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Аннотация

В статье на классе K бесконечных двоичных последовательностей без 1-серий строит-
ся согласованное распределение вероятностей P, которое индуцируется однородной цепью
Маркова с матрицей перехода за один шаг P𝜑 , и полностью определяемой золотым сече-
нием 𝜑. Использование цепи Маркова при построении вероятностной меры P позволяет
применить теорему А.Н. Колмогорова о продолжении меры. Асимптотическое распреде-
ление подкласса K 0 бесконечных двоичных последовательностей без 1-серий, начинаю-
щихся с нуля, совпадает с аналогичным асимптотическим распределением классической
равновероятностной модели. При этом асимптотическое распределение данного класса K 0

совпадает с вероятностью P(K 0).
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Abstract

In the article, on the class K 0 of infinite binary sequences without the runs of ones, a
consistent probability distribution P is constructed which is induced by a time-homogeneous
Markov chain with a one-step transition matrix P𝜑 , and is completely determined by the
golden ratio 𝜑. Using a Markov chain to construct a probability measure P allows us to apply
Kolmogorov’s existence theorem. The asymptotic distribution of the subclass K 0 of infinite
binary sequences without the runs of ones starting with zero coincides with the analogous
asymptotic distribution of the classical equiprobable scheme . And in this case, the asymptotic
distribution of the class K 0 coincides with the probability P(K 0).
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1. Введение

Построение асимптотических распределений [1, стр. 82] в своём основании содержит за-
кон равномерного распределения. В силу чего используемые при таком построении семейства
распределений оказываются несогласованными. Что в свою очередь приводит к тому, что по-
лучаемые асимптотические распределения оказываются вероятностно не связаными с исход-
ными семействами распределений. Следующая фундаментальная теорема А.Н. Колмогорова
о продолжении вероятностной меры [2, стр. 67, 398] позволяет избежать этого.

Теорема 1. Задание на конечномерных пространствах K𝑛 согласованных распределений
P𝑛 определяет на измеримом пространстве (K ,F ) такую единственную вероятностную
меру P, что каждая P𝑛 есть проекция P на K𝑛.



Об одном применении теоремы А.Н. Колмогорова 205

В работе на конкретном примере показано, как с помощью теоремы А.Н. Колмогорова
вероятностно обосновывать построение асимптотических распределений. При этом само по-
строение согласованных распределений для применения данной теоремы опирается на теорию
цепей Маркова.

Так в статье на классе бесконечных двоичных последовательностей без 1-серий (нет двух
подряд идущих единиц) [3, 4, 5]

K = {𝑥 = (𝑥1, 𝑥2, . . . , 𝑥𝑛, . . .) : 𝑥𝑘 · 𝑥𝑘+1 ̸= 1} , 𝑥𝑘 ∈ {0, 1}

двумя разными наборами вероятностных мер: {̃︀P𝑛} и {P𝑛}, заданных на конечных подпро-
странствах

K𝑛 = {(𝑥1, 𝑥2, . . . , 𝑥𝑛) : 𝑥𝑘 · 𝑥𝑘+1 ̸= 1} ,

будет построено одно и тоже асимптотическое распределение вероятностей [6, 7, 8] появление
последовательности из множеств

K 0 = {𝑥 ∈ K : 𝑥1 = 0} , K 1 = {𝑥 ∈ K : 𝑥1 = 1} .

Первый тип распределений {̃︀P𝑛} определяется на основе равновероятностной модели. Для
его построения на каждом конечном пространстве K𝑛 в качестве вероятностного закона бе-
рётся равномерное распределение ̃︀P𝑛, то есть вероятности ̃︀P𝑛 (𝑥1, 𝑥2, . . . , 𝑥𝑛) появления любой
последовательности (𝑥1, 𝑥2, . . . , 𝑥𝑛) из K𝑛 при фиксированном 𝑛 берутся равными между со-
бой. Данные распределения {̃︀P𝑛} в силу равномерного закона распределения оказываются
несогласованными (см. далее п. 2.2). Поэтому их предельное распределение на K оказывает-
ся вероятностно не связанным с ними.

Построение второго семейства распределений {P𝑛}, доставляющего такое же асимптоти-
ческое распределение, что и семейство {̃︀P𝑛}, как уже говорилось выше, опирается на теорему
А.Н. Колмогорова (см., также [7, стр. 204] и [9, стр. 110]) и задаётся с помощью однородной
цепи Маркова [10].

Таким образом, данное распределение {P𝑛} гарантирует существование на множестве всех
двоичных последовательностей бесконечной длины с носителем K вероятностной меры P,
которая соответствует асимптотическому распределению. В силу чего асимптотическое рас-
пределение равновероятностных мер ̃︀P𝑛 приобретает в ней законное с вероятностной точки
зрения основание. Значение энтропии такой цепи Маркова, как будет показано ниже, наи-
более близко к энтропии равновероятностной модели. Кроме того, построеная в работе цепь
Маркова может быть задана достаточно простым способом, описанным в теореме 4.

2. Основные определения и понятия

2.1. Множество последовательностей без 1-серий

Поскольку носитель K рассматриваемых далее распределений есть множество последо-
вательностей без 1-серий [3, 4], то вначале дадим их определения и рассмотрим основные
свойства и структуру данных множеств.

Обозначим при каждом натуральном 𝑛 ∈ N множество двоичных последовательностей
(цепочек, векторов) без 1-серий как и множество подобных последовательностей бесконечной
длины K .

В [5] доказывается, что

|K𝑛| = |(𝑥1, 𝑥2, . . . , 𝑥𝑛) : 𝑥𝑘 · 𝑥𝑘+1 ̸= 1} | = 𝐹𝑛+2 ,
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где 𝐹𝑛 – числа Фибоначчи, которые можно определить рекуррентно [5, 11] как

𝐹𝑛+2 = 𝐹𝑛+1 + 𝐹𝑛 , 𝐹1 = 𝐹2 = 1 .

Множества K𝑛 распадаются на два подкласса

K 0
𝑛 = {𝑥 ∈ K𝑛 : 𝑥𝑘𝑥𝑘+1 ̸= 1 , 𝑥1 = 0} , K 1

𝑛 = {𝑥 ∈ K𝑛 : 𝑥𝑘𝑥𝑘+1 ̸= 1 , 𝑥1 = 1} ,

а множество K соответственно на

K 0 = {𝑥 ∈ K : 𝑥1 = 0} , K 1 = {𝑥 ∈ K : 𝑥1 = 1} .

