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Аннотация

Представлены двухконстантные формы связей между напряжениями и деформациями
нелинейно-упругих изотропных материалов. Такого рода материалы могут использовать-
ся для гашения колебаний строительных конструкций при динамических воздействиях
(землетрясения, ударные волны при взрывах). Свободная энергия рассматриваемых со-
отношений представляется функцией алгебраических инвариантов тензора деформаций
Коши-Грина либо естественных инвариантов «левого» тензора деформаций Генки. Раз-
работана методика определения констант представленных связей между напряжениями и
деформациями. Предлагаемая методика основана на анализе экспериментальных зависи-
мостей окружных деформаций на внешней и внутренней поверхностях от приложенного
внутреннего давления и решениях задачи Ламе для полого цилиндра в плоском деформи-
рованном состоянии. Показано, что конкретизация приведенных определяющих соотноше-
ний возможна на основе выделения линейного участка экспериментальных зависимостей
и построения теоретических зависимостей в предположении малости деформаций. Таким
образом, следующие за линейным участком данные могут быть использованы для конкре-
тизации модулей упругости третьего порядка определяющих соотношений, построенных
на основе рассмотренных. Следовательно, изложенную в работе методику можно также
рассматривать как частичное решение задачи конкретизации связей между напряжениями
и деформациями, включающих модули упругости третьего порядка. Для представленных
экспериментальных данных показано, что результаты конкретизации по выдвинутой мето-
дике соответствуют определенным с помощью классического эксперимента на растяжение
модулям упругости. Приведенная методика может использоваться как непосредственно,
так и с целью минимизации числа экспериментов в задачах конкретизации определяющих
значений нелинейной теории упругости.

Ключевые слова: задача Ламе, нелинейно-упругая модель, алгебраический инвариант,
плоское деформированное состояние, конкретизация определяющих соотношений.
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Abstract

Two-constant forms of relationships between stresses and strains in nonlinear-elastic isotropic
materials are presented. Such materials can be used to dampen vibrations in building structures
under dynamic loads (earthquakes, shock waves from explosions). The free energy of the
considered relationships is represented as a function of algebraic invariants of the Cauchy-
Green strain tensor or natural invariants of the “left” Hencky strain tensor. A method for
determining the constants of the presented relationships between stresses and strains has been
developed. The proposed method is based on the analysis of experimental dependencies of
circumferential deformations on the outer and inner surfaces on the applied internal pressure
and solutions to the Lamé problem for a hollow cylinder in a flat deformed state. It is shown that
the present constitutive relationships can be particularized by identifying the linear section of
the experimental dependencies and constructing theoretical dependencies under the assumption
of small deformations. Thus, the data following the linear section can be used to specify the
third-order elasticity moduli of the determining relations constructed on the basis of those
considered. Consequently, the methodology presented in the work can also be considered as
a partial solution to the problem of particularization the relationships between stresses and
strains, including third-order elasticity moduli. For the experimental data presented, it is
shown that the results of particularization according to the proposed method correspond to
the elasticity moduli determined by means of a classical tensile experiment. The presented
method can be used both directly and for the purpose of minimizing the number of experiments
in the tasks of particularization the constitutive parameters of nonlinear elasticity theory.

Keywords: Lame problem, nonlinear elastic model, algebraic invariant, plane strain, consti-
tutive law particularization.
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Введение

Построение и экспериментальная конкретизация соотношений, определяющих поведение
упругих тел при конечных деформациях, остается актуальной задачей ввиду отсутствия един-
ственности её решения [1, 2, 3, 4]. Каждое определяющее соотношение содержит специфичный
для него ряд материальных параметров [5, 6, 7, 8]. Использование связи между напряжениями
и деформациями для конкретного материала предполагает предварительное решение задачи
установления значений всех материальных констант определяющего соотношения — его кон-
кретизацию.

