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Abstract

We present A. V. Malyshev‘s approach to Minkowski‘s conjecture (in Davis‘s amendment)
concerning the critical determinant of the region |z|P + |y|P < 1 for p > 1 and Malyshev's
method. In the sequel of this article we use these approach and method to obtain the main
result.
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1. Introduction

Let
oz + BylP + |z + dy[P < | det(ad — By)[P/2,

be a diophantine inequality defined for a given real p > 1; hear a, 3,7, are real numbers with
ad — By #0.

H. Minkowski in his monograph [2] raise the question about minimum constant ¢ such that the
inequality has integer solution other than origin. Minkowski with the help of his theorem on convex
body has found a sufficient condition for the solvability of Diophantine inequalities in integers not
both zero: p1/2
1+ ];)

L(1+ )
But this result is not optimal, and Minkowski also raised the issue of not improving constant c. For
this purpose Minkowski has proposed to use the critical determinant.

Given any set R C R", a lattice A is admissible for R (or is R-admissible) if R(NA =0 or {0}.
The infimum A(R) of the determinants (the determinant of a lattice A is written d(A)) of all lattices
admissible for R is called the critical determinant of R. A lattice A is critical for R if d(A) = A(R).

Critical determinant is one of the main notion of the geometry of numbers [2,3,6]. It has been
investigated in the framework of problem of Minkowski in papers by Mordell [4], by Davis [5], by
Cohn [7], by Watson [8], by Malyshev [9] and by Malyshev with colleagues.

— P —
c= Kyl kp =
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2. Minkowski’s conjecture as a problem of Diophantine
approximation theory

Diophantine approximations connect with critical determinants and with solutions in integer
numbers zi,...x, (with some restrictions, for instance not all z,...x, are equal to zero) of
inequalities

F(z1,...zy) < ¢,

or more generally
F(z)<e, zeNax#0.

Recall the definitions [6].

Let R be a set and A be a lattice with base {a1,...,a,} in R™. A lattice A is admissible for
body R (R—admissible) if D(YA = 0 or 0. Let d(A) be the determinant of A. The infimum A(R)
of determinants of all lattices admissible for R is called the critical determinant of R; if there is no
R—admissible lattices then puts A(R) = co. A lattice A is critical if d(A) = A(R).

Usually in the geometry of numbers the function F(x) is a distance function. A real function
F(x) defined on R" is distance function if

(i) F(x) > 0,z € R", F(0) = 0;

(ii) F(x) is continuous;

(iii) F(z) is homogenous: F(Ax) = AF(z),A > 0, € R.

The problem of solving of diophantine inequality F'(z) < ¢, with a distance function F' has the
next framework.

Let M be the closure of a set M and #P be the number of elements of a finite set P. An open
set S C R" is a star body if S includes the origin of R™ and for any ray r beginning in the origin
#(rn (M \ M)) < 1.If F(z) is a distance function then the set

MF:{ZUF($)<1}

is a star body.

One of the main particular case of a distance function is the case of convex symmetrical function
F(x) which with conditions (i) - (iii) satisfies the additional conditions

() F(z+y) < F(z) + F(y);

(v) F(—z) = F(x).

The Minkowski’s problem can be reformulated as a conjecture concerning the critical deter-
minant of the region | z [P + | y [P < 1, p > 1. Recall once more that mentioned mathematical
problems are closely connected with Diophantine Approximation.

For the given 2-dimension region D, C R* = (z,y), p>1:

" + |y[” <1,

let A(D,) be the critical determinant of the regiomn.
Let a € A,a # 0 and let

m(F,A) = inf,F(a).
The Hermite constant of the function F' is defined as

V(F) = SUPAW‘
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3. Moduli Spaces

What is moduli? Classically Riemann claimed that 6g—6 (real) parameters could be for Riemann
surface of genus g > 1 which would determine its conformal structure (for elliptic curves, when
g = 1, it is needs one parameter). From algebraic point of view we have the following problem:
given some kind of variety, classify the set of all varieties having something in common with the
given one (same numerical invariants of some kind, belonging to a common algebraic family). For
instance, for an elliptic curve the invariant is the modular invariant of the elliptic curve.

