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AnHOTanuga

B 2007 r. T. Mumy moka3asi COBMECTHYIO TEOPEMY YHUBYPCAJIBHOCTH [Jisi n3eTa~dyHKIUN
Pumana ((s) u azera-pynkuuu [ypsuna ((s,a) ¢ TpaHCUeHIEHTHBIM napamerpoMm « ob oj-
HOBDEMEHHOM Npub/zKkKeHnn napbl PyHKIUE U3 IMUPOKOTO KJIACCa aHATMTHYECKUX (DyHKIMiA
capuramu (((s+i7),((s+i1,@)), 7 € R. OH MOIy4wI1, 9TO MHOYKECTBO TaKWX CIBUTOB, TIPHOJIH-
JKAIOIINX TAHHYIO TTAPy AHAJUTUICCKUX (QyHKIAIT, IMEET MOJOKATEIHHYIO HUKHIOK MIOTHOCTD.
B crarhe nomyueno, 9To MHO’KECTBO TAKUX CABATOB MMEET TOJOKUTENbHY O TIIOTHOCTD /IS BCEX
€ > 0, 33 UCKJIIOYEHNEM CYETHOrO MHOYKECTBA 3HAYEHUH €, IJI€ € — TOYHOCTD MPUOTUKEHHS.

Pesysibrarbl aHaJIOrMYHOrO TUIIA TAKZKE Loy YeHbl Jist caoxkubix byuxuuit F'( ((s), (s, a))
JIJIST HEKOTOPBIX KJIACCOB OTEpaTopoB F' B MPOCTPAHCTRE aHAIMTHYECKUX (DYHKIWIA.

Kanouesnie crosa: n3era-dyuknusa ['ypsuma, n3era-dyuknus Pumana, mpocTpanCcTBO aHa-
JINTUYECKUX (DYHKINI, YHUBEPCATHHOCTD.

Bubauoepagus: 21 HazpaHuii.

MODIFICATION OF THE MISHOU THEOREM
A. Laurin¢ikas, (Vilnius, Lithuania), L. Meska (Vilnius, Lithuania)

Abstract

The Mishou theorem asserts that a pair of analytic functions from a wide class can be
approximated by shifts of the Riemann zeta and Hurwitz zeta-functions ({(s +i7), (s +i7, @))
with transcendental o, 7 € R, and that the set of such 7 has a positive lower density. In the
paper, we prove that the above set has a positive density for all but at most countably many
€ > 0, where ¢ is the accuracy of approximation. We also obtain similar results for composite
functions F(¢(s),((s,a)) for some classes of operator F.
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1. Introduction

Let ((s), s = o + it, be the Riemann zeta-function. In 1975, S. M. Voronin discovered [21] the
universality property of {(s) which means that a wide class of non-vanishing analytic functions
can be approximated by shifts ((s 4+ i7), 7 € R. The non-vanishing of approximated functions is
connected to the existence of Euler’s product over primes for ((s).

Now let 0 < a < 1 be a fixed parameter, and ((s,«) denotes the Hurwitz zeta-function which
is defined, for a > 1, by the series

- 1
C(s,a) = Z m7

m=0
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and can be meromorphically continued to the whole complex plane. Clearly, ((s,1) = ((s), and

¢ < ;) (@ - 1)),

For other values of the parameter a, the function ((s, «) has no Euler product. It is well known that
the Hurwitz zeta-function with transcendental or rational # 1,% parameter « is also universal in
the above sense, however, its shifts ((s + i1, &) approximate not necessarily non-vanishing analytic
functions. The universality of ((s, ) with algebraic irrational « is an open problem.

Some other zeta-functions are also universal in the Voronin sense. The universality for zeta-
functions of certain cusp forms was obtained in [12], for periodic zeta-functions was studied in [20]
and [15], while the works [2], [4] and [5] are devoted to periodic Hurwitz zeta-functions. Universality
theorems for Lerch zeta-functions can be found in [11]. A very good survey on universality of zeta-
functions is given in [16].

