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Аннотация
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неаризованного уравнения Кортевега – де Фриза. Решение представляется в виде три-
гонометрического ряда Виноградова, что позволяет свести вывод к методу Виноградова
тригонометрических сумм Г. Вейля.

Ключевые слова: обобщенное решение задачи Коши, линеаризованное уравнение Кор-
тевега – де Фриза, критерий Г. Вейля равномерного распределения последовательности по
модулю единица, метод Виноградова, рациональные тригонометрические суммы, тригоно-
метрические интегралы.

Библиография: 14 названий.

Для цитирования:

Архипова Л. Г., Чубариков В. Н. Об одной теореме Г. И. Архипова // Чебышевcкий сборник,
2025, т. 26, вып. 5, с. 280–286.

CHEBYSHEVSKII SBORNIK

Vol. 26. No. 5.

UDC: 511.3 DOI: 10.22405/2226-8383-2025-26-5-280-286

On one G.I.Arkhipov’s theorem

L. G. Arkhipova, V. N. Chubarikov

Arkhipova Lyudmila Gennadievna — Lomonosov Moscow State University (Moscow).
e-mail: chubarik2020@mail.ru
Chubarikov Vladimir Nikolaevich — doctor of physical and mathematical sciences, professor,
Lomonosov Moscow State University (Moscow).
e-mail: chubarik2020@mail.ru



Об одной теореме Г. И. Архипова 281

Abstract

In this paper in the model situation the generalized solution of the Cauchy problem of
linearalized the Corteveg – de Vriz equation are investigated. The solution are represented as
the Vinogradov’s trigonometric series, that permits to reduce the deduction to the Vinigradov’s
method of the H.Weyl’s trigonometric sums.
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1. Введение

Настоящая работа посвящается восьмидесятилетию со дня рождения Геннадия Ивановича
Архипова (12.12.1945 – 14.03.2013). Теорема, о которой идет речь здесь, была сформулирована
им в 2010 г. Доказательство ее дано в настоящей работе.

Г.И.Архипов и К.И.Осколков исследовали специальные тригонометрические ряды с мно-
гочленом в аргументе, — ряды И.М.Виноградова. Сформулируем их результат.

Пусть 𝑘 — натуральное число, 𝐸 — единичный 𝑘 — мерный куб точек 𝛼 = (𝛼1, . . . , 𝛼𝑛) с дей-
ствительными координатами 0 ≤ 𝛼𝑠 < 1, 𝑠 = 1, . . . , 𝑘, и пусть 𝑓(𝑥) = 𝑓𝑘(𝑥) = 𝛼𝑘𝑥

𝑘 + · · ·+𝛼1𝑥 —
многочлен степени 𝑘. Пусть далее

ℎ(𝑓) =
∑︁
𝑛̸=0

𝑒2𝜋𝑖𝑓(𝑛)

𝑛

ряд Виноградова, в котором суммирование распространяется по всем целым 𝑛 ̸= 0, и его
симметричные частичные суммы ℎ𝑁 (𝑓) имеют вид

ℎ𝑁 (𝑓) =
∑︁

1≤|𝑛|≤𝑁

𝑒2𝜋𝑖𝑓(𝑛)

𝑛
, 𝑁 ≥ 1.

Используя метод Виноградова оценок тригонометрических сумм [1], Г.И.Архипов и
К.И.Осколков [2] доказали следующее утверждение о равномерной ограниченности последо-
вательности симметричных частичных сумм ℎ𝑁 (𝑓).

Теорема А. Пусть 𝑘 ≥ 2 — фиксированное натуральное число. Тогда для ненулевого

многочлена 𝑓𝑘 ̸= 0 имеем

sup
𝑁≥1

sup
𝑓𝑘

|ℎ𝑁 (𝑓𝑘)| = 𝑔𝑘 <∞.

Более того, для каждого многочлена 𝑓 ̸= 0 последовательность ℎ𝑁 (𝑓) при 𝑁 → ∞ сходит-

ся, и сумма ряда ℎ(𝑓), рассматриваемая как предел симметричных частичных сумм ℎ𝑁 (𝑓),
ограничена всюду на множестве многочленов степени 𝑘.