Let B be a class of objects. Let S be a scheme. A family of objects parametrized by the S is
the set of objects X5 : s € S, X5 € B equipped with an additional structure compatible with the
structure of the base S. Algebraic moduli spaces are defined in the papers by Mumford, Harris and
Morrison [15,16].

A possibility of the parameterization of all admissible lattices of regions D), = {|z[P + |y|P < 1},
under varying p > 1, by some analitical manifolds was mentioned in the book by Minkowski in 1907
[2]. In 1950 H. Cohn published the paper on the Minkowski’s conjecture [7]. The parameterization
and the corresponding moduli space were one of the main tools of his approach to the investigation
of the conjecture.

Recall some definitions. Let M be an arbitrary set in R™, O = (0,...,0) € R™. A lattice A is
called admissible for M, or M —admissible, if it has no points # O in the interior of M. It is called
strictly admissible for M if it does not contain a point # O of M.

The critical determinant of a set M is the quantity A(M) given by

A(M) = inf{d(A) : A strictly admissible for M}

with the understanding that A(M) = oo if there are no strictly admissible lattices. The set M is
said to be of the finite or the infinity type according to whether A(M) is finite or infinite.
The moduli space is defined by the equation

_1

Alp,o) = (1 + o)1+ P 5 (1+0?) 7, (1)

in the domain

M: co>p>1, 1§a§ap:(2p—1)%7

of the {p,o} plane, where o is some real parameter; here 7 = 7(p, o) is the function uniquely
determined by the conditions

AP+ BP =1, 0 <7 < 7,

where
A=A(p,o)=(1+ Tp)_% —(1+ Up)_%, B = B(p,0) =0(1+ Up)_% +7(1+ Tp)_%,
7p 1s defined by the equation 2(1 —7,)P =1+ 75, 0 <7, < L.
DEFINITION 1. In the notation above, the surface
A—(140)(1477)"VP(1 +0P)7VP =,

in R3 with coordinates (o, p, A) we will called the Minkowski-Cohn moduli space.
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4. Minkowski’s analytic conjecture

In considering the question of the minimum value taken by the expression |x|P 4 |y[P, with p > 1,
at points, other that the origin, of a lattice A of determinant d(A), Minkowski [2] shows that the
problem of determining the maximum value of the minimum for different lattices may be reduced
to that of finding the minimum possible area of a parallelogram with one vertex at the origin and
the three remaining vertices on the curve |z|P+ |y|P = 1. The problem with p = 1,2 and oo is trivial:
in these cases the minimum areas are 1/2, v/3/2 and 1 respectively. Let D, C R? = (z,y), p > 1
be the 2-dimension region:

lz|P + |y|P < 1.

Let A(D,) be the critical determinant of the region. Recall considerations of the previous section.
For p > 1, let

Dy = {(z,y) € R? | |2’ + [yl < 1}.
Minkowski [2] raised a question about critical determinants and critical lattices of regions D,, for
varying p > 1. Let AI(,O) and AI(JI) be two Dj-admissible lattices each of which contains three pairs
of points on the boundary of D, and with the property that (1,0) € A;SJO), (=27 1P 2-1/p) ¢ A](gl),
(under these conditions the lattices are uniquely defined). Using analytic parameterization Cohn [7]

gives analytic formulation of Minkowski’s conjecture.
Let

_1

Alp,0) = (T+0)1+7) 7 (1+0") 77, (1)

be the function defined in the domain
1
M:oo>p>1,1<0<og,=(2-1)r,

of the {p, o} plane, where o is some real parameter; here 7 = 7(p, o) is the function uniquely
determined by the conditions

AP+ BP =1, 0 <7 < 7p,

where )

A=Alp,o)=(1+7")77 — (140777

B =B(p,0)=o(1+0") 7 +7(1+77) 7,

7p is defined by the equation

2(1—Tp)p:1—|—757 0<7, <1

In this case needs to extend the notion of parameter variety to parameter manifold. The function
A(p,0) in region M determines the parameter manifold.

