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Аннотация

Линейное пространство операторных полей, состоящее из операторов Нийенхейса, на-
зывают пучком Нийенхейса. Интересными примерами таких пучков являются максималь-
ные (по включению) пучки Нийенхейса. Случай, когда максимальный пучок Нийенхейса
содержит подпучок симметричных постоянных (𝑛× 𝑛)-матриц (в некоторой фиксирован-
ной системе координат), недавно рассматривался в работе [4], в которой было получено
полное описание таких максимальных пучков при 𝑛 ⩾ 3. Как оказалось, случай 𝑛 = 2
требует отдельного исследования. Эта задача решена в данной работе.
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Abstract

A linear space of operator fields that consists of Nijenhuis operators is called a Nijenhuis
pencil. Maximal (by inclusion) Nijenhuis pencils serve as interesting examples of such pencils.
The case when maximal Nijehuis pencil contains a subpencil of symmetric constant (𝑛 × 𝑛)-
matrices (in some fixed coordinate system) was recently investigated in paper [4], in which the
complete description of such maximal pencils was obtained for 𝑛 ⩾ 3. As it turned out, the case
𝑛 = 2 requires special research. This problem is solved in the present paper.
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1. Введение

Операторы Нийенхейса естественным образом возникают в различных задачах, связанных
с геометрией, алгеброй, математической физикой (см., например, [1, 2]). В частности, в теории
интегрируемых систем важную роль играют пространства операторных полей, состоящие из
операторов Нийенхейса, которые называют пучками Нийенхейса (см. [3]). Интересными при-
мерами таких пучков являются максимальные (по включению) пучки Нийенхейса. Например,
в недавней работе [4] рассматривались пучки Нийенхейса, содержащие подпучок симметрич-
ных постоянных (𝑛 × 𝑛)-матриц (в некоторой фиксированной системе координат), где было
получено полное описание максимальных пучков, обладающих этим свойством, при 𝑛 ⩾ 3.
Как оказалось, в случае 𝑛 = 2 требуется дополнительное исследование для описания макси-
мальных нийенхейсовых пучков указанного типа, что и сделано в данной работе.

Напомним необходимые определения.

Скобка Фролихера – Нийенхейса [[ , ]] двух тензорных полей типа (1, 1) (операторных
полей) 𝐿 и 𝑅 на многообразии 𝑀𝑛 задается формулой

[[𝐿,𝑅]](𝜉, 𝜂) = 𝐿[𝜉,𝑅𝜂] +𝑅[𝐿𝜉, 𝜂] +𝑅[𝜉, 𝐿𝜂] +𝐿[𝑅𝜉, 𝜂]− [𝐿𝜉,𝑅𝜂]− [𝑅𝜉,𝐿𝜂]−𝐿𝑅[𝜉, 𝜂]−𝑅𝐿[𝜉, 𝜂],

где 𝜉, 𝜂 — произвольные векторные поля, а [ , ] — стандартный коммутатор векторных полей.
Это выражение определяет кососимметричный по нижним индексам тензор типа (1, 2).

Кручение Нийенхейса — это тензор 𝒩𝐿 = 1
2 [[𝐿,𝐿]], где 𝐿 — операторное поле.

Операторное поле 𝐿 называют оператором Нийенхейса, если 𝒩𝐿 = 0.

Нийенхейсов пучок 𝒫 — это такое подпространство в бесконечномерном линейном про-
странстве тензорных полей типа (1, 1) на многообразии 𝑀𝑛, что для любых 𝐿,𝑅 ∈ 𝒫 выпол-
нено условие [[𝐿,𝑅]] = 0.

Централизатор 𝐶(𝒫) нийенхейсова пучка 𝒫 — это линейное пространство, состоящее из
таких операторных полей 𝐿, что [[𝐿,𝑅]] = 0 для любого операторного поля 𝑅 ∈ 𝒫.

