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Аннотация

В статье рассматривается задача о дифракции цилиндрической гармонической звуко-
вой волны на неоднородном жидком сфероиде с абсолютно жестким шаровым включением.
Полагается, что квадрат эксцентриситета сфероида является малой величиной. Сфероид
помещен в безграничную однородную сжимаемую идеальную жидкость. Линейный источ-
ник, генерирующий звуковые волны, параллелен оси вращения сфероида. Материал сфе-
роида характеризуется переменными плотностью и скоростью звука, которые являются
непрерывными функциями радиальной координаты.

Методом возмущений получено приближенное аналитическое решение задачи с исполь-
зованием разложений по волновым сферическим функциям.

Представлены результаты численных расчетов диаграмм направленности рассеянного
акустического поля в дальней зоне.
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Abstract

In paper the problem of diffraction of a cylindrical harmonic sound wave on an inhomoge-
neous liquid spheroid with an absolutely rigid spherical inclusion is considered.

It is assumed that the square eccentricity of the spheroid is a small value. The spheroid
is placed in an infinite homogeneous incompressible ideal liquid. A linear source generating
sound waves is parallel to the axis of rotation of the spheroid. The material of the spheroid
is characterized by variable density and speed of sound which are continuous functions of the
radial coordinate.

An approximate analytical solution is obtained by the perturbation method problems with
using decompositions in a row by spherical wave functions.

The results of numerical calculations of the directional patterns of the scattered acoustic
field in the far zone are presented.

Keywords: diffraction, sound waves, linear source, permeable inhomogeneous spheroid,
spherical inclusion.

Bibliography: 17 titles.

For citation:

Tolokonnikov, L.A., Okorokov, D.V. 2025, “Diffraction of sound waves emitted by a linear source
on a inhomogeneous permeable spheroid with a solid spherical inclusion” , Chebyshevskii sbornik,
vol. 26, no. 5, pp. 323–335.

1. Введение

Дифракция гармонических звуковых волн на жидких сфероидах и сфероидальных телах
из подобных жидкости материалов, в которых не распространяются сдвиговые волны, иссле-
довалась в ряде работ.

В [1 – 4] получены решения задач о рассеянии плоских звуковых волн на однородных
проницаемых (жидких) сфероидах.

Работы [5, 6] посвящены изучению дифракции плоских звуковых волн на неоднородных
жидких сфероидах, находящихся в однородной идеальной жидкости.

Дифракция плоских звуковыях волн на абсолютно жестком сфероиде, окруженном неод-
нородным жидким слоем, обсуждалась в [7].

В [8] решена задача о рассеянии плоской звуковой волны неоднородным проницаемым
сфероидом с жестким шаровым включением.
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Непрерывно-неоднородное тело можно аппроксимировать дискретно-слоистым, то есть те-
лом состоящим из совокупности тонких однородных слоев. Подобный подход для сфероидаль-
ных тел реализован в работах [9 – 11]. Задача о рассеянии сферической волны на многослойном
проницаемом сфероиде с жестким сфероидальным включением решена в [9]. На основе по-
лученного решения рассмотрен случай одного сфероидального жидкого слоя, окружающего
жесткий сфероид [10]. В [11] рассматривается дифракция цилиндрических звуковых волн на
многослойном проницаемом сфероиде с абсолютно жестким сфероидальным включением.

В настоящей работе рассматривается задача о дифракции звуковых волн, излучаемых
линейным источником, на неоднородном жидком сфероиде с абсолютно жестким шаровым
включением.

2. Постановка задачи

Рассмотрим неоднородный жидкий сфероид с полуосью вращения 𝑎 и второй полуосью 𝑏,

эксцентриситет которого 𝜀. Причем для вытянутого сфероида (𝑎 > 𝑏) 𝜀 =

(︂
1− 𝑏2

𝑎2

)︂1/2

, а для

сплюснутого сфероида (𝑎 < 𝑏) 𝜀 =

(︂
1− 𝑎2

𝑏2

)︂1/2

. Сфероид имеет абсолютно жесткое шаровое

включение радиуса 𝑟0. Центры сфероида и шара совмещены. Сфероид помещен в безгранич-
ную однородную сжимаемую идеальную жидкость, которая характеризуется плотностью в
невозмущенном состоянии 𝜌1 и скоростью звука 𝑐1.