В настоящей стаьее используются идеи и методы работ [1]-[13].

§1. Теорема Г.И.Архипова

Нам понадобятся следующие вспомогательные утверждения.
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Лемма 1. Пусть функция 𝑓(𝑥) имеет непрерывную производную на отрезке [𝑎, 𝑏] и пусть

𝐴(𝑥)=
∑︀

𝑎<𝑛≤𝑥 𝛼𝑛. Тогда при любом 𝑥 ∈ [𝑎, 𝑏] имеем

∑︁
𝑎<𝑛≤𝑥

𝛼𝑛𝑓(𝑛) = 𝐴(𝑥)𝑓(𝑥)−
𝑥∫︁

𝑎

𝐴(𝑠)𝑓 ′(𝑠) 𝑑𝑠.

Лемма 2. Последовательность дробных частей {𝑥𝑛} равномерно распределена по модулю
единица тогда и только тогда, когда при любом целом числе 𝑚 ̸= 0 имеем

lim
𝑁→∞

𝑁−1
𝑁∑︁

𝑛=1

𝑒2𝜋𝑖𝑚𝑥𝑛 = 0.

Лемма 3. Пусть 𝑓(𝑥) в промежутке 𝑀 < 𝑥 ≤ 𝑀 ′ — вещественная дифференцируемая

функция, причем внутри промежутка ее прvоизводная 𝑓 ′(𝑥) монотонна и знакопостоянна и

при постоянном 𝛿 с условием 0 < 𝛿 < 1 удовлетворяет неравенству |𝑓 ′′(𝑥)| ≤ 𝛿. Тогда имеем

∑︁
𝑀<𝑥≤𝑀 ′

𝑒2𝜋𝑖𝑓(𝑥) =

𝑀 ′∫︁
𝑀

𝑒2𝜋𝑖𝑓(𝑥) 𝑑𝑥+ 𝜃

(︂
3 +

2𝛿

1− 𝛿

)︂
, |𝜃| ≤ 1.

Лемма 1 — формула Абеля суммирования значений гладкой функции по целым точкам
[14], лемма 2 — критерий Г.Вейля равномерного распределения последовательности веществен-
ных чисел по модулю единица [14], лемма 3 принадлежит ван дер Корпуту [1].

Пусть {𝑥} — дробная часть числа 𝑥. Тогда имеем {𝑥+ 1} = {𝑥}, 0 ≤ {𝑥} < 1.

Теорема. Пусть 𝑢 = 𝑢(𝑥, 𝑡) — обобщенное решение задачи Коши линеаризованного урав-

нения Кортевега – де Фриза вида

𝜕𝑢

𝜕𝑡
=
𝜕3𝑢

𝜕𝑥3
, 𝑢|𝑡=0 = {𝑥}. (1)

Тогда существует ограниченная и для всех иррациональных 𝑥 непрерывная по 𝑥 функция
𝑢(𝑥, 𝑡). Если же 𝑥 = 𝑝

𝑞 , (𝑝, 𝑞) = 1, то функция 𝑢(𝑥, 𝑡) имеет точки разрыва первого рода со

скачком 𝑏(𝑞) в количестве 𝑞 на периоде.

Доказательство. Данное уравнение является уравнением с разделенными переменными.
Представим его решение в виде 𝑢(𝑥, 𝑡) = 𝑋(𝑥)𝑇 (𝑡). Получим

𝑇 ′

𝑇
=
𝑋 ′′′

𝑋
= 𝜆,

где 𝜆 — постоянная разделения.

Отсюда находим 𝑢(𝑥, 𝑡) = 𝑒𝜆
3𝑡+𝜆𝑥. Из начального условия имеем

{𝑥} =
∑︁
𝑛

𝑒𝜆𝑛𝑥 =
∑︁
𝑛 ̸=0

1

2𝜋𝑖𝑛
𝑒2𝜋𝑖𝑛𝑥.