Решения задачи конкретизации некоторых определяющих соотношений представлены в
работах [9, 10, 11, 12]. В данной статье предлагается методика конкретизации двухконстант-
ных связей между напряжениями и деформациями для изотермических процессов изотропных
нелинейно-упругих материалов [13, 14, 15]. Представленную методику можно рассматривать
и как частичное решение вопроса конкретизации более сложных определяющих соотноше-
ний, в частности, Мурнагана [16], построенных как расширение рассматриваемых. В отличие
от классического способа определения констант упругости с помощью эксперимента о рас-
тяжении образца [17, 18] предлагаемая методика основана на рассмотрении задачи Ламе для
полого цилиндра, находящегося в условии плоско-деформированного состояния под действием
внутреннего давления [19]. Соответствующие модельные соотношения содержат связи между
экспериментально наблюдаемыми характеристиками процесса. Из требования соответствия
модельных уравнений экспериментальным данным решается задача конкретизации определя-
ющего соотношения.

1. Определение упругих констант на основе решения задачи Ла-

ме

Рассмотрим вопрос конкретизации двухконстантных определяющих соотношений нелиней-
ной теории упругости, являющихся прямым обобщением закона Гука на случай изотропных
нелинейно-упругих материалов. К таким можно отнести соотношение [13]

˜
T = (2𝑐1 + 𝑐2) 𝐼1

˜
E− 𝑐2

˜
𝜀𝜀𝜀, (1)

где
˜
T – энергетический тензор напряжений,

˜
𝜀𝜀𝜀 – тензор деформаций Коши-Грина, 𝐼1 – первый

алгебраический инвариант
˜
𝜀𝜀𝜀,

˜
E – единичный тензор.

Представленная связь является частным случаем связи напряжений и деформаций Мур-
нагана [16]

˜
T𝑀𝑢𝑟𝑛 =

[︀
(2𝑐1 + 𝑐2) 𝐼1 + (3𝑐3 + 𝑐4) 𝐼

2
1 + 𝑐5𝐼2

]︀
˜
E−

− [𝑐2 + (𝑐4 + 𝑐5) 𝐼1]
˜
𝜀𝜀𝜀+ 𝑐5

˜
𝜀𝜀𝜀2,

(2)

содержащего также константы упругости третьего порядка 𝑐3, 𝑐4, 𝑐5, вопрос конкретизации
которых в данной работе не рассматривается.

Также к определяющим соотношениям с двумя константами относится соотношение [13, 18]

˜
𝜎𝜎𝜎𝑅 = 2𝐺*Γ̃ΓΓ +𝐾*Θ

˜
E, (3)

построенное в рамках предельного случая частного постулата изотропии Ильюшина, где
˜
𝜎𝜎𝜎𝑅

– повернутый обобщенный тензор напряжений, Γ̃ΓΓ – девиатор тензора деформаций Генки, Θ –
первый естественный инвариант тензора Генки.



316 В. В. Козлов, А. А. Маркин, А. В. Храименков

Общим при решении проблемы конкретизации определяющих соотношений (1), (3) являет-
ся требование их асимптотического вырождения в классический закон Гука линейной теории
упругости [20]:

˜
S = 𝜆𝐼1

˜
E+ 2𝐺

˜
𝜀𝜀𝜀𝑙𝑖𝑛 =

(︂
𝐾 − 2𝐺

3

)︂
𝐼1

˜
E+ 2𝐺

˜
𝜀𝜀𝜀𝑙𝑖𝑛, (4)

где 𝜆, 𝐺, 𝐾 – классические параметры Ламе: модуль сдвига и модуль объемного расширения
соответственно, а 𝐼1 – первый алгебраический инвариант линеаризованного тензора деформа-
ций Коши-Грина

˜
𝜀𝜀𝜀𝑙𝑖𝑛 =

1

2

(︂ ∘

∇⃗𝑢⃗+ 𝑢⃗
∘

∇⃗
)︂
. (5)

При использовании (1), (3) в рамках линейной теории упругости как энергетический тен-
зор напряжений, так и обобщенный тензор

˜
𝜎𝜎𝜎𝑅 вырождаются в тензор истинных напряже-

ний Коши. Линеаризация тензора деформаций Генки и его первого естественного инварианта
приводят к тензору деформаций

˜
𝜀𝜀𝜀𝑙𝑖𝑛 и алгебраическому инварианту 𝐼1 соответственно. Тогда

соотношения (1), (3) примут вид, эквивалентный (4)

˜
S = (2𝑐1 + 𝑐2) 𝐼1

˜
E− 𝑐2

˜
𝜀𝜀𝜀𝑙𝑖𝑛 =

(︂
𝐾* − 2𝐺*

3

)︂
𝐼1

˜
E+ 2𝐺*

˜
𝜀𝜀𝜀𝑙𝑖𝑛 =

=

(︂
𝐾 − 2𝐺

3

)︂
𝐼1

˜
E+ 2𝐺

˜
𝜀𝜀𝜀𝑙𝑖𝑛.

