $n, m \in \mathbb{N}$;
- 3. C_1^t , $t \in \mathbb{N} \cup \{\infty\}$.

Доказательство. *Необходимость*. Если операция f на A неинъективна и унар $\langle A, f \rangle \not\cong C_1^t$, $t \in \mathbb{N} \cup \{\infty\}$, то по следствию 1, унар $\langle A, f \rangle$ не является конгруэнц-когерентным. Откуда, имеем случай 3.

Если операция f на A инъективна, то по предложению 1 и лемме 4 имеем случаи 1 и 2. \mathcal{A} с \mathcal{A} остаточность. Пусть унар $\langle A, f \rangle$ удовлетворяет условию 1 или условию 2, то по лемме 3 он конгруэнц-когерентен.

Пусть теперь унар $\langle A,f \rangle$ удовлетворяет условию 3, то по следствию 2, он конгруэнц-когерентен. \square

4. Модификации когруэнц-когерентности

Универсальная алгебра A, имеющая нульарную операцию 0, называется *слабо когерент*ной [24], если для любой подалгебры B алгебры A и любой конгруэнции θ алгебры A условие $[0]\theta \subseteq B$ влечет $[x]\theta \subseteq B$ для любого $x \in B$.

Универсальная алгебра A, имеющая нульарную операцию 0, называется локально когерентной [25], если для любой подалгебры B алгебры A и любой конгруэнции θ алгебры A из того, что $[x]\theta \subseteq B$ для некоторого $x \in B$ следует $[0]\theta \subseteq B$.

Как показано в [24] алгебра конгруэнц-когерентна тогда и только тогда, когда она локально и слабо когерентна.

Чтобы алгебра $\langle A, \Omega \rangle$, с нульарной операцией 0 была алгеброй с оператором $f \in \Omega$, необходимо и достаточно, чтобы f(0) = 0. Нульарная операция 0, заданная на унаре $\langle A, f \rangle$ условием f(0) = 0 часто рассматривается в теории унаров. В этом случае алгебру $\langle A, f, 0 \rangle$ называют унаром с нулем.

Пусть унарная операция f на A неинъективна, $\langle A_1, f \rangle$ подунар унара $\langle A, f \rangle$ и f(x) = f(y) = v для некоторых различных элементов $x, y \in A_1$. Обозначим через $M = \{a \in A_1 | f(a) = v\}$. Для непустого собственного подмножества C множества M обозначим через

$$B_1 = \{b \in A_1 | f^k(b) = a, k > 0, \forall a \in C\} \text{ if } B_2 = \{b \in A_1 | f^k(b) = a, k > 0, \forall a \in M \setminus C\}.$$

Обозначим через $D = A_1 \setminus (C \cup B_1 \cup B_3)$, где $B_3 \subseteq B_2$ (возможно $B_3 = \emptyset$). Подалгебру $\langle D, f, 0 \rangle$ унара с нулем $\langle A, f, 0 \rangle$ обозначим через D_0 , если v = 0 и D_v^0 в противном случае. Причем, если $\langle A, f, 0 \rangle$ связен, то $|\{x, y, 0\}| = 3$ и глубина унара D_0 больше 1.

Как и лемма 5 доказываются следующие две леммы.

 Π ЕММА 6. Пусть $\langle A,\Omega \rangle$ — алгебра с оператором $f \in \Omega$ и нульарной операцией $0 \in \Omega$. Пусть также

- 1. onepayus f на A неинъективна;
- 2. $\langle A, f, 0 \rangle \ncong C_1^t, t \in \mathbb{N} \cup \{\infty\};$
- 3. подунар D_v^0 унара $\langle A, f \rangle$ расширяется до подалгебры алгебры $\langle A, \Omega \rangle$;

Тогда алгебра $\langle A, \Omega \rangle$ не является слабо когерентной.

ЛЕММА 7. Пусть $\langle A,\Omega\rangle$ — алгебра с оператором $f\in\Omega$ и нульарной операцией $0\in\Omega$. Пусть также

- 1. операция f на A неинъективна;
- 2. $\langle A, f, 0 \rangle \ncong C_1^t, t \in \mathbb{N} \cup \{\infty\}$;
- 3. подунар D_0 унара $\langle A, f \rangle$ расширяется до подалгебры алгебры $\langle A, \Omega \rangle$;

Тогда алгебра $\langle A, \Omega \rangle$ не является локально когерентной.

ЛЕММА 8. Пусть $\langle A,\Omega\rangle$ — алгебра с оператором $f\in\Omega$ и нульарной операцией $0\in\Omega$. Пусть также

- 1. $\langle A, f, 0 \rangle$ связный унар с нулем 0;
- 2. существует узловой элемент $v \in A$ отличный от 0:
- 3. существует единственный элемент $a \in A$ глубины k > t(v) + 1;

- 4. Если глубина унара $t(A) < \infty$, то $t(v) \neq t(A) 1$;
- 5. подунар D_v^0 унара $\langle A,f \rangle$ расширяется до подалгебры алгебры $\langle A,\Omega \rangle$;

Tогда алгебра $\langle A, \Omega \rangle$ не является локально когерентной.

Доказательство. Пусть унар $\langle A,f\rangle$ удовлетворяет условиям леммы. По условию существуют различные элементы $x,y,a\in A$ такие, что f(x)=f(y)=v и $t(a)\geqslant t(v)+2$. Рассмотрим подунар D_v^0 такой, что $a\in D_v^0$, и конгруэнцию $\sigma_{t(x)}$. Без ограничения общности, пусть $f^m(a)=x$, где m>0. По построению подунар D_v^0 не содержит класс $[0]\sigma_{t(x)}$. По определению конгруэнции $\sigma_{t(x)}$, подунар D_v^0 содержит класс $[a]\sigma_{t(x)}$. Таким образом, алгебра $\langle A,\Omega\rangle$ не является локально когерентной. \square

5. Унары с мальцевской операцией и близкие алгебры

Унаром с мальцевской операцией [26] называется алгебра $\langle A,d,f\rangle$ с унарной операцией f и тернарной операцией d, на которой истинны тождества Мальцева d(x,y,y)=d(y,y,x)=x и тождество перестановочности f(d(x,y,z))=d(f(x),f(y),f(z)).

Унары с мальцевской операцией образуют подкласс в классе алгебр с операторами.

В [26] показано, что на любом унаре $\langle A, f \rangle$ можно задать тернарную операцию p так, что алгебра $\langle A, p, f \rangle$ становится унаром с мальцевской операцией, а унарная операция — ее эндоморфизмом. Эта алгебра определятся следующим образом.