Введем прямоугольную декартову систему координат 𝑥, 𝑦, 𝑧 с началом в центре сфероида
так, чтобы ось вращения сфероида располагалась на оси 𝑧. Свяжем с координатной системой
𝑥, 𝑦, 𝑧 сферическую 𝑟, 𝜃, 𝜙 и цилиндрическую 𝑟, 𝜙, 𝑧 системы координат, начала которых
совмещены с центром сфероида:

𝑥 = 𝑟 sin 𝜃 cos𝜙, 𝑦 = 𝑟 sin 𝜃 sin𝜙, 𝑧 = cos 𝜃;

𝑥 = 𝑟 cos𝜙, 𝑦 = 𝑟 sin𝜙, 𝑧 = 𝑧.

Уравнение сфероида в сферической системе координат имеет вид

𝑟(𝜃) = 𝑎(1− 𝑒 sin2 𝜃)−1/2, (2.1)

где 𝑒 =
𝜀2

𝜀2 − 1
для вытянутого сфероида и 𝑒 = 𝜀2 для сплюснутого сфероида.

Будем полагать, что материал сфероида характеризуется переменными плотностью 𝜌 и
скоростью звука 𝑐, которые являются непрерывными функциями радиальной координаты 𝑟:

𝜌 = 𝜌(𝑟); 𝑐 = 𝑐(𝑟).

Из внешнего пространства на сфероид падает гармоническая симметричная цилиндриче-
ская звуковая волна давления 𝑝0, излучаемая бесконечно длинным линейным источником с
временной зависимостью 𝑒−𝑖𝜔𝑡, где 𝜔 — круговая частота; 𝑡 — время (в дальнейшем временной
множитель будем опускать). Линейный источник параллелен оси вращения сфероида и имеет
цилиндрические координаты (𝑟0, 𝜙0) (рис. 1). Без ограничения общности положим 𝜙0 = 0.

Падающая волна имеет вид

𝑝0 = 𝐴𝐻0(𝑘1𝑅), 𝑅 = [𝑟2 + 𝑟20 − 2𝑟𝑟0 cos𝜙]1/2,
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Рис. 1: Геометрия задачи

где 𝐴 — амплитуда падающей волны, 𝐻0(𝑥) — цилиндрическая функция Ганкеля первого
рода нулевого порядка, 𝑘1 = 𝜔/𝑐1 — волновое число содержащей жидкости, 𝑅 — расстояние
от источника до произвольной точки внешнего пространства.

Определим акустическое поле, рассеянное сфероидом, в предположении малости величины
𝑒.

3. Математическая модель задачи

Распространение малых возмущений в однородной идеальной жидкости в случае устано-
вившихся колебаний описывается уравнением Гельмгольца [12]

Δ𝑝1 + 𝑘21𝑝1 = 0, (3.1)

где 𝑝1 = 𝑝0 + 𝑝𝑠 — давление полного акустического поля во внешней области; 𝑝𝑠 — звуковое
давление в рассеянной волне; 𝑘1 = 𝜔/𝑐1 — волновое число внешней среды.

Распространение звука в неоднородной сжимаемой идеальной жидкости описывается урав-
нением [13]

Δ𝑝+ 𝑘2𝑝− 1

𝜌
grad 𝜌 · grad 𝑝 = 0, (3.2)

где 𝑝 — звуковое давление в неоднородной среде; 𝑘 = 𝜔/𝑐 — волновое число в неоднородной
жидкости; 𝑐 = 𝑐(𝑟); 𝜌 = 𝜌(𝑟).

Скорости частиц в однородной и неоднородной жидкостях определяются соответственно
по формулам

v1 =
1

𝑖𝜌1𝜔
grad 𝑝1, v =

1

𝑖𝜌𝜔
grad 𝑝. (3.3)

Граничные условия на поверхности сфероида 𝑆 заключаются в равенстве нормальных ско-
ростей частиц внешней среды и неоднородной жидкости и равенстве акустических давлений

𝑣𝑛1|𝑆 = 𝑣𝑛|𝑆 , 𝑝1|𝑆 = 𝑝|𝑆 . (3.4)

Граничное условие на поверхности жесткого шарового включения заключается в равенстве
нулю нормальной скорости частиц прилегающей неоднородной жидкости

𝑣𝑛|𝑟=𝑟0 = 0. (3.5)
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Кроме того, для давления в рассеянной волне должно выполняться условие излучения на
бесконечности [12]

lim
𝑟→∞

𝑟

(︂
𝜕𝑝𝑠
𝜕𝑟
− 𝑖𝑘1𝑝𝑠

)︂
= 0. (3.6)

Таким образом, в математической постановке задача заключается в нахождении решений
дифференциальных уравнений (3.1) и (3.2), удовлетворяющих граничным условиям (3,4) и
(3.5), а также условию излучения на бесконечности (3.6).

