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Abstract

Some well-known classical results related to the description of integral
representations of finite groups over Dedekind rings R, especially for the rings
of integers Z and p-adic integers Zp and maximal orders of local fields and
fields of algebraic numbers go back to classical papers by S. S. Ryshkov,
P. M. Gudivok, A. V. Roiter, A. V. Yakovlev, W. Plesken. For giving an explicit
description it is important to find matrix realizations of the representations,
and one of the possible approaches is to describe maximal finite subgroups of
GLn(R) over Dedekind rings R for a fixed positive integer n.

The basic idea underlying a geometric approach was given in Ryshkov’s
papers on the computation of the finite subgroups of GLn(Z) and further
works by W. Plesken and M. Pohst. However, it was not clear, what happens
under the extension of the Dedekind rings R in general, and in what way
the representations of arbitrary p-groups, supersolvable groups or groups of a
given nilpotency class can be approached.

In the present paper the above classes of groups are treated, in particular,
it is proven that for a fixed n and any given nonabelian p-group G there is an
infinite number of pairwise non-isomorphic absolutely irreducible representa-
tions of the group G. A combinatorial construction of the series of these
representations is given explicitly.

In the present paper an infinite series of integral pairwise inequivalent
absolutely irreducible representations of finite p-groups with the extra congru-
ence conditions is constructed.

We consider certain related questions including the embedding problem
in Galois theory for local faithful primitive representations of supersolvable
groups and integral representations arising from elliptic curves.

Keywords: finite nilpotent groups, integral domain, Dedekind ring, elliptic
curves.
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Аннотация

Некоторые хорошо известные классические результаты, относящиеся
к описанию целочисленных представлений конечных групп над дедекин-
довыми кольцами R, в частности, для колец целых чисел Z и p-адических
чисел Zp и максимальных порядков локальных полей и полей алгебраиче-
ских чисел берут начало в классических работах С. С. Рышкова, П. М. Гу-
дивка, А. В. Ройтера, А. В. Яковлева, В. Плескена. Для их явного опи-
сания важно найти матричные реализаций представлений, и один из воз-
можных подходов состоит в описании максимальных конечных подгрупп
GLn(R) над дедекиндовым кольцом R при фиксированном натуральном
n.

Основная идея, лежащая в основе геометрического подхода, была при-
ведена в работах С. С. Рышкова по вычислению конечных подгрупп из
GLn(Z) и дальнейших работах М. Поста и В. Плескена. Тем не менее, бы-
ло неясно, что происходит при расширении дедекиндова кольца R в общем
случае, и в случаях представлений произвольных p-групп, сверхразреши-
мых групп или групп заданного класса нильпотентности.

В настоящей работе изучаются представления вышеуказанных классов
групп, в частности, доказано, что при фиксированном n и любой заданной
неабелевой p-группы G существует бесконечное число попарно неизоморф-
ных абсолютно неприводимых представлений группы G. Комбинаторная
конструкция серии этих представлений получена в явном виде.

В настоящей работе построена бесконечная цепочка целочисленных по-
парно неэквивалентных абсолютно неприводимых представлений конеч-
ных p-групп с дополнительными условиями сравнимости по модулю ди-
визоров простого числа p.

Мы рассматриваем некоторые связанные нашей конструкцией вопро-
сы, включая задачи погружения в теории Галуа для локальных точных
примитивных представлений сверхразрешимых групп и целочисленные
представления, возникающие из эллиптических кривых.

Ключевые слова: конечные нильпотентные группы, целые области, Де-
декиндовые кольца, эллиптические кривые.
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1. Introduction
Let K be a finite extension of the p-adic field Qp, and let OK be its ring of

integers. IfK is fixed, the number of irreducible pairwise inequivalent representations
of a given finite group group over OK is finite. In this paper we do not fix K, we
allow K to be extended via adjoining certain roots of 1, we construct an infinite
number of absolutely irreducible pairwise inequivalent representations of a given
p-group over OK for different K, and we consider the possible realization fields of
these representations.