Пусть $\langle A, f \rangle$ — произвольный унар и $x, y \in A$. Для любого элемента x унара $\langle A, f \rangle$ через $f^n(x)$ обозначается результат n-кратного применения операции f к элементу x; при этом $f^0(x) = x$. Положим $M_{x,y} = \{n \in \mathbb{N} \cup \{0\} \mid f^n(x) = f^n(y)\}$, и $k(x,y) = \min M_{x,y}$, если $M_{x,y} \neq \emptyset$ и $k(x,y) = \infty$, если $M_{x,y} = \emptyset$. Положим далее

$$p(x,y,z) \stackrel{def}{=} \left\{ \begin{array}{ll} z, & \text{если } k(x,y) \leqslant k(y,z); \\ x, & \text{если } k(x,y) > k(y,z). \end{array} \right. \tag{1}$$

Многообразие называется арифметическим, если оно конгруэнц-перестановочно и конгруэнц-дистрибутивно. Арифметичность многообразия эквивалентна существованию терма Пиксли от основных операций, то есть, тернарного терма d, для которого выполнены тождества Пиксли d(x, x, y) = d(y, x, x) = d(y, x, y) = y [27].

Из (1) следует, что класс K унаров с мальцевской операцией p(x,y,z) содержится в многообразии, заданном тождествами Пиксли. Отсюда, K является конгруэнц-перестановочным и конгруэнц-дистрибутивным.

С помощью конструкции предложенной В. К. Карташовым в [26], В. Л. Усольцевым в [28] на произвольном унаре была определена тернарная операция s(x,y,z), называемая симметрической, удовлетворяющая тождествам s(x,y,y)=s(y,y,x)=s(y,x,y)=x и также перестановочная с унарной.

$$s(x,y,z) \stackrel{def}{=} \begin{cases} z, & \text{если } k(x,y) < k(y,z); \\ y, & \text{если } k(x,y) = k(y,z); \\ x, & \text{если } k(x,y) > k(y,z). \end{cases}$$
 (2)

Алгебры (A, s, f) образуют еще один подкласс класса унаров с мальцевской операцией.

В [29] аналогичным образом на произвольном унаре были определены тернарная операция w(x,y,z) и операция большинства m(x,y,z) перестановочные с унарной.

$$w(x, y, z) \stackrel{def}{=} \begin{cases} z, & \text{если } k(x, y) > k(y, z); \\ y, & \text{если } k(x, y) = k(y, z); \\ x, & \text{если } k(x, y) < k(y, z). \end{cases}$$
 (3)

$$m(x, y, z) \stackrel{def}{=} \begin{cases} z, & \text{если } k(x, y) \geqslant k(y, z); \\ x, & \text{если } k(x, y) < k(y, z). \end{cases}$$
 (4)

Заметим, что w(x,y,z)=s(x,s(x,y,z),z). Следовательно, $\langle A,w,f\rangle\cong\langle A,s,f\rangle$.

Отметим, что операция s(x,y,z) является слабой операцией почти единогласия (удовлетворяет тождествам WNU).

Алгебры $\langle A, w, f \rangle$ и $\langle A, m, f \rangle$ образуют подклассы в классе алгебр с операторами.

k-арная операция φ называется k-NU-операцией (операцией почти единогласия, near-unanimity operation), если выполнены тождества

$$\varphi(x,\ldots,x,y) = \varphi(x,\ldots,x,y,x) = \cdots = \varphi(y,x,\ldots,x) = x(k>3).$$

В тернарном случае φ называют операцией большинства.

k-арная операция ϕ называется k-WNU-операцией (слабой операцией почти единогласия, weak near-unanimity operation), если выполнены тождества

$$\phi(x,...,x) = x, \ \phi(x,...,x,y) = \phi(x,...,x,y,x) = \cdots = \phi(y,x,...,x).$$

ТЕОРЕМА 3. Пусть $\langle A, d, f \rangle$ — алгебра с оператором f, где $d(x_1, x_2, x_3)$ — операция, определенная по одному из правил (1)-(4). Алгебра $\langle A, d, f \rangle$ является конгруэнц-когерентной тогда и только тогда, когда выполняется одно из следующих условий:

- 1. one pa uu s f на A является инъективной;
- 2. унар $\langle A, f \rangle$ содержит такой элемент a, что f(x) = a для любого $x \in A$, где $|A| \geqslant 3$;
- 3. унар $\langle A, f \rangle$ изоморфен C_1^t для некоторого $t \in \mathbb{N} \cup \{\infty\}$.

ДОКАЗАТЕЛЬСТВО. Heo6xodumocmb. Пусть алгебра $\langle A, d, f \rangle$ не удовлетворяет условиям 1–3. Тогда по лемме 5, алгебра $\langle A, d, f \rangle$ не является конгруэнц-когерентной.

Достаточность. Пусть алгебра $\langle A, d, f \rangle$ удовлетворяет условию 1 или условию 2, то по теореме 2 [21], теореме 9 [30] и теореме 2 [29] соответствующие алгебры конгруэнц-просты. Следовательно, алгебра $\langle A, d, f \rangle$ конгруэнц-когерентна.

Пусть теперь алгебра $\langle A,d,f\rangle$ удовлетворяет условию 3, то по предложению 2 она конгруэнц-когерентна. \square

ЛЕММА 9. Пусть $\langle A, d, f \rangle$ — алгебра с оператором f, где $d(x_1, x_2, x_3)$ — операция, определенная по одному из правил (1)-(4). Пусть также $\langle A, f \rangle$ — неодноэлементный связный унар с одноэлементным подунаром. Отношение β_n при любом n > 0 является конгруэнцией алгебры $\langle A, d, f \rangle$.

Доказательство. Для операции p(x,y,z) утверждение доказано в [21, лемма 15]. Воспользуемся рассуждениями данной работы и докажем утверждение для операций m(x,y,z) и s(x,y,z).

Пусть n > 0. Очевидно, что β_n — эквивалентность. Из того, что на связном унаре с одноэлементным подунаром для любого $x \in A$, кроме x = a, выполняется t(f(x)) = t(x) - 1, получаем, что $\beta_n \in \text{Con}(A, f)$.

Пусть $x_1, y_1, x_2, y_2, x_3, y_3 \in A$ и $x_1\beta_n y_1, x_2\beta_n y_2, x_3\beta_n y_3$. В случаях, когда $x_1 = y_1, x_2 = y_2, x_3 = y_3$ или $t(x_i) \leq n, \ t(y_i) \leq n, \ i = 1, 2, 3$, стабильность β_n относительно операции d(x, y, z) вытекает из определения отношения β_n .