Мощности множеств K 0
𝑛 , K

1
𝑛 , также как и мощность K𝑛, выражаются (см. доказательство

в [5]) через соответствующие числа Фибоначчи:⃒⃒
K 0

𝑛

⃒⃒
= 𝐹𝑛+1 ,

⃒⃒
K 1

𝑛

⃒⃒
= 𝐹𝑛 .

В силу существования предела

lim
𝑛→∞

𝐹𝑛+1

𝐹𝑛
= 𝜑 (1)

соотношение между числом элементов в данных двух поклассах K𝑛 с ростом 𝑛 асимптотиче-
ски [12, стр. 72] сохраняется: ⃒⃒

K 0
𝑛

⃒⃒
|K 1

𝑛 |
∼ 𝜑 =

1 +
√

5

2
. (2)

Здесь 𝜑 – золотое сечение или число Фидия [11].

Нам так же понадобится разложение каждого из множеств K 0
𝑛 , K 1

𝑛 на части:

K 0
𝑛 = K 00

𝑛

⨆︁
K 01

𝑛 , K 1
𝑛 = K 10

𝑛

⨆︁
K 11

𝑛 ,

где

K 00
𝑛 = {𝑥 ∈ K𝑛 : 𝑥1 = 0 , 𝑥𝑛 = 0} , K 01

𝑛 = {𝑥 ∈ K𝑛 : 𝑥1 = 0 , 𝑥𝑛 = 1} ,

K 10
𝑛 = {𝑥 ∈ K𝑛 : 𝑥1 = 1 , 𝑥𝑛 = 0} , K 11

𝑛 = {𝑥 ∈ K𝑛 : 𝑥1 = 1 , 𝑥𝑛 = 1} .

Мощности классов K 𝑖𝑗
𝑛 , как и раньше мощности классов K 𝑖

𝑛 , будут выражаться через числа
Фибоначчи: ⃒⃒

K 00
𝑛

⃒⃒
= 𝐹𝑛 ,

⃒⃒
K 10

𝑛

⃒⃒
= 𝐹𝑛−1 ,

⃒⃒
K 01

𝑛

⃒⃒
= 𝐹𝑛−1 ,

⃒⃒
K 11

𝑛

⃒⃒
= 𝐹𝑛−2 ,

и ⃒⃒
K 00

𝑛

⃒⃒
+
⃒⃒
K 10

𝑛

⃒⃒
=
⃒⃒
K 0

𝑛

⃒⃒
,
⃒⃒
K 01

𝑛

⃒⃒
+
⃒⃒
K 11

𝑛

⃒⃒
=
⃒⃒
K 1

𝑛

⃒⃒
.

В связи с таким разбиением также возникает класс векторов

̃︁K 0
𝑛 = {𝑥 ∈ K𝑛 : 𝑥𝑛 = 0} = K 00

𝑛

⨆︁
K 10

𝑛 ,

которые заканчиваются единицей, и класс векторов

̃︁K 1
𝑛 = {𝑥 ∈ K𝑛 : 𝑥𝑛 = 1} = K 11

𝑛

⨆︁
K 01

𝑛 ,

которые заканчиваются нулём.
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2.2. Вероятностные пространства

Положим в качестве пространства элементарных событий (исходов) Ω множество всех
бесконечных последовательностей без 1-серий, то есть Ω = K . Элементарными событиями
данного пространства будут двоичные последовательности без 1-серий 𝑥 = (𝑥1, 𝑥2, . . .) . С
пространством Ω связаны конечномерные пространства элементарных исходов Ω𝑛 = K𝑛 .

Кроме пространств элементарных событий Ω𝑛 определим алгебры событий ℱ𝑛 = 2Ω𝑛 как
множества всех подмножеств соответствующих пространств элементарных событий. В силу
конечности Ω𝑛 будут конечны и ℱ𝑛, поскольку |ℱ𝑛| = 2|Ω𝑛|.

Вероятность P𝑛 (𝐴) для любого события (подмножества последовательностей) 𝐴 ∈ ℱ𝑛 суть
аддитивная, неотрицательная и нормированная функция событий (множеств). Её можно за-
давать разными способами. В нашем случае в силу конечности пространств Ω𝑛 для полного
описания вероятностной меры P𝑛 на Ω𝑛 достаточно определить P𝑛 на множестве элементар-
ных событий, то есть на множестве двоичных последовательностей (цепочек) из Ω𝑛

𝑥𝑛 = (𝑥1, 𝑥2, . . . , 𝑥𝑛) ,

приписав каждой такой последовательности вероятность её появления:

P𝑛 (𝑥1, 𝑥2, . . . , 𝑥𝑛) := 𝑃𝑛 (𝑥1, 𝑥2, . . . , 𝑥𝑛) .

Тогда любая вероятностная мера P𝑛 полностью описывается [2, стр. 33] таким конеч-
ным набором вероятностей и для произвольного события 𝐴 ∈ ℱ𝑛 вероятность P𝑛 (𝐴) может
быть представлена в виде суммы соответствующих ей значений 𝑃𝑛 (𝑥1, 𝑥2, . . . , 𝑥𝑛) вероятно-
стей P𝑛 (𝑥1, 𝑥2, . . . , 𝑥𝑛) :

P𝑛 (𝐴) =
∑︁

(𝑥1,𝑥2,...,𝑥𝑛)∈𝐴

𝑃𝑛 (𝑥1, 𝑥2, . . . , 𝑥𝑛) .

В общем случае в силу несчётности K возникает вопрос о задании на ℱ вероятностной
меры P. Для его решения, как уже говорилось выше, удобно использовать фундаменталь-
ную теорему А.Н. Колмогорова о продолжении вероятностной меры, в формулировке которой
используется понятие согласованности вероятностных мер. Для полного описания данной тео-
ремы кратко напомним основные моменты, связанные с этим понятием.

Говорят, что распределения P𝑛 на (Ω𝑛,ℱ𝑛) и P𝑚 на (Ω𝑚,ℱ𝑚) согласованы, если две меры
P*
𝑛 и P*

𝑚, индуцированые на пересечении Ω𝑛 ·Ω𝑚 соответственно мерами P𝑛 и P𝑚, на данном
пересечении совпадают.

В последнем определении без ограничения общности можно считать, что 𝑚 < 𝑛. Тогда
в рассматриваемом нами случае в силу определения Ω𝑛 и Ω𝑚 имеем Ω𝑚 = Ω𝑛 · Ω𝑚. Таким
образом, согласованность P𝑛 и P𝑚 означает, что P𝑛 (𝐴) = P𝑚 (𝐴) при всех 𝐴 ∈ ℱ𝑚. В этом
случае говорят, что вероятностная мера P𝑚 является проекцией меры P𝑛.

