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Аннотация

В 2007 г. Г. Мишу доказал совместную теорему унивурсальности для дзета-функции
Римана 𝜁(𝑠) и дзета-функции Гурвица 𝜁(𝑠, 𝛼) с трансцендентным параметром 𝛼 об од-
новременном приближении пары функций из широкого класса аналитических функций
сдвигами (𝜁(𝑠+ 𝑖𝜏), 𝜁(𝑠+ 𝑖𝜏, 𝛼)), 𝜏 ∈ R. Он получил, что множество таких сдвигов, прибли-
жающих данную пару аналитических функций, имеет положительную нижнюю плотность.
В статье получено, что множество таких сдвигов имеет положительную плотность для всех
𝜀 > 0, за исключением счетного множества значений 𝜀, где 𝜀 – точность приближения.

Результаты аналогичного типа также получены для сложных функций 𝐹 ( 𝜁(𝑠), 𝜁(𝑠, 𝛼))
для некоторых классов операторов 𝐹 в пространстве аналитических функций.
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Abstract

The Mishou theorem asserts that a pair of analytic functions from a wide class can be
approximated by shifts of the Riemann zeta and Hurwitz zeta-functions (𝜁(𝑠+ 𝑖𝜏), 𝜁(𝑠+ 𝑖𝜏, 𝛼))
with transcendental 𝛼, 𝜏 ∈ R, and that the set of such 𝜏 has a positive lower density. In the
paper, we prove that the above set has a positive density for all but at most countably many
𝜀 > 0, where 𝜀 is the accuracy of approximation. We also obtain similar results for composite
functions 𝐹 (𝜁(𝑠), 𝜁(𝑠, 𝛼)) for some classes of operator 𝐹 .
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1. Introduction

Let 𝜁(𝑠), 𝑠 = 𝜎 + 𝑖𝑡, be the Riemann zeta-function. In 1975, S. M. Voronin discovered [21] the
universality property of 𝜁(𝑠) which means that a wide class of non-vanishing analytic functions
can be approximated by shifts 𝜁(𝑠 + 𝑖𝜏), 𝜏 ∈ R. The non-vanishing of approximated functions is
connected to the existence of Euler’s product over primes for 𝜁(𝑠).

Now let 0 < 𝛼 6 1 be a fixed parameter, and 𝜁(𝑠, 𝛼) denotes the Hurwitz zeta-function which
is defined, for 𝛼 > 1, by the series

𝜁(𝑠, 𝛼) =

∞∑︁
𝑚=0

1

(𝑚+ 𝛼)𝑠
,
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and can be meromorphically continued to the whole complex plane. Clearly, 𝜁(𝑠, 1) = 𝜁(𝑠), and

𝜁

(︂
𝑠,

1

2

)︂
= (2𝑠 − 1)𝜁(𝑠).

For other values of the parameter 𝛼, the function 𝜁(𝑠, 𝛼) has no Euler product. It is well known that
the Hurwitz zeta-function with transcendental or rational ̸= 1, 12 parameter 𝛼 is also universal in
the above sense, however, its shifts 𝜁(𝑠+ 𝑖𝜏, 𝛼) approximate not necessarily non-vanishing analytic
functions. The universality of 𝜁(𝑠, 𝛼) with algebraic irrational 𝛼 is an open problem.

Some other zeta-functions are also universal in the Voronin sense. The universality for zeta-
functions of certain cusp forms was obtained in [12], for periodic zeta-functions was studied in [20]
and [15], while the works [2], [4] and [5] are devoted to periodic Hurwitz zeta-functions. Universality
theorems for Lerch zeta-functions can be found in [11]. A very good survey on universality of zeta-
functions is given in [16].

In [19], H. Mishou began to study the so-called mixed joint universality. In this case, a collection
of analytic functions are simultaneously approximated by shifts of a collection of zeta-functions
consisting from functions having the Euler product and having no such a product. H. Mishou
considered the pair (𝜁(𝑠), 𝜁(𝑠, 𝛼)) with transcendental 𝛼. For the statement of the Mishou theorem,
we need some notation. Let 𝐷 =

{︀
𝑠 ∈ C : 1

2 < 𝜎 < 1
}︀
. Denote by 𝒦 the class of compact subsets of

the strip 𝐷 with connected complements. Moreover, let 𝐻(𝐾), 𝐾 ∈ 𝒦, be the class of continuous
functions on 𝐾 which are analytic in the interior of 𝐾, and let 𝐻0(𝐾), 𝐾 ∈ 𝒦, be the subclass of
𝐻(𝐾) consisting from non-vanishing functions on 𝐾. Denote by meas𝐴 the Lebesgue measure of a
measurable set 𝐴 ⊂ R. Then H. Mishou proved [19] the following theorem.

Theorem 1. Suppose that 𝛼 is transcendental number. Let 𝐾1,𝐾2 ∈ 𝒦, and 𝑓1(𝑠) ∈ 𝐻0(𝐾1),
𝑓2(𝑠) ∈ 𝐻(𝐾2). Then, for every 𝜀 > 0

lim inf
𝑇→∞

1

𝑇
meas

{︁
𝜏 ∈ [0;𝑇 ] : sup

𝑠∈𝐾1

|𝜁(𝑠+ 𝑖𝜏)− 𝑓1(𝑠)| < 𝜀,

sup
𝑠∈𝐾2

|𝜁(𝑠+ 𝑖𝜏, 𝛼)− 𝑓2(𝑠)| < 𝜀
}︁
> 0.

Mixed joint universality theorems are also proved in [3], [7] and [10].
Our aim is to replace "lim inf"in Theorem 1 by "lim". In the case of the function 𝜁(𝑠), this was

done in [13] and [18], and, in the case of 𝜁(𝑠, 𝛼), a similar theorem was obtained in [14]. Let P be
the set of all prime numbers, N0 = N ∪ {0}, and

𝐿(𝛼,P) = {(log(𝑚+ 𝛼) : 𝑚 ∈ N0), (log 𝑝 : 𝑝 ∈ P)} .