По определению пучок Нийенхейса 𝒫 максимален, если любое операторное поле 𝐿, для
которого [[𝐿,𝑅]] = 0 для всех 𝑅 ∈ 𝒫, лежит в 𝒫. Иными словами, пучок Нийенхейса 𝒫
максимален, если он не является подпучком никакого большего пучка.

Пусть 𝒮 — пучок Нийенхейса, который состоит из операторов, матрицы которых в данной
системе координат симметричны. Задача описания всех нийенхейсовых пучков, содержащих
𝒮, рассматривалась А.Ю. Коняевым в работе [4], где им был получен ответ для 𝑛 ≥ 3. А
именно, им было показано, что в фиксированных координатах 𝑢1, . . . , 𝑢𝑛 любой максимальный
нийенхейсов пучок, содержащий 𝒮, совпадает либо с 𝒜, либо с ℬ, где
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𝒜 = {Операторы, матрицы которых в данной системе координат имеют вид 𝑙𝑖𝑗 = 𝑎𝑖𝑗 + 𝑢𝑖𝑐𝑗 ,

где 𝑎𝑖𝑗 — компоненты произвольной постоянной матрицы 𝐴, a 𝑐𝑗 , 𝑗 = 1, . . . , 𝑛 — произвольные
константы.}

ℬ = {Операторы, матрицы которых в данной системе координат имеют вид 𝑙𝑖𝑗 = 𝑎𝑖𝑗 +𝑐𝑖𝑢𝑗 +

+ 𝑢𝑖𝑐𝑗 + 𝐾𝑢𝑖𝑢𝑗 , где 𝑎𝑖𝑗 — компоненты произвольной симметрической постоянной матрицы 𝐴,

a 𝐾, 𝑐1, . . . , 𝑐𝑛 — произвольные константы.}.

В данной статье мы рассматриваем описанную задачу классификации максимальных ний-
енхейсовых пучков, содержащих 𝒮, при 𝑛 = 2. Как оказалось, полученный ответ совпадает с
результатом для 𝑛 ≥ 3.

2. Классификация максимальных пучков, содержащих 𝒮

Для описания максимальных нийенхейсовых пучков, содержащих 𝒮, целесообразно снача-
ла найти
𝐶(𝒮) = {𝐿 | | [[𝐿,𝑅]] = 0∀𝑅 ∈ 𝒮}, т.е. централизатор пучка 𝒮.

Теорема 1. Централизатор 𝐶(𝒮) при 𝑛 = 2 состоит из операторов с матрицами
𝑅 = (𝑟𝑖𝑗) вида [︃

𝐷𝑥2

2 + 𝐶1𝑥+𝑁 𝑓3(𝑥, 𝑦)

𝐶1𝑦 + 𝐶2𝑥+𝐴+𝐷𝑥𝑦 − 𝑓3(𝑥, 𝑦) 𝐷𝑦2

2 + 𝐶2𝑦 +𝑀

]︃
,

где 𝐴,𝐶1, 𝐶2, 𝐷,𝑀,𝑁 — произвольные вещественные числа, 𝑥, 𝑦 — локальные координаты на
многообразии 𝑀2, а 𝑓3(𝑥, 𝑦) — произвольная дифференцируемая функция.

Доказательство. Пусть 𝐿 ∈ 𝒮 — оператор, матрица которого в фиксированной системе
координат (𝑥, 𝑦) диагональна с различными числами 𝜆1 и 𝜆2 на диагонали. Положим 𝑥 = 𝑢1,
𝑦 = 𝑢2. Тогда для любого 𝑅 ∈ 𝐶(𝒮)

[[𝑅,𝐿]](𝜕𝑢1 , 𝜕𝑢2) = 𝐿[𝑅𝜕𝑢1 , 𝜕𝑢2 ] + 𝐿[𝜕𝑢1 , 𝑅𝜕𝑢2 ]− [𝑅𝜕𝑢1 , 𝐿𝜕𝑢2 ]− [𝐿𝜕𝑢1 , 𝑅𝜕𝑢2 ] =

=
2∑︁

𝛼=1

(︂
𝜆𝛼
𝜕𝑟𝛼1
𝜕𝑢2
− 𝜆𝛼

𝜕𝑟𝛼2
𝜕𝑢1
− 𝜆2

𝜕𝑟𝛼1
𝜕𝑢2

+ 𝜆1
𝜕𝑟𝛼2
𝜕𝑢1

)︂
𝜕𝑢𝛼 = 0.