Рассмотрим случай, когда $t(x_i) \leq n$, $t(y_i) \leq n$, i = 2,3 и $t(x_1) > n$ или $t(y_1) > n$. Тогда, из определения отношения β_n следует, что $x_1 = y_1$. По лемме 10 [21],

$$k(x_1, x_2) = \max\{t(x_1), t(x_2)\} = t(x_1) > n$$

и $k(x_2, x_3) \leqslant n$. Отсюда, учитывая (2) и (4), имеем

$$d(x_1, x_2, x_3) = \begin{cases} x_1, & \text{если } d(x, y, z) = s(x, y, z); \\ x_3, & \text{если } d(x, y, z) = m(x, y, z). \end{cases}$$

Аналогично получаем, что

$$d(y_1, y_2, y_3) = \begin{cases} y_1, & \text{если } d(x, y, z) = s(x, y, z); \\ y_3, & \text{если } d(x, y, z) = m(x, y, z). \end{cases}$$

Откуда, $d(x_1, x_2, x_3)\beta_n d(y_1, y_2, y_3)$.

Случай, когда $t(x_i) \leqslant n, \ t(y_i) \leqslant n, \ i=1,2$ и $t(x_3)>n$ или $t(y_3)>n$ аналогичен предыдущему.

Рассмотрим случай, когда $t(x_i) \leqslant n, \ t(y_i) \leqslant n, \ i=1,3$ и $t(x_2) > n$ или $t(y_2) > n$. Из определения отношения β_n следует, что $x_2 = y_2$. По лемме 10 [21],

$$k(x_1, x_2) = \max\{t(x_1), t(x_2)\} = t(x_2) = \max\{t(x_2), t(x_3)\} = k(x_2, x_3).$$

Отсюда,

$$d(x_1, x_2, x_3) = \begin{cases} x_2, & \text{если } d(x, y, z) = s(x, y, z); \\ x_3, & \text{если } d(x, y, z) = m(x, y, z). \end{cases}$$

Аналогично,

$$d(y_1, y_2, y_3) = \begin{cases} y_2, & \text{если } d(x, y, z) = s(x, y, z); \\ y_3, & \text{если } d(x, y, z) = m(x, y, z). \end{cases}$$

Откуда, $d(x_1, x_2, x_3)\beta_n d(y_1, y_2, y_3)$.

Пусть теперь $t(x_3) \leq n, t(y_3) \leq n$ и $t(x_1) > n$ или $t(y_1) > n, t(x_2) > n$ или $t(y_2) > n$. Тогда, по определению отношения β_n , имеем $x_1 = y_1, x_2 = y_2$. Предположим, что $t(x_1) > t(x_2)$. По лемме 10 [21], $k(x_1, x_2) = t(x_1)$ и $k(x_2, x_3) = t(x_2)$. Тогда

$$d(x_1, x_2, x_3) = \begin{cases} x_1, & \text{если } d(x, y, z) = s(x, y, z); \\ x_3, & \text{если } d(x, y, z) = m(x, y, z). \end{cases}$$

Аналогично,

$$d(y_1, y_2, y_3) = \begin{cases} y_1, & \text{если } d(x, y, z) = s(x, y, z); \\ y_3, & \text{если } d(x, y, z) = m(x, y, z). \end{cases}$$

Отсюда, $d(x_1, x_2, x_3)\beta_n d(y_1, y_2, y_3)$. Если $t(x_1) < t(x_2)$, то рассуждения аналогичны.

Пусть теперь $t(x_1)=t(x_2)$. По лемме 10 [21], $k(x_1,x_2)\leqslant t(x_1)=t(x_2)=k(x_2,x_3)$. Если $k(x_1,x_2)< k(x_2,x_3)$, то

$$d(x_1, x_2, x_3) = \begin{cases} x_3, & \text{если } d(x, y, z) = s(x, y, z); \\ x_1, & \text{если } d(x, y, z) = m(x, y, z). \end{cases}$$

и, аналогично,

$$d(y_1, y_2, y_3) = \begin{cases} y_3, & \text{если } d(x, y, z) = s(x, y, z); \\ y_1, & \text{если } d(x, y, z) = m(x, y, z). \end{cases}$$

Откуда, $d(x_1, x_2, x_3)\beta_n d(y_1, y_2, y_3)$. Если же $k(x_1, x_2) = k(x_2, x_3)$, то

$$d(x_1, x_2, x_3) = \begin{cases} x_2, & \text{если } d(x, y, z) = s(x, y, z); \\ x_3, & \text{если } d(x, y, z) = m(x, y, z). \end{cases}$$

и, аналогично,

$$d(y_1, y_2, y_3) = \begin{cases} y_2, & \text{если } d(x, y, z) = s(x, y, z); \\ y_3, & \text{если } d(x, y, z) = m(x, y, z). \end{cases}$$

что вновь приводит к $d(x_1, x_2, x_3)\beta_n d(y_1, y_2, y_3)$.

Случай, когда $t(x_1) \leqslant n, t(y_1) \leqslant n$ и $t(x_2) > n$ или $t(y_2) > n, t(x_3) > n$ или $t(y_3) > n$ аналогичен предыдущему.

Рассмотрим последний случай, когда $t(x_2) \leqslant n, t(y_2) \leqslant n$ и $t(x_1) > n$ или $t(y_1) > n$, $t(x_3) > n$ или $t(y_3) > n$. Из определения отношения β_n имеем $x_1 = y_1, x_3 = y_3$. По лемме 10 [21], $k(x_1, x_2) = t(x_1) = t(y_1) = k(y_1, y_2)$ и $k(x_2, x_3) = t(x_3) = t(y_3) = k(y_2, y_3)$. Если $t(x_1) < t(x_3)$, то и $t(y_1) < t(y_3)$. Тогда

$$d(x_1, x_2, x_3) = \begin{cases} x_3, & \text{если } d(x, y, z) = s(x, y, z); \\ x_1, & \text{если } d(x, y, z) = m(x, y, z). \end{cases}$$

и, аналогично,

$$d(y_1, y_2, y_3) = \begin{cases} y_3, & \text{если } d(x, y, z) = s(x, y, z); \\ y_1, & \text{если } d(x, y, z) = m(x, y, z). \end{cases}$$

Откуда, $d(x_1, x_2, x_3)\beta_n d(y_1, y_2, y_3)$.