Theorem 2. Suppose that the set 𝐿(𝛼,P) is linearly independent over the field of rational
numbers Q. Let 𝐾1,𝐾2 ∈ 𝒦 , and 𝑓1(𝑠) ∈ 𝐻0(𝐾1), 𝑓2(𝑠) ∈ 𝐻(𝐾2). Then the limit

lim
𝑇→∞

1

𝑇
meas

{︁
𝜏 ∈ [0;𝑇 ] : sup

𝑠∈𝐾1

|𝜁(𝑠+ 𝑖𝜏)− 𝑓1(𝑠)| < 𝜀, sup
𝑠∈𝐾2

|𝜁(𝑠+ 𝑖𝜏, 𝛼)− 𝑓2(𝑠)| < 𝜀
}︁
> 0

exists for all but at most countably many 𝜀 > 0.

For example, if 𝛼 is transcendental, then the set 𝐿(𝛼,P) is linearly independent over Q.
Let 𝐻(𝐺) be the space of analytic functions on 𝐺 equipped with the topology of uniform

convergence on compacta. In [9], universality theorems were proved for the functions 𝐹 (𝜁(𝑠), 𝜁(𝑠, 𝛼))
with some operators 𝐹 : 𝐻2(𝐷) → 𝐻(𝐷). Let

𝑆 = {𝑔 ∈ 𝐻(𝐷) : 𝑔(𝑠) ̸= 0 or 𝑔(𝑠) ≡ 0} .

Then, for example in [9], the following assertion was obtained.
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Theorem 3. Suppose that 𝛼 is transcendental, and that 𝐹 : 𝐻2(𝐷) → 𝐻(𝐷) is a continuous
operator such that, for every open set 𝐺 ⊂ 𝐻(𝐷), the set (𝐹−1𝐺) ∩ (𝑆 ×𝐻(𝐷)) is non-empty. Let
𝐾 ∈ 𝒦 and 𝑓(𝑠) ∈ 𝐻(𝐷). Then, for every 𝜀 > 0,

lim inf
𝑇→∞

1

𝑇
meas

{︁
𝜏 ∈ [0;𝑇 ] : sup

𝑠∈𝐾
|𝐹 (𝜁(𝑠+ 𝑖𝜏), 𝜁(𝑠+ 𝑖𝜏, 𝛼))− 𝑓(𝑠)| < 𝜀

}︁
> 0.

More general results are obtained in [10].
Clearly, the transcendence of 𝛼 in Theorem 3 can be replaced by a linear independence over Q

of the set 𝐿(𝛼,P). Therefore, we will prove the following theorem.

Theorem 4. Suppose that the set 𝐿(𝛼,P) is linearly independent over Q, and that 𝐹 , 𝐾 and
𝑓(𝑠) are the same as in Theorem 3. Then the limit

lim
𝑇→∞

1

𝑇
meas

{︁
𝜏 ∈ [0;𝑇 ] : sup

𝑠∈𝐾
|𝐹 (𝜁(𝑠+ 𝑖𝜏), 𝜁(𝑠+ 𝑖𝜏, 𝛼))− 𝑓(𝑠)| < 𝜀

}︁
> 0 (1)

exists for all but at most countably many 𝜀 > 0.

Now, let 𝑉 be an arbitrary positive number, 𝐷𝑉 =
{︀
𝑠 ∈ C : 1

2 < 𝜎 < 1, |𝑡| < V
}︀
and

𝑆𝑉 = {𝑔 ∈ 𝐻(𝐷𝑉 ) : 𝑔(𝑠) ̸= 0 or 𝑔(𝑠) ≡ 0} .

For brevity, we use the notation 𝐻2(𝐷𝑉 , 𝐷) = 𝐻(𝐷𝑉 )×𝐻(𝐷).

Theorem 5. Suppose that the set 𝐿(𝛼,P) is linearly independent over Q, and that 𝐾 and 𝑓(𝑠)
are the same as in Theorem 3, and 𝑉 > 0 is such that 𝐾 ⊂ 𝐷𝑉 . Let 𝐹 : 𝐻2(𝐷𝑉 , 𝐷) → 𝐻(𝐷𝑉 ) be
a continuous operator such that , for each polynomial 𝑝 = 𝑝(𝑠), the set (𝐹−1{𝑝}) ∩ (𝑆𝑉 ×𝐻(𝐷𝑉 ))
is non-empty. Then the limit (1) exists for all but at most countably many 𝜀 > 0.

For example, Theorem 5 implies the modified universality of the functions

𝑐1𝜁(𝑠) + 𝑐2𝜁(𝑠, 𝛼) and 𝑐1𝜁
′(𝑠) + 𝑐2𝜁

′(𝑠, 𝛼) with 𝑐1, 𝑐2 ∈ C ∖ {0}.

Let 𝑎1, ..., 𝑎𝑟 be arbitrary distinct complex numbers, and

𝐻𝑎1,...,𝑎𝑟(𝐷) =
{︀
𝑔 ∈ 𝐻(𝐷) : (𝑔(𝑠)− 𝑎𝑗)

−1 ∈ 𝐻(𝐷), 𝑗 = 1, ..., 𝑟
}︀
.

Theorem 6. Suppose that the set 𝐿(𝛼,P) is linearly independent over Q, and 𝐹 : 𝐻2(𝐷) →
𝐻(𝐷) is a continuous operator such that 𝐹 (𝑆 × 𝐻(𝐷)) ⊃ 𝐻𝑎1,...,𝑎𝑟(𝐷). When 𝑟 = 1, let 𝐾 ∈ 𝒦,
and 𝑓(𝑠) ∈ 𝐻(𝐾) and 𝑓(𝑠) ̸= 𝑎1 on 𝐾. Then the limit (1) exists for all but at most countably many
𝜀 > 0. If 𝑟 > 2, 𝐾 ⊂ 𝐷 is an arbitrary compact subset, and 𝑓(𝑠) ∈ 𝐻𝑎1,...,𝑎𝑟(𝐷), then the limit (1)
exists for all but at most countably many 𝜀 > 0.