In [19], H. Mishou began to study the so-called mixed joint universality. In this case, a collection
of analytic functions are simultaneously approximated by shifts of a collection of zeta-functions
consisting from functions having the Euler product and having no such a product. H. Mishou
considered the pair ({(s), ((s,a)) with transcendental «.. For the statement of the Mishou theorem,
we need some notation. Let D = {s eC: % <o < 1}. Denote by K the class of compact subsets of
the strip D with connected complements. Moreover, let H(K), K € K, be the class of continuous
functions on K which are analytic in the interior of K, and let Ho(K), K € K, be the subclass of
H(K) consisting from non-vanishing functions on K. Denote by measA the Lebesgue measure of a
measurable set A C R. Then H. Mishou proved [19] the following theorem.

THEOREM 1. Suppose that o is transcendental number. Let K1, Ko € IC, and fi(s) € Ho(K1),
fa(s) € H(K2). Then, for every e >0

1
lim inf —meaS{T € [0;T) : sup |((s+iT) — fi(s)] <&,
T—o0 T SGK]

sup |¢(s +iT,a) — fa(s)| < z—:} > 0.
s€EKo

Mixed joint universality theorems are also proved in [3], [7] and [10].

Our aim is to replace "liminf"in Theorem 1 by "lim". In the case of the function ((s), this was
done in [13] and [18], and, in the case of ((s, «), a similar theorem was obtained in [14]. Let P be
the set of all prime numbers, Ny = NU {0}, and

L(a,P) = {(log(m + «) : m € Ny), (logp : p € P)}.
THEOREM 2. Suppose that the set L(a,P) is linearly independent over the field of rational
numbers Q. Let K1, Ko € K , and fi(s) € Ho(K1), fa(s) € H(K2). Then the limit

1
lim —meas{T € [0;T] : sup |((s+iT) — fi(s)] <e, sup |[((s+iT, ) — fa(s)| < 5} >0
T—oo T' seKy se€EKo

exists for all but at most countably many € > 0.

For example, if « is transcendental, then the set L(a,P) is linearly independent over Q.

Let H(G) be the space of analytic functions on G equipped with the topology of uniform
convergence on compacta. In [9], universality theorems were proved for the functions F'({(s), (s, @))
with some operators F : H*(D) — H(D). Let

S={ge H(D):g(s)#0 or g(s) =0}.

Then, for example in [9], the following assertion was obtained.
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THEOREM 3. Suppose that « is transcendental, and that F : H*(D) — H(D) is a continuous
operator such that, for every open set G C H(D), the set (F~1G) N (S x H(D)) is non-empty. Let
K € K and f(s) € H(D). Then, for every e > 0,

liTIIi}OI(l)f %meas{T € 0;7T]: 52113 |F(¢(s+i1),((s+iT,a)) — f(s)] < z—:} > 0.

More general results are obtained in [10].
Clearly, the transcendence of a in Theorem 3 can be replaced by a linear independence over Q
of the set L(c,P). Therefore, we will prove the following theorem.

THEOREM 4. Suppose that the set L(c,P) is linearly independent over Q, and that F, K and
f(s) are the same as in Theorem 3. Then the limit

lim %meaS{T € [0;T] : sup |F(¢(s +i71),((s +iT,a)) — f(s)| < 6} >0 (1)

T—00 scK
exists for all but at most countably many € > 0.

Now, let V' be an arbitrary positive number, Dy = {s € C:1 <o <1, |[t{ <V} and

Sy ={g9€ HDy):g(s) #0 or g(s) =0}.
For brevity, we use the notation H2(DV, D) = H(Dy) x H(D).

THEOREM 5. Suppose that the set L(c,P) is linearly independent over Q, and that K and f(s)
are the same as in Theorem 3, and V > 0 is such that K C Dy. Let F : H*(Dy, D) — H(Dy) be
a continuous operator such that , for each polynomial p = p(s), the set (F~'{p}) N (Sy x H(Dy))
is non-empty. Then the limit (1) exists for all but at most countably many € > 0.