(6)

Из (6) следует связь между парами значений (𝑐1, 𝑐2), (𝐺*,𝐾*), (𝐺,𝐾):{︃
2𝑐1 + 𝑐2 = 𝐾 − 2𝐺

3
,

−𝑐2 = 2𝐺.
⇔

⎧⎨⎩ 𝑐1 =
1

2

(︂
𝐾 − 2𝐺

3

)︂
+𝐺,

𝑐2 = −2𝐺.{︂
𝐺* = 𝐺,
𝐾* = 𝐾.

(7)

Классически коэффициенты закона Гука определяются с помощью эксперимента на растя-
жение образца [17]. В то же время набор экспериментов для нахождения значения параметров
определяющих соотношений нелинейной теории упругости, включающих константы упруго-
сти третьего порядка, таких как (2), более обширный и может включать рассмотрение неод-
нородных процессов деформирования. Решим вопрос конкретизации констант 𝑐1, 𝑐2 в случае
доступных экспериментальных данных задачи Ламе. Заметим при этом, что пара значений
𝐺*, 𝐾*, может быть легко выражена через 𝑐1, 𝑐2 с помощью системы (7) и далее выкладки
конкретизации производятся только для 𝑐1, 𝑐2.

Схема нагружения полого цилиндра представлена на рис. 1. Координаты точек в недефор-
мированном состоянии (𝜌0, 𝜙0, 𝑧0), в деформированном (𝜌, 𝜙, 𝑧) и 𝑎 ⩽ 𝜌0 ⩽ 𝑏, ℎ/2 ⩽ 𝑧0 ⩽ ℎ/2.
На поверхность 𝜌0 = 𝑎 действует внутреннее давление 𝑝, внешняя поверхность свободна от
нагрузок. Предполагается плоско-деформированное состояние.

Запишем связь между координатами в начальном и деформированном состояниях

𝜌 = 𝜌 (𝜌0) , 𝜙 = 𝜙0, 𝑧 = 𝑧0. (8)

Выражение (8) позволяет представить радиус-вектор положения точки в деформирован-
ном состоянии

𝑥⃗ = 𝜌 (𝜌0) 𝑒⃗
0
𝜌 + 𝑧0𝑒⃗𝑧, (9)

где 𝑒⃗0𝜌,𝑒⃗𝑧 – соответствующие базисные векторы цилиндрической системы координат.
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Рис. 1: Схема модели

С учётом определения в цилиндрической системе координат оператора Гамильтона
∘

∇⃗ = 𝑒⃗0𝜌
𝜕

𝜕𝜌0
+ 𝑒⃗0𝜙

1

𝜌0

𝜕

𝜕𝜙0
+ 𝑒⃗𝑧

𝜕

𝜕𝑧0
определим аффинор деформаций, используя (6):

˜
ΦΦΦ =

∘

∇⃗𝑥⃗ = 𝜌′𝑒⃗0𝜌𝑒⃗
0
𝜌 +

𝜌

𝜌0

𝜕𝑒⃗0𝜌
𝜕𝜙0

𝜕𝑒⃗0𝜌
𝜕𝜙0

+ 𝑒⃗𝑧 𝑒⃗𝑧 =

= 𝜌′𝑒⃗0𝜌𝑒⃗
0
𝜌 + 𝜆𝜌𝑒⃗

0
𝜙𝑒⃗

0
𝜙 + 𝑒⃗𝑧 𝑒⃗𝑧.