The case 𝑟 = 1 with 𝑎1 = 0 shows that, for 𝐹 (𝑔1(𝑠), 𝑔2(𝑠)) = 𝑒𝑔1(𝑠)+𝑔2(𝑠), the limit (1) exists
for all but at most countably many 𝜀 > 0. If 𝑟 = 2 and 𝑎1 = 1, 𝑎2 = −1, then, for example, for
𝐹 (𝑔1(𝑠), 𝑔2(𝑠)) = cos(𝑔1(𝑠) + 𝑔2(𝑠)) and 𝑓(𝑠) ∈ 𝐻1,−1(𝐷), the limit (1) exists for all but at most
countably many 𝜀 > 0.

Theorem 7. Suppose that the set 𝐿(𝛼,P) is linearly independent over Q, 𝐹 : 𝐻2(𝐷) → 𝐻(𝐷)
is a continuous operator, 𝐾 ⊂ 𝐷 is a compact subset, and 𝑓(𝑠) ∈ 𝐹 (𝑆×𝐻(𝐷)). Then the limit (1)
exists for all but at most countably many 𝜀 > 0.
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2. Lemmas

In this section, we present probabilistic theorems on the weak convergence of probability
measures in the space of analytic functions.

Let 𝛾 = {𝑠 ∈ C : |𝑠| = 1}, and

Ω1 =
∏︁
𝑝

𝛾𝑝 and Ω2 =
∞∏︁

𝑚=0

𝛾𝑚,

where 𝛾𝑝 = 𝛾 for all 𝑝 ∈ P, and 𝛾𝑚 = 𝛾 for all 𝑚 ∈ N0. By the Tikhonov theorem, the tori Ω1 and
Ω2 with the product topology and operation of pointwise multiplication are compact topological
Abelian groups. Similarly, Ω = Ω1 × Ω2 is also a compact topological Abelian group. Therefore,
denoting by ℬ(𝑋) the Borel 𝜎-field of the space 𝑋, we have that, on (Ω,ℬ(Ω)), the probability
Haar measure 𝑚𝐻 can be defined, and we obtain the probability space (Ω,ℬ(Ω),𝑚𝐻). Denote by
𝜔1(𝑝) and 𝜔2(𝑚) the projections of 𝜔1 ∈ Ω1 and 𝜔2 ∈ Ω2 to the coordinate spaces 𝛾𝑝, 𝑝 ∈ P, and
𝛾𝑚, 𝑚 ∈ N0, respectively, and, on the probability space (Ω,ℬ(Ω),𝑚𝐻), define the 𝐻2(𝐷)-valued
random element 𝜁(𝑠, 𝜔), 𝜔 = (𝜔1, 𝜔2) ∈ Ω, by the formula

𝜁(𝑠, 𝛼, 𝜔) = (𝜁(𝑠, 𝜔1), 𝜁(𝑠, 𝛼, 𝜔2)) ,

where

𝜁(𝑠, 𝜔1) =
∏︁
𝑝

(︂
1− 𝜔1(𝑝)

𝑝𝑠

)︂−1

and

𝜁(𝑠, 𝛼, 𝜔2) =

∞∑︁
𝑚=0

𝜔2(𝑚)

(𝑚+ 𝛼)𝑠
.

Moreover, let
𝑃𝜁(𝐴) = 𝑚𝐻

(︀
𝜔 ∈ Ω : 𝜁(𝑠, 𝛼, 𝜔) ∈ 𝐴

)︀
, 𝐴 ∈ ℬ(𝐻2(𝐷)),

i.e., 𝑃𝜁 is the distribution of the random element 𝜁(𝑠, 𝜔). We set 𝜁(𝑠, 𝛼) =
(︀
𝜁(𝑠), 𝜁(𝑠, 𝛼)

)︀
, and

𝑃𝑇 (𝐴)
def
=

1

𝑇
meas

{︀
𝜏 ∈ [0, 𝑇 ] : 𝜁(𝑠+ 𝑖𝜏, 𝛼) ∈ 𝐴

}︀
, 𝐴 ∈ ℬ(𝐻2(𝐷)).

Lemma 1. Suppose that the set 𝐿(𝛼,P) is linearly independent over Q. Then 𝑃 converges
weakly to 𝑃𝜁 as 𝑇 → ∞.

Proof. The lemma for transcendental 𝛼 is proved in [19], Theorem 1, however, the
transcendence of 𝛼 is used only for the linear independence of the set 𝐿(𝛼,P).

�
Let 𝑋1 and 𝑋2 be two metric spaces, and let the function 𝑢 : 𝑋1 → 𝑋2 be (ℬ(𝑋1),ℬ(𝑋2))-

measurable. Then every probability measure 𝑃 on (𝑋1,ℬ(𝑋1)) induces on (𝑋2,ℬ(𝑋2)) the unique
probability measure 𝑃𝑢−1(𝐴) given by the formula

𝑃𝑢−1 = 𝑃 (𝑢−1𝐴), 𝐴 ∈ ℬ(𝑋2).

It is well known that if 𝑢 is a continuous function, then it is (ℬ(𝑋1),ℬ(𝑋2))-measurable.
In the sequel, the following property of weakly convergent probability measures will be very

useful.

Lemma 2. Suppose that 𝑃𝑛, 𝑛 ∈ N, and 𝑃 are probability measures on (𝑋1, ℬ(𝑋1)), the
function 𝑢 : 𝑋1 → 𝑋2 is continuous, and 𝑃𝑛 converges weakly to 𝑃 as 𝑛 → ∞. Then 𝑃𝑛𝑢

−1 also
converges weakly to 𝑃𝑢−1 as 𝑛→ ∞.
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The lemma is Theorem 5.1 from [1].