Если $t(x_1) = t(x_3)$, то и $t(y_1) = t(y_3)$. Тогда

$$d(x_1, x_2, x_3) = \begin{cases} x_2, & \text{если } d(x, y, z) = s(x, y, z); \\ x_3, & \text{если } d(x, y, z) = m(x, y, z). \end{cases}$$

и, аналогично,

$$d(y_1, y_2, y_3) = \begin{cases} y_2, & \text{если } d(x, y, z) = s(x, y, z); \\ y_3, & \text{если } d(x, y, z) = m(x, y, z). \end{cases}$$

Отсюда, $d(x_1, x_2, x_3)\beta_n d(y_1, y_2, y_3)$.

Если $t(x_1) > t(x_3)$, то

$$d(x_1, x_2, x_3) = \begin{cases} x_1, & \text{если } d(x, y, z) = s(x, y, z); \\ x_3, & \text{если } d(x, y, z) = m(x, y, z). \end{cases}$$

и, аналогично,

$$d(y_1, y_2, y_3) = \begin{cases} y_1, & \text{если } d(x, y, z) = s(x, y, z); \\ y_3, & \text{если } d(x, y, z) = m(x, y, z). \end{cases}$$

Откуда, $d(x_1, x_2, x_3)\beta_n d(y_1, y_2, y_3)$. \square

ЛЕММА 10. Пусть $\langle A, d, f, 0 \rangle$ — алгебра с оператором f, где $d(x_1, x_2, x_3)$ — операция, определенная по одному из правил (1)-(4), и нульарной операцией 0, для которой f(0) = 0. Пусть также $\langle A, f \rangle$ — связный унар с узловым элементом $v \in A$, где $v \neq 0$. Если глубина унара $t(A) < \infty$, то $t(v) \neq t(A) - 1$. Тогда алгебра $\langle A, d, f, 0 \rangle$ не является локально когерентной.

Доказательство. Пусть унар $\langle A, f \rangle$ удовлетворяет условиям леммы. По условию существуют различные элементы $x, y, a \in A$ такие, что f(x) = f(y) = v и $t(a) \geqslant t(v) + 2$. Без ограничения общности, пусть $f^m(a) = x$, где m > 0. Рассмотрим подунар $C_1^{t(a)}$ с образующим a и конгруэнцию $\beta_{t(x)}$. По построению подунар $C_1^{t(a)}$ не содержит класс $[0]\beta_{t(x)}$. По определению конгруэнции $\beta_{t(x)}$, подунар $C_1^{t(a)}$ содержит класс $[a]\beta_{t(x)}$. Таким образом, алгебра $\langle A, \Omega \rangle$ не является локально когерентной. \square

Будем называть *унаром специального вида* неодноэлементный связный унар с одноэлементным подунаром, который либо не имеет узловых элементов, либо имеет единственный узловой элемент, являющийся неподвижным.

ЛЕММА 11. Пусть $\langle A, d, f \rangle$ — алгебра с оператором f, где $d(x_1, x_2, x_3)$ — операция, определенная по одному из правил (1)-(4). Следующие утверждения верны.

- 1. Пусть $B \subseteq A$ и операция f на B инъективна. Тогда $k(a,b) = \infty$ для различных элементов $a,b \in B$.
- 2. Пусть $\theta \in \operatorname{Con}\langle A,d,f\rangle,\ \theta \neq \bigtriangledown$. Тогда, для любых $a,b\in A$, из условия $a\theta b$ следует $k(a,b)<\infty$.
- 3. Пусть $\langle A, f \rangle$ унар специального вида, $\theta \in Con\langle A, d, f \rangle$, $(b, c) \in \theta$, $b \neq c$ и $t(b) \leqslant t(c)$. Тогда для любых $x, y \in A$ из $t(x) \leqslant t(c)$ и $t(y) \leqslant t(c)$ следует, что $x\theta y$.
- 4. Если $\langle A, f \rangle$ унар специального вида, то любая неединичная конгруэнция алгебры $\langle A, d, f \rangle$ имеет вид σ_n для некоторого $n \geqslant 0$.
- 5. Пусть унарный редукт $\langle A, f \rangle$ алгебры $\langle A, d, f \rangle$ неодноэлементный связный унар, имеющий одноэлементный подунар. Пусть также $\theta \in \operatorname{Con}\langle A, d, f \rangle$, $(b, c) \in \theta$, $b \neq c$ и t(b) < t(c) для некоторых $b, c \in A$. Тогда для любых $x, y \in A$ из t(x) < t(c) и t(y) < t(c) следует, что х θy и $x, y \in [c]\theta$.
- 6. Пусть $\langle A, f \rangle$ произвольный неодноэлементный связный унар с одноэлементным подунаром и $c \in A$. Если элемент c и все элементы из A, имеющие глубину, меньшую t(c), лежат в некотором классе конгруэнции $\theta \in \text{Con}\langle A, d, f \rangle$, то все элементы глубины t(c) лежат в этом классе.
- 7. Если конгруэнция θ удовлетворяет предыдущему условию, то $\theta = \beta_{t(c)}$.
- 8. Пусть унар $\langle A,f \rangle$ представляется в виде суммы подунаров B и C, где B произвольная компонента связности, на которой операция f не инъективна, а C подунар c инъективной операцией. Тогда любая нетривиальная конгруэнция θ алгебры $\langle A,d,f \rangle$ является расширением некоторой конгруэнции ее подалгебры $\langle B,d,f \rangle$.

Доказательство. 1) Следует из определения k(x,y).

2) Для операций p(x,y,z) и m(x,y,z) утверждение доказано в [31, лемма 2] и [32, лемма 5] соответственно. Воспользуемся рассуждениями этих работ и докажем утверждение для операции s(x,y,z).

Пусть $k(a,b) = \infty$. Предположим, что $a\theta b$. Так как $\theta \neq \nabla$, то $(b,c) \notin \theta$ для некоторого $c \in A$. Поскольку $k(a,b) = \infty \geqslant k(b,c)$, то из (2) имеем s(a,b,c) = a или s(a,b,c) = b. С другой стороны, s(b,b,c) = c, что противоречит выбору пары (b,c).

3) Для операций p(x,y,z) и m(x,y,z) утверждение доказано в [21, лемма 11] и [32, лемма 4] соответственно. Воспользуемся рассуждениями этих работ и докажем утверждение для операции s(x,y,z).

Из условия $t(b) \le t(c)$, по следствию 2 [21], вытекает k(b,c) = t(c). Пусть $x,y \in A, x \neq y$ и $t(x), t(y) \le t(c)$. По следствию 2 [21], $k(x,b) = \max\{t(b), t(x)\}$. Отсюда, по условию,

$$k(x,b) \leqslant t(c) = k(b,c).$$

Тогда, из (2) получаем, что s(x,b,c) = b или s(x,b,c) = c. В то же время, s(x,c,c) = x, откуда $x\theta b$. Аналогично, $y\theta b$ и, окончательно, $x\theta y$.