Приравнивая к нулю коэффициенты при 𝜕𝑢1 и 𝜕𝑢2 , получаем систему из двух уравнений⎧⎪⎪⎨⎪⎪⎩
(𝜆1 − 𝜆2)

𝜕𝑟11
𝜕𝑢2

= 0

(𝜆1 − 𝜆2)
𝜕𝑟22
𝜕𝑢1

= 0

, (1)

из которой вытекает (так как 𝜆1 ̸= 𝜆2), что 𝑟
1
1 не зависит от 𝑢

2, а 𝑟22 — от 𝑢1.

Теперь рассмотрим 𝐿 ∈ 𝒮 такой, что 𝐿𝜕𝑢1 = 𝜕𝑢2 и 𝐿𝜕𝑢2 = 𝜕𝑢1 . Тогда для любого 𝑅 ∈ 𝐶(𝒮)
(здесь идет суммирование по 𝛼)

[[𝑅,𝐿]](𝜕𝑢1 , 𝜕𝑢2) = 𝐿[𝑅𝜕𝑢1 , 𝜕𝑢2 ] + 𝐿[𝜕𝑢1 , 𝑅𝜕𝑢2 ]− [𝑅𝜕𝑢1 , 𝐿𝜕𝑢2 ]− [𝐿𝜕𝑢1 , 𝑅𝜕𝑢2 ] =

= 𝐿[𝑅𝜕𝑢1 , 𝜕𝑢2 ] + 𝐿[𝜕𝑢1 , 𝑅𝜕𝑢2 ]− [𝑅𝜕𝑢1 , 𝜕𝑢1 ]− [𝜕𝑢2 , 𝑅𝜕𝑢2 ] =

= −𝜕𝑟
1
1

𝜕𝑢2
𝜕𝑢2 −

𝜕𝑟21
𝜕𝑢2

𝜕𝑢1 +
𝜕𝑟12
𝜕𝑢1

𝜕𝑢2 +
𝜕𝑟22
𝜕𝑢1

𝜕𝑢1 +
𝜕𝑟𝛼1
𝜕𝑢1

𝜕𝑢𝛼 − 𝜕𝑟𝛼2
𝜕𝑢2

𝜕𝑢𝛼 =

= −
(︂
𝜕𝑟21
𝜕𝑢2

+
𝜕𝑟12
𝜕𝑢2
− 𝜕𝑟11
𝜕𝑢1

)︂
𝜕𝑢1 +

(︂
𝜕𝑟12
𝜕𝑢1

+
𝜕𝑟21
𝜕𝑢1
− 𝜕𝑟22
𝜕𝑢2

)︂
𝜕𝑢2 = 0,
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где учтено, что
𝜕𝑟22
𝜕𝑢1 =

𝜕𝑟11
𝜕𝑢2 = 0. Таким образом, мы получаем систему⎧⎪⎪⎨⎪⎪⎩

𝜕𝑟21
𝜕𝑢2

+
𝜕𝑟12
𝜕𝑢2
− 𝜕𝑟11
𝜕𝑢1

= 0

𝜕𝑟12
𝜕𝑢1

+
𝜕𝑟21
𝜕𝑢1
− 𝜕𝑟22
𝜕𝑢2

= 0

(2)

Выше было выведено, что 𝑟11 не зависит от 𝑦, а 𝑟
2
2 не зависит от 𝑥, поэтому

𝑟11(𝑥, 𝑦) = 𝑓1(𝑥) и 𝑟22(𝑥, 𝑦) = 𝑓2(𝑦).