Lemma 3. Suppose that the set 𝐿(𝛼,P) is linearly independent over Q, and 𝐹 : 𝐻2(𝐷) → 𝐻(𝐷)
is a continuous operator. Then

𝑃𝑇,𝐹 (𝐴)
def
=

1

𝑇
meas

{︀
𝜏 ∈ [0, 𝑇 ] : 𝐹

(︀
𝜁(𝑠+ 𝑖𝜏, 𝛼)

)︀
∈ 𝐴

}︀
, 𝐴 ∈ ℬ(𝐻(𝐷)),

converges weakly to 𝑃𝜁𝐹
−1 as 𝑇 → ∞.

Proof. The definitions of 𝑃𝑇 and 𝑃𝑇,𝐹 imply that 𝑃𝑇,𝐹 = 𝑃𝑇𝐹
−1. Therefore, the continuity

of 𝐹 and Lemmas 1 and 2 prove the lemma.
�

Let 𝑉 > 0, and, for 𝐴 ∈ ℬ
(︀
𝐻2(𝐷𝑉 , 𝐷)

)︀
,

𝑃𝑇,𝑉 (𝐴) =
1

𝑇
meas

{︀
𝜏 ∈ [0, 𝑇 ] : 𝜁(𝑠+ 𝑖𝜏, 𝛼) ∈ 𝐴

}︀
,

𝑃𝜁,𝑉 (𝐴) = 𝑚𝐻

(︀
𝜔 ∈ Ω : 𝜁(𝑠, 𝛼, 𝜔) ∈ 𝐴

)︀
.

Lemma 4. Suppose that the set 𝐿(𝛼,P) is linearly independent over Q, and 𝐹 : 𝐻2(𝐷𝑉 , 𝐷) →
𝐻(𝐷𝑉 ) is a continuous operator. Then

𝑃𝑇,𝐹,𝑉 (𝐴)
def
=

1

𝑇
meas

{︀
𝜏 ∈ [0, 𝑇 ] : 𝐹

(︀
𝜁(𝑠+ 𝑖𝜏, 𝛼)

)︀
∈ 𝐴

}︀
, 𝐴 ∈ ℬ(𝐻(𝐷𝑉 )),

converges weakly to 𝑃𝜁,𝑉 𝐹
−1 as 𝑇 → ∞.

Proof. Clearly, the function 𝑢𝑉 : 𝐻2(𝐷) → 𝐻2(𝐷𝑉 , 𝐷) given by the formula

𝑢𝑉 (𝑔1(𝑠), 𝑔2(𝑠)) =

(︂
𝑔1(𝑠)

⃒⃒⃒
𝑠∈𝐷𝑉

, 𝑔2(𝑠)

)︂
, 𝑔1, 𝑔2 ∈ 𝐻(𝐷),

is continuous, and, 𝑃𝑇,𝑉 = 𝑃𝑇𝑢
−1
𝑉 . Therefore, Lemmas 1 and 2 imply that 𝑃𝑇,𝑉 converges weakly

to 𝑃𝜁,𝑉 as 𝑇 → ∞. Since 𝑃𝑇,𝐹,𝑉 = 𝑃𝑇,𝑉 𝐹
−1, we have that 𝑃𝑇,𝐹,𝑉 converges weakly to 𝑃𝜁,𝑉 𝐹

−1 as
𝑇 → ∞.

�
Now we consider the supports of the limit measures 𝑃𝜁 , 𝑃𝜁𝐹

−1, 𝑃𝜁,𝑉 and 𝑃𝜁,𝑉 𝐹
−1.

Lemma 5. Suppose that the set 𝐿(𝛼,P) is linearly independent over Q. Then the support of the
measure 𝑃𝜁 is the set 𝑆 ×𝐻(𝐷).

Proof. Denote by 𝑚1𝐻 and 𝑚2𝐻 the probability Haar measures on (Ω1,ℬ(Ω1)) and
(Ω2,ℬ(Ω2)), respectively. Then we have that𝑚𝐻 is the product of𝑚1𝐻 and𝑚2𝐻 , i.e., if𝐴 = 𝐴1×𝐴2,
where 𝐴1 ∈ ℬ(Ω1) and 𝐴2 ∈ ℬ(Ω2), then

𝑚𝐻(𝐴) = 𝑚1𝐻(𝐴1)𝑚2𝐻(𝐴2). (2)

The space 𝐻2(𝐷) is separable, therefore, ℬ(𝐻2(𝐷)) = ℬ(𝐻(𝐷)) × ℬ(𝐻(𝐷)). Thus, it suffices to
consider the measure 𝑃𝜁 on the sets 𝐴 = 𝐴1 ×𝐴2, 𝐴1, 𝐴2 ∈ 𝐻(𝐷).

It is known [20] that the support of the measure

𝑚1𝐻 (𝜔1 ∈ Ω1 : 𝜁(𝑠, 𝜔1) ∈ 𝐴) , 𝐴 ∈ ℬ(𝐻(𝐷)) (3)



140 A. LAURINČIKAS, L. MEŠKA

is the set 𝑆. The linear independence of 𝐿(𝛼,P) implies that of the set 𝐿(𝛼) = {log(𝑚+𝛼) : 𝑚 ∈ N0}.
Therefore, the case 𝑟 = 1 of Theorem 11 from [6] gives that the support of the measure

𝑚2𝐻 (𝜔2 ∈ Ω2 : 𝜁(𝑠, 𝛼, 𝜔2) ∈ 𝐴) , 𝐴 ∈ ℬ(𝐻(𝐷)), (4)

is the set 𝐻(𝐷). Since

𝑃𝜁(𝐴) = 𝑚𝐻

(︀
𝜔 ∈ Ω : 𝜁(𝑠, 𝛼, 𝜔) ∈ 𝐴

)︀
, 𝐴 ∈ ℬ(𝐻2(𝐷)),

in view of (2), we have that, for 𝐴 = 𝐴1 ×𝐴2,

𝑃𝜁(𝐴) = 𝑚1𝐻 (𝜔1 ∈ Ω1 : 𝜁(𝑠, 𝜔1) ∈ 𝐴1)𝑚2𝐻 (𝜔2 ∈ Ω2 : 𝜁(𝑠, 𝛼, 𝜔2) ∈ 𝐴2) .