Minkowski’s analytic conjecture:

For any real p with conditions p>1, p#2, 1 <o <o,

A(p, U) > min(A(p, 1)’ A(pa OP))'

In the vicinity of the point p = 1 and in the vicinity of the point (2, 02) the (p, ) variant of the
Minkowski’s analytic conjecture is used.

Minkowski’s analytic (p, 7)—conjecture:

For any real p and T with conditions p>1, p#2, 0<7 <7,
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A(p,7) > min(A(p, 1), A(p, 7))-

For investigation of properties of function A(p,o) which are need for proof of Minkowski’s
conjecture [2,7] we considered the value of A = A(p, o) and its derivatives

1"

Ay, AL AL A

" "

A

ap o“p

on some subdomains of the domain M [14].

5. Validated numerics

Validated numerics (sometimes called as interval computations) allow [17-21]

(1) rigorous enclosure for roundoff error, truncation error, and error of data;

(2) computation of rigorous bounds of the ranges of functions and maps.

A compact closed interval I = [a,b] is the set of real numbers = such that (s.t.) a < & < b.
Interval analysis with this type of intervals uses usually two sorts of intervals. Wide intervals are
used for representing uncertainty of the real world or lack of information. Narrow intervals are
used for rounding error bounds. In any of these two cases on each step of an interval computation
we compute the interval I which contains an (ideal) solution of our problem. Some examples of
implementations of the intervals are given in papers [21,22].

There are many numerical algorithms for solving mathematical problems. The majority of these
algorithms are iterative, so, since stopping the algorithms after a certain number of steps, we only
get an approximation ¥ to the desired solution z. A perfect solution would if we could estimate the
errors of the result not after the iteration process, but simultaneously with the iteration process.
This is one of the main ideas of interval analysis [17-20].

6. Malyshev‘s method

17

At first expressing A; v A, A

! 17 "

A

» s Aoy in terms of a sum of derivatives of

S A

, : i1 i1

"atoms"s; = 0Pt =71P7 a; = (1+0P) " r, b= (1+7P)""p, A=byg—ag, B=Tby+ 0cay,
o; = AP B, = BPT? (i :0,1,2,...).

Then by the implicit function theorem computing 7 = 7(p, o) by means of the following iteration

o?p

process:

1 _1

i1 = (L+ )5 (1= (L4 7)77 — (14 07) 5)P)r — o(1+ o) 5),

For computation of the expression for 7, we apply the following iteration:

()i = 1= (270)(A1+ ()))7, p> 1, (1), € [0,0.36].

So we really have represented the function A as the function A(p,o) of two variables. The
same fact is true for it’s derivatives. A.V. Malyshev and the author have constructed algebraic
expressions for A, A;_ . A A;; . A Amp and at first compute their by fixed point and float

02 9 op 0.2
point computations.
Let X = (x1,+-,%,) = ([z1,71],- -+, [z, Tn] be the n-dimensional real interval vector with
z; < xz; < T; ("rectangle"or "box"). The interval evaluation of a function G(z1,---,x,) on an

interval X is the interval [G, G] such that for any z € X, G(z) € [G, G]. The interval evaluation is
called optimal if G = min G, and G = max G on the interval X.