4) Для операций p(x,y,z) и m(x,y,z) утверждение доказано в [21, лемма 12] и [32, следствие 1] соответственно. Воспользуемся рассуждениями этих работ и докажем утверждение для операции s(x,y,z).

Пусть θ — неединичная конгруэнция алгебры $\langle A, s, f \rangle$. Поскольку, $\Delta = \sigma_0$, то рассмотрим $\theta \neq \Delta$. Допустим, что глубины всех элементов унара, входящих в нетривиальные пары конгруэнции θ , ограничены глубиной некоторого элемента c. Тогда $(b, c) \in \theta$ для некоторого $b \in A$, где $t(b) \leqslant t(c)$ и $b \neq c$. Поскольку для любых различных $x, y \in A$, таких, что $(x, y) \in \theta$, выполняются условия $t(x) \leqslant t(c)$ и $t(y) \leqslant t(c)$, то по следствию 3 [21] имеем, что $(x, y) \in \sigma_{t(c)}$. Отсюда, $\theta \leqslant \sigma_{t(c)}$.

Допустим, что $x \neq y$ и $(x,y) \in \sigma_{t(c)}$. Тогда, по следствию 3 [21], имеем $t(x) \leqslant t(c)$ и $t(y) \leqslant t(c)$. Отсюда, по утверждению пункта 3, имеем $(x,y) \in \theta$. Таким образом, $\sigma_{t(c)} \leqslant \theta$ и $\theta = \sigma_{t(c)}$.

Предположим теперь, что глубины элементов, принадлежащих нетривиальным парам конгруэнции θ не ограничены в совокупности. Так как $\theta \neq \bigtriangledown$, то $(x,y) \notin \theta$ для некоторых $x,y \in A$. По предположению, найдется такой элемент c, входящий в некоторую пару $(b,c) \in \theta$, что t(x) < t(c) и t(y) < t(c). В силу симметричности θ , можно считать, что $t(b) \leqslant t(c)$. Тогда, по утверждению пункта 3 имеем $x\theta y$, что противоречит выбору x,y.

5) Для операции p(x,y,z) утверждение доказано в [33, лемма 4]. Докажем утверждение для операций m(x,y,z) и s(x,y,z).

Пусть $\theta \in Con(A, d, f)$, $(b, c) \in \theta$, $b \neq c$ и t(b) < t(c) для некоторых $b, c \in A$. Из последнего, в силу леммы 10 [21], вытекает k(b, c) = t(c).

Пусть $x, y \in A$, $x \neq y$ и t(x) < t(c), и t(y) < t(c). По лемме 10 [21], k(x, c) = t(c). Тогда, из (2) получаем, что s(x, c, b) = c. В то же время, s(x, c, c) = x, откуда получаем $x\theta c$. Из (4) получаем, что m(b, c, x) = x. В то же время, m(c, c, x) = c, откуда получаем $x\theta c$. Аналогично, $y\theta c$ и, окончательно, $x\theta y$.

6) Для операции p(x,y,z) утверждение доказано в [33, следствие 1]. Докажем утверждение для операций m(x,y,z) и s(x,y,z).

Пусть a — неподвижный элемент унара $\langle A, f \rangle$. По условию, $a\theta c$. Предположим, что для некоторого элемента $x \in A$, где t(x) = t(c), утверждение леммы не выполняется, то есть $x \notin [c]\theta$. Поскольку t(x) = t(c), то k(x,a) = k(a,c). Тогда из (2) получаем, что s(x,c,a) = c. В то же время, s(x,a,a) = x, откуда $x\theta c$, что противоречит предположению.

Аналогично из (4) получаем, что m(c, a, x) = x. В то же время, m(c, c, x) = c, откуда $x\theta c$, что противоречит предположению.

- 7) Утверждение следует из утверждения пункта 6) и определения отношения β_n .
- 8) Для операций p(x, y, z) и m(x, y, z) утверждение доказано в [20, лемма 15] и [32, лемма 6] соответственно. Воспользуемся рассуждениями этих работ и докажем утверждение для операции s(x, y, z).

Достаточно показать, что любой элемент из C порождает одноэлементный класс конгруэнции θ . Из утверждений пунктов 1 и 2 следует, что $(x,y) \notin \theta$ для любых несовпадающих $x,y \in C$. Пусть $b \in B$, $c \in C$. Так как элементы b и c лежат в разных компонентах связности, то $k(a,b) = \infty$. Тогда, из утверждения пункта 2 имеем, $(b,c) \notin \theta$. \square

ПЕММА 12. Пусть $\langle A,d,f,0\rangle$ — алгебра с оператором f, где $d(x_1,x_2,x_3)$ — операция, определенная по одному из правил (1)-(4), и нульарной операцией 0, для которой f(0)=0. Пусть также связный унар $\langle A,f\rangle$ содержит единственный узловой элемент 0. Тогда алгебра $\langle A,d,f,0\rangle$ является слабо когерентной.

Доказательство. Возможны два случая.

Cлучай 1: t(A) = 1.

Алгебра $\langle A,d,f,0\rangle$ является конгруэнц-простой, поскольку по теореме 2 [21], теореме 9 [30] и теореме 2 [29] соответствующие алгебры конгруэнц-просты. Следовательно, алгебра $\langle A,p,f,0\rangle$ является слабо когерентной.

Cлучай 2: t(A) > 1.

По утверждению 4 леммы 11 имеем, что любая неединичная конгруэнция алгебры $\langle A, d, f \rangle$ имеет вид σ_n для некоторого $n \geqslant 0$. При этом любая подалгебра $\langle B, d, f, 0 \rangle$ алгебры $\langle A, d, f, 0 \rangle$ либо не содержит класс $[0]\sigma_n$, либо содержит класс $[0]\sigma_n$ для некоторого n > 0.

Случаи когда подалгебра $\langle B, d, f, 0 \rangle$ не содержит класс $[0]\sigma_n$, либо является классом $[0]\sigma_n$ для некоторого n > 0, очевидны.

Рассмотрим случай когда подалгебра $\langle B, d, f, 0 \rangle$ строго содержит класс $[0]\sigma_n$. Тогда существует элемент $b \in B$ такой, что $b \notin [0]\sigma_n$. Следовательно, t(b) > n. Тогда по определению

конгруэнции
$$\sigma_n$$
 имеем, что $[b]\sigma_n=\{b\}$. Откуда, $B=[0]\sigma_n\cup \left(\bigcup_{b\in B, t(b)>n}[b]\sigma_n\right)$.