Therefore, the lemma follows from remarks on supports of the measures (3) and (4), and minimality
property of a support.

�

Lemma 6. Suppose that the set 𝐿(𝛼,P) is linearly independent over Q, and 𝐹 : 𝐻2(𝐷) → 𝐻(𝐷)
is a continuous operator such that, for every open set 𝐺 ⊂ 𝐻(𝐷), the set (𝐹−1𝐺) ∩ (𝑆 ×𝐻(𝐷)) is
non-empty. Then the support of the measure 𝑃𝜁𝐹

−1 is the whole of 𝐻(𝐷).

Proof. We apply standard arguments. Let 𝑔 ∈ 𝐻(𝐷) be an arbitrary element, and 𝐺 be its
any open neighborhood. Since the operator 𝐹 is continuous, the set 𝐹−1𝐺 is open, too. Therefore,
by the hypothesis of the lemma, 𝐹−1𝐺 is an open neighborhood of a certain element of the set
𝑆 ×𝐻(𝐷). Hence, by Lemma 5, 𝑃𝜁(𝐹

−1𝐺) > 0. Therefore,

𝑃𝜁𝐹
−1(𝐺) = 𝑃𝜁(𝐹

−1𝐺) > 0.

Since 𝑔 and 𝐺 are arbitrary, this proves the lemma.
�

In what follows, the Mergelyan theorem on the approximation of analytic functions by
polynomials will be exceptionally useful [17].

Lemma 7. Suppose that 𝐾 ⊂ C is a compact subset with connected complement, and 𝑓(𝑠) is a
continuous function on 𝐾 which is analytic in the interior of 𝐾. Then, for every 𝜀 > 0, there exists
a polynomial 𝑝(𝑠) such that

sup
𝑠∈𝐾

|𝑓(𝑠)− 𝑝(𝑠)| < 𝜀.

Lemma 8. Suppose that the set 𝐿(𝛼,P) is linearly independent over Q, and 𝑉 > 0. Then the
support of 𝑃𝜁,𝑉 is the set 𝑆𝑉 ×𝐻(𝐷).

Proof. Let 𝑔 be an arbitrary element of 𝑆𝑉 × 𝐻(𝐷), and 𝐺 be its open neighborhood. The
function 𝑢𝑉 defined in the proof of Lemma 4 is continuous. Therefore, by the definition of 𝑢𝑉 ,
the set 𝑢−1

𝑉 𝐺 is open and non-empty. Really, it is well known, see, for example, [8], that the
approximation in the space 𝐻(𝐷) coincides with the uniform approximation on compact sets with
connected complements. Therefore, by Lemma 7, there exists a polynomial 𝑝(𝑠) such that 𝑝(𝑠) ∈ 𝐺.
Since the polynomial 𝑝(𝑠) is an entire function, 𝑝(𝑠) also belongs to 𝑢−1

𝑉 𝐺. Thus, the set 𝑢−1
𝑉 𝐺 is

non-empty, and is an open neighborhood of an element from 𝑆 ×𝐻(𝐷). Therefore, by Lemma 5,
𝑃𝜁(𝑢

−1
𝑉 𝐺) > 0. Hence, 𝑃𝜁,𝑉 (𝐺) = 𝑃𝜁𝑢

−1
𝑉 (𝐺) = 𝑃𝜁(𝑢

−1
𝑉 𝐺) > 0. Clearly, if (𝑔1, 𝑔2) ∈ 𝑆 ×𝐻(𝐷), then

also (𝑔1, 𝑔2) ∈ 𝑆𝑉 ×𝐻(𝐷). Therefore,

𝑚𝐻

(︀
𝜔 ∈ Ω : 𝜁(𝑠, 𝛼, 𝜔) ∈ 𝑆𝑉 ×𝐻(𝐷)

)︀
> 𝑚𝐻

(︀
𝜔 ∈ Ω : 𝜁(𝑠, 𝛼, 𝜔) ∈ 𝑆 ×𝐻(𝐷)

)︀
= 1.

Hence,
𝑃𝜁,𝑉 (𝑆𝑉 ×𝐻(𝐷)) = 1.

�
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Lemma 9. Suppose that the set 𝐿(𝛼,P) is linearly independent over Q. Let 𝐹 : 𝐻2(𝐷𝑉 , 𝐷) →
𝐻(𝐷𝑉 ) be a continuous operator such that, for each polynomial 𝑝 = 𝑝(𝑠), the set (𝐹−1{𝑝})∩ (𝑆𝑉 ×
𝐻(𝐷)) is non-empty. Then the support of the measure 𝑃𝜁,𝑉 𝐹

−1 is the whole of 𝐻(𝐷𝑉 ).