For example, Theorem 5 implies the modified universality of the functions
c1¢(s) + cal(s, ) and c1¢'(s) + ca¢’(s,a) with ¢1,c0 € C )\ {0}.
Let a1, ..., a, be arbitrary distinct complex numbers, and
Hg,..an(D)={g€ H(D): (g(s) —a;) ' € HD), j=1,..,r}.

THEOREM 6. Suppose that the set L(c,P) is linearly independent over Q, and F : H*(D) —
H(D) is a continuous operator such that F(S x H(D)) D Hq, . a.(D). Whenr =1, let K € K,
and f(s) € H(K) and f(s) # a1 on K. Then the limit (1) exists for all but at most countably many
e>0.Ifr>2, K CD is an arbitrary compact subset, and f(s) € Hq, .. 4, (D), then the limit (1)
exists for all but at most countably many ¢ > 0.

The case r = 1 with a; = 0 shows that, for F(gi(s),ga(s)) = e91(5)792(5) the limit (1) exists
for all but at most countably many € > 0. If »r = 2 and a; = 1, as = —1, then, for example, for
F(g1(5),92(s)) = cos(g1(s) + g2(s)) and f(s) € Hy—1(D), the limit (1) exists for all but at most
countably many € > 0.

THEOREM 7. Suppose that the set L(«,P) is linearly independent over Q, F : H*(D) — H(D)
is a continuous operator, K C D is a compact subset, and f(s) € F(S x H(D)). Then the limit (1)
exists for all but at most countably many € > 0.
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2. Lemmas

In this section, we present probabilistic theorems on the weak convergence of probability
measures in the space of analytic functions.
Let y={se€ C:|s| =1}, and

0 = H"}/p and (= H Tms
m=0

p

where 7, = v for all p € P, and ~y,,, =y for all m € Ny. By the Tikhonov theorem, the tori {; and
Q9 with the product topology and operation of pointwise multiplication are compact topological
Abelian groups. Similarly, Q = Q1 x Qs is also a compact topological Abelian group. Therefore,
denoting by B(X) the Borel o-field of the space X, we have that, on (£2,B(R2)), the probability
Haar measure my can be defined, and we obtain the probability space (2, B(Q2), my). Denote by
wi(p) and wa(m) the projections of wy € Q; and wy € Qy to the coordinate spaces v,, p € P, and
Ym, m € Ny, respectively, and, on the probability space (Q,B(2), my), define the H?(D)-valued
random element ((s,w), w = (w1,w2) € €2, by the formula

Q(SaaM) = (<(87w1)7<(37a7w2))7
)—1

C(s,,wa) = Z (22‘(:72)8.

where

C(s.w1) = H (1 B w;(sp)

and

m=0
Moreover, let
P(A) =mpy (weQ:{(s,a,w) € A), AeB(H*D)),

L.e., P is the distribution of the random element ((s,w). We set ((s,a) = (¢(s), ¢(s,)), and

Pp(4) & %meas [r€[0,T]: (s +ima) c A}, AcB(HD)).

LEMMA 1. Suppose that the set L(«,P) is linearly independent over Q. Then P converges
weakly to P¢ as T — oco.

PROOF. The lemma for transcendental a is proved in [19], Theorem 1, however, the
transcendence of « is used only for the linear independence of the set L(a, P).
[l
Let X7 and X3 be two metric spaces, and let the function u : X; — Xa be (B(X1), B(X2))-
measurable. Then every probability measure P on (X, B(X;)) induces on (X2, B(X2)) the unique
probability measure Pu~!(A) given by the formula

Put=Pu'A), AcB(X,).

It is well known that if u is a continuous function, then it is (B(X1), B(X2))-measurable.
In the sequel, the following property of weakly convergent probability measures will be very
useful.