We construct some infinite series of integral pairwise inequivalent absolutely
irreducible representations of finite p-groups over the rings of integers of number
fields and local fields, and we apply this construction to representations having
the minimal possible degrees. We also prove the extra condition that the matrices of
these representations are contained in the kernel of reduction modulo a prime divisor
of p. By giving a complete combinatoric description of all irreducible representations
of a finite p-group of class 2 we show that a nonabelian p-group possesses infinitely
many absolutely irreducible integral representations which are not equivalent over
the ring of integers.

Remark that the class of groups considered in the first section below can be
extended to classification of absolutely irreducible primitive representations of some
supersolvable groups (see [16]), and this can be applied to the classification of the
primitive representations of the Galois groups of local fields.

2. Notation
We denote C, Q and Qp the fields of complex, real, rational and rational p-adic

numbers. Z and Zp are the rings of rational and p-adic integers. NE/F (a) denotes
the norm of a ∈ E in the field extension E/F .

We denote GLn(R) the general linear group over a ring R, SLn(R) denotes the
special linear group.

[E : F ] denotes the degree of the field extension E/F .

Mn(R) is the full matrix algebra over a ring R.

Finite groups are usually denoted by capital letters G,H, and their elements by
small letters, e.g. g ∈ G, h ∈ H, ⟨a, b...⟩ denotes a group generated by a, b, ...,
Z = Z(G) is the center of G, [a, b] = aba−1b−1 denotes the commutator of a, b.

We write ζt for a primitive t-root of 1.

Diagonal matrices are denoted by diag(d1, . . . , dn), I (and Im) stands for a unit
(m×m-matrix).

Binomial coefficients are denoted by
(

n
m

)
.
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3. The construction

Let us consider a nonabelian group G0 generated by two elements a and b of
order t = pm, at=bt=1 such that the commutator c = [a, b] ̸= 1 is contained in the
center of G0, and ct=1, t is the minimal positive integer having this property. Let
ζ be a primitive root of 1 of degree t. The following representation of G0 is faithful
and absolutely irreducible.

A = ∆(a) =


0 1 . . . 0
... . . .

. . . . . .
0 0 . . . 1
1 0 . . . 0

 ,

B = ∆(b) = diag(1, ζ, . . . , ζt−1)

Indeed, all matrices of this representation are unitary, and any matrix in GLt(C)
commuting with all matrices of this representation is a scalar matrix; it follows from
[8], p. 8 that ∆(G0) is absolutely irreducible.

Proposition 1. (see e.g. theorem (2.32), p. 29 [11]. A p-group has a faithful
irreducible representation if and only if its center is cyclic.

For the n×n-matrices eij having precisely one nonzero entry in the position (i, j)

equal to 1 we can define a n× n-matrix using the binomial coefficients
(
n− j
i− j

)
;

in the case i = j = n we replace the above coefficients with 1. Let us consider n = t
and the following triangular matrices:

C =
∑

n≥i≥j≥1

(−1)i−j
(
n− j
i− j

)
eij,

C1 =
∑

n≥i≥j≥1

(
n− j
i− j

)
eij.

Let X = diag(1, x, x2, . . . , xt−1), then

C1XC =
∑

n≥i≥j≥1

(
n− j
i− j

)
xj−1(1− x)i−jeij,

and if we take x = 1, this will imply C−1 = C1.
If we take x = ζ, we will obtain:

∆′(b) = C1∆(b)C = C1BC =
∑

n≥i≥j≥1

(
n− j
i− j

)
ζj−1(1− ζ)i−jeij,
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We can see that all matrix entries below the main diagonal are divisible by powers
of ζ−1, and the exponents of the powers are growing proportionally to the distance
from the main diagonal. An elementary computation shows that

∆′(a) = C−1AC =


1− t 1 0 . . . 0 0

−
(t
2

)
1 1 . . . 0 0

. . . . . .
. . . . . . . . . . . .