4. Аналитическое решение задачи

В цилиндрической системе координат падающая цилиндрическая волна может быть пред-
ставлена разложением [14]

𝑝0 = 𝐴

∞∑︁
𝑚=0

(2− 𝛿0𝑚) cos𝑚𝜙

{︂
𝐽𝑚(𝑘1𝑟)𝐻𝑚(𝑘1𝑟0), 𝑟 < 𝑟0;
𝐽𝑚(𝑘1𝑟0)𝐻𝑚(𝑘1𝑟), 𝑟 > 𝑟0,

(4.1)

где 𝐽𝑚(𝑥) и 𝐻𝑚(𝑥) — цилиндрические функции Бесселя и Ганкеля первого рода порядка 𝑚,
𝛿0𝑚 — символ Кронекера.

В сферической системе координат уравнение Гельмгольца, которому удовлетворяет иско-
мое давление 𝑝𝑠, уравнение (3.2) и граничные условия (3.4), (3.5) принимают вид

1

𝑟2

[︂
𝜕

𝜕𝑟

(︂
𝑟2
𝜕𝑝𝑠
𝜕𝑟

)︂
+

1

sin 𝜃

𝜕

𝜕𝜃

(︂
sin 𝜃

𝜕𝑝𝑠
𝜕𝜃

)︂
+

1

sin2 𝜃

𝜕2𝑝𝑠
𝜕𝜙2

]︂
+ 𝑘21𝑝𝑠 = 0, (4.2)

𝜕2𝑝

𝜕𝑟2
+

(︂
2

𝑟
− 1

𝜌(𝑟)

𝑑𝜌

𝑑𝑟

)︂
𝜕𝑝

𝜕𝑟
+

1

𝑟2 sin2 𝜃

𝜕

𝜕𝜃

(︂
sin 𝜃

𝜕𝑝

𝜕𝜃

)︂
+

1

𝑟2 sin2 𝜃

𝜕2𝑝

𝜕𝜙2
+ 𝑘2(𝑟)𝑝 = 0; (4.3)

𝜌−1
1

𝜕

𝜕𝑛
(𝑝0 + 𝑝𝑠)

⃒⃒⃒⃒
𝑟=𝑟(𝜃)

= 𝜌−1(𝑟)
𝜕𝑝

𝜕𝑛

⃒⃒⃒⃒
𝑟=𝑟(𝜃)

, (𝑝0 + 𝑝𝑠)|𝑟=𝑟(𝜃) = 𝑝|𝑟=𝑟(𝜃); (4.4)

𝜕𝑝

𝜕𝑟

⃒⃒⃒⃒
𝑟=𝑟0

= 0. (4.5)

При этом
𝜕

𝜕𝑛
определяется формулой

𝜕

𝜕𝑛
= cos 𝛾

𝜕

𝜕𝑟
+ sin 𝛾

1

𝑟

𝜕

𝜕𝜃
, (4.6))

где 𝛾 — угол между радиус-вектором r и внешней нормалью n к поверхности тела, а выра-
жение для cos 𝛾 имеет вид

cos 𝛾 =

[︃
1 +

(︂
𝑒 sin 𝜃 cos 𝜃

1− 𝑒 sin2 𝜃

)︂2
]︃−1/2

. (4.7))

Получим приближенное решение задачи методом возмущений [15].
Искомые функции 𝑝𝑠 и 𝑝 представим в виде разложений по малому параметру 𝑒

𝑝𝑠(𝑟, 𝜃, 𝜙) = 𝑝0𝑠(𝑟, 𝜃, 𝜙) + 𝑒𝑝1𝑠(𝑟, 𝜃, 𝜙) + . . . , (4.8)

𝑝(𝑟, 𝜃, 𝜙) = 𝑝0(𝑟, 𝜃, 𝜙) + 𝑒𝑝1(𝑟, 𝜃, 𝜙) + . . . , (4.9)
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ограничиваясь членами со степенями 𝑒 не выше первой.
Подставим разложения (4.8) и (4.9) в уравнения (4.2) и (4.3) и приравниваем нулю члены

с одинаковыми степенями 𝑒. В результате для определения функций 𝑝𝑗𝑠 и 𝑝𝑗 (𝑗 = 0, 1) получим
следующие уравнения:

1

𝑟2

[︃
𝜕

𝜕𝑟

(︃
𝑟2
𝜕𝑝𝑗𝑠
𝜕𝑟

)︃
+

1

sin 𝜃

𝜕

𝜕𝜃

(︃
sin 𝜃

𝜕𝑝𝑗𝑠
𝜕𝜃

)︃
+

1

sin2 𝜃

𝜕2𝑝𝑗𝑠
𝜕𝜙2

]︃
+ 𝑘21𝑝

𝑗
𝑠 = 0, (4.10)