Совпадение P𝑛 (𝐴) = P𝑚 (𝐴) при всех 𝐴 ∈ ℱ𝑚 в нашем дискретном случае может быть
заменено выполнением следующих равенств для всех (𝑥1, 𝑥2, . . . , 𝑥𝑚) ∈ K𝑚

P𝑚 (𝑥1, 𝑥2, . . . , 𝑥𝑚) =
∑︁

P𝑛 (𝑥1, 𝑥2, . . . , 𝑥𝑚, 𝑥𝑚+1, . . . , 𝑥𝑛) ,

в которых суммирование ведётся по всевозможным наборам (𝑥1, 𝑥2, . . . , 𝑥𝑚, 𝑥𝑚+1, . . . , 𝑥𝑛) из
K𝑛 таким, что начало вектора (𝑥1, 𝑥2, . . . , 𝑥𝑚) фиксировано.

Система таких согласованных распределений и используется в формулировке теоремы
Колмогорова [2, стр. 67, 398].
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3. Частотная модель распределения конечного набора векторов

3.1. Построение частотной модели как равномерного равномерного распре-
деления

На множестве всех последовательностей K𝑛 рассмотрим вероятности попадания произ-
вольной цепочки (𝑥1, 𝑥2, . . . , 𝑥𝑛) в множества K 0

𝑛 и K 1
𝑛 в предположении о том, что появление

любой последовательности из K𝑛 равновозможно. Поскольку количество таких цепочек, как
мы уже указывали выше, равно 𝐹𝑛+2, то вероятности их появления одинаковы и определяется
формулой ̃︀P𝑛 (𝑥1, 𝑥2, . . . , 𝑥𝑛) =

1

𝐹𝑛+2
.

В этом случае говорят, что на K𝑛 задано равномерное распределение ̃︀P𝑛, а вероятности попа-
дания произвольной цепочки (𝑥1, 𝑥2, . . . , 𝑥𝑛) в множества K 0

𝑛 и K 1
𝑛 находятся как отношения

мощностей соответствующих множеств:

̃︀P𝑛

{︀
(𝑥1, 𝑥2, . . . , 𝑥𝑛) ∈ K 0

𝑛

}︀
=

⃒⃒
K 0

𝑛

⃒⃒
|K𝑛|

=
𝐹𝑛+1

𝐹𝑛+2
, (3)

̃︀P𝑛

{︀
(𝑥1, 𝑥2, . . . , 𝑥𝑛) ∈ K 1

𝑛

}︀
=

⃒⃒
K 1

𝑛

⃒⃒
|K𝑛|

=
𝐹𝑛

𝐹𝑛+2
, (4)

то есть для их определения используется классическое определение вероятностей.

3.2. Определение асимптотического распределения в рамках частотной мо-
дели

При классическом определении вероятностей ̃︀P𝑛 асимптотическое распределение находит-
ся как обычные пределы отношения вероятностей (3) и (4):

lim
𝑛→+∞

̃︀P𝑛

(︀
𝑥𝑛 ∈ K 0

𝑛

)︀
= lim

𝑛→+∞

𝐹𝑛+1

𝐹𝑛+2
=

1

𝜑
, lim

𝑛→+∞
̃︀P𝑛

(︀
𝑥𝑛 ∈ K 1

𝑛

)︀
= lim

𝑛→+∞

𝐹𝑛

𝐹𝑛+2
=

1

𝜑2
, (5)

где 𝑥𝑛 = (𝑥1, 𝑥2, . . . , 𝑥𝑛) ∈ K𝑛.

Значениям пределов (5) часто сопоставляются вероятностям попадания последовательно-
сти 𝑥=(𝑥1, 𝑥2, . . . ,
𝑥𝑛, . . .) ∈ K в множества K 0 и K 1соответственно , то есть в соответствии с (5) на данных
двух множествах определяется вероятностная мера ̃︀P так, чтобы попаданию произвольной
цепочки 𝑥 в множества K 0 и K 1 соответствовали вероятности

̃︀P{︀(𝑥1, 𝑥2, . . . , 𝑥𝑛,...) ∈ K 0
}︀

:=
1

𝜑
, (6)

̃︀P{︀(𝑥1, 𝑥2, . . . , 𝑥𝑛,...) ∈ K 1
}︀

:=
1

𝜑2
. (7)

В силу справедливости равенств 𝐹𝑛+2 = 𝐹𝑛+1 + 𝐹𝑛 и свойств предела вектор

𝑞⃗ = (𝑞0, 𝑞1) =

(︂
1

𝜑
,

1

𝜑2

)︂
(8)

является стохастическим. Это также следует из известного для золотого сечения [11, стр. 24]
равенства 𝜑2 = 1 + 𝜑.
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3.3. Несогласованность распределений в рамках частотной модели

Сопоставление вектора 𝑞⃗ = (𝑞0, 𝑞1) вероятностям попадания в множества K 0 и K 1 с веро-
ятностной точки зрения носит условный характер. Это можно объяснить тем, что распределе-
ния ̃︀P𝑛 , 𝑛 ∈ N не согласованы, то есть не удовлетворяют теореме Колмогорова о продолжении
меры (см. выше теорему 2). В связи с этим они не позволяют определить на K согласованную
с ними вероятность ̃︀P так, чтобы выполнялись равенства ̃︀P{︀(𝑥1, 𝑥2, . . . , 𝑥𝑛, . . .) ∈ K 0

}︀
= 𝜑−1

и ̃︀P{︀(𝑥1, 𝑥2, . . . , 𝑥𝑛, . . .) ∈ K 1
}︀

= 𝜑−2.

Для дальнейших рассуждений отметим, что в предельном случае (8) отношение асимп-
тотических вероятностей 𝑞0 и 𝑞1 в точности равно 𝜑, в то время как согласно (1) отношение
вероятностей (3) и (4)

̃︀P𝑛

{︀
(𝑥1, 𝑥2, . . . , 𝑥𝑛) ∈ K 0

𝑛

}︀
̃︀P𝑛 {(𝑥1, 𝑥2, . . . , 𝑥𝑛) ∈ K 1

𝑛 }
=

⃒⃒
K 0

𝑛

⃒⃒
|K 1

𝑛 |
=
𝐹𝑛+1

𝐹𝑛
∼ 𝜑 (9)

зависит от 𝑛 (длины вектора) и только стремится к 𝜑 с ростом 𝑛.