−
(t
t−1

)
0 0 . . . 1 1

0 0 0 . . . 0 1

 ,

Let K be (as earlier in Introduction) a finite extension of the p-adic field Qp.
Let us assume that K contains ζ. For a positive integer h let us consider a finite
extension Lh ⊂ K(ζpr) of degree h over Qp for an appropriate integer r and a
primitive pr-root of 1 ζpr ; its maximal order OLh

, a prime divisor P of p and its
prime element πh, this prime element may be chosen as ζpr − 1 in the case if Lh is
a cyclotomic field Qp(ζpr). Let Dh = diag(1, πh, π

2
h, . . . , π

t−1
h ), then

Ah = ∆h(a) = D−1
h ∆′(a)Dh =


1− t πh 0 . . . 0 0

−
(t
2

)
π−1
h 1 πh . . . 0 0

. . . . . .
. . . . . . . . . . . .

−
(t
t−1

)
π2−t
h 0 0 . . . 1 πh
0 0 0 . . . 0 1

 ,

Bh = ∆h(b) = D−1
h ∆′(b)Dh =

∑
n≥i≥j≥1

(
n− j
i− j

)
ζj−1(1− ζ)i−jπj−ih eij.

In the field Qp the prime p factorizes as (1 − ζ)p
m−1(p−1). The entries of the

first column of ∆′(a) (except the first one) are divisible by p, all of them lower than
−
(t
pm−1(p−1)

)
are even divisible by p2, and πh divides (1−ζ), therefore, all subdiagonal

entries of ∆h(a) (except the first one) are divisible by πi−jh . The same is true for the
matrix ∆′(b), and the representations ∆h are integral in OK , and they are contained
in the kernel of reduction (modπh). Moreover, the matrices ∆h(a) ≡ It(modπh), but
∆h(a) ̸≡ It(modπ

2
h). Thus ∆h and ∆r are not equivalent over OK if h ̸= r. This

gives an explicit construction of an infinite series of pairwise integrally inequivalent
representations over OK . Thus we have the following theorem:

Theorem 1. Let L denote Qp(ζp∞), the extension of Qp obtained by adjoining
all roots ζpi , i = 1, 2, 3, ... of p-primary orders of 1. Let G be a finite nonabelian two-
generator p-group admitting representations by matrices ∆(a),∆(b) above, and let
OL be the ring of integers of L. Then there is an infinite number of integral pairwise
inequivalent absolutely irreducible representations of G over OL.
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We shall extend the construction of ∆h from theorem 1 above first to the case
of a nonabelian p-group G1 generated by its center Z and elements a, b with central
nontrivial commutator c = [a, b] = aba−1b−1. Let χ be a character of Z such that
χ(c) = ζ ̸= 1 for a primitive root of 1 of some degree t = pm. There is an absolutely
irreducible representation of G1 extending χ; the central elements z correspond to
scalar matrices χ(z)I, and let us denote by Cχ the kernel of χ. Let us denote by Cχ
the kernel of χ. Then we have a representation of the factorgroup Gχ = G1/Cχ. Let
Zχ ⊂ G1 be the preimage of the center of Gχ; it consists of the elements x ∈ G1

such that χ(xax−1a−1) = χ(xax−1a−1) = 1. It is also clear that at ∈ Zχ and
bt ∈ Zχ, since χ(ataa−ta−1) = χ(xax−1a−1) = 1, χ(atba−tb−1) = χ(c) = 1 and
χ(btbb−tb−1) = χ(btab−ta−1) = 1. The same computation shows that powers of a
and b lower than tth powers are not contained in Zχ. Further, Zχ/Cχ is an abelian
group containing Z/Cχ, and we can extend the character χ of Z/Cχ to Zχ/Cχ, and
thereby to a linear character of Zχ. In the absolutely irreducible representation ∆
of G1 such that ∆(z) = χ(z)I, the elements x correspond to scalar matrices χ1(z)I
for the extension χ1 of the character χ(z) to Zχ.