Proof. Let 𝑔 be an arbitrary element of 𝐻(𝐷𝑉 ), and 𝐺 be its arbitrary open neighbourhood.
Then, by Lemma 7, there exists a polynomial 𝑝(𝑠) ∈ 𝐺. Therefore, the hypotheses of the lemma
imply that the set 𝐹−1𝐺 is open and contains an element of the set 𝑆𝑉 ×𝐻(𝐷). Thus, in virtue of
Lemma 8, 𝑃𝜁,𝑉 (𝐹

−1𝐺) > 0. From this, it follows that

𝑃𝜁,𝑉 𝐹
−1(𝐺) = 𝑃𝜁,𝑉 (𝐹

−1𝐺) > 0,

and the lemma is proved because 𝑔 and 𝐺 are arbitrary.
�

Lemma 10. Suppose that the set 𝐿(𝛼,P) is linearly independent over Q, and the operator
𝐹 : 𝐻2(𝐷) → 𝐻(𝐷) satisfies the hypotheses of Theorem 6. Then the support of the measure 𝑃𝜁𝐹

−1

contains the closure of the set 𝐻𝑎1,...,𝑎𝑟(𝐷).

Proof. Since 𝐹 (𝑆 ×𝐻(𝐷)) ⊃ 𝐻𝑎1,...,𝑎𝑟(𝐷), for each element 𝑔 ∈ 𝐻𝑎1,...,𝑎𝑟(𝐷), there exists an
element (𝑔1, 𝑔2) ∈ 𝑆 ×𝐻(𝐷)) such that 𝐹 (𝑔1, 𝑔2) = 𝑔. If 𝐺 is an arbitrary open neighborhood of 𝑔,
then we have that the open set 𝐹−1𝐺 is an open neighborhood of a certain element of 𝑆 ×𝐻(𝐷).
Therefore, in view of Lemma 5, 𝑃𝜁(𝐹

−1𝐺) > 0. Hence,

𝑃𝜁𝐹
−1(𝐺) = 𝑃𝜁(𝐹

−1𝐺) > 0.

This shows that the element 𝑔 lies in the support of the measure 𝑃𝜁𝐹
−1. Since 𝑔 is an arbitrary

element of 𝐻𝑎1,...,𝑎𝑟(𝐷), we have that the support of 𝑃𝜁𝐹
−1 contains the set 𝐻𝑎1,...,𝑎𝑟(𝐷). However,

the support is a closed set, therefore, it contains the closure of 𝐻𝑎1,...,𝑎𝑟(𝐷).
�

Lemma 11. Suppose that the set 𝐿(𝛼,P) is linearly independent over Q, and 𝐹 : 𝐻2(𝐷) →
𝐻(𝐷) is a continuous operator. Then the support of 𝑃𝜁𝐹

−1 is the closure of 𝐹 (𝑆 ×𝐻(𝐷)).

Proof. Let 𝑔 be an arbitrary element of 𝐹 (𝑆 ×𝐻(𝐷)), and 𝐺 is its any neighborhood. Then,
by Lemma 5, 𝑃𝜁(𝐹

−1𝐺) > 0. Hence, 𝑃𝜁𝐹
−1(𝐺) > 0. Moreover, by Lemma 5 again,

𝑃𝜁𝐹
−1 (𝐹 (𝑆 ×𝐻(𝐷))) = 𝑃𝜁 (𝑆 ×𝐻(𝐷)) = 1.

Therefore, the support of 𝑃𝜁𝐹
−1 is the closure of 𝐹 (𝑆 ×𝐻(𝐷)).

�

3. Proof of universality theorems

We will apply the equivalent of the weak convergence of probability measures in terms of
continuity sets. We remind that 𝐴 ∈ ℬ(𝑋) is a continuity set of the probability measure 𝑃 on
(𝑋,ℬ(𝑋)) if 𝑃 (𝜕𝐴) = 0, where 𝜕𝐴 is the boundary of 𝐴.

Lemma 12. Let 𝑃𝑛, 𝑛 ∈ N, and 𝑃 be probability measures on (𝑋,ℬ(𝑋)). Then 𝑃𝑛, as 𝑛→ ∞,
converges weakly to 𝑃 if and only if, for every continuity set 𝐴 of 𝑃 ,

lim
𝑛→∞

𝑃𝑛(𝐴) = 𝑃 (𝐴).
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A proof of the lemma can be found in[1], Theorem 2.1.

Proof of Theorem 2. Put

𝐺𝜀 =

{︂
(𝑔1, 𝑔2) ∈ 𝐻2(𝐷) : sup

𝑠∈𝐾1

|𝑔1(𝑠)− 𝑓1(𝑠)| < 𝜀, sup
𝑠∈𝐾2

|𝑔2(𝑠)− 𝑓2(𝑠)| < 𝜀

}︂
.

Then 𝐺𝜀 is an open set in 𝐻2(𝐷). Moreover,

𝜕𝐺𝜀 =

{︂
(𝑔1, 𝑔2) ∈ 𝐻2(𝐷) : sup

𝑠∈𝐾1

|𝑔1(𝑠)− 𝑓1(𝑠)| < 𝜀, sup
𝑠∈𝐾2

|𝑔2(𝑠)− 𝑓2(𝑠)| = 𝜀

}︂
∪
{︂
(𝑔1, 𝑔2) ∈ 𝐻2(𝐷) : sup

𝑠∈𝐾1

|𝑔1(𝑠)− 𝑓1(𝑠)| = 𝜀, sup
𝑠∈𝐾2

|𝑔2(𝑠)− 𝑓2(𝑠)| < 𝜀

}︂
∪
{︂
(𝑔1, 𝑔2) ∈ 𝐻2(𝐷) : sup

𝑠∈𝐾1

|𝑔1(𝑠)− 𝑓1(𝑠)| = 𝜀, sup
𝑠∈𝐾2

|𝑔2(𝑠)− 𝑓2(𝑠)| = 𝜀

}︂
.