𝜕2𝑝𝑗

𝜕𝑟2
+

(︂
2

𝑟
− 1

𝜌(𝑟)

𝑑𝜌

𝑑𝑟

)︂
𝑑𝑝𝑗

𝑑𝑟
+

1

𝑟2 sin2 𝜃

𝜕

𝜕𝜃

(︂
sin 𝜃

𝜕𝑝𝑗

𝜕𝜃

)︂
+

1

𝑟2 sin2 𝜃

𝜕2𝑝𝑗

𝜕𝜙2
+𝑘2(𝑟)𝑝𝑗 = 0, 𝑗 = 0, 1. (4.11)

С выбранной степенью точности из (4.6) и (4.7) находим

cos 𝛾 = 1 +𝑂(𝑒2), sin 𝛾 = −𝑒 sin 𝜃 cos 𝜃 +𝑂(𝑒2),
𝜕

𝜕𝑛
=

𝜕

𝜕𝑟
− 𝑒 sin 𝜃 cos 𝜃

1

𝑟

𝜕

𝜕𝜃
. (4.12)

С учетом (4.12) подставим разложения (4.8) и (4.9) в граничные условия (4.3) и (4.4),
а затем приравняем члены с одинаковыми степенями 𝑒, стоящие в левой и правой частях
каждого уравнения. Поскольку условия (4.3) и (4.4) должны выполняться на поверхности
сфероида 𝑟 = 𝑟(𝜃), определяемой выражением (2.1), то в этих условиях 𝑟 представляет собой
функцию от 𝜃. Поэтому в каждое граничное условие параметр 𝑒 будет входить как явно, так
и неявно. Cледовательно, непосредственно приравнять члены с одинаковыми степенями 𝑒 в
левой и правой частях уравнений не представляется возможным. Необходимо предварительно
разложить все функции, неявно содержащие 𝑒, в ряды Тейлора в окрестности 𝑟 = 𝑎 с тем,
чтобы получить их явную зависимость от 𝑒. Проделав указанные операции и сохранив только
линейные относительно 𝑒 члены, получим следующие условия:

1

𝜌1

𝜕

𝜕𝑟
(𝑝0 + 𝑝0𝑠)

⃒⃒⃒⃒
𝑟=𝑎

=
1

𝜌(𝑟)

𝜕𝑝0

𝜕𝑟

⃒⃒⃒⃒
𝑟=𝑎

, (4.13)

[𝑝0 + 𝑝0𝑠]𝑟=𝑎 = 𝑝0|𝑟=𝑎, (4.14)

𝜕𝑝1𝑠
𝜕𝑟

⃒⃒⃒⃒
𝑟=𝑎

=

{︂
𝜌1
𝜌(𝑎)

𝜕𝑝1

𝜕𝑟
+
𝑎

2
sin2 𝜃

[︂
𝜌1
𝜌(𝑎)

(︂
𝜕2𝑝0

𝜕𝑟2
− 1

𝜌(𝑎)

𝑑𝜌

𝑑𝑟

𝜕𝑝0

𝜕𝑟

)︂
− 𝜕2

𝜕𝑟2
(𝑝0 + 𝑝0𝑠)

]︂
+

+
1

𝑎
sin 𝜃 cos 𝜃

[︂
𝜕

𝜕𝜃
(𝑝0 + 𝑝0𝑠)−

𝜌1
𝜌(𝑎)

𝜕𝑝0

𝜕𝜃

]︂}︂
𝑟=𝑎

, (4.15)

𝑝1𝑠|𝑟=𝑎 =

[︂
𝑝1 +

𝑎

2
sin2 𝜃

𝜕

𝜕𝑟
(𝑝0 − 𝑝0 − 𝑝0𝑠)

]︂
𝑟=𝑎

. (4.16)

Теперь подставим (4.9) в условие (4.5). Получаем

𝜕𝑝𝑗

𝜕𝑟

⃒⃒⃒⃒
𝑟=𝑟0

= 0, 𝑗 = 0, 1. (4.17)

Уравнения (4.10) и (4.11) будем решать методом разделения переменных. Так как акусти-
ческие поля во внешней среде и в неоднородной части сфероида симметричны относительно
плоскости 𝑥𝑂𝑧, то с учетом условий излучения на бесконечности (3.6) функций 𝑝𝑗𝑠 (𝑗 = 0, 1)
будем искать в виде