Следовательно, 𝑐𝑛 = 1
2𝜋𝑖𝑛 . Тогда решение в задаче Коши имеет вид

𝑢(𝑥, 𝑡) =
∑︁
𝑛̸=0

1

2𝜋𝑖𝑛
𝑒2𝜋𝑖(𝑛𝑥−𝑛3𝑡). (2)
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Докажем, что ряд (2) равномерно сходится в окрестности иррациональной точки 𝑥 при любом
фиксированном значении 𝑡. Воспользуемся критерием Коши. Для этого при 1 ≤ 𝑁 оценим
сумму

𝑇𝑁 (𝑥, 𝑡) =
∑︁

0<|𝑛|≤𝑁

𝑒2𝜋𝑖(𝑛𝑥−𝑛3𝑡)

исходя из критерия Г.Вейля (лемма 2) равномерного распределения по модулю 1 последова-
тельности значений дробных частей {𝑛𝑥− 𝑡𝑛3} при иррациональном значении 𝑥. При 𝑁 →∞
находим

𝑇𝑁 (𝑥, 𝑡) = 𝑜(𝑁).

Следовательно, при полуцелых 𝑀 и 𝑁 по формуле Абеля суммирования значений гладкой
функции по целым точкам имеем

|𝑢𝑀,𝑁 (𝑥, 𝑡)| =

⃒⃒⃒⃒
⃒⃒ ∑︁
𝑀<|𝑛|≤𝑁

1

2𝜋𝑖𝑛
𝑒2𝜋𝑖(𝑛𝑥−𝑛3𝑡)

⃒⃒⃒⃒
⃒⃒ ≤

≤ 1

2𝜋

⃒⃒⃒⃒
⃒⃒𝑇𝑁 (𝑥, 𝑡)

𝑁
−

𝑁∫︁
𝑀

𝑇𝑠(𝑥, 𝑡)

𝑠2
𝑑𝑠

⃒⃒⃒⃒
⃒⃒ = 𝑜(1).

Отсюда по критерию Коши следует сходимость ряда 𝑢(𝑥, 𝑡) при иррациональном 𝑥.
Пусть далее 𝑥 = 𝑝

𝑞 , (𝑝, 𝑞) = 1, — рациональное число. Рассмотрим решение 𝑢(𝑥, 𝑡) в окрест-

ности точки (𝑥, 𝑡) = (𝑝𝑞 ,
𝑝1
𝑞1

), (𝑝1, 𝑞1) = 1. Покажем, что в этой точке функция 𝑢(𝑥, 𝑡) имеет

разрыв первого рода. Для этого найдем предел при Δ𝑥 → 0 справа и слева к точке 𝑥 = 𝑝
𝑞 .

Получим

𝑢(𝑥+ Δ𝑥, 𝑡) = lim
𝑁→∞

∑︁
1≤|𝑛|≤𝑁

1

2𝜋𝑖𝑛
𝑒2𝜋𝑖(𝑛(𝑥+Δ𝑥)−𝑛3𝑡) =

= lim
𝑁→∞

∑︁
1≤𝑛≤𝑁

1

2𝜋𝑖𝑛

(︁
𝑒2𝜋𝑖(𝑛(𝑥+Δ𝑥)−𝑛3𝑡) − 𝑒−2𝜋𝑖(𝑛(𝑥+Δ𝑥)−𝑛3𝑡)

)︁
=

= lim
𝑁→∞

1

𝜋

⎛⎝𝑇𝑁 (𝑥+ Δ𝑥, 𝑡)

𝑁
−

𝑁∫︁
𝑀

𝑇𝑠(𝑥+ Δ𝑥, 𝑡)

𝑠2
𝑑𝑠

⎞⎠ ,

где

𝑇𝑠(𝑣, 𝑡) =
∑︁

0<𝑛≤𝑠

sin 2𝜋(𝑛𝑣 − 𝑛3𝑡).

Преобразуем сумму 𝑇𝑠(𝑥+Δ𝑥, 𝑡) в точке (𝑝𝑞 ,
𝑝1
𝑞 ), представляя 𝑛 ≤ 𝑠 в виде 𝑛 = 𝑞𝑚+𝑙, 1 ≤ 𝑙 ≤ 𝑞,