Продифференцировав первое уравнение системы (2) по 𝑦, а второе по 𝑥, получим, что

𝑟21(𝑥, 𝑦) + 𝑟12(𝑥, 𝑦) = 𝐶1𝑦 + 𝐶2𝑥+𝐴+𝐷𝑥𝑦.

Итак, получаем систему⎧⎪⎨⎪⎩
𝑟21(𝑥, 𝑦) + 𝑟12(𝑥, 𝑦) = 𝐶1𝑦 + 𝐶2𝑥+𝐴+𝐷𝑥𝑦

𝑟11(𝑥) = 𝑓1(𝑥)

𝑟22(𝑦) = 𝑓2(𝑦)

(3)

Из системы (2) следует, что ⎧⎪⎪⎨⎪⎪⎩
𝜕𝑟21
𝜕𝑢2

+
𝜕𝑟12
𝜕𝑢2

=
𝜕𝑟11
𝜕𝑢1

= 𝑓
′
1(𝑥)

𝜕𝑟12
𝜕𝑢1

+
𝜕𝑟21
𝜕𝑢1

=
𝜕𝑟22
𝜕𝑢2

= 𝑓
′
2(𝑦)

то есть {︃
𝐶1 +𝐷𝑥 = 𝑓

′
1(𝑥)

𝐶2 +𝐷𝑦 = 𝑓
′
2(𝑦)

Система (3) принимает вид⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
𝑟21(𝑥, 𝑦) + 𝑟12(𝑥, 𝑦) = 𝐶1𝑦 + 𝐶2𝑥+𝐴+𝐷𝑥𝑦

𝑟11(𝑥) =
𝐷𝑥2

2
+ 𝐶1𝑥+𝑁

𝑟22(𝑦) =
𝐷𝑦2

2
+ 𝐶2𝑦 +𝑀

Положим 𝑟12(𝑥, 𝑦) = 𝑓3(𝑥, 𝑦). Тогда

𝑟21(𝑥, 𝑦) = 𝐶1𝑦 + 𝐶2𝑥+𝐴+𝐷𝑥𝑦 − 𝑓3(𝑥, 𝑦).

Получаем, что операторы из 𝐶(𝒮) имеют матрицы вида

𝑅 =

[︃
𝐷𝑥2

2 + 𝐶1𝑥+𝑁 𝑓3(𝑥, 𝑦)

𝐶1𝑦 + 𝐶2𝑥+𝐴+𝐷𝑥𝑦 − 𝑓3(𝑥, 𝑦) 𝐷𝑦2

2 + 𝐶2𝑦 +𝑀

]︃
.

Таким образом, мы получили централизатор пучка 𝒮. Теперь нам нужно найти пучки
Нийенхейса. Для этого необходимо наложить дополнительное условие [[𝑅,𝑅]] ≡ 0, то есть
(𝒩𝑅)112 ≡ 0 и (𝒩𝑅)212 ≡ 0.
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Как известно, в локальных координатах 𝑥1, . . . , 𝑥𝑛 компоненты (𝒩𝐿)𝑖𝑗𝑘 тензора 𝒩𝐿 опреде-
ляются по следующей формуле:

(𝒩𝐿)𝑖𝑗𝑘 = 𝐿𝑙
𝑗

𝜕𝐿𝑖
𝑘

𝜕𝑥𝑙
− 𝐿𝑙

𝑘

𝜕𝐿𝑖
𝑗

𝜕𝑥𝑙
− 𝐿𝑖

𝑙

𝜕𝐿𝑙
𝑘

𝜕𝑥𝑗
+ 𝐿𝑖

𝑙

𝜕𝐿𝑙
𝑗

𝜕𝑥𝑘
,

где 𝐿𝑖
𝑗 обозначают компоненты 𝐿. Тогда в нашем случае

(𝒩𝑅)112 = 𝑟𝑙1
𝜕𝑟12
𝜕𝑢𝑙
− 𝑟𝑙2

𝜕𝑟11
𝜕𝑢𝑙
− 𝑟1𝑙

𝜕𝑟𝑙2
𝜕𝑢1

+ 𝑟1𝑙
𝜕𝑟𝑙1
𝜕𝑢2

=

=
𝜕𝑓3
𝜕𝑥
·
(︁𝐷𝑥2

2
+ 𝐶1𝑥+𝑁

)︁
+
𝜕𝑓3
𝜕𝑦
· (𝐶1𝑦 + 𝐶2𝑥+𝐴+𝐷𝑥𝑦 − 𝑓3(𝑥, 𝑦))−

− (𝐷𝑥+ 𝐶1) · 𝑓3(𝑥, 𝑦)−
(︁𝐷𝑥2

2
+ 𝐶1𝑥+𝑁

)︁
· 𝜕𝑓3
𝜕𝑥

+ 𝑓3(𝑥, 𝑦) ·
(︁
𝐶1 +𝐷𝑥− 𝜕𝑓3

𝜕𝑦

)︁
=

=
𝜕𝑓3
𝜕𝑦
· (𝐶1𝑦 + 𝐶2𝑥+𝐴+𝐷𝑥𝑦 − 2𝑓3(𝑥, 𝑦)) = 0,

(𝒩𝑅)212 = 𝑟𝑙1
𝜕𝑟22
𝜕𝑢𝑙
− 𝑟𝑙2

𝜕𝑟21
𝜕𝑢𝑙
− 𝑟2𝑙

𝜕𝑟𝑙2
𝜕𝑢1

+ 𝑟2𝑙
𝜕𝑟𝑙1
𝜕𝑢2

=

= (𝐷𝑦 + 𝐶2) · (𝐶1𝑦 + 𝐶2𝑥+𝐴+𝐷𝑥𝑦 − 𝑓3(𝑥, 𝑦))− 𝑓3(𝑥, 𝑦) ·
(︁
𝐶2 +𝐷𝑦 − 𝜕𝑓3

𝜕𝑥

)︁
−

−
(︁𝐷𝑦2

2
+ 𝐶2𝑦 +𝑀

)︁
·
(︁
𝐶1 +𝐷𝑥− 𝜕𝑓3

𝜕𝑦

)︁
−

− (𝐶1𝑦 + 𝐶2𝑥+𝐴+𝐷𝑥𝑦 − 𝑓3(𝑥, 𝑦) · 𝜕𝑓3
𝜕𝑥

+
(︁𝐷𝑦2

2
+ 𝐶2𝑦 +𝑀

)︁(︁
𝐶1 +𝐷𝑥− 𝜕𝑓3

𝜕𝑦

)︁
=

=
(︁
𝐶2 +𝐷𝑦 − 𝜕𝑓3

𝜕𝑥

)︁
· (𝐶1𝑦 + 𝐶2𝑥+𝐴+𝐷𝑥𝑦 − 2𝑓3(𝑥, 𝑦)) = 0

для любых 𝑥, 𝑦.
Так мы получаем систему из двух уравнений, задающих условия на коэффициенты мат-

рицы 𝑅 из формулировки теоремы 1:⎧⎪⎪⎨⎪⎪⎩
𝜕𝑓3
𝜕𝑦
· (𝐶1𝑦 + 𝐶2𝑥+𝐴+𝐷𝑥𝑦 − 2𝑓3(𝑥, 𝑦)) = 0

(𝐶2 +𝐷𝑦 − 𝜕𝑓3
𝜕𝑥

) · (𝐶1𝑦 + 𝐶2𝑥+𝐴+𝐷𝑥𝑦 − 2𝑓3(𝑥, 𝑦)) = 0

(4)

Первый случай: 𝐶1𝑦+𝐶2𝑥+𝐴+𝐷𝑥𝑦−2𝑓3(𝑥, 𝑦)=0, то есть 𝑓3(𝑥, 𝑦)= 1
2(𝐶1𝑦+𝐶2𝑥+𝐴+𝐷𝑥𝑦).