𝑝𝑗𝑠 =

∞∑︁
𝑛=0

𝑛∑︁
𝑚=0

𝐴𝑗
𝑚𝑛ℎ𝑛(𝑘1𝑟)𝑃

𝑚
𝑛 (cos 𝜃) cos𝑚𝜙, (4.18),
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а функции 𝑝𝑗 (𝑗 = 0, 1) — в виде

𝑝𝑗 =
∞∑︁
𝑛=0

𝑛∑︁
𝑚=0

𝑅𝑗
𝑛(𝑟)𝑃𝑚

𝑛 (cos 𝜃) cos𝑚𝜙. (4.19)

Здесь ℎ𝑛(𝑥) — сферическая функция Ганкеля первого рода порядка 𝑛; 𝑃𝑚
𝑛 (𝑥) — присоеди-

ненный многочлен Лежандра степени 𝑛 порядка 𝑚. Коэффициенты 𝐴𝑗
𝑚𝑛 и функции 𝑅𝑗

𝑛(𝑟)
(𝑗 = 0, 1) подлежат определению.

Подставляя (4.19) в уравнение (4.11) и используя дифференциальное уравнение для при-
соединенных многочленов Лежандра [14]

1

sin 𝜃

𝑑

𝑑𝜃

(︂
sin 𝜃

𝑑

𝑑𝜃
𝑃𝑚
𝑛 (cos 𝜃)

)︂
+

[︂
𝑛(𝑛+ 1)− 𝑚2

sin2 𝜃

]︂
𝑃𝑚
𝑛 (cos 𝜃) = 0,

получим линейное обыкновенное дифференциальное уравнение второго порядка с перемен-
ными коэффициентами относительно неизвестной функции 𝑅𝑗

𝑛(𝑟) (𝑗 = 0, 1) для каждого 𝑛
(𝑛 = 0, 1, 2, ...)

𝑑2𝑅𝑗
𝑛

𝑑𝑟2
+ 𝑔(𝑟)

𝑑𝑅𝑗
𝑛

𝑑𝑟
+ 𝑞(𝑟)𝑅𝑗

𝑛 = 0, (4.20)

где

𝑔(𝑟) =
2

𝑟
− 1

𝜌(𝑟)

𝑑𝜌

𝑑𝑟
, 𝑞(𝑟) = 𝑘2(𝑟)− 𝑛(𝑛+ 1)

𝑟2
.

Используя условия (4.13) – (4.17) определим коэффициенты 𝐴0
𝑚𝑛, 𝐴

1
𝑚𝑛 и по два краевых

условия для дифференциальнолго уравнения (4.20) при 𝑗 = 0 и 𝑗 = 1.
Прежде всего получим интегральные соотношения между цилиндрическими и сферически-

мими функциями, которые будут использованы при удовлетворении условий (4.13) – (4.17).
Воспользуемся соотношением [14]

𝜋∫︁
0

𝐽𝑚(𝑘1𝑟 sin 𝜃)𝑃𝑚
𝑛 (cos 𝜃) sin 𝜃 𝑑𝜃 = 2𝑖𝑛−𝑚𝑗𝑛(𝑘1𝑟)𝑃

𝑚
𝑛 (0), (4.21)

где 𝑗𝑛(𝑥) — сферическая функция Бесселя порядка 𝑛, а величина 𝑃𝑚
𝑛 (0) определятся форму-

лой [16]

𝑃𝑚
𝑛 (0) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0, (𝑛−𝑚)— нечетное;

(−1)
𝑛−𝑚

2 (𝑛+𝑚)!

2𝑛
(︀
𝑛−𝑚
2

)︀
!
(︀
𝑛+𝑚
2

)︀
!
, (𝑛−𝑚)— четное.

Дифференцируя обе части равенства (4.21) по 𝑘1𝑟, получим

𝜋∫︁
0

𝐽 ′
𝑚(𝑘1𝑟 sin 𝜃)𝑃𝑚

𝑛 (cos 𝜃) sin2 𝜃 𝑑𝜃 = 2𝑖𝑛−𝑚𝑗′𝑛(𝑘1𝑟)𝑃
𝑚
𝑛 (0). (4.22)

Здесь и далее штрихи обозначают дифференцирование по аргументу.
Подставим (4.1), (4.18) и (4.19) в условия (4.13) – (4.16), заменяя цилиндрическую коор-

динату 𝑟 ее выражением 𝑟 sin 𝜃 в сферических координатах. Затем умножим левые и правые
части полученных равенств на 𝑃𝑚

𝑙 (cos 𝜃) sin 𝜃 и проинтегрируем по 𝜃 от 0 до 𝜋.
Используя интегральные соотношения (4.21) и (4.22), условия ортогональности для при-

соединенных многочленов Лежандра [16]

𝜋∫︁
0

𝑃𝑚
𝑛 (cos 𝜃)𝑃𝑚

𝑙 (cos 𝜃) sin 𝜃 𝑑𝜃 =

⎧⎨⎩
0, 𝑛 ̸= 𝑙;

𝑁𝑚𝑙, 𝑛 = 𝑙,
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где 𝑁𝑚𝑙 =
2

(2𝑙 + 1)

(𝑙 +𝑚)!