Для любого m < n подалгебра $\langle B, d, f, 0 \rangle$ содержит класс $[0]\sigma_m$. По замечанию 1 и рассмотренному выше имеем, что подалгебра $\langle B, d, f, 0 \rangle$ содержит класс $[0]\sigma_m$ и есть объединение классов конгруэнции σ_m . Таким образом, алгебра $\langle A, d, f, 0 \rangle$ является слабо когерентной. \square

ТЕОРЕМА 4. Пусть $\langle A,d,f,0\rangle$ — алгебра с оператором f, где $d(x_1,x_2,x_3)$ — операция, определенная по одному из правил (1)–(4), и нульарной операцией 0, для которой f(0)=0. Алгебра $\langle A,d,f,0\rangle$ является слабо когерентной тогда и только тогда, когда унар $\langle A,f\rangle$ является одним из следующих:

- 1. произвольный унар с интективной операцией;
- 2. связный унар, который не содержит узловых элементов, за исключением, может быть, элемента 0;
- 3. сумма унара из пункта 2 и произвольного унара с инъективной операцией.

ДОКАЗАТЕЛЬСТВО. Необходимость. Пусть алгебра $\langle A, d, f, 0 \rangle$ не удовлетворяет условиям 1–3. Тогда по лемме 6, алгебра $\langle A, d, f, 0 \rangle$ не является слабо когерентной.

Достаточность. Пусть алгебра $\langle A, d, f, 0 \rangle$ удовлетворяет условию 1, то по теореме 2 [21], теореме 9 [30] и теореме 2 [29] соответствующие алгебры конгруэнц-просты. Следовательно, алгебра $\langle A, d, f, 0 \rangle$ слабо когерентна.

Пусть теперь алгебра $\langle A,d,f,0\rangle$ удовлетворяет условию 2, тогда по лемме 12 алгебра слабо когерентна. Пусть алгебра $\langle A,d,f,0\rangle$ удовлетворяет условию 3, то по лемме 12 и утверждению 8 леммы 11 алгебра является слабо когерентной. \square

ТЕОРЕМА 5. Пусть $\langle A,d,f,0\rangle$ — алгебра с оператором f, где $d(x_1,x_2,x_3)$ — операция, определенная по одному из правил (1)–(4), и нульарной операцией 0, для которой f(0)=0. Алгебра $\langle A,d,f,0\rangle$ является локально когерентной тогда и только тогда, когда унар $\langle A,f\rangle$ является одним из следующих:

1. произвольный унар содержащий одноэлементную компоненту порожденную 0 или одноэлементный унар;

- 2. унар, в котором для всех $x \in A$ выполняется f(x) = 0, где $|A| \geqslant 3$;
- 3. $y \mapsto C_1^t, t \in \mathbb{N} \cup \{\infty\};$
- 4. связный унар конечной глубины t(A), в котором существует единственный узловой элемент $a \neq 0$, глубина которого равна t(A) 1, и других узловых элементов нет.

ДОКАЗАТЕЛЬСТВО. Необходимость. Пусть алгебра $\langle A, d, f, 0 \rangle$ не удовлетворяет условиям 1–4. Тогда по леммам 7 и 10, алгебра $\langle A, d, f, 0 \rangle$ не является локально когерентной.

Достаточность. Пусть алгебра $\langle A,d,f,0\rangle$ удовлетворяет условию 1. Пусть θ — нетривиальная конгруэнция алгебры $\langle A,d,f,0\rangle$ и $a\in A\setminus\{0\}$. Так как элементы a и 0 лежат в разных компонентах связности, то $k(a,b)=\infty$. Тогда, по утверждению 2 леммы 11, $(b,c)\notin\theta$. Таким образом, $[0]\theta$ — одноэлементный класс конгруэнции θ . Поскольку, любая подалгебра алгебры $\langle A,d,f,0\rangle$ содержит элемент 0, то алгебра $\langle A,d,f,0\rangle$ локально когерентна.

Пусть теперь алгебра $\langle A,d,f,0\rangle$ удовлетворяет условию 2 или условию 3, то по теореме 2 [21], теореме 9 [30] и теореме 2 [29] соответствующие алгебры конгруэнц-просты. Следовательно, алгебра $\langle A,d,f,0\rangle$ локально когерентна.

Пусть алгебра $\langle A,d,f,0\rangle$ удовлетворяет условию 4. Пусть θ — нетривиальная конгруэнция алгебры $\langle A,d,f,0\rangle$ и $\langle B,d,f,0\rangle$ — собственная подалгебра алгебры $\langle A,d,f,0\rangle$. Предположим, что алгебра $\langle A,d,f,0\rangle$ не локально когерентна. Тогда существует элемент $x\in A$ такой, что $[x]\theta\subseteq B$, но $[0]\theta\not\subseteq B$. Значит существуют элементы $a\in A\setminus B$ и $b\in B$ такие, что $a,b\in [0]\theta$. Без ограничения общности, пусть $t(b)\leqslant t(a)$. Тогда по утвеждениям 5 и 7 леммы 11, $\theta=\beta_{t(a)}$. По определению конгруэнции $\beta_{t(a)}$, $[0]\theta=[0]\beta_{t(a)}$. Откуда, не существует элемента $x\in A$ такого, что $[x]\beta_{t(a)}\subseteq B$, что противоречит предположению. Таким образом, алгебра $\langle A,d,f,0\rangle$ локально когерентна. \square

6. Заключение

Хочется выразить сердечную благодарность заведующему кафедрой алгебры, геометрии и математического анализа ФГБОУ ВО «ВГСПУ», талантливому педагогу и удивительному человеку В.К. Карташову за внимание, заботу, за мудрые советы и поддержку.