Denote ζ1 = t
√
χ1(at) and ζ2 = t

√
χ1(bt). The matrices ∆h(z) = χ(z)I, for z ∈ Zχ,

together with ∆h(a) = ζ1Ah and ∆h(b) = ζ2Bh determine a representation of G1,
and since ζ1 = ζ2(modπh) for sufficiently large n, for large enough distinct n and n′

the integral representations ∆h and ∆h′ are integrally inequivalent.
Now let us consider an arbitrary p-group G of the nilpotency class 2 having the

center Z. For every character χ of the center let us denote its kernel by Cχ. Denote
by Zχ ⊂ G be the preimage of the center of G/Cχ. Then Zχ is the set of of the
elements x ∈ G such that χ(xyx−1y−1) = 1 for all y ∈ G. Let χ1 be an extension of
χ from Z/Cχ to Zχ/Cχ. In the absolutely irreducible representation of G extending
the representation χ(z)In of the center, the elements y ∈ Zχ correspond to scalar
matrices χ(y)In. Let us assume that the commutator subgroup G′ of G is not 1, and
G ̸= Zχ.

Let us define an "inner product"(x, y) = χ([x, y]), where x, y ∈ G and [x, y] =
x−1y−1xy.

The following lemma is well known in the theory of nilpotent groups and can be
checked by a direct calculation of commutators [x, y].

Lemma 1. Suppose G is a nilpotent group of nilpotency class is two. Then, for
any element x ∈ G, the map

y 7→ [x, y]

is an endomorphism of G.
The image of these endomorphism lie in the commutator subgroup G′ of G, hence

in the center of G, so it is abelian. The kernel of this endomorphism contains the
center of the group, more specifically, it is the centralizer of x in G.
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Proof. Consider an element x ∈ G. Since G has nilpotency class two, the
commutator [x, y] = xyx−1y−1 is in the center Z of G, and hence it commutes with
any y ∈ G.

Let y1, y2 ∈ G. Since [x, y2] ∈ Z, we have
[x, y1][x, y2] = [x, y1]y1[x, y2]y

−1
1 = xy1x

−1y−1
1 y1xy2x

−1y−1
2 y−1

1

= xy1y2x
−1y−1

2 y−1
1 = [x, y1y2]. This completes the proof of lemma 1. 2

The above inner product (x, y) = χ([x, y]) is multiplicative in both arguments
and antisymmetric, since (x, x) = 1. The value of (x, y) depends only on cosets
containing x and y modulo Zχ. Thus we can view (x, y) as being defined on Gχ =
G/Zχ. The product (x, y) is nondegenerate on this group by the definition of Zχ.
Now Gχ is an abelian p-group. Let a, b, ... be the generators of its cyclic direct factors.
The values of (x, y) are roots of 1 of degrees that are powers of p. They are generated
by the values of the symbol (x, y) on the generators. Therefore, there is a pair of
generators on which the value of the symbol is a root of 1 of the highest possible
degree t = pm. Let a and b be such generators, and let (a, b) = ζ = t

√
1. Thus at = bt

in Gχ.

Lemma 2. Gχ is the direct product of the group H generated by 2 elements
a and b and its orthogonal product H⊥. In particular, the number of generators is
even, and they are divided to pairs ai, bi such that the generators from different pairs
are orthogonal, the orders of ai and bi are equal, and the degrees of the roots (ai, bi)
of 1 are equal.