(10)

Здесь 𝜌′, 𝜆𝜌 соответствуют радиальному и окружному растяжениям материальных волокон
соответственно. Из определения полярного разложения

˜
ΦΦΦ =

˜
U ·

˜
R [21] и (10) следует, что

аффинор деформации задачи Ламе совпадает с симметричной левой мерой искажения
˜
U, в

то время как ортогональный тензор поворота
˜
R является единичным. При этом 𝑒⃗0𝜌, 𝑒⃗

0
𝜙, 𝑒⃗𝑧

образуют ортонормированную тройку векторов.
С помощью соотношения (10) запишем градиент перемещений

∘

∇⃗𝑢⃗ =
∘

∇⃗𝑥⃗−
˜
E =

(︀
𝜌′ − 1

)︀
𝑒⃗0𝜌𝑒⃗

0
𝜌 + (𝜆𝜌 − 1) 𝑒⃗0𝜙𝑒⃗

0
𝜙. (11)

Для малых деформаций линеаризованный тензор деформаций Коши-Грина (5) в соответ-
ствии с градиентом перемещений (11) примет вид

˜
𝜀𝜀𝜀𝑙𝑖𝑛 =

(︀
𝜌′ − 1

)︀
𝑒⃗0𝜌𝑒⃗

0
𝜌 + (𝜆𝜌 − 1) 𝑒⃗0𝜙𝑒⃗

0
𝜙 = (𝜀𝜌𝜌)𝑙𝑖𝑛 𝑒⃗

0
𝜌𝑒⃗

0
𝜌 + (𝜀𝜙𝜙)𝑙𝑖𝑛 𝑒⃗

0
𝜙𝑒⃗

0
𝜙. (12)

С учётом (12) выразим тензор истинных напряжений (6):

˜
S = (2𝑐1 + 𝑐2)

(︀
𝜌′ + 𝜆𝑝 − 2

)︀ (︀
𝑒⃗0𝜌𝑒⃗

0
𝜌 + 𝑒⃗0𝜙𝑒⃗

0
𝜙 + 𝑒⃗𝑧 𝑒⃗𝑧

)︀
− 𝑐2

[︀(︀
𝜌′ − 1

)︀
𝑒⃗0𝜌𝑒⃗

0
𝜌 + (𝜆𝜌 − 1) 𝑒⃗0𝜙𝑒⃗

0
𝜙

]︀
=

= 𝑒⃗0𝜌𝑒⃗
0
𝜌

[︀
(2𝑐1 + 𝑐2)

(︀
𝜌′ + 𝜆𝑝 − 2

)︀
− 𝑐2

(︀
𝜌′ − 1

)︀]︀
+

+ 𝑒⃗0𝜙𝑒⃗
0
𝜙

[︀
(2𝑐1 + 𝑐2)

(︀
𝜌′ + 𝜆𝑝 − 2

)︀
− 𝑐2 (𝜆𝜌 − 1)

]︀
+ 𝑒⃗𝑧 𝑒⃗𝑧 (2𝑐1 + 𝑐2)

(︀
𝜌′ + 𝜆𝑝 − 2

)︀
=

= 𝑆𝜌𝜌𝑒⃗
0
𝜌𝑒⃗

0
𝜌 + 𝑆𝜙𝜙𝑒⃗

0
𝜙𝑒⃗

0
𝜙 + 𝑆𝑧𝑧 𝑒⃗𝑧 𝑒⃗𝑧.

(13)

Если записать уравнение равновесия, приходим к известной [19] зависимости

𝜌 (𝜌0) = 𝐴𝜌0 +
𝐵

𝜌0
. (14)

Найдем константы 𝐴, 𝐵. Из (13) и (14) выразим нормальные радиальные напряжения

𝑆𝜌𝜌 (𝜌0) = (4𝑐1 + 𝑐2) (𝐴− 1) + 𝑐2
𝐵

𝜌20
.
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Используем граничные условия 𝑆𝜌𝜌

⃒⃒⃒⃒
𝜌0=𝑎

= −𝑝, 𝑆𝜌𝜌
⃒⃒⃒⃒
𝜌0=𝑏

= 0 и запишем последнее выражение

на внутреннем и внешнем радиусах цилиндра:⎧⎪⎨⎪⎩
(4𝑐1 + 𝑐2)𝐴+ 𝑐2

𝐵

𝑎2
= 4𝑐1 + 𝑐2 − 𝑝,

(4𝑐1 + 𝑐2)𝐴+ 𝑐2
𝐵

𝑏2
= 4𝑐1 + 𝑐2.