Тогда

𝑅 =

[︂
𝑁 0
0 𝑀

]︂
+

[︃
𝐷𝑥2

2 + 𝐶1𝑥
1
2(𝐷𝑥𝑦 + 𝐶1𝑦 + 𝐶2𝑥+𝐴)

1
2(𝐷𝑥𝑦 + 𝐶1𝑦 + 𝐶2𝑥+𝐴) 𝐷𝑦2

2 + 𝐶2𝑦

]︃
. (5)

Второй случай: 𝜕𝑓3
𝜕𝑦 = 0, то есть 𝑓3 = 𝑓3(𝑥). Из второго уравнения системы (4) имеем

𝜕𝑓3
𝜕𝑥

= 𝐶2 +𝐷𝑦,

то есть
𝑓3(𝑥) = 𝑥 · (𝐶2 +𝐷𝑦) + 𝑔(𝑦).

У нас 𝜕𝑓3
𝜕𝑦 = 0, поэтому 𝜕𝑓3

𝜕𝑦 = 𝐷𝑥 + 𝑔
′
(𝑦) ≡ 0, то есть 𝑓3(𝑥) = 𝐶2𝑥 + 𝐶, где 𝐶 — константа.

В итоге

𝑅 =

[︂
𝑁 0
0 𝑀

]︂
+

[︂
𝐶1𝑥 𝐶2𝑥+ 𝐶

𝐶1𝑦 +𝐴− 𝐶 𝐶2𝑦

]︂
. (6)
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Таким образом, мы получаем два максимальных нийенхейсовых пучка 𝒫1, 𝒫2:
𝒫1 = {Операторы, матрицы которых в данной системе координат (𝑥, 𝑦) имеют вид (5)},
𝒫2 = {Операторы, матрицы которых в данной системе координат (𝑥, 𝑦) имеют вид (6)}.
Ясно, что 𝒫1∩𝒫2 = 𝒮, 𝒫1+𝒫2 ⊂ 𝐶(𝒮). Как мы выяснили, множество операторов Нийенхей-

са в централизаторе совпадает с 𝒫1 ∪ 𝒫2. По определению любой максимальный нийенхейсов
пучок 𝒫, содержащий 𝒮, целиком лежит в 𝐶(𝒮) и, так как пучок — это линейное простран-
ство, целиком лежит либо в 𝒫1, либо в 𝒫2. Так как эти пучки максимальны, 𝒫 совпадает с
одним из них. Таким образом, доказано следующее утверждение.

Теорема 2. В фиксированных координатах 𝑥, 𝑦 любой максимальный нийенхейсов пучок,
содержащий 𝒮, совпадает либо с 𝒫1, либо с 𝒫2, где матрицы операторов из пучков 𝒫1 и 𝒫2
задаются матрицами вида 𝑅1 и 𝑅2 соответственно:

𝑅1 =

[︂
𝑚 𝑎
𝑎 𝑛

]︂
+

[︂
𝐷𝑥2 𝐷𝑥𝑦
𝐷𝑥𝑦 𝐷𝑦2

]︂
+

[︂
2𝐶1𝑥 𝐶1𝑦 + 𝐶2𝑥

𝐶1𝑦 + 𝐶2𝑥 2𝐶2𝑦

]︂
,

𝑅2 =

[︂
𝑚 𝑎
𝑏 𝑛

]︂
+

[︂
𝐶1𝑥 𝐶2𝑥
𝐶1𝑦 𝐶2𝑦

]︂
.
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