4. Марковская модель как метод построения согласованных рас-

пределений

Для построения согласованных распределений будем использовать цепь Маркова.

4.1. Построение распределения вероятностей как цепи Маркова

Цепь Маркова или иначе модель испытаний, связанных в цепь Маркова можно полно-
стью определить (подробнее см. [7, стр. 140]), задав вероятности P𝑛 на всех двоичных последо-
вательностях (𝑥1, 𝑥2, . . . , 𝑥𝑛) из K𝑛 по формуле (в ней нижнии индексы вероятностей перехода
и составляют «цепь», последовательно «зацепляясь друг за друга»)

P𝑛 (𝑥1, 𝑥2, . . . , 𝑥𝑛) := 𝑞𝑥1 · 𝑝𝑥1𝑥2 · 𝑝𝑥2𝑥3 · . . . · 𝑝𝑥𝑛−1𝑥𝑛 , (10)

в которой вероятности перехода 𝑝𝑥𝑘𝑥𝑘+1
от числа 𝑥𝑘 к числу 𝑥𝑘+1 в силу того, что 𝑥𝑘 ∈ {0, 1},

имеют всего четыре значения: 𝑝00, 𝑝01, 𝑝11, 𝑝10 , а вероятности 𝑞𝑥1 появления первого зна-
чения 𝑥1 в последовательности (𝑥1, 𝑥2, . . . , 𝑥𝑛) только два: 𝑞0, 𝑞1. Значения 𝑝00, 𝑝01, 𝑝11, 𝑝10
записанные в виде матрицы

P =

(︂
𝑝00 𝑝01
𝑝10 𝑝11

)︂
составляют матрицу перехода однородной цепи Маркова за один шаг [7, 2], а значения 𝑞0,
𝑞1, записанные в виде стохастического вектора 𝑞⃗ = (𝑞0, 𝑞1) — начальное распределение цепи
Маркова.

Цепь Маркова полностью определяется своей матрицей перехода и своим начальным рас-
пределением. В контексте нашей задачи цепь Маркова используется как способ задания рас-
пределений P𝑛 с помощью формулы (10).

Семейство распределений {P𝑛}, построенное по правилу (10), является согласованным.
Поэтому согласно теореме Колмогорова на множестве бесконечных бинарных последователь-
ностей K оно определяет некоторое распределение P.
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4.2. Условие совпадения асимптотических распределений

Найдём среди множества согласованных семейств распределений вида (10) те, которые
индуцируют на K меру P так, чтобы вероятности множеств K 0 и K 1 совпадали бы со зна-
чениями вероятностей (6) и (7) асимптотического распределения ̃︀P из классической частотной
модели, то есть так, чтобы гарантировать для P выполнение равенств

P
{︀

(𝑥1, 𝑥2, . . . , 𝑥𝑛,...) ∈ K 0
}︀

=
1

𝜑
, (11)

P
{︀

(𝑥1, 𝑥2, . . . , 𝑥𝑛,...) ∈ K 1
}︀

=
1

𝜑2
(12)

и, следовательно, соотношения

P
{︀

(𝑥1, 𝑥2, . . . , 𝑥𝑛,...) ∈ K 0
}︀

P {(𝑥1, 𝑥2, . . . , 𝑥𝑛,...) ∈ K 1}
= 𝜑 .

Аналогичные требования наложим и на сами вероятностные меры P𝑛:

P𝑛

{︀
(𝑥1, 𝑥2, . . . , 𝑥𝑛) ∈ K 0

𝑛

}︀
=

1

𝜑
, (13)

P𝑛

{︀
(𝑥1, 𝑥2, . . . , 𝑥𝑛) ∈ K 1

𝑛

}︀
=

1

𝜑2
. (14)

Таким образом, построеные распределения P𝑛 будут не просто гарантировать существова-
ние на пространстве бесконечных последовательностей распределения P со свойствами (11) и
(12), но и при каждом натуральном 𝑛 сами будут обладать подобными свойствами (13) и (14).
Такое свойство данных распределений, в частности позволяет заменять при статистических
исследованиях распределение P на P𝑛 при любом натуральном 𝑛.

Обратим внимание на то, что асимптотическое распределение в смысле равенств (6) и (7)
не совпадает с предельным распределением цепи Маркова [13, стр. 118] как численно так и по
определению. Изучение связи между ними требует отдельного рассмотрения.

Оказывается, что за численные значения асимптотического распределения цепи Маркова в
рассматриваемой нами задаче отвечает только её начальное распределение. При этом матрица
переходных вероятностей может быть любой из класса матриц вида

P𝛼 =

(︂
1− 𝛼 𝛼

1 0

)︂
, (15)

где 0 < 𝛼 < 1. Обозначим класс распределений вероятностей, определяемых матрицами вида
P𝛼, 0 < 𝛼 < 1, через P.

Лемма 1. Распределение вероятностей цепи Маркова, порождаемое матрицей (15) и
начальным вектором 𝑞⃗ =

(︀
𝜑−1, 𝜑−2

)︀
, определяет на множестве K распределение P, для

которого выполнены равенства (11) и (12).

Доказательство. 1. По построению 𝑞⃗ =
(︀
𝜑−1, 𝜑−2

)︀
есть начальное распределение цепи, то

есть 𝜑−1 – это вероятность появления на первом месте последовательности (𝑥1, 𝑥2, . . . , 𝑥𝑛, . . .)
нуля, а 𝜑−2 – вероятность появления единицы. Поэтому равенства (11) и (12) верны, как
вероятности появления на первом месте нуля и единицы соответственно. Их можно рассмат-
ривать как вероятностные меры одномерных цилиндров (одномерных цилиндрических мно-
жеств) (0, 𝑥2, . . . , 𝑥𝑛,...) и (1, 𝑥2, . . . , 𝑥𝑛,...).

2. Распределение цепи Маркова (10) порождаемое матрицей (15) будет иметь своим носите-
лем (множество, на котором оно невырождено) только такие последовательности, в которых
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никакие две единицы не стоят рядом, поскольку вероятность такого события определяется
элементом 𝑝11 = 0 матрицы P𝛼, то есть вероятность того, что две единицы стоят рядом рав-
на нулю. Из этого условия следует, что 𝑝10 = 1, то есть для любой последовательности из
носителя с вероятностью единица после 1 следует 0. Такие последовательности и составляют
множество K .

2

Аналогичное доказательство имеет подобная лемма и для пространств K𝑛 c распределе-
нием P𝑛.