(𝑙 −𝑚)!
— квадрат нормы присоединенных многочленов Лежандра,

и выражение для вронскиана

𝑗𝑛(𝑥)ℎ′𝑛(𝑥)− 𝑗′𝑛(𝑥)ℎ𝑛(𝑥) =
𝑖

𝑥2
,

получим следующие выражения для коэффициентов 𝐴𝑗
𝑚𝑛 (𝑗 = 0, 1) и краевые условия для

уравнения (4.20) при 𝑟 = 𝑎:

𝐴0
𝑚𝑛 =

𝑅0
𝑛(𝑎)𝑁𝑚𝑛 − 2𝐴(2− 𝛿0𝑚)𝑖𝑛−𝑚𝐻𝑚(𝑘1𝑟0)𝑗𝑛(𝑘1𝑎)𝑃𝑚

𝑛 (0)

ℎ𝑛(𝑘1𝑎)𝑁𝑚𝑛
,

𝐴1
𝑚𝑛 =

𝑅1
𝑛(𝑎)

ℎ𝑛(𝑘1𝑎)
+

𝑎

2𝑁𝑚𝑛ℎ𝑛(𝑘1𝑎)

{︃
−𝐴𝑘1(2− 𝛿0𝑚)𝐻𝑚(𝑘1𝑟0)𝛾𝑚𝑛 +

∞∑︁
𝑙=𝑚

[︀
𝑅0

𝑙
′(𝑎)−𝐴0

𝑚𝑙𝑘1ℎ
′
𝑙(𝑘1𝑎)

]︀
𝛼𝑚
ln

}︃
,

𝑅0
𝑛
′(𝑟) + 𝑎𝑛𝑅

0
𝑛(𝑟)

⃒⃒
𝑟=𝑎

= 𝑏𝑚𝑛, (4.23)

𝑅1
𝑛
′(𝑟) + 𝑎𝑛𝑅

1
𝑛(𝑟)

⃒⃒
𝑟=𝑎

= 𝑐𝑚𝑛, (4.24)

где

𝛾𝑚𝑛 =

𝜋∫︁
0

sin4 𝜃𝑃𝑚
𝑛 (cos 𝜃)𝐽 ′

𝑚(𝑘1𝑎 sin 𝜃) 𝑑𝜃; 𝛼𝑚
𝑙𝑛 =

∫︁ 𝜋

0
sin3 𝜃𝑃𝑚

𝑙 (cos 𝜃)𝑃𝑚
𝑛 (cos 𝜃) 𝑑𝜃;

𝑎𝑛 = −𝑘1ℎ
′
𝑛(𝑘1𝑎)𝜌(𝑎)

𝜌1ℎ𝑛(𝑘1𝑎)
; 𝑏𝑚𝑛 = − 𝑖𝐴2(2− 𝛿0𝑚)𝑖𝑛−𝑚𝐻𝑚(𝑘1𝑟0)𝑃

𝑚
𝑛 (0)𝜌(𝑎)

𝑘1𝑎2𝜌1ℎ𝑛(𝑘1𝑎)𝑁𝑚𝑛
;

𝑐𝑚𝑛 =
𝑎𝜌(𝑎)

2𝜌1𝑁𝑚𝑛

{︃
𝐴(2− 𝛿0𝑚)𝐻𝑚(𝑘1𝑟0)𝑓𝑚𝑛 +

∞∑︁
𝑙=𝑚

[︂(︂
− 𝜌1
𝜌(𝑎)

𝑅0
𝑙
′′(𝑎)+

+𝑓
(1)
𝑛𝑙 𝑅

0
𝑙
′(𝑎) + 𝑓

(2)
𝑛𝑙 𝐴

0
𝑚𝑙

)︁
𝛼𝑚
𝑙𝑛 −

2

𝑎2

(︂
𝐴0

𝑚𝑙ℎ𝑙(𝑘1𝑎)− 𝜌1
𝜌(𝑎)

𝑅0
𝑙 (𝑎)