(1− 𝑙)𝑞−1 ≤ 𝑚 ≤ (𝑠− 𝑙)𝑞−1. Находим

𝑇𝑠(𝑥+ Δ𝑥, 𝑡) =

𝑞∑︁
𝑙=1

∑︁
(−𝑙)𝑞−1≤𝑚≤(𝑠−𝑙)𝑞−1

sin 2𝜋

(︂
𝑝𝑙 − 𝑝1𝑙3

𝑞
+ (𝑞𝑚+ 𝑙)Δ𝑥

)︂
=

=

𝑞∑︁
𝑙=1

sin

(︂
2𝜋
𝑝𝑙 − 𝑝1𝑙3

𝑞

)︂ ∑︁
(−𝑙)𝑞−1≤𝑚≤(𝑠−𝑙)𝑞−1

cos (2𝜋Δ𝑥(𝑞𝑚+ 𝑙)) +

+

𝑞∑︁
𝑙=1

cos

(︂
2𝜋
𝑝𝑙 − 𝑝1𝑙3

𝑞

)︂ ∑︁
(−𝑙)𝑞−1≤𝑚≤(𝑠−𝑙)𝑞−1

sin (2𝜋Δ𝑥(𝑞𝑚+ 𝑙)) +𝑂(𝑞).
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Отсюда по лемме 3 имеем

𝑇𝑠(𝑥+ Δ𝑥, 𝑡) =
𝑠

𝑞

𝑞∑︁
𝑙=1

sin

(︂
2𝜋
𝑝𝑙 − 𝑝1𝑙3

𝑞

)︂ 1∫︁
0

cos (2𝜋𝑦Δ𝑥) 𝑑𝑦+

+
𝑠

𝑞

𝑞∑︁
𝑙=1

cos

(︂
2𝜋
𝑝𝑙 − 𝑝1𝑙3

𝑞

)︂ 1∫︁
0

sin (2𝜋𝑦Δ𝑥) 𝑑𝑦 +𝑂(𝑞) =

= −𝑠
𝑞

sin(2𝜋Δ𝑥)

2𝜋Δ𝑥

𝑞∑︁
𝑙=1

sin

(︂
2𝜋
𝑝𝑙 − 𝑝1𝑙3

𝑞

)︂
−

−𝑠
𝑞

1− cos(2𝜋Δ𝑥)

2𝜋Δ𝑥

𝑞∑︁
𝑙=1

cos

(︂
2𝜋
𝑝𝑙 − 𝑝1𝑙3

𝑞

)︂
+𝑂(𝑞).

Поскольку
𝑞∑︁

𝑙=1

sin

(︂
2𝜋
𝑝𝑙 − 𝑝1𝑙3

𝑞

)︂
= 0,

получим

𝑇𝑠(𝑥+ Δ𝑥, 𝑡) = −𝑠
𝑞

sin2(𝜋Δ𝑥)

𝜋Δ𝑥

𝑞∑︁
𝑙=1

cos

(︂
2𝜋
𝑝𝑙 − 𝑝1𝑙3

𝑞

)︂
+𝑂(𝑞).

Далее
𝑞∑︁

𝑙=1

cos

(︂
2𝜋
𝑝𝑙 − 𝑝1𝑙3

𝑞

)︂
̸= 0,

следовательно,

lim
Δ𝑥→0−

𝑇𝑠

(︂
𝑝

𝑞
+ Δ𝑥,

𝑝1
𝑞

)︂
= − lim

Δ𝑥→0+
𝑇𝑠

(︂
𝑝

𝑞
+ Δ𝑥,

𝑝1
𝑞

)︂
т.е. левосторонний предел не равен правостороннему пределу и функция

𝑓(Δ𝑥) = 𝑇𝑠

(︂
𝑝

𝑞
+ Δ𝑥,

𝑝1
𝑞

)︂
имеет в рассматриваемой точке разрыв первого рода.

Теорема доказана.2

2. Заключение

После завершения доказательства утверждения теоремы приведем слова Л.Г. Архиповой
к 80-летию со дня рождения Г.И.Архипова. “Посвящается моему дорогому отцу, который ин-
тересовался всем на свете и знал всё обо всём, мог просто и понятно ответить на любые
вопросы. Любимым занятием для него всегда была математика, а теорию чисел он называл её
венцом. Всю жизнь он старался вовлечь в свою науку всех, с кем общался, и щедро раздавал
свои знания всем, кто был готов их принять, превращая математику в красивое и интересное
занятие”.
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