Therefore, if 𝜀1 > 0, 𝜀2 > 0 and 𝜀1 ̸= 𝜀2, then 𝜕𝐺𝜀1 ∩ 𝜕𝐺𝜀2 = ∅. Hence, we have that 𝑃𝜁(𝜕𝐺𝜀) > 0
for at most a countable set of values of 𝜀 > 0. This means that the set 𝐺𝜀 is a continuity set of 𝑃𝜁

for all but at most countably many 𝜀 > 0. Therefore, by Lemmas 1 and 12,

lim
𝑇→∞

1

𝑇
meas

{︁
𝜏 ∈ [0;𝑇 ] : 𝜁(𝑠+ 𝑖𝜏) ∈ 𝐺𝜀

}︁
= 𝑃𝜁(𝐺𝜀),

or, by the definition of 𝐺𝜀,

lim
𝑇→∞

1

𝑇
meas

{︁
𝜏 ∈ [0;𝑇 ] : sup

𝑠∈𝐾1

|𝜁(𝑠+ 𝑖𝜏)− 𝑓1(𝑠)| < 𝜀,

sup
𝑠∈𝐾2

|𝜁(𝑠+ 𝑖𝜏, 𝛼)− 𝑓2(𝑠)| < 𝜀
}︁
= 𝑃𝜁(𝐺𝜀) (5)

for all but at most countably many 𝜀 > 0. By Lemma 7, there exist polynomials 𝑝1(𝑠) and 𝑝2(𝑠)
such that

sup
𝑠∈𝐾1

⃒⃒
𝑓1(𝑠)− 𝑒𝑝1(𝑠)

⃒⃒
<
𝜀

2
(6)

and
sup
𝑠∈𝐾2

|𝑓2(𝑠)− 𝑝2(𝑠)| <
𝜀

2
. (7)

In view of Lemma 5,
{︀
𝑒𝑝1(𝑠), 𝑝2(𝑠)

}︀
is and element of the support of the measure 𝑃𝜁 . Therefore,

putting

𝐺̂𝜀 =

{︂
(𝑔1, 𝑔2) ∈ 𝐻2(𝐷) : sup

𝑠∈𝐾1

|𝑔1(𝑠)− 𝑒𝑝1(𝑠)| < 𝜀

2
, sup
𝑠∈𝐾2

|𝑔2(𝑠)− 𝑝2(𝑠)| <
𝜀

2

}︂
,

we obtain that 𝑃𝜁(𝐺̂𝜀) > 0. Inequalities (6) and (7) show, that for (𝑔1, 𝑔2) ∈ 𝐺̂𝜀,

sup
𝑠∈𝐾1

|𝑔1(𝑠)− 𝑓1(𝑠)| < 𝜀

and
sup
𝑠∈𝐾2

|𝑔2(𝑠)− 𝑓2(𝑠)| < 𝜀.

Thus, we have that 𝐺̂𝜀 ⊂ 𝐺𝜀. Hence, 𝑃𝜁(𝐺𝜀) > 𝑃𝜁(𝐺̂𝜀) > 0. This together with (5) proves the
theorem.
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�

Proof of Theorem 4. Define the set

𝐺1,𝜀 =

{︂
𝑔 ∈ 𝐻(𝐷) : sup

𝑠∈𝐾
|𝑔(𝑠)− 𝑓(𝑠)| < 𝜀

}︂
.

Then we have that 𝐺1,𝜀 is a continuity set of the measure 𝑃𝜁𝐹
−1 for all but at most countably

many 𝜀 > 0.Hence, in view of Lemmas 3 and 12,

lim
𝑇→∞

1

𝑇
meas

{︀
𝜏 ∈ [0;𝑇 ] : 𝐹

(︀
𝜁(𝑠+ 𝑖𝜏, 𝛼)

)︀
∈ 𝐺1,𝜀

}︀
= lim

𝑇→∞

1

𝑇
meas

{︁
𝜏 ∈ [0;𝑇 ] : sup

𝑠∈𝐾
|𝐹 (𝜁(𝑠+ 𝑖𝜏), 𝜁(𝑠+ 𝑖𝜏, 𝛼))− 𝑓(𝑠)| < 𝜀

}︁
=𝑃𝜁𝐹

−1(𝐺1,𝜀) (8)

for all but at most countably many 𝜀 > 0. By Lemma 7, there exists a polynomial 𝑝(𝑠) such that

sup
𝑠∈𝐾

|𝑓(𝑠)− 𝑝(𝑠)| < 𝜀

2
. (9)

Define

𝐺̂1,𝜀 =

{︂
𝑔 ∈ 𝐻(𝐷) : sup

𝑠∈𝐾
|𝑔(𝑠)− 𝑓(𝑠)| < 𝜀

2

}︂
.

The polynomial 𝑝(𝑠), by Lemma 6, is an element of the support of the measure 𝑃𝜁𝐹
−1. Hence,

𝑃𝜁(𝐺̂1,𝜀) > 0. Obviously, for 𝑔 ∈ 𝐺̂1,𝜀, by (9),

sup
𝑠∈𝐾

|𝑔(𝑠)− 𝑓(𝑠)| < 𝜀.

Therefore, 𝐺̂1,𝜀 ⊂ 𝐺1,𝜀, 𝑃𝜁𝐹
−1(𝐺1,𝜀) > 𝑃𝜁𝐹

−1(𝐺̂1,𝜀) > 0, and the theorem follows from (8).
�

Proof of Theorem 5.We follow the proof of Theorem 4, and use Lemma 4 in place of Lemma
3, and Lemma 9 in place of Lemma 6.