Proof. Suppose that x ∈ Gχ. Then (x, a) = ζk1 and (x, b) = ζk2 . for some
integers k1, k2. Then we have (x ·a−k2bk1 , b) = 1, thus x ·a−k2bk1 ∈ H⊥, and H ·H⊥ =
Gχ. Any element u ∈ H

∩
H⊥ is orthogonal to both H and H⊥, and thus to all

Gχ = H · H⊥ and since the symbol (x, y) is nondegenerate, u = 1. This argument
implies that Gχ is a direct product of H and H⊥. We can apply the same argument
to H⊥ and use induction on the number of generators G. Finally we find that G can
be expressed as a direct product of pairwise orthogonal two-generator subgroups.

Let Ai and Bi be representatives in G of the classes of ai and bi from the
constituents of G/Zχ. Then both Atii = Bti

i are contained in Zχ, and

χ(aibia
−1
i b−1

i )ζti =
ti
√
1,

and the values of χ on commutators of elements from different pairs are all equal 1.

The representation of G extending the character χ1 of Zχ is also a representation
of an algebra over K (K is Qp(ζ)) with generators u1, v1, . . . , us, vs with multiplica-
tion given by utii = χ1(A

ti
i ), v

ti
i = χ1(B

ti
i ), uivi = viuiζti , and the generators from

different pairs commute. This algebra is a tensor product over K of the algebras
generated by the pairs ui, vi, and representations of these algebras are representations
of groups of type G1 as considered above. These algebras determine symbols K[u, v]
satisfying the properties of Hilbert symbol which can be identified with an element
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of the Brauer group (see [12], theorem A.2.3, p. 142). Note that the degree of the
irreducible representation of each two-generator group ⟨ui, vi⟩ described above is
equal to pt1 . Compare section 2 in [10].

Lemma 3. Let G be a two-generator group ⟨u, v⟩ as above with cyclic center
Z = ⟨c⟩ of order pn, and the order of (u, v) = d is pt. For p ̸= 2 we can find the
generators u, v of the group G above in such a way that either upt = 1 or vpt = 1 for
p ̸= 2.

Proof. We can use our previous remarks and replace the generators in the
following way: if neither of the conditions upt = 1 or vpt = 1 is true, and the order
of u does not exceed the order of v, then we can change v: consider v0 = urv, then
[u, v] = S is in Z, the order of [u, v] is d, and computations of the commutators
show that v0 = (urv)p

t
= urp

t
vptS− rpt(pt−1)

2 , and v0 = 1 for an appropriate choice
of an integer r if p ̸= 2, and we can take the generators u, v0 instead of u, v; this
replacement will not change the group ⟨u, v⟩. 2

This implies that the number of OK−inequivalent representations of G is infinite.

The constructed representations are contained in the kernel of reduction modulo
some prime divisor P of p.

Further let us formulate the following propositions based on results. Note that
there are some general results on the classification of two-generator p-groups G of
the nilpotency class 2, see [2], [25], see also earlier papers: [1], theorem 2.6, [14],
theorem 2.5.

Proposition 2. [21] or [22], Satz 6.1, p. 291. Let G be a minimal nonabelian
p-group. Then G = ⟨a, b⟩ and one of the following holds:
(a) Apm = Bpn = Cp = 1, [A,B] = C,B2

h = A−m
h , [A,C] = [B,C] = 1 is not

metacyclic. Furthermore, this group is not metacyclic and in the case p = 2, we
have m ≥ n;m ≥ 2.
Also, |G| = pm+n+1;G′ = ⟨C⟩ and Z(G) = ⟨Ap⟩ × ⟨Bp⟩ × ⟨C⟩;
(b) G = Q8 is the group of quaternions of order 8;
(c) G = ⟨A,B|Apm = Bpn = Cp = 1, [A,B] = Ap

m−1⟩ is metacyclic.

Proposition 3. [3]. Let G be a 2-generated finite 2-group and |G′| = 2. Then
G is minimal nonabelian.