LEMMA 2. Suppose that P,, n € N, and P are probability measures on (X1, B(X1)), the
function v : X1 — Xo is continuous, and P, converges weakly to P as n — oo. Then P,u~! also
converges weakly to Pu™' as n — oo.
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The lemma is Theorem 5.1 from [1].

LEMMA 3. Suppose that the set L(a, P) is linearly independent over Q, and F : H*(D) — H(D)
1s a continuous operator. Then

Prr(A) def %meas {r€[0,T]: F({(s+ir,a)) € A}, A€ B(H(D)),

converges weakly to PCF*1 as T — oo.

Proor. The definitions of Pr and Pr r imply that Prp = PrF~1. Therefore, the continuity

of F and Lemmas 1 and 2 prove the lemma.
O
Let V > 0, and, for A € B (H?*(Dv, D)),

Pry(A) = %meas {rel0,T]:¢(s+ir,a) € A},
Pev(A)=mp (weQ:{(s,0,w) € A).

LEMMA 4. Suppose that the set L(c,P) is linearly independent over Q, and F : H*>(Dy, D) —
H(Dy) is a continuous operator. Then

Proy(A) % %meas [re[0,T]: F(C(s +ira)) € A}, AeB(H(Dy)),

converges weakly to P<7VF_1 as T — oo.

PrOOF. Clearly, the function uy : H?(D) — H?(Dy, D) given by the formula

w(01(9).0209) = (105, 26)) . o000 € HOD)

is continuous, and, Pry = PTu(/l. Therefore, Lemmas 1 and 2 imply that Pry converges weakly
to Pry as T'— oo. Since Prry = PTyF_l, we have that Pr gy converges weakly to Pg,vF_l as
T — oo. -

Il

Now we consider the supports of the limit measures I, PCF_I, Py and PC,VF_I.

LEMMA 5. Suppose that the set L(c,P) is linearly independent over Q. Then the support of the
measure P is the set S x H(D).

PROOF. Denote by miy and mopy the probability Haar measures on (£1,8(€;)) and
(Q2, B(€2)), respectively. Then we have that m is the product of m; g and mop, i.e., if A = A; x Ag,
where A; € B(Q1) and Ay € B(3), then

mp(A) = myg(Ar)mag(Asz). (2)

The space H?(D) is separable, therefore, B(H?(D)) = B(H(D)) x B(H(D)). Thus, it suffices to
consider the measure P on the sets A= A1 x Ag, A1, Ay € H(D).
It is known [20] that the support of the measure

miH (w1 c Ql : C(s,wl) c A), Ace B(H(D)) (3)
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is the set S. The linear independence of L(«, P) implies that of the set L(a) = {log(m+a) : m € Ng}.
Therefore, the case r = 1 of Theorem 11 from [6] gives that the support of the measure

mam (w2 € Qo : ((s,a,w2) € A), Ae B(H(D)), (4)
is the set H(D). Since
P (A) =mpy (weQ:((s,a,w) € A), A€ B(H*(D)),
in view of (2), we have that, for A = Ay x Ag,
Pe(A) = mip (w1 € Q12 ((s,w1) € A1) mam (w2 € Q22 ((s,,w2) € Ag).

Therefore, the lemma follows from remarks on supports of the measures (3) and (4), and minimality
property of a support.
[l

LEMMA 6. Suppose that the set L(c, P) is linearly independent over Q, and F : H*(D) — H(D)
is a continuous operator such that, for every open set G C H(D), the set (F~'G)N (S x H(D)) is
non-empty. Then the support of the measure PQF*1 is the whole of H(D).

ProOF. We apply standard arguments. Let g € H(D) be an arbitrary element, and G be its
any open neighborhood. Since the operator F is continuous, the set F~'G is open, too. Therefore,
by the hypothesis of the lemma, F~'G is an open neighborhood of a certain element of the set
S x H(D). Hence, by Lemma 5, P.(F~*G) > 0. Therefore,

P.FH(G) = P(F7'G) > 0.