Лемма 2. Распределение вероятностей цепи Маркова, порождаемое матрицей (15) и
начальным вектором 𝑞⃗ =

(︀
𝜑−1, 𝜑−2

)︀
, определяет на множестве K𝑛 распределение P𝑛, для

которого выполнены равенства (13) и (14).

4.3. Энтропия как условие близости цепи Маркова к статистической модели

Согласно результатам предыдущего пункта имеется бесконечно много распределений (мо-
делей), построенных с помощью цепей Маркова, асимптотические распределения которых
совпадают с асимптотическим распределением частотной модели. Как известно, частотная
модель описывается с помощью равномерного распределения и в теории вероятностей назы-
вается классической.

Среди всех моделей, построенных нами выше с помощью цепи Маркова, определим
наиболее близкую к классической частотной модели, аппелируя к понятию энтропии (см.
[14, 15, 16]). Поскольку самая большая энтропия соответствует равномерному распределе-
нию [2, стр. 295], то среди всех распределений из класса P, описываемого матрицами (15)
и начальным вектором (8), возьмём только то, которое имеет максимальную данном классе
распределений энтропию.

Поскольку "выравнивание" вероятностей приводит к увеличению энтропии, то не вызы-
вает удивления, что самой большой энтропией обладает равномерное распределение, посколь-
ку у него вероятности "выравнены" на всей области определения, то есть вероятности всех
цепочек из K равны. Ближайшей ступенью близости с точки зрения разбиения простран-
ства элементарных исходов (последовательностей) на классы (далее классы равномерности),
внутри которых элементарные исходы имеют одинаковые значения вероятностей, являются
распределения с двумя классами равномерности.

Ниже мы докажем, что модель с максимальной энтропией единствена, имеет ровно два
класса равномерности и может быть определена с помощью матрицы перехода (17), началь-
ного распределения (8), которое совпадает с асимптотическим распределением частотной мо-
дели.

Для описания энтропии кроме матрицы P введём матрицу переходных вероятностей цепи
Маркова за 𝑚 ∈ N0 шагов:

P(𝑚) :=
⃦⃦⃦
𝑝
(𝑚)
𝑖𝑗

⃦⃦⃦
.

Согласно определению P(0) := 𝐸, P(1) := P. Для таких матриц P(𝑚) однородных цепей Маркова
верно равенство P(𝑚) = P𝑚 .

В нашем случае путем подстановки соответствующих значений вероятностей в общую фор-

мулу [7, стр. 145] для цепей Маркова с двумя состояниями для P(𝑚)
𝛼 получается представление

P𝑚
𝛼 =

1

1 + 𝛼

(︂
1 𝛼
1 𝛼

)︂
+

(−𝛼)𝑚

1 + 𝛼

(︂
𝛼 −𝛼
−1 1

)︂
.

Из него следует, что если 0 < 𝛼 < 1, то при 𝑚 → +∞ существуют предельные вероятности
(см. [7, стр. 833] и [13, стр. 118])
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𝜋𝑗 := lim
𝑛→∞

𝑝
(𝑛)
𝑖𝑗 > 0 ,

такие, что

P𝑚 −→ 1
1+𝛼

(︂
1 𝛼
1 𝛼

)︂
=

(︂
𝜋⃗
𝜋⃗

)︂
,

где предельная матрица состоит из двух одинаковых стохастических векторов

𝜋 =
(︀

1
1+𝛼 ,

𝛼
1+𝛼

)︀
. (16)

В силу определения компонент вектор 𝜋 через определение предела последовательности чисел
вектор 𝜋 единственен. Поскольку при 0 < 𝛼 < 1 все финальные вероятности положительны,
то есть

𝜋 = (𝜋0, 𝜋1) > 0 ,

то любая цепь Маркова с такими параметрами эргодическая [7, стр. 811]. Напомним, что в
этом случае стохастический вектор 𝜋⃗ так же является стационарным (или инвариантным)
распределением [7, стр. 147, 809] однородной цепи Маркова, то есть он является левым соб-
ственным вектором матрицы переходных вероятностей P с собственным значением 𝜆 = 1:

𝑞⃗ (P− 𝐸) = 0 .

К тому же вектор 𝜋⃗ будет совпадать с предельным распределением цепи Маркова [10, стр. 117].
Каждому стохастическому вектору 𝑞⃗ = (1− 𝑞, 𝑞) сопоставим число 𝐻 (𝑞⃗), воспользовавшись
формулой

𝐻 (𝑞⃗) = − (1− 𝑞) log2 (1− 𝑞)− 𝑞 log2 (𝑞) ,

которое называется энтропией вектора 𝑞⃗ (при этом log2 (0) заменяется на 0).
Для эргодической цепи Маркова c P𝛼 вида (15) существует величина 𝐻∞ (P𝛼), называемая

предельной энтропией или энтропией цепи Маркова [15], которая определяется равенством

𝐻∞ (P𝛼) =

1∑︁
𝑘=0

𝜋𝑘𝐻
(︀
P(𝑘+1)

)︀
=

= 𝜋0 ·𝐻
(︀
P(1)

)︀
= −𝜋0 · ((1− 𝛼) log2 (1− 𝛼) + 𝛼 log2 (𝛼)) .

где P(𝑘+1) означает 𝑘-ю строку матрицы перехода P𝛼 вида (15).
Из определения следует, что предельная энтропия 𝐻∞ (P𝛼) при каждом фиксированном 𝛼

из интервала (0, 1) в силу эргодичности цепи Маркова не зависит от начального распределе-
ния 𝑞⃗ , и поэтому будет одинакова при фиксированной матрице P𝛼 и различных начальных
распределениях 𝑞⃗ = (𝑞0, 𝑞1).

4.4. Марковская модель с максимальной энтропией

Приведём доказательство того, что модель с максимальной энтропией и фиксированным
начальным распределением единственна, точнее верна следующая теорема.

Теорема 2. Максимум энтропии 𝐻∞ (P𝛼) из класса P достигается на цепи Маркова с
матрицей перехода за один шаг

P𝜑−2 =
1

2

(︂ √
5− 1 3−

√
5

2 0

)︂
=

(︂ 1
𝜑

1
𝜑2

1 0

)︂
(17)

и равен

𝐻𝜑 := 𝐻
(︀
𝜑−2

)︀
= log2 𝜑 ≈

25

36
.
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Доказательство. Поскольку, как указано выше, для каждого представителя рассматривае-
мого семейства цепей Маркова с P𝛼 существует 𝐻∞ (P𝛼), а стационарное распределение имеет
вид (16), то при 0 < 𝛼 < 1 для решения задачи нужно найти максимум функции

𝐻 (𝛼) := 𝐻∞ (P𝛼) = 𝜋0 · ℎ (𝛼) =

= −1− 𝛼
1 + 𝛼

log2 (1− 𝛼)− 𝛼

1 + 𝛼
log2 (𝛼) .