СПИСОК ЦИТИРОВАННОЙ ЛИТЕРАТУРЫ

- 1. Geiger D. Coherent algebras // Notices Amer. Math. Soc. 1974. Vol. 21. A-436.
- 2. Taylor W. Uniformity of congruences // Algebra Universalis. 1974. Vol. 4. Pp. 342–360. doi:10.1007/BF02485747
- 3. Beazer R. Coherent De Morgan algebras // Algebra Universalis. 1987. Vol. 24, Issue 1. Pp. 128–136. doi:10.1007/BF01188390
- 4. Adams M.E., Atallah M., and Beazer R. Congruence distributive double p-algebras // Proc. Edinburgh Math. Soc. 1996. Vol. 39. issue 2. Pp. 71–80. doi: 10.1017/S0013091500022793
- 5. Duda J. $A \times A$ congruence coherent implies A congruence regular // Algebra Universalis. 1991. Vol. 28. Pp. 301–302 doi: 10.1007/BF01190858
- Blyth T. S., Fang J. Congruence coherent double MS-algebras// Glasgow Math. J. 1999. Vol. 41. Issue 2. Pp. 289–295.
- 7. Blyth T. S., Fang J. Congruence Coherent Symmetric Extended de Morgan Algebras // Studia Logica. 2007. Vol. 87. Pp. 51–63. doi:10.1007/s11225-007-9076-3

- 8. Chajda I., Duda J. Rees algebras and their varieties // Publ. Math. (Debrecen). 1985. Vol. 32. Pp. 17–22.
- 9. Chajda I. Rees ideal algebras // Math. Bohem. 1997. Vol. 122. No. 2. Pp. 125–130.
- 10. Šešelja B., Tepavčević A. On a characterization of Rees varieties // Tatra Mountains Math. Publ. 1995. Vol. 5. Pp. 61–69.
- 11. Duda J. Rees sublattices of a lattice // Publ. Math. 1988. Vol. 35. Pp. 77–82.
- 12. Varlet J. C. Nodal filters in semilattices // Comm. Math. Univ. Carolinae. 1973. Vol. 14. Pp. 263–277.
- 13. Johnsson B. A survey of Boolean algebras with operators // Algebras and Orders, NATO ASI Series. 1993. Vol. 389. Pp. 239–286.
- 14. Hyndman J., Nation J.B., Nishida J. Congruence Lattices of Semilattices with Operators // Studia Logica. 2016. Vol. 104. issue 2. Pp. 305–316. doi:10.1007/s11225-015-9641-0
- 15. Bonsangue M. M., Kurz A., Rewitzky I. M. Coalgebraic representations of distributive lattices with operators //Topology and its Applications. 2007. Vol. 154. No. 4. Pp. 778-791.
- Adaricheva K. V., Nation J. B. Lattices of quasi-equational theories as congruence lattices of semilattices with operators: part I, part II // International Journal of Algebra and Computation. 2012. Vol. 22. Issue 07, part I: 27 p., part II: 16 p.
- 17. Nurakunov A. M. Equational theories as congruences of enriched monoids // Algebra Universalis. 2008. Vol. 58. No. 3. Pp. 357-372.
- 18. Гретцер Г. Общая теория решеток. М.: Мир, 1982. 456 с.
- 19. Артамонов В. А. [и др.] Общая алгебра. Т.2. / под общей ред. Л.А. Скорнякова. М.: Наука, 1991. 480 с.
- 20. Усольцев В. Л. О подпрямо неразложимых унарах с мальцевской операцией // Известия Волг. гос. пед. ун-та, сер. "Естественные и физико-математические науки". 2005. N 4(13). С. 17-24.
- 21. Усольцев В. Л. Простые и псевдопростые алгебры с операторами // Фунд. и прикл. матем. 2008. Т. 14. Вып. 7. С. 189–207.
- 22. Егорова Д.П. Структура конгруэнций унарной алгебры // Упорядоченные множества и решетки: Межвуз. науч. сб. Саратов: Изд-во Саратов. ун-та, 1978. Вып. 5. С. 11–44.
- 23. Усольцев В. Л. О гамильтоновых тернарных алгебрах с операторами // Чебышевский сб. 2014. Т. 15. Вып. 3. С. 100–113.
- 24. Chajda I. Weak coherence of congruences // Czechoslovak Math. J. 1991. Vol. 41. no. 1. Pp. 149–154
- 25. Chajda I. Locally coherent algebras // Acta Univ. Palacki. Olomuc., Fac. rer. nat., Math. 1999. Vol. 38. no. 1. Pp. 43–48.
- 26. Карташов В.К. Об унарах с мальцевской операцией // Универсальная алгебра и ее приложения: Тез. сообщ. участ. междунар. семинара, посвящ. памяти проф. Моск. гос. ун-та Л.А. Скорнякова. Волгоград: Перемена, 1999. С. 31–32.

- 27. Pixley A. F. Distributivity and permutability of congruence relations in equational classes of algebras // Proc. Amer. Math. Soc. 1963. Vol. 14. No. 1. Pp. 105–109.
- 28. Усольцев В. Л. Свободные алгебры многообразия унаров с мальцевской операцией p, заданного тождеством p(x, y, x) = y / Чебышевский сб. 2011. Т. 12. Вып. 2. С. 127–134.
- 29. Усольцев В. Л. О строго простых тернарных алгебрах с операторами // Чебышевский сб. 2013. Т. 14. Вып. 4. С. 196–204.
- 30. Усольцев В. Л. О полиномиально полных и абелевых унарах с мальцевской операцией // Уч. зап. Орловского гос. ун-та. 2012. Т. 6(50). Ч. 2. С. 229–236.
- 31. Усольцев В. Л. О гамильтоновом замыкании на классе алгебр с одним оператором // Чебышевский сб. 2015. Т. 16, вып. 4. С. 284–302.
- 32. Усольцев В. Л. Алгебры Риса и конгруэнц-алгебры Риса в одном классе алгебр с оператором и основной операцией почти единогласия // Чебышевский сб. 2016. Т. 17. Вып. 4. С. 157–166.
- 33. Лата А. Н. О коатомах и дополнениях в решетках конгруэнций унаров с мальцевской операцией // Чебышевский сб. 2015. Т. 16. Вып. 4. С. 212–226.