�

Proof of Theorem 6. The case 𝑟 = 1. By Lemma 7, there exists a polynomial 𝑝(𝑠) such that

sup
𝑠∈𝐾

|𝑓(𝑠)− 𝑝(𝑠)| < 𝜀

4
. (10)

By hypotheses of the theorem, 𝑓(𝑠) ̸= 𝑎1 on 𝐾. Therefore, in view of (10), 𝑝(𝑠) ̸= 𝑎1 on 𝐾 as well
if 𝜀 is small enough. Thus, we can define a continuous branch of log(𝑝(𝑠) − 𝑎1) which will be an
analytic function in the interior of 𝐾. Using Lemma 7 once more, we find a polynomial 𝑝1(𝑠) such
that

sup
𝑠∈𝐾

|𝑝(𝑠)− 𝑎1 − 𝑒𝑝1(𝑠))| < 𝜀

4
. (11)

Now we put 𝑓1(𝑠) = 𝑒𝑝1(𝑠)+𝑎1. Then 𝑓1(𝑠) ∈ 𝐻(𝐷) and 𝑓1(𝑠) ̸= 𝑎1. Therefore, by Lemma 10, 𝑓1(𝑠)
is an element of the support of the measure 𝑃𝜁𝐹

−1. Define

𝒢1,𝜀 =

{︂
𝑔 ∈ 𝐻(𝐷) : sup

𝑠∈𝐾
|𝑔(𝑠)− 𝑓1(𝑠)| <

𝜀

2

}︂
.
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Then 𝒢1,𝜀 is an open neighborhood of 𝑓1(𝑠), thus, 𝑃𝜁𝐹
−1(𝒢1,𝜀) > 0. Now consider the set

𝒢1,𝜀 =

{︂
𝑔 ∈ 𝐻(𝐷) : sup

𝑠∈𝐾
|𝑔(𝑠)− 𝑓(𝑠)| < 𝜀

}︂
.

Similarly as in the proof of the above theorems, we observe that 𝒢1,𝜀 is an continuity set of the
measure 𝑃𝜁𝐹

−1 for all but at most countably many 𝜀 > 0. Therefore, taking into account Lemmas
3 and 12, we have that

lim
𝑇→∞

1

𝑇
meas

{︁
𝜏 ∈ [0;𝑇 ] : 𝐹

(︀
𝜁(𝑠+ 𝑖𝜏, 𝛼)

)︀
∈ 𝒢1,𝜀

}︁
= lim

𝑇→∞

1

𝑇
meas

{︁
𝜏 ∈ [0;𝑇 ] : sup

𝑠∈𝐾
|𝐹 (𝜁(𝑠+ 𝑖𝜏, 𝛼))− 𝑓(𝑠)| < 𝜀

}︁
= 𝑃𝜁𝐹

−1(𝒢1,𝜀). (12)

Clearly, by (10) and (11),

sup
𝑠∈𝐾

|𝑓(𝑠)− 𝑓1(𝑠)| <
𝜀

2
.

Therefore, if 𝑔 ∈ 𝒢1,𝜀, then 𝑔 ∈ 𝒢1,𝜀, i.e., 𝒢1,𝜀 ⊂ 𝒢1,𝜀. Since 𝑃𝜁𝐹
−1(𝒢1,𝜀) > 0, we have that

𝑃𝜁𝐹
−1(𝒢1,𝜀) > 0. This inequality together with (12) proves the theorem in the case 𝑟 = 1.
Now let 𝑟 > 2. Define

𝒢2,𝜀 =

{︂
𝑔 ∈ 𝐻(𝐷) : sup

𝑠∈𝐾
|𝑔(𝑠)− 𝑓(𝑠)| < 𝜀

}︂
.

Since 𝑓(𝑠) ∈ 𝐻𝑎1,...,𝑎𝑟(𝐷), we have by Lemma 10, that 𝑓(𝑠) is an element of the support of 𝑃𝜁𝐹
−1.

Moreover, 𝒢2,𝜀 is an open neighborhood of 𝑓(𝑠). Therefore,

𝑃𝜁𝐹
−1(𝒢2,𝜀) > 0. (13)

On the other hand, 𝒢2,𝜀 is a continuity set of the measure 𝑃𝜁𝐹
−1 for all but at most countably

many 𝜀 > 0. Therefore, in view of Lemmas 3 and 12, and (12)

lim
𝑇→∞

1

𝑇
meas

{︁
𝜏 ∈ [0;𝑇 ] : sup

𝑠∈𝐾
|𝐹 (𝜁(𝑠+ 𝑖𝜏, 𝛼))− 𝑓(𝑠)| < 𝜀

}︁
= lim

𝑇→∞

1

𝑇
meas

{︀
𝜏 ∈ [0;𝑇 ] : 𝐹

(︀
𝜁(𝑠+ 𝑖𝜏, 𝛼)

)︀
∈ 𝒢2,𝜀

}︀
= 𝑃𝜁𝐹

−1(𝒢2,𝜀) > 0.

�

Proof of Theorem 7. We repeat the proof of the case 𝑟 > 2 of Theorem 6, and, in place of
Lemma 10, we apply Lemma 11.

�

4. Conclusions

It was well known that the Riemann zeta-function 𝜁(𝑠) and Hurwitz zeta-function 𝜁(𝑠, 𝛼) with
transcendental or rational parameter 𝛼 are universal in the Voronin sense, i.e., their shifts 𝜁(𝑠+ 𝑖𝜏)
and 𝜁(𝑠 + 𝑖𝜏, 𝛼), 𝜏 ∈ R, approximate functions from wide classes. H. Mishou obtained a joint
universality theorem for 𝜁(𝑠) and 𝜁(𝑠, 𝛼). He proved that the set of shifts (𝜁(𝑠 + 𝑖𝜏), 𝜁(𝑠 + 𝑖𝜏, 𝛼))
with transcendental 𝛼 approximating a pair of given analytic functions has a positive lower density.
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In the paper, it is observed that the set of the above shifts has a positive density for all but at most
countably many values of 𝜀 > 0, where 𝜀 is accuracy of approximation.

Also, it is obtained that composite functions 𝐹 (𝜁(𝑠), 𝜁(𝑠, 𝛼)) for some classes of operators 𝐹
in the space of analytic functions 𝐻(𝐷) has a similar approximation property, namely, the set of
shifts 𝐹 (𝜁(𝑠+ 𝑖𝜏), 𝜁(𝑠+ 𝑖𝜏, 𝛼)) approximating a given analytic function with accuracy 𝜀 > 0 has a
positive density for all but at most countably many values of 𝜀.
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