Её производная

𝐻 ′ (𝛼) =
2 log2 (1− 𝛼)− log2 (𝛼)

1 + 𝛼
.

Тогда равенство 𝐻 ′ (𝛼) = 0 возможно при

𝛼 = (1− 𝛼)2 , 1− 3𝛼+ 𝛼2 = 0 .

Откуда при таких соотношениях на 𝛼 в силу равенств

𝐻 (𝛼) =
𝛼− 1

1 + 𝛼
log2 (1− 𝛼)− 2𝛼

1 + 𝛼
log2 (1− 𝛼) =

= −
(︂

1− 𝛼
1 + 𝛼

+
2𝛼

1 + 𝛼

)︂
log2 (1− 𝛼) = − log2 (1− 𝛼)

следует, что

𝐻 (𝛼) = − log2 (1− 𝛼) .

Единственным положительным решением уравнения 𝐻 ′ (𝛼) = 0 является число

𝛼0 =
3−
√

5

2
= 1− 1

𝜑
,

где 𝜑 было определено выше формулой (2). Поэтому

𝐻 (𝛼0) = − log2 (1− 𝛼0) = log2 𝜑 ≈
25

36

и

𝐻𝜑 := max
𝛼

𝐻 (𝛼) = log2 𝜑 ≈ 0, 6942419 .

Данное значение соответствует цепи Маркова с матрицей перехода за один шаг

P =

(︂
1− 𝛼0 𝛼0

1
2 0

)︂
=

(︂ 1
𝜑 1− 1

𝜑
1
2 0

)︂
.

2

Найдём явное значение стационарного вектора для такой матрицы, проверив тем самым,
что асимптотическое распределение численно не совпадает с предельным распределением цепи
Маркова.

Лемма 3. Стационарный вектор цепи Маркова с матрицей P𝜑−2 равен

𝜋 =
(︁

𝜑√
5
, 𝜑−1√

5

)︁
=
(︁

𝜑2

1+𝜑2 ,
1

1+𝜑2

)︁
. (18)
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Доказательство. 1. Поскольку в рассматриваемом случае

𝜋 =
(︀

1
1+𝛼0

, 𝛼0
1+𝛼0

)︀
, 𝛼0 =

3−
√

5

2
= 1− 1

𝜑
,

то

𝛼0 = 1− 1

𝜑
= 1−

(︂
1− 1

𝜑2

)︂
=

1

𝜑2

и

𝜋 =
(︁

1
1+1/𝜑2 ,

1/𝜑2

1+1/𝜑2

)︁
=
(︁

𝜑2

1+𝜑2 ,
1

1+𝜑2

)︁
.

2. Иначе
1

1 + 𝛼0
=

1

1 + 3−
√
5

2

=
2

5−
√

5
=

=
5 +
√

5

10
=

√
5 + 1

2
√

5
=

𝜑√
5
.

Откуда

𝜋 =
(︁

𝜑√
5
, 𝜑−1√

5

)︁
=
(︁

5+
√
5

10 , 5−
√
5

10

)︁
=
(︁

1
2 + 1

2
√
5
, 1
2 −

1
2
√
5

)︁
.

2

Замечание 6. Согласно (18) при совпадении начального распределения 𝑞⃗ со стационар-
ным 𝜋 вероятность появления нуля в 𝜑2 раз больше появления единицы.

Замечание 7. Также при любом начальном распределении 𝑞⃗ согласно (18) асимптоти-
чески (при больших 𝑛) появления нуля в 𝜑2 раз больше появления единицы .

В качестве примера для сравнения укажем, что для цепи Маркова с матрицей перехода за
один шаг

P 1
2

=
1

2

(︂
1 1
2 0

)︂
,

то есть в случае, когда переход в состояния 1 или 0 после появления 0 равновероятностен,
соответствующее значение энтропии равно

𝐻2 := 𝐻∞

(︂
1

2

)︂
=

2

3
=

24

36
.

4.5. Построение распределения цепи Маркова через классы равномерности

Как уже говорилось выше, поскольку равномерную модель определяют как модель, у ко-
торой все исходы равноправны, то в этом смысле наиболее близкой к ней является модель,
у которой все исходы делятся на два класса, внутри которых все реализации равноправны
между собой. В рассматриваемой модели в общем случае таких равновероятностных классов
векторов оказывается не более четырёх. Четыре класса появляются при большинстве про-
извольных значений начального распределения цепи Маркова 𝑞⃗ = (𝑞0, 𝑞1). А при начальном
распределении 𝑞⃗ =

(︀
𝜑−1, 𝜑−2

)︀
таких классов всего два. Меньше для случая согласованных

распределений быть не может, поскольку тогда существует только один класс равнораспре-
делённых векторов, то есть цепь Маркова вырождается в равномерное на K распределение
(частотную модель), при котором в нашей задаче, как мы уже видели, исчезает свойство
согласованности распределений. Таким образом, построенная выше цепь Маркова является
наилучшей на K в смысле числа таких классов.
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Теорема 3. Распределение вероятностей цепи Маркова, порождаемое матрицей (17) и
начальным вектором 𝑞⃗ = (𝑞0, 𝑞1), разбивает множество K𝑛 на четыре класса K 𝑖𝑗

𝑛 , 𝑖, 𝑗 = 0, 1
равновероятностных векторов. При этом для 𝑥𝑛 = (𝑥1, 𝑥2, . . . , 𝑥𝑛) ∈ K 00

𝑛

P𝑛 (𝑥1, 𝑥2, . . . , 𝑥𝑛) = 𝑞0 ·
1

𝜑𝑛−1
,

для 𝑥𝑛 ∈ K 10
𝑛

P𝑛 (𝑥1, 𝑥2, . . . , 𝑥𝑛) = 𝑞1 ·
1

𝜑𝑛−2
,

для 𝑥𝑛 ∈ K 01
𝑛

P𝑛 (𝑥1, 𝑥2, . . . , 𝑥𝑛) = 𝑞0 ·
1

𝜑𝑛
,

для 𝑥𝑛 ∈ K 11
𝑛

P𝑛 (𝑥1, 𝑥2, . . . , 𝑥𝑛) = 𝑞1 ·
1

𝜑𝑛−1
.