(15)

Решим систему алгебраических уравнений (15) относительно 𝐴 и 𝐵:

𝐴 = 1− 𝑝𝑎2

(4𝑐1 + 𝑐2) (𝑎2 − 𝑏2)
,

𝐵 =
𝑝𝑎2𝑏2

𝑐2 (𝑎2 − 𝑏2)
.

(16)

Выражения (14), (16) вместе с (9) полностью определяют закон движения материальных
точек цилиндра, конкретизируют меры описания напряженно-деформированного состояния.
В частности, компонента окружных деформаций тензора Коши-Грина (5) примет вид:

(𝜀𝜙𝜙)𝑙𝑖𝑛 =
𝜌

𝜌0
− 1 = 𝐴+

𝐵

𝜌20
− 1 = 1− 𝑝𝑎2

(4𝑐1 + 𝑐2) (𝑎2 − 𝑏2)
+

+
𝑝𝑎2𝑏2

𝑐2𝜌2 (𝑎2 − 𝑏2)
− 1 =

𝑝𝑎2

𝑎2 − 𝑏2

(︂
𝑏2

𝜌20𝑐2
− 1

4𝑐1 + 𝑐2

)︂
.

На внутреннем и внешнем радиусах получим⎧⎪⎪⎪⎨⎪⎪⎪⎩
(𝜀𝜙𝜙)𝑙𝑖𝑛

⃒⃒⃒⃒
𝜌0=𝑎

=
𝑝𝑎2

𝑎2 − 𝑏2

(︂
𝑏2

𝑎2𝑐2
− 1

4𝑐1 + 𝑐2

)︂
= 𝑝𝑐*1,

(𝜀𝜙𝜙)𝑙𝑖𝑛

⃒⃒⃒⃒
𝜌0=𝑏

=
𝑝𝑎2

𝑎2 − 𝑏2

(︂
𝑏2

𝑐2
− 1

4𝑐1 + 𝑐2

)︂
= 𝑝𝑐*2.

(17)

Принимая во внимание, что 𝑐1, 𝑐2 – материальные константы, получим, что 𝑐*1, 𝑐
*
2 также

постоянные величины, а зависимости (17) – линейные относительно давления 𝑝. Таким обра-

зом, для нахождения 𝑐1, 𝑐2 на экспериментальных кривых 𝜀
𝑒
𝜙𝜙

⃒⃒⃒⃒
𝜌0=𝑎

(𝑝), 𝜀𝑒𝜙𝜙

⃒⃒⃒⃒
𝜌0=𝑏

(𝑝) необходимо

выделить линейный участок, произвольная точка которого может быть использована для со-
ставления системы уравнений (17) относительно неизвестных 𝑐1, 𝑐2.

Рассмотрим вопрос возможности получения экспериментальных данных 𝜀𝑒𝜙𝜙

⃒⃒⃒⃒
𝜌0=𝑎

(𝑝),

𝜀𝑒𝜙𝜙

⃒⃒⃒⃒
𝜌0=𝑏

(𝑝). Экспериментально наблюдаемыми величинами рассматриваемой постановки яв-

ляются деформированные значения внешнего 𝜌𝑒 (𝑏) и внутреннего 𝜌𝑒 (𝑎) радиусов и соответ-
ствующее внутреннее давление 𝑝𝑒. Используя выражение аффинора деформаций (10), запи-
шем тензор Коши-Грина

˜
𝜀𝜀𝜀 =

1

2
(
˜
ΦΦΦ ·

˜
ΦΦΦ⊺ −

˜
E) =

1

2

(︀
𝜌′ − 1

)︀2
𝑒⃗0𝜌𝑒⃗

0
𝜌 +

1

2

(︂
𝜌

𝜌0
− 1

)︂2

𝑒⃗0𝜙𝑒⃗
0
𝜙 = 𝜀𝜌𝜌𝑒⃗

0
𝜌𝑒⃗

0
𝜌 + 𝜀𝜙𝜙𝑒⃗

0
𝜙𝑒⃗

0
𝜙.