Since g and G are arbitrary, this proves the lemma.
O
In what follows, the Mergelyan theorem on the approximation of analytic functions by
polynomials will be exceptionally useful [17].

LEMMA 7. Suppose that K C C is a compact subset with connected complement, and f(s) is a
continuous function on K which is analytic in the interior of K. Then, for every € > 0, there exists
a polynomial p(s) such that

sup [f(s) — p(s)| <e.
seK

LEMMA 8. Suppose that the set L(a,P) is linearly independent over Q, and V' > 0. Then the
support of P v is the sel Sy x H(D).

PROOF. Let g be an arbitrary element of Sy x H(D), and G be its open neighborhood. The
function uy, defined in the proof of Lemma 4 is continuous. Therefore, by the definition of uy,,
the set u;lG is open and non-empty. Really, it is well known, see, for example, [8], that the
approximation in the space H(D) coincides with the uniform approximation on compact sets with
connected complements. Therefore, by Lemma 7, there exists a polynomial p(s) such that p(s) € G.
Since the polynomial p(s) is an entire function, p(s) also belongs to uy,'G. Thus, the set u;,'G is
non-empty, and is an open neighborhood of an element from S x H(D). Therefore, by Lemma 5,
P(uy'G) > 0. Hence, Prv(G) = Peuy (G) = Pe(uy'G) > 0. Clearly, if (g1,92) € S x H(D), then
also (g1, 92) € Sy x H(D). Therefore,

mu (we Q:((s,0,w) € Sy x H(D)) =mp (weQ:{(s,0,w) €S x HD)) =1.

Hence,
PE’V (SV X H(D)) =1.
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LEMMA 9. Suppose that the set L(a,P) is linearly independent over Q. Let F : H?(Dy, D) —
H(Dy) be a continuous operator such that, for each polynomial p = p(s), the set (F~1{p}) N (Sy x
H(D)) is non-empty. Then the support of the measure PQ,VF_l is the whole of H(Dy).

PROOF. Let g be an arbitrary element of H(Dy ), and G be its arbitrary open neighbourhood.
Then, by Lemma 7, there exists a polynomial p(s) € G. Therefore, the hypotheses of the lemma
imply that the set F~'G is open and contains an element of the set Sy, x H (D). Thus, in virtue of
Lemma 8, Py (F~'G) > 0. From this, it follows that

PQ,VF—l(G) =P.yv(F'G) >0,

and the lemma is proved because g and G are arbitrary.
O

LeEMMA  10. Suppose that the set L(c,P) is linearly independent over Q, and the operator
F : H*(D) — H(D) satisfies the hypotheses of Theorem 6. Then the support of the measure PQF_1
contains the closure of the set Hy, . 4. (D).

Proor. Since F(S x H(D)) D Hq,....a,. (D), for each element g € Hy, 4, (D), there exists an
element (g1, g2) € S x H(D)) such that F(g1,g2) = g. If G is an arbitrary open neighborhood of g,
then we have that the open set F'~1G is an open neighborhood of a certain element of S x H(D).
Therefore, in view of Lemma 5, Pr(F~'G) > 0. Hence,

P.FHG) = P(F7'G) > 0.

This shows that the element g lies in the support of the measure P F' —1. Since ¢ is an arbitrary

element of Hy, . 4, (D), we have that the support of PQF_1 contains the set Hy, . 4, (D). However,
the support is a closed set, therefore, it contains the closure of Hy,  4.(D).
O

LEMMA 11. Suppose that the set L(a,P) is linearly independent over Q, and F : H*(D) —
H(D) is a continuous operator. Then the support of PQF_1 is the closure of F\(S x H(D)).

PROOF. Let g be an arbitrary element of FI(S x H(D)), and G is its any neighborhood. Then,
by Lemma 5, PQ(F_lG) > (. Hence, PgF‘l(G) > (0. Moreover, by Lemma 5 again,

P.F~'(F(S x H(D))) = P (S x H(D)) = 1.