Доказательство. 1. Равнораспределённость цепочек (𝑥1, 𝑥2, . . . , 𝑥𝑛) в каждом из четырёх
рассматриваемых классов докажем методом математической индукции опираясь на равенство
вероятностей появления в них подпоследовательностей 010 и 000. Вероятности появления под-
последовательностей 010 и 000 равны в силу справедливости следующих равенств:

𝑝01 · 𝑝10 =
1

𝜑2
· 1 =

1

𝜑
· 1

𝜑
= 𝑝00 · 𝑝00 , (19)

где вероятности 𝑝01, 𝑝10, 𝑝00 берутся из (17).
2. Если рассмотреть 𝑥𝑛 = (0, . . . , 0) ∈ K 00

𝑛 , то

P𝑛 (0, . . . , 0) = 𝑞𝑖1 · 𝑝𝑖1𝑖2 · 𝑝𝑖2𝑖3 · . . . · 𝑝𝑖𝑛−1𝑖𝑛 =

= 𝑞0 ·
1

𝜑
· 1

𝜑
· . . . · 1

𝜑
= 𝑞0 ·

1

𝜑𝑛−1
.

Возьмём вектор 𝑥𝑛 = (0, . . . , 0) ∈ K 00
𝑛 в качестве базы индукции для доказательства

равновероятности цепочек из класса K 00
𝑛 . Индукцию будем проводить по количеству единиц

в векторе. Предположим, что утверждение верно для любых векторов 𝑥𝑛(𝑘), содержащих
ровно 𝑘 единиц, из класса K 00

𝑛 .
Рассмотрим произвольный вектор 𝑥𝑛(𝑘+1) ∈ K 00

𝑛 , содержащий 𝑘+1 единицу. Пусть у него
первая единица стоит на 𝑗-ом месте. Рассмотрим вектор 𝑥𝑛(𝑘) ∈ K 00

𝑛 , у которого отсутствует
единица на 𝑗-ом месте, а все остальные позиции единиц совпадают с позициями единиц у
вектора 𝑥𝑛(𝑘 + 1) ∈ K 00

𝑛 . Тогда

P𝑛 (𝑥𝑛(𝑘 + 1)) = 𝑞𝑖1 · 𝑝𝑖1𝑖2 · . . . · 𝑝𝑖𝑗−1𝑖𝑗 · 𝑝𝑖𝑗𝑖𝑗+1 · . . . · 𝑝𝑖𝑛−1𝑖𝑛 =

= 𝑞0 · 𝑝𝑖1𝑖2 · . . . · 𝑝01 · 𝑝10 · . . . · 𝑝𝑖𝑛−1𝑖𝑛 =

= 𝑞0 · 𝑝𝑖1𝑖2 · . . . · 𝑝00 · 𝑝00 · . . . · 𝑝𝑖𝑛−1𝑖𝑛 =

= P𝑛 (𝑥𝑛(𝑘)) = 𝑞0 ·
1

𝜑𝑛−1
.

Таким образом, утверждение доказано для любого вектора 𝑥𝑛 из класса K 00
𝑛 .

3. Если теперь рассмотреть вектор 𝑥𝑛 = (1, 0, . . . , 0) ∈ K 10
𝑛 , содержащий ровно одну единицу,

то
P𝑛 (1, 0, . . . , 0) = 𝑞𝑖1 · 𝑝𝑖1𝑖2 · 𝑝𝑖2𝑖3 · . . . · 𝑝𝑖𝑛−1𝑖𝑛 =
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= 𝑞1 · 1 ·
1

𝜑
· . . . · 1

𝜑
= 𝑞1 ·

1

𝜑𝑛−2
.

Для вектора с одной единицей 𝑥𝑛 = (0, . . . , 0, 1) ∈ K 01
𝑛 имеем

P𝑛 (0, . . . , 0, 1) = 𝑞𝑖1 · 𝑝𝑖1𝑖2 · 𝑝𝑖2𝑖3 · . . . · 𝑝𝑖𝑛−1𝑖𝑛 =

= 𝑞0 ·
1

𝜑
· . . . · 1

𝜑2
= 𝑞0

1

𝜑𝑛
.

Для вектора 𝑥𝑛 = (1, 0, . . . , 0, 1) ∈ K 11
𝑛 ровно с двумя единицами

P𝑛 (1, 0, . . . , 0, 1) = 𝑞𝑖1 · 𝑝𝑖1𝑖2 · 𝑝𝑖2𝑖3 · . . . · 𝑝𝑖𝑛−1𝑖𝑛 =

= 𝑞1 · 1 ·
1

𝜑
· . . . · 1

𝜑2
=

1

𝜑𝑛−1
.

Доказательства совпадения значения вероятностей внитри одного данного класса векторов
для классов K 10

𝑛 , K 01
𝑛 , K 11

𝑛 проводим аналогично доказательству для класса K 00
𝑛 , толь-

ко в качестве базиса индукции нужно взять соответственно вектора (1, 0, . . . , 0), (0, . . . 0, 1),
(1, 0, . . . 0, 1).

2

Последняя теорема позволяет определить изучаемое нами распределение не матрицей (17)
и начальным распределением (8), а вероятностями появления только двух векторов из двух
классов равновероятностных подмножеств. Такой способ определения данного распределения
не требует никаких утверждений из теории цепей Маркова и достаточно лаконичен.

Теорема 4. Согласованные распределения вероятностей

P𝑛 (𝑥1, 𝑥2, . . . , 𝑥𝑛) =
1

𝜑𝑛
, (𝑥1, 𝑥2, . . . , 𝑥𝑛) ∈ ̃︁K 0

𝑛 ,

P𝑛 (𝑥1, 𝑥2, . . . , 𝑥𝑛) =
1

𝜑𝑛+1
, (𝑥1, 𝑥2, . . . , 𝑥𝑛) ∈ ̃︁K 1

𝑛

определяют на множестве K распределение P, для которого выполнены равенства (11) и
(12). Оно так же совпадает с распределением, порождаемым матрицей (17) и начальным
вектором 𝑞⃗ =

(︀
𝜑−1, 𝜑−2

)︀
.