Now we can extend theorem 1 to representations (which are not always faithful)
of an arbitrary p-group G. First, let us observe that among the representations of
G there occur the absolutely irreducible representations of the factor-group by the
third term of the lower central series, and this is nilpotent of class 2. We can also
observe that the absolutely irreducible representations of the factor-group by the
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orthogonal complement H⊥ to any two-generator subgroup H = ⟨u, v⟩ ⊂ G are also
the representations of G. If H is not abelian, any its faithful absolutely irreducible
representation will be an absolutely irreducible representation of G. Using lemma
3, we can start from the representation determined by matrices A and B together
with scalar pk × pk-matrices composing the centre Z = ⟨c⟩ of G:

A′ = ∆(a) =


0 1 . . . 0
... . . .

. . . . . .
0 0 . . . 1
1 0 . . . 0

 ,

B′ = ∆(b) = diag(1, ζ, . . . , ζt−1)

Let the order of Z be pm, and let ϵ be a primitive pm−root of 1. Let upk = 1,
vp

k
= cf , ζ = ϵp

m−k , θ = ϵc
f Then the representation ∆h of H determined by

u → A, v → θB′ = B, c → ϵI ′ = C is absolutely irreducible and faithful. As
earlier, we can obtain the integral representation by matrices congruent to the unit
matrix I (mod P):

Ah = ∆h(a) = D−1
h C−1A′CDh =


1− t πh 0 . . . 0 0

−
(t
2

)
π−1
h 1 πh . . . 0 0

. . . . . .
. . . . . . . . . . . .

−
(t
t−1

)
π2−t
h 0 0 . . . 1 πh
0 0 0 . . . 0 1

 ,

Bh = ∆h(b) = D−1
h C−1B′CDh =

∑
n≥i≥j≥1

(
t− j
i− j

)
ζj−1(1− ζ)i−jπj−ih eij.

In the case p = 2 we can consider a character χ of Z ⊂ G = ⟨u, v⟩ as earlier,
and for the subgroup ⟨[u, v]⟩ = C ⊂ Z generated by the commutator c = [u, v].
Let χ(c) = γ ̸= 1 be an element of of order 2x; then and for χ2x−1 the image of
the commutator subgroup G′ ⊂ G is a group of order 2, the image χ2x−1

(G) is
nonabelian, we can apply Propositions 2 and 3 together with examples 1) - 3) for
constructing an infinite series of pairwise inequivalent representations of G of the
minimal degree. Alternatively, we can use our construction from theorem 1.

Thus we have the following

Theorem 2. Let L denote Qp(ζp∞), the extension of Qp obtained by adjoining
all roots ζpi , i = 1, 2, 3, ... of p-primary orders of 1. Let us fix the degree t of matrix
representations. Let G be any finite nonabelian p-group, and let OL be the ring of
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integers of L. Then there is an infinite number of integral pairwise inequivalent
absolutely irreducible representations of finite groups G in GLn(OL).

The constructed representations are contained in the kernel of reduction
It (mod P) modulo some prime divisor P of p.

Remark. Our construction applied to two-generator nonabelian subgroups gives
the representations of G having minimal possible degrees.

The results above preceding theorem 2 (in particular, lemma 2) can be reformula-
ted for some supersolvable groups and used for classification of absolutely irreducible
primitive representations of the absolute Galois groups of local fields, see (see [16],
theorem 2.2), see also [26], [27] and [23].

4. Some related topics and applications
Proposition 4. Let G be a finite group, H – its normal p-subgroup, let G/H

be supersolvable, ρ : G→ GLn(C) – a faithful primitive representation. Then:

• n = pd. The center Z = Z(H) is cyclic of order pz, and for c ∈ Z of order
p there are elements u1, v1, . . . , ud, vd which together with Z generate H and
satisfy the generating relations: [ui, uj] = [vi, vj] = 1, [ui, vj] = cδi,j , where δi,j
is the Kronecker’s delta, (i, j = 1, . . . , d), and the generators from different
pairs commute.

• There are 2 possibilities:

1) up = vp = 1 for p ̸= 2

2) up = vp = c (quaternion type), or up = vp = 1 (dihedral type) for p = 2.