)︂
𝛽𝑚𝑙𝑛

]︂}︂
;

𝑓1𝑛𝑙 =
𝜌1𝜌

′(𝑎)

𝜌2(𝑎)
+
𝑘1ℎ𝑛

′(𝑘1𝑎)

ℎ𝑛(𝑘1𝑎)
; 𝑓2𝑛𝑙 = 𝑘21

ℎ𝑛(𝑘1𝑎)ℎ𝑙
′′(𝑘1𝑎)− ℎ𝑛′(𝑘1𝑎)ℎ𝑙

′(𝑘1𝑎)

ℎ𝑛(𝑘1𝑎)
;

𝛽𝑚𝑙𝑛 =

𝜋∫︁
0

sin2 𝜃 cos 𝜃𝑃𝑚
𝑙 (cos 𝜃)

𝑑

𝑑𝜃
𝑃𝑚
𝑛 (cos 𝜃)𝑑𝜃; 𝑓𝑛𝑚 = 𝑘21

[︂
−ℎ𝑛

′(𝑘1𝑎)

ℎ𝑛(𝑘1𝑎)
𝛾𝑚𝑛 + 𝜆𝑚𝑛 −

2

𝑘1𝑎
𝜇𝑚𝑛

]︂
;

𝜆𝑚𝑛 =

𝜋∫︁
0

sin5 𝜃𝑃𝑚
𝑛 (cos 𝜃)𝐽 ′′

𝑚(𝑘1𝑎 sin 𝜃)𝑑𝜃; 𝜇𝑚𝑛 =

𝜋∫︁
0

sin2 𝜃 cos2 𝜃𝑃𝑚
𝑛 (cos 𝜃)

𝑑

𝑑𝜃
𝐽𝑚(𝑘1𝑎 sin 𝜃)𝑑𝜃.

Подстановка (4.19) в (4.17) дает два краевых условия при 𝑟 = 𝑟0

𝑅0
𝑛
′(𝑟)
⃒⃒
𝑟=𝑟0

= 0, (4.25)

𝑅1
𝑛
′(𝑟)
⃒⃒
𝑟=𝑟0

= 0. (4.26)

Коэффициенты 𝐴0
𝑚𝑛 и 𝐴1

𝑚𝑛 могут быть вычислены только после нахождения значений
𝑅0

𝑛(𝑎), 𝑅1
𝑛(𝑎), 𝑅0

𝑛
′(𝑎). Для нахождения этих значений необходимо решить краевые задачи для
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обыкновенного дифференциального уравнения (4.20) при 𝑗 = 0 и 𝑗 = 1 с краевыми условиями
(4.23), (4.25) и (4.24), (4.26) соответственно.

После решения краевых задач вычисляются коэффициенты 𝐴𝑗
𝑚𝑛 (𝑗 = 0, 1). В результате

получаем приближенное аналитическое описание рассеянного акустического поля с помощью
выражений (4.8) и (4.18).

Отметим, что из решения задачи дифракции цилиндрических волн на неоднородном сфе-
роиде с абсолютно жестким включением можно найти решение задачи для случая, когда
падающая волна является плоской. Для этого в полученном решении, считая, что расстоя-
ние между источником и рассеивателем достаточно велико ( 𝑘1𝑟0 >> 1), следует заменить
функцию 𝐻𝑚(𝑘1𝑟0) ее асимптотическим выражением при больших значениях аргумента [16]

𝐻𝑚(𝑘1𝑟0) ≈
√︂

2

𝜋𝑘1𝑟0
exp

[︁
𝑖
(︁
𝑘1𝑟0 −

𝜋𝑚

2
− 𝜋

4

)︁]︁
.

В результате получим решение задачи дифракции плоской волны, амплитуда которой рав-
на

𝐴

√︂
2

𝜋𝑘1𝑟0
exp

[︁
𝑖
(︁
𝑘1𝑟0 − 𝜋𝑚−

𝜋

4

)︁]︁
.