Therefore, the support of PQF*l is the closure of F'(S x H(D)).

3. Proof of universality theorems

We will apply the equivalent of the weak convergence of probability measures in terms of
continuity sets. We remind that A € B(X) is a continuity set of the probability measure P on
(X,B(X)) if P(0A) =0, where 0A is the boundary of A.

LeEmMMA 12. Let P,, n € N, and P be probability measures on (X,B(X)). Then P,, as n — oo,
converges weakly to P if and only if, for every continuity set A of P,

lim P,(A) = P(A).

n—o0
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A proof of the lemma can be found in[1], Theorem 2.1.
ProOOF OF THEOREM 2. Put

Ge = {(91792) € H*(D) : sup |g1(s) — fi(s)] < &, sup |ga(s) — fa(s)| < 6}-
seK, seKo

Then G, is an open set in H?(D). Moreover,

oG, = {(gl,gz) € H*(D) : sup |g1(s) — fi(s)| <&, sup |ga(s) = fa(s)| = 6}

seKq s€EKo

g {<gl,92> e HX(D) : sup ga(s) — ()] = , sup lga(s) — fa(s)] < }
seKy s€Ko

U {<gl,gg> e HX(D) : sup g1(s) — f1(5)] = &, sup lga(s) — fols)| = }

seK s€EK2

Therefore, if 1 > 0, 2 > 0 and 1 # &9, then 0G., N G, = &. Hence, we have that Pg(aGs) >0
for at most a countable set of values of ¢ > 0. This means that the set G. is a continuity set of F¢
for all but at most countably many € > 0. Therefore, by Lemmas 1 and 12,

1 .
Tlgréo Tmeas{T €[0;T]:((s+1ir) € Gg} = Pc(Ge),
or, by the definition of G,

1
lim —meas{T € [0;T) : sup |C(s+i7) — fi1(s)] < &,
T—oo T seKy

sup [C(s + i7,0) = fo(s)| < &} = P(G) (5)
s€Ko

for all but at most countably many € > 0. By Lemma 7, there exist polynomials pi(s) and pa(s)
such that

sup [ fu(s) — "] < (6)
seKy

and -
sup |fa(s) —pa2(s)| < 5. (7)

s€EKo

In view of Lemma, 5, {epl(s),pg(s)} is and element of the support of the measure F. Therefore,
putting

~

9 9
G = { (gr.) € HHD) s sup lon(s) = e < 5. sup [an(s) — (o) < 5}
seK s€Ko

~

we obtain that PQ(GE) > 0. Inequalities (6) and (7) show, that for (g1, 92) € G,

sup [g91(s) — fi(s)| <e
se K1

and

sup |g2(s) — fa(s)| <e.
s€EKo

Thus, we have that G. C G.. Hence, P (Ge) = PC(GE) > 0. This together with (5) proves the
theorem. B a
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PROOF OF THEOREM 4. Define the set

Gre = {o e HD)ssuplate) - S0 <}

Then we have that G, is a continuity set of the measure P¢F’ ~1 for all but at most countably
many & > 0.Hence, in view of Lemmas 3 and 12,

lim %meas {r€[0;T]: F({(s+ir,a)) € Gis}

T—o0
:Tlgrgo %meas{T €0;7]: SEE|F(C(5 +i7),((s+iT, ) — f(s)] < 5}
=P F~ (G (8)

for all but at most countably many € > 0. By Lemma 7, there exists a polynomial p(s) such that

sup | () = p(s)] < 5. ©)

Define

G, = {g e H(D) s sup lo(s) — 1(5)| < 2} .