• H/Z is p-elementary abelian of order p2d

• H has (p− 1)pz−1 inequivalent faithful absolutely irreducible representations

This result is closely related to the embedding problem with a nonabelian kernel
for local fields which has been studied in [12] and [10].

Let
1→ B → G

φ→ F → 1

be an exact sequence of p-groups, K/k be a Galois extension of a local field with
the Galois group F , and p > 2 be the characteristic of the residue field Qp of k. The
embedding problem consists in constructing an extension L of K having the Galois
group G over k, such that the automorphisms g ∈ G, being restricted on K, coincide
with φ(g). The associated abelian problem is a similar problem for the sequence

1→ B/B′ → G/B′ → F → 1
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where B′ is the commutator subgroup of B; the solution of the abelian embedding
problem is well known. Let F be the Demushkin group of k, that is, the Galois group
of the maximal p-extension of k. The number d(F ) of generators of the group F is
equal to [k : Qp]+2. Let d(F ) be the number of generators of F . In [10] the authors
prove that if d(F ) > d(F ) + 3 then the embedding problem is equivalent to the
associated abelian problem. In the proof they used the generalized Hilbert symbol
and orthogonality of elements of k∗/k∗p for an option of a basis k∗/k∗p and abelian
radical extensions of k and for the fulfillment of the Faddeev-Hasse compatibility
conditions. In our argument above we used similar techniques.

In his recent publication [24] J.-P. Serre emphasized remarkable connections
between integral irreducible representations of the group of quaternions and genus
theory of Gauss and Hilbert, and the theory of Hilbert’s symbol. This was also
considered in our recent paper [17] as an application to the description of globally
irreducible representations over arithmetic rings which was earlier introduced by F.
Van Oystaeyen and A. E. Zalesskii, see [20].

Let ρ : G → GLn(K) be a linear representation of a finite group G over a
number field K. Is it possible to realize ρ over OK , the ring of integers of K, i. e. is
ρ conjugate to a homomorphism of G into GLn(OK) ?

Another approach to generalization of integral representations of finite groups
was proposed by D. K. Faddeev in [8] (see also [9]) where a generalization of the
theory of Steinitz and Chevalley has been suggested.

Remark that in the paper by Serre [24] only imaginary quadratic fields
√

Q(−d),
d > 0, were considered as realization fields for representations of the group G of
quaternions.

It would be interesting to find the conditions for realizations of G ⊂ GL2(OK) for
any algebraic number field. The necessary condition is that K should be a splitting
field of G, or in the terms of Hilbert symbol,(

−1,−1
K

)
= 1.

Proposition 5. (1) An algebraic number field K is a splitting field for group
G of quaternions if and only if K is totally imaginary and for all localizations
Kv for all prime divisors v of 2 the local degree [Kv : Q2] is even.

(2) If (1) is true, then [K : Q] is even.

(3) If (1) is true and K/Q is abelian, then K has a quadratic subfield Q(
√
d).

Proof. By Hasse-Brauer-Noether theorem,K is a splitting field for ⟨G⟩Q = QG,
Q-span of G, if and only if Kv is a splitting field for ⟨G⟩Qp

= QpG locally for all
prime divisors v of p. Since the quaternion algebra has invariants 1/2 at 2 and ∞
in the Brauer group, and 0 at all other primes p, K is a splitting field for G if and
only if K is totally imaginary and for all localizations Kv for all prime divisors v of
2 the local degree [Kv : Q2] is even [6], Satz 2, ch. VII, sect. 5.
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Since [K : Q] is the sum of [Kv : Q2], it must be even, and this implies (2).
If K/Q is abelian, its degree is even, and its Galois group has a subgroup of

index 2, therefore, the fixed subfield of this subgroup is a quadratic extension of Q.
This completes the proof of Proposition 5. 2

Let us consider two examples.
1) We can use our construction in the case of the generalized quaternion group

G generated by Ah and Bh, A2m
h = 1, [Ah, Bh] = BhAhB

−1
h A−1

h = A−2
h , B2

h = A−m
h

we can use the following construction of an infinite series of pairwise integrally
inequivalent over OK representations in GL2(OK):

Ah = ∆h(b) =

(
ζ−1 πh
0 ζ

)
,

where ζ is a primitive 2m-root of 1,

Bh = ∆h(a) =

(
1 −2πhζ

ζ2−1
ζ2−1
ζπh

−1

)
.