Let D be a subdomain of M. Under evaluation in D a mentioned function the domain is covered
by rectangles of the form
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lp,p; o,7).
In the case of the formula that expressing A, , A », A, Ay, AUQP
. . .1
in terms of a sum of derivatives of "atoms"s; = 0P, t; = 77 a; = (1 +oP) " b,

b = (1+ Tp)—i_%, A=byg—ag, B=71by+0cayg, o= AP B =BP"" (i=0,1,2,...) one
applies the rational interval evaluation to construct formulas for lower bounds and upper bounds
of the functions, which in the end can be expressed in terms of p, p, o, @, 7, T, ; here the bounds
T, T, are obtained with the help of the iteration process: a

i=0,1,

As interval computation is the enclosure method, we have to put:

[, 7] = [tn, tN] m[IO’ o] -

N is computed on the last step of the iteration.
For initial values we may take : [t, to] = [Tg, To] = [0, 0.36].

6.1. Algorithms

Here we give names, input and output of algorithms for interval evaluation only. All these
algorithms are implemented, tested and applied under the computer-assisted proof of Minkowski‘s
conjecture [9,10,12-14] .

Algorithm TPV

Input: An implicitly defined function 7, from Section 5.

Interval [p,p; o,7].

Method: Iterative interval computation.

Output: The interval evaluation of 7.

Algorithm TAUV

Input: Implicitly defined function 7 from this Section.

Interval [p,p; o,7].

Method: Described in this Section.

Output: The interval evaluation of 7.

Algorithm L0V

Input: Function I° = A(p,0) — AI(,O).

Interval [p,p; o,7].

Method: Interval computations.

Output: The interval evaluation of 1°.

Algorithm L1V

Input: Function I! = A(p,0) — A;(,l).

Interval [p,p; o,7].

Method: Interval computations.

Output: The interval evaluation of I'.

Algorithm GV
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Input: A function g(p, o) which has the same sign as function A/U.
Interval [p,p; o,7].

Method: Interval computations.

Output: The interval evaluation of g(p, o).

Algorithm HV

Input: A function h(p, o) which is the partial derivative by o the function g(p, o).
[p,p; o,0].

Method: Interval computations.

Output: The interval evaluation of h(p, o).

Next two algorithms are described in [22].

Algorithm MonotoneFunction

Input: A real function F'(x,y) monotonous by = and by v.
Interval [z,7;y, 7).

Output: The interval evaluation of F.

Algorithm RationalFunction

Input: A rational function R(z,y). Interval [z, T;y, ).

Output: The interval evaluation of R. a

7. Results

It is important to note that our method gives possibility to prove that a value of the target
minimum is an analytic function but is not a point. Ordinary numerical methods do not allow to
obtain results of the kind.

In notations [14] next result have proved:

THeOREM 1. [14]
A(pvl)v 1<p<27p>p07
A(pvap)7 2 <p<p07

A(Dy) = {
here po is a real number that is defined unique by conditions A(po, op) = A(po, 1), 2,57 < po < 2,58.

COROLLARY 1.
Kp = A(Dp>_ .

8. Strong Minkowski‘s analytic conjecture

A.V. Malishev and the author on the base of some theoretical evidences and results of mentioned
computation have proposed the strong Minkowski‘s analytic conjecture (MAS)

Strong Minkowski’s analytic (MAS) congecture:

For given p > 1 and increasing o from 0 to o, the function A(p, o)

1) increase strictly monotonous if 1 <p <2 and p > pM

2) decrease strictly monotonous if 2 < p < p2),

3) has a unique mazimum on the segment (1,0p); until the mazimum A(p, o) increase strictly
monotonous and then decrease strictly monotonous if p® < p < p(I);

4) constant, if p = 2;

here

pM > 2 is a root of the equation A:;2|g:0p =0,

p@ > 2 is a root of the equation A:;2|g:1 =0.

It seems that the conjecture (MAS) has not been proved for any parameter except the trivial
p=2.
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9. Conclusion

A.V. Malyshev‘s approach to Minkowski‘s conjecture (in Davis‘s amendment) concerning the
critical determinant of the region |z|P 4+ |y|P < 1 for p > 1 is proposed and A.V. Malyshev‘s method
of its prove is given. Applications of the approach and of the method are presented.
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