Рассмотрим дальнюю зону рассеянного акустического поля. Используя асимптотическую
формулу для сферической функции Ганкеля первого рода при больших значениях аргумента
(𝑘1𝑟 >> 1) [16]

ℎ𝑛(𝑘1𝑟) ≈ (−𝑖)𝑛+1 𝑒
𝑖𝑘1𝑟

𝑘1𝑟
,

из (4.8) и (4.18) находим

𝑝𝑠 ≈
𝑎

2𝑟
exp(𝑖𝑘1𝑟)𝐹 (𝜃, 𝜙),

где

𝐹 (𝜃, 𝜙) =
2

𝑘1𝑎

∞∑︁
𝑛=0

𝑛∑︁
𝑚=0

(−𝑖)𝑛+1(𝐴0
𝑚𝑛 + 𝑒 𝐴1

𝑚𝑛)𝑃𝑚
𝑛 (cos 𝜃) cos 𝑚𝜙. (4.27)

5. Численные исследования

На основании выражения (4.27) были проведены расчеты угловых характеристик рассе-
янного акустического поля в дальней зоне. Диаграммы направленности |𝐹 (𝜃, 𝜙)| /𝐴 рассчи-
тывались в диапазоне углов 0 ⩽ 𝜃 ⩽ 𝜋 в плоскости 𝑥𝑂𝑧 для сфероида, находящегося в воде
(𝜌1 = 103 кг/м3, 𝑐1 = 1485 м/с).

Расчеты проводились как для однородного сфероида с плотностью 𝜌 = 1.26 · 103 кг/м3 и
скоростью звука 𝑐 = 1920 м/с (глицерин), так и для неоднородного материала, механические
характеристики которого менялись по радиальной координате по квадратичным законам

𝜌 = 𝜌 𝑓(𝑟), 𝑐 = 𝑐 𝑓(𝑟),

𝑓1(𝑟) = 100

(︂
𝑟 − 𝑟0
𝑎− 𝑟0

)︂2

+ 1, 𝑓2(𝑟) = 100

(︂
𝑎− 𝑟
𝑎− 𝑟0

)︂2

+ 1.

Зависимости 𝑓1(𝑟) и 𝑓2(𝑟) выбраны такими, что их графики являются зеркальным отоб-
ражением друг друга относительно прямой 𝑟 = (𝑟0 + 𝑎)/2. При этом функция 𝑓1(𝑟) достигает
максимума при 𝑟 = 𝑎, а на поверхности шара при 𝑟 = 𝑟0 – минимума. Функция 𝑓2(𝑟) достигает
тех же максимальных и минимальных значений, но уже наоборот на поверхностях 𝑟 = 𝑟0 и
𝑟 = 𝑎.
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Краевые задачи для дифференциального уравнения (4.20) при 𝑗 = 0 и 𝑗 = 1 решены
методом сведения их к задачам с начальными условиями. Решение задач Коши проведено
методом Рунге-Кутты четвертого порядка [17].

На рис. 2 – 4 представлены диаграммы направленности, рассчитанные для волнового раз-
мера сфероида 𝑘1𝑎 = 3 при 𝑒 = 0, 𝑒 = −0.2 и 𝑒 = 0.2. При этом полагалось: 𝑟0 = 4 м, 𝑟0 = 0.1
м, 𝑎 = 1.1 м.

На лучах диаграмм отложены значения безразмерной амплитуды рассеяния |𝐹 |/𝐴, вычис-
ленной для соответствующих значений угла 𝜃. На рисунках сплошная линия соответствует
однородному сфероиду, штриховая – неоднородному вида 𝑓1(𝑟), пунктирная – неоднородному
вида 𝑓2(𝑟). Стрелкой показано направление падения волны.

Рис. 2: Диаграммы направленности при 𝑒 = 0

Рис. 3: Диаграммы направленности при 𝑒 = −0.2
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Рис. 4: Диаграммы направленности при 𝑒 = 0.2

На рис. 5 представлены диаграммы направленности, рассчитанные для однородного сфе-
роида при 𝑘1𝑎 = 3, 𝑒 = −0.2 и разном удалении линейного источника от сфероида: 𝑘1𝑟0 = 5
(пунктирная линия), 𝑘1𝑟0 = 8 (штриховая линия) и 𝑘1𝑟0 = 50 (сплошная линия). Для сравне-
ния приведена диаграмма направленности для случая падения плоской волны (штрихпунк-
тирная линия).

Рис. 5: Диаграммы направленности при разном удалении линейного источника от сфероида

6. Заключение

В настоящей работе методом возмущений получено приближенное аналитическое реше-
ние задачи дифракции симметричной цилиндрической звуковой волны на жидком сфероиде
с жестким шаровым включением. Найденное решение позволяет численно исследовать рассе-
янное сфероидом акустическое поле при любых значениях волнового размера тела 𝑘𝑎 и про-
извольном удалении линейного источника от рассеивателя. Проведенные численные расчеты
показали, что что диаграмма направленности рассеянного поля в дальней зоне существенно
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зависит от конфигурации тела и закона неоднородности материала сфероида. При прибли-
жении источника к рассеивателю диаграммы направленности существенно изменяются, что
подтверждает необходимость учета криволинейности фронта падающей волны.
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