2) For the following finite extension K/Qp of local fields obtained via adjoining
torsion points of elliptic curves, let OK be the ring of integers of K with the maximal
ideal P . Consider an elliptic curve E over Zp with supersingular good reduction (see
[24], sect. 1.11). Let K/Qp be the field extension obtained by adjoining p-torsion
points of E, then the formal group associated to E has height 2, its Hopf algebra
OA is a free module of rank p2 over Zp, and for the kernel Ep of multiplication by
p |Ep| = p2 (see [5], 1.3 and sect. 2). Note that for some E the ramification index
e = e(K/Qp) = p2 − 1 ([24], p. 275, Proposition 12).

We can consider the group G of p-torsion points as Zp-algebra homomorphisms
from the Hopf algebra OA to the Zp-algebra OK , then
G = HomZp(OA, OK), and the algebra OA is isomorphic to Zp[X]/(c1X + c2X

2 +

... +Xp2
), see [5], sect.2 and [15]. So there is a representation v : G → GLp2(OK),

and since E is supersingular, the image of v is contained in the kernel of reduction
modulo P .

5. Conclusion

There are many classical results related to the description of integral representa-
tions of finite groups over Dedekind rings R, especially for the rings of integers Z or
p-adic integers Zp and maximal orders of local fields or fields of algebraic numbers.
Some of them given by P. M. Gudivok, A. V. Roiter, A. V. Yakovlev, W. Plesken
go back to the classification of irreducible and indecomposable representations that
can give an explicit description only for certain classes of groups and rings R. There
are classification results for finite, wild and tame representation types, including the
classification of arbitrary commutative R-rings having finitely many non-isomorphic
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indecomposable integral representations. For an explicit description it is important
to find matrix realizations of the representations, and one of possible approaches is
to describe maximal finite subgroups of GLn(R) over Dedekind rings R for a fixed
positive integer n. The basic idea underlying a geometric approach was given in
Ryshkov’s papers on the computation of the finite subgroups of GLn(Z) and further
papers by W. Plesken and M. Pohst. However, it was not clear, what happens under
the extension of the Dedekind ringsR in general, and in what way the representations
of arbitrary p-groups, supersolvable groups or groups of a given nilpotency class can
be approached. In this paper the above classes of groups are treated, in particular,
it is proven that for a fixed n and any given nonabelian p-group G there is an
infinite number of pairwise non-isomorphic absolutely irreducible representations
of G. The series of these representations is constructed explicitly. We study group
representations with extra properties of congruences, and we give some links to
representations arising from elliptic curves. The integral representations in question
are very sensitive to changing the ground ring and the ramification index. Besides,
the group of units of the Dedekind rings R, especially its torsion subgroup, plays an
important role.

There are some applications to the embedding problem in Galois theory, globally
irreducible representations and Schur rings which are discussed in proposition 4
and section 2 of the paper. Throughout the paper we give examples of particular
representations. There are some more applications, which can be considered for
the group representations with extra properties of congruences in our construction,
arising from the class of Galois stable subgroups of GLn(R) and considered earlier
in [18]. Besides a score of generalizations, finite groups that are stable under Galois
action have some interaction with seemingly unrelated results in the theory of
definite quadratic forms and Galois cohomologies of certain arithmetic groups.

Acknowledgement: The author is grateful to the referees for many useful remarks
and suggestions which improved the paper essentially.
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