Таким образом, окружные деформации определяются соответствующими значениями де-

формированного радиуса и могут быть измерены 𝜀𝑒𝜙𝜙

⃒⃒⃒⃒
𝜌0=𝑎

(𝑝), 𝜀𝑒𝜙𝜙

⃒⃒⃒⃒
𝜌0=𝑏

(𝑝).

Применим методику конкретизации констант 𝑐1, 𝑐2 для следующих экспериментальных
данных, полученных для цилиндра, имеющие безразмерные геометрические характеристики
𝑎 = 0.5 и 𝑏 = 1:
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Рис. 2: Экспериментальные зависимости 𝜀𝑒𝜙𝜙

⃒⃒⃒⃒
𝜌0=𝑎

(𝑝), 𝜀𝑒𝜙𝜙

⃒⃒⃒⃒
𝜌0=𝑏

(𝑝)

Заметим, что представленные на рис. 2 зависимости были получены для материала, име-
ющего классическим образом определенные модуль сдвига, коэффициент объемного расши-
рения 𝐺𝑐𝑙𝑎𝑠𝑠𝑖𝑐 = 2.069 МПа, 𝐾𝑐𝑙𝑎𝑠𝑠𝑖𝑐 = 20 МПа соответственно. Выберем в качестве участка,

на котором 𝜀𝑒𝜙𝜙

⃒⃒⃒⃒
𝜌0=𝑎

(𝑝), 𝜀𝑒𝜙𝜙

⃒⃒⃒⃒
𝜌0=𝑏

(𝑝) растут предположительно линейно, интервал 𝑝 ∈ [0; 0.1]

МПа. Решив систему (17) для произвольной точки данного интервала, получим искомые зна-
чения материальных параметров. В таблице 1 приведены материальные константы 𝑐1, 𝑐2, а
также соответствующие им модули упругости 𝐺, 𝐾, выраженные с помощью системы (7).

Таблица 1: Материальные константы, найденные для значений 𝑝 = 0.025𝑖, 𝑖 ∈ [1; 4]

Внутреннее давление max
(︀
𝜀𝑒𝜙𝜙
)︀

𝑐1 𝑐1 𝐾 𝐺

0.025 0.0083909 11.067 −4.0717 19.419 2.0358

0.05 0.017059 10.891 −4.0055 19.111 2.0027

0.075 0.026021 10.714 −3.9391 18.802 1.9695

0.1 0.035293 10.536 −3.8724 18.491 1.9362

Анализируя приведенные в таблице 1 значения, наблюдаем, что вычисленные на основе по
представленной методике модули сдвига, объемного расширения асимптотически вырожда-
ются в классические значения с уменьшением внутреннего давления и приближения экспери-

ментальных зависимостей 𝜀𝑒𝜙𝜙

⃒⃒⃒⃒
𝜌0=𝑎

(𝑝), 𝜀𝑒𝜙𝜙

⃒⃒⃒⃒
𝜌0=𝑏

(𝑝) к линейным. Таким образом, определение

параметров может быть осуществлено как с помощью стандартным образом определенных
модулей 𝐺𝑐𝑙𝑎𝑠𝑠𝑖𝑐, 𝐾𝑐𝑙𝑎𝑠𝑠𝑖𝑐, так и посредством представленной методики.

Заключение

Предложена методика конкретизации модулей упругости двухконстантного определяюще-
го соотношения на основе решения задачи Ламе для полого изотропного однородного цилин-
дра. Показано, что выделение линейной части экспериментальных зависимостей поверхност-
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ных окружных деформаций от внутреннего давления приводит к определению классических
модулей. Это означает, что классические модули данного материала должны входить в нели-
нейные определяющие соотношения. Результаты применения методики могут быть использо-
ваны как непосредственно, так и в целях минимизации числа экспериментов, используемых
при решении задачи конкретизации определяющих соотношений нелинейной теории упруго-
сти.
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