REFERENCES

- 1. Geiger, D. 1974, "Coherent algebras", Notices Amer. Math. Soc., vol. 21, A-436.
- 2. Taylor, W. 1974, "Uniformity of congruences", *Algebra Universalis*, vol. 4, no. 1, pp. 342-360. doi:10.1007/BF02485747
- Beazer, R. 1987, "Coherent De Morgan algebras", Algebra Universalis, vol. 24, no. 1, pp. 128-136. doi:10.1007/BF01188390
- 4. Adams, M. E., Atallah, M. & Beazer, R. 1996, "Congruence distributive double p-algebras", Proc. Edinburgh Math. Soc., vol. 39, no. 2, pp. 71–80. doi: 10.1017/S0013091500022793
- 5. Duda, J. 1991, " $A \times A$ congruence coherent implies A congruence regular", Algebra Universalis, vol. 28, no. 2, pp. 301–302. doi: 10.1007/BF01190858
- 6. Blyth, T. S., Fang, J. 1999, "Congruence coherent double MS-algebras", Glasgow Math. J., vol. 41, no. 2, pp. 289–295.
- 7. Blyth, T. S., Fang, J. 2007, "Congruence Coherent Symmetric Extended de Morgan Algebras", Studia Logica, vol. 87, no. 1, pp. 51–63. doi:10.1007/s11225-007-9076-3
- 8. Chajda, I., Duda, J. 1985, "Rees algebras and their varieties", *Publ. Math. (Debrecen)*, vol. 32, pp. 17–22.
- 9. Chajda, I. 1997, "Rees ideal algebras", Math. Bohem., vol. 122, no. 2, pp. 125–130.
- 10. Šešelja, B., Tepavčević, A. 1995, "On a characterization of Rees varieties", *Tatra Mountains Math. Publ.*, vol. 5, pp. 61–69.
- 11. Duda, J. 1988, "Rees sublattices of a lattice", Publ. Math. (Debrecen), vol. 35, pp. 77–82.
- 12. Varlet, J. C. 1973, "Nodal filters in semilattices", Comm. Math. Univ. Carolinae, vol. 14, no. 2, pp. 263–277.

- 13. Johnsson, B. 1993, "A survey of Boolean algebras with operators", Algebras and Orders, NATO ASI Series, vol. 389, pp. 239–286. doi: 10.1007/978-94-017-0697-1 6
- 14. Hyndman, J., Nation, J.B. & Nishida, J. 2016, "Congruence Lattices of Semilattices with Operators", Studia Logica, vol. 104, no. 2, pp. 305–316. doi:10.1007/s11225-015-9641-0
- 15. Bonsangue, M. M., Kurz, A. & Rewitzky, I. M. 2007, "Coalgebraic representations of distributive lattices with operators", *Topology and its Applications*, vol. 154, no. 4, pp. 778–791. doi: 10.1016/j.topol.2005.10.010
- 16. Adaricheva, K. V., Nation, J.B. 2012, "Lattices of quasi-equational theories as congruence lattices of semilattices with operators: part I, part II", International Journal of Algebra and Computation, vol. 22, issue 07, part I: 27 pp. doi: 10.1142/S0218196712500658; part II: 16 pp. doi: 10.1142/S021819671250066X
- 17. Nurakunov, A. M. 2008, "Equational theories as congruences of enriched monoids", *Algebra Universalis*, vol. 58, no. 3, pp. 357–372. doi: 10.1007/s00012-008-2080-2
- 18. Grätzer, G. 1978, "General Lattice Theory Akademie-Verlag, Berlin.
- Artamonov, V. A., Salii, V. N., Skornyakov, L. A., Shevrin, L. N. & Shul'geifer, E.G. 1991,
 "Obshchaya algebra. Tom 2"[General algebra. Vol. 2], in Skornyakov, L.A. (ed.), Nauka,
 Moscow, 480 pp. (Russian)
- 20. Usol'tsev, V.L. 2005, "On subdirect irreducible unars with Mal'tsev operation", *Izvestiya VGPU.* Seriya estestvennye i fiziko-matematicheskie nauki, Volgograd, no. 4(13), pp. 17-24. (Russian)
- 21. Usol'tsev, V.L. 2008, "Simple and pseudosimple algebras with operators", Fundamental'naya i prikladnaya matematika, vol. 14, no. 7, pp. 189–207 (Russian); translation in Journal of Mathematical Sciences, 2010, vol. 164, no. 2, pp. 281-293. doi: 10.1007/S1095800997306
- 22. Egorova, D.P. 1978, "The congruence lattice of unary algebra", *Uporyadochennye Mnozhestva i Reshetki: Mezhvuzovskiy Nauchnyy Sbornik*, Izdatel'stvo Saratovskogo universiteta, Saratov, issue 5, pp. 11–44. (Russian)
- 23. Chajda, I. 1991, "Weak coherence of congruences", *Czechoslovak Math. J.*, vol. 41, no. 1, pp. 149–154.
- 24. Chajda, I. 1999, "Locally coherent algebras", Acta Univ. Palacki. Olomuc., Fac. rer. nat., Math., vol. 38, no. 1, pp. 43–48.
- 25. Kartashov, V.K. 1999, "On unars with Mal'tsev operation", Universal'naya algebra i ee prilozheniya: Tezisy soobshcheniy uchastnikov mezhdunarodnogo seminara, posvyashchennogo pamyati prof. Mosk. gos. un-ta L.A. Skornyakova (Universal algebra and application: theses of International workshop dedicated memory of prof. L.A. Skornyakov), Volgograd, pp. 31–32. (Russian)
- 26. Pixley, A.F. 1963, "Distributivity and permutability of congruence relations in equational classes of algebras", *Proc. Amer. Math. Soc.*, vol. 14, no. 1, pp. 105–109. doi: 10.1090/S0002-9939-1963-0146104-X
- 27. Usol'tsev, V.L. 2011, "Free algebras of variety of unars with Mal'tsev operation p, define by identity p(x, y, x) = y", $Chebyshevskiy\ sbornik$, vol. 12, issue 2, pp. 127–134. (Russian)

- 28. Usol'tsev, V. L. 2013, "On strictly simple ternary algebras with operators", *Chebyshevskiy sbornik*, vol. 14, issue 4, pp. 196–204. (Russian)
- 29. Usol'tsev, V. L. 2012, "On polynomially complete and abelian unars with Mal'tsev operation", *Uchenye zapiski Orlovskogo gosudarstvennogo universiteta*, Izdatel'stvo Orlovskogo gosudarstvennogo universiteta, Orel, vol. 6(50), part 2, pp. 229–236. (Russian)
- 30. Usol'tsev, V. L. 2014, "On Hamiltonian ternary algebras with operators", *Chebyshevskiy sbornik*, vol. 15, issue 3, pp. 100–113. (Russian)
- 31. Usol'tsev, V.L. 2015, "On hamiltonian closure on class of algebras with one operator", *Chebyshevskiy sbornik*, vol. 16, issue 4, pp. 284–302. (Russian)
- 32. Usol'tsev, V.L. 2016, "Rees algebras and rees congruence algebras of one class of algebras with operator and basic near-unanimity operation", *Chebyshevskiy sbornik*, vol. 17, issue 4, pp. 157–166. (Russian)
- 33. Lata, A. N. 2015, "On coatoms and complements in congruence lattices of unars with Mal'tsev operation", *Chebyshevskiy sbornik*, vol. 16, issue 4, pp. 212–226. (Russian)

Московский государственный университет имени М. В. Ломоносова Получено 26.05.2017

Получено 11.03.2017 г.

Принято в печать 14.06.2017 г.