The polynomial p(s), by Lemma 6, is an element of the support of the measure PQF_I. Hence,
PQ(G’LS) > 0. Obviously, for g € G, by (9),

sup [g(s) — f(s)] <e.
seK

Therefore, CA}'LE C Gy, PCF_I(GLE) > PCF_I(CA}'LE) > 0, and the theorem follows from (8).
N - O

PrROOF oF THEOREM 5. We follow the proof of Theorem 4, and use Lemma. 4 in place of Lemma

3, and Lemma 9 in place of Lemma 6.
O

PROOF OF THEOREM 6. The case » = 1. By Lemma 7, there exists a polynomial p(s) such that

€

sup |(5) — p(s)] < = (10)
seK

By hypotheses of the theorem, f(s) # a1 on K. Therefore, in view of (10), p(s) # a1 on K as well
if £ is small enough. Thus, we can define a continuous branch of log(p(s) — a1) which will be an
analytic function in the interior of K. Using Lemma 7 once more, we find a polynomial p;(s) such
that

5

(11)

sup [p(s) — a1 — eP*(9))] <
seK 4

Now we put fi(s) = eP*(®) +-a;. Then fi(s) € H(D) and f1(s) # a1. Therefore, by Lemma 10, f(s)
is an element of the support of the measure PCF_l. Define

Ge = {9 € H(D) : suplg(s) — fils)] < ;}
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Then G . is an open neighborhood of f1(s), thus, PgFfl(QLe) > 0. Now consider the set

G~ {o.2 HD) - spls) - 59 < =}

seK

Similarly as in the proof of the above theorems, we observe that Gi. is an continuity set of the
measure P F ~1 for all but at most countably many ¢ > 0. Therefore, taking into account Lemmas
3 and 12, we have that

.1 . 5
Th_r}réo eas {7’ €0;T]: F ({(s+ir,)) € 91,5}

legrolo %meas{T €[0;77]: SSE |[F({(s+it,a)) — f(s)| < 6} = PQF_1(61,6). (12)

Clearly, by (10) and (11),
£
sup | f(s) — fi(s)] < 5
seK

Therefore, if g € Gi., then g € QALg, ie, G C QALE. Since PQFfl(ng) > 0, we have that

P:F~'(G1.) > 0. This inequality together with (12) proves the theorem in the case r = 1.
~ Now let r > 2. Define

G2c = {o e HD) - supls) - 19 < 2|

seK

Since f(s) € Hq,....qa, (D), we have by Lemma 10, that f(s) is an element of the support of P F~!.
Moreover, Ga . is an open neighborhood of f(s). Therefore, -

PcF~(Gae) > 0. (13)

On the other hand, Gy, is a continuity set of the measure P’ ~1 for all but at most countably

many ¢ > 0. Therefore, in view of Lemmas 3 and 12, and (12)

Th_r)rgo %meas{T €[0;77]: ?2}8 |F(¢(s +iT,a)) — f(s)] < 5}

= lim %meas {r€[0;T): F(¢(s+ir,a)) € Goc} = PQF*(QQ,&) > 0.

T—oo

O

Proor or THEOREM 7. We repeat the proof of the case r > 2 of Theorem 6, and, in place of

Lemma 10, we apply Lemma 11.
O

4. Conclusions

It was well known that the Riemann zeta-function ((s) and Hurwitz zeta-function (s, ) with
transcendental or rational parameter « are universal in the Voronin sense, i.e., their shifts ((s+1i7)
and ((s +i7,a), 7 € R, approximate functions from wide classes. H. Mishou obtained a joint
universality theorem for {(s) and ((s,a). He proved that the set of shifts ({(s + i7),{(s + i1, a))
with transcendental a approximating a pair of given analytic functions has a positive lower density.
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In the paper, it is observed that the set of the above shifts has a positive density for all but at most
countably many values of € > 0, where ¢ is accuracy of approximation.

Also, it is obtained that composite functions F'(((s),((s,«)) for some classes of operators F’

in the space of analytic functions H (D) has a similar approximation property, namely, the set of
shifts F({(s+i7),((s +iT,)) approximating a given analytic function with accuracy € > 0 has a
positive density for all but at most countably many values of €.
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