Доказательство. Заметим, что в теореме 3 вероятности появления любой последователь-
ности из множеств K 00

𝑛 и K 10
𝑛 при 𝑞⃗ =

(︀
𝜑−1, 𝜑−2

)︀
совпадают: для 𝑥𝑛 = (𝑥1, 𝑥2, . . . , 𝑥𝑛) ∈ K 00

𝑛

P𝑛 (𝑥1, 𝑥2, . . . , 𝑥𝑛) = 𝑞0 ·
1

𝜑𝑛−1
=

1

𝜑𝑛
,

для 𝑥𝑛 = (𝑥1, 𝑥2, . . . , 𝑥𝑛) ∈ K 10
𝑛

P𝑛 (𝑥1, 𝑥2, . . . , 𝑥𝑛) = 𝑞1 ·
1

𝜑𝑛−2
=

1

𝜑𝑛
.

На этом основании их можно объединить в один равновероятностный класс:̃︁K 0
𝑛 = {𝑥𝑛 ∈ K𝑛 : 𝑥𝑛 = 0} = K 00

𝑛

⨆︁
K 10

𝑛 ,

мощность которого согласно формулам из пункта 2. равна 𝐹𝑛+1.
Аналогичная картина с множествами K 11

𝑛 и K 01
𝑛 . Поэтому определим множество

̃︁K 1
𝑛 = {𝑥𝑛 ∈ K𝑛 : 𝑥𝑛 = 1} = K 11

𝑛

⨆︁
K 01

𝑛 ,

мощность которого равна 𝐹𝑛, а вероятность появления вектора из него – 𝜑
−𝑛−1. 2
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4.6. Некоторые следствия

Одним из следствий доказанной выше теоремы 5 является следующее известное утвержде-
ние о числах Фибоначчи и золотом сечении. В рамках нашей задачи оно имеет вероятностный
смысл и вероятностное доказательство.

Следствие 1. Справедливо равенство

𝐹𝑛+1

𝜑𝑛
+

𝐹𝑛

𝜑𝑛+1
= 1 . (20)

Доказательство. Поскольку общее количество векторов из класса ̃︁K 0
𝑛 равно 𝐹𝑛+1, а ве-

роятность появления любого из них равна 𝜑−𝑛, произведение 𝐹𝑛+1 · 𝜑−𝑛 есть вероятность

появления любого вектора из класса ̃︁K 0
𝑛 .

Аналогично общее количество векторов из класса ̃︁K 1
𝑛 равно 𝐹𝑛, а вероятность появления

любого из них равна 𝜑−𝑛−1. Поэтому вероятность появления любого вектора из класса ̃︁K 1
𝑛

равна произведению 𝐹𝑛 · 𝜑−𝑛−1.

Сумма данных вероятностей равна единице, поскольку они составляют полную группу со-
бытий, и поэтому одно из данных событий появится обязательно. Данные рассуждения можно
записать как

𝐹𝑛+1 · 𝜑−𝑛 + 𝐹𝑛 · 𝜑−𝑛−1 = P𝑛

{︁
𝑥𝑛 ∈ ̃︁K 0

𝑛

}︁
+ P𝑛

{︁
𝑥𝑛 ∈ ̃︁K 1

𝑛

}︁
=

= P𝑛

{︁
𝑥𝑛 ∈ ̃︁K 0

𝑛 , 𝑥𝑛 ∈ ̃︁K 1
𝑛

}︁
= P𝑛

{︁
𝑥 ∈ ̃︁K𝑛

}︁
= 1 .

2

Замечание 8. Соотношение (20) соответствует известному представлению степени
числа 𝜑:

𝜑𝑛+1 = 𝐹𝑛 + 𝜑𝐹𝑛+1.

Следствием теоремы 4 является другое доказательство равенств (13) и (14), которое по-
казывает структуру сохранения асимптотических значений распределения при переходе от
векторов длины 𝑛− 1 к векторам длины 𝑛.

Следствие 2. Вероятности последовательностей из K 0
𝑛 (или K 1

𝑛 ) при любом фиксиро-
ванном 𝑛 ∈ N совпадают между собой и с вероятностями (6) (или (7)) асимптотического
распределения частотной модели.

Доказательство. Вероятности попадания произвольной цепочки в множества K 0
𝑛 и K 1

𝑛

можно легко найти исходя из теоремы 4:

P𝑛

{︀
(𝑥1, 𝑥2, . . . , 𝑥𝑛) ∈ K 0

𝑛

}︀
=
𝐹𝑛

𝜑𝑛
+
𝐹𝑛−1

𝜑𝑛+1
=
𝐹𝑛−1 + 𝜑𝐹𝑛

𝜑𝑛+1
=

𝜑𝑛

𝜑𝑛+1
=

1

𝜑
, (21)

P𝑛

{︀
(𝑥1, 𝑥2, . . . , 𝑥𝑛) ∈ K 1

𝑛

}︀
=
𝐹𝑛−1

𝜑𝑛
+
𝐹𝑛−2

𝜑𝑛+1
=
𝐹𝑛−2 + 𝜑𝐹𝑛−1

𝜑𝑛+1
=
𝜑𝑛−1

𝜑𝑛+1
=

1

𝜑2
. (22)

2

В заключение данного пункта отметим, что рассматриваемое нами распределение встреча-
ется в других задачах и обладает ещё рядом дополнительных свойств (см, например, работы
[17, стр. 111] и [18, стр. 348]), изучение которых выходят за рамки данной работы.
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5. Заключение

На примере последовательностей без 1-серий в статье показано, как строить множество
согласованных распределений, которые задаются с помощью однородной цепи Маркова. Эти
распределения строятся согласованными так, чтобы асимптотическое распределение вероят-
ностей (8) из классической частотной модели совпадало с аналогичным распределением пред-
ложенной модели, а само распределение было максимально близко к равномерному в смысле
близости энтропий.

Такой подход, благодаря выполнению теоремы А.Н. Колмогорова о продолжении меры,
позволяет использовать методы теории вероятностей при изучении свойств бесконечных по-
следовательностей без 1-серий в контексте множеств ̃︁K 0

𝑛 и ̃︁K 1
𝑛 , что даёт строгое математиче-

ское обоснование получаемым результатам, а кроме того позволяет применять вероятностные
методы при её дальнейшем исследовании, и математически обосновывают совпадение резуль-
татов для пространств статистических экспериментова в рамках предложенной марковской
модели.

Отметим, что стационарное распределение предложенной здесь цепи Маркова для обос-
нования асимптотического распределения равновероятностной модели появляется в качестве
предельного распределения в теореме А.О. Гельфонда [19] об остатках разложения чисел из
интервала (0, 1], если в ней в качестве основания разложения 𝜃 взять 𝜑.

Предложенный метод можно очевидным образом повторять в других подобных задачах
для изменения частотной модели на модель согласованных распределений.
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