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Abstract

A dialgebra is a vector space equipped with two binary operations 4 and
 satisfying the following axioms:

(D1) (zdy)dz=24(y=2),
(D2) (zdy)dz=ax4(yF 2),
(D3) (zkhy)dz=at (y-=2)
(D4) (zdy)Fz=at (yF 2)
(D5) (zFy)Fz=ak (y+ 2).

)

)

This notion was introduced by Loday while studying periodicity phenome-
na in algebraic K-theory. Leibniz algebras are a non-commutative variation of
Lie algebras and dialgebras are a variation of associative algebras. Recall that
any associative algebra gives rise to a Lie algebra by [z, y] = zy—yx. Dialgebras
are related to Leibniz algebras in a way similar to the relationship between
associative algebras and Lie algebras. A dialgebra is just a linear analog of
a dimonoid. If operations of a dimonoid coincide, the dimonoid becomes a
semigroup. So, dimonoids are a generalization of semigroups.

Pozhidaev and Kolesnikov considered the notion of a 0-dialgebra, that
is, a vector space equipped with two binary operations 4 and F satisfying
the axioms (D2) and (D4). This notion have relationships with Rota-Baxter
algebras, namely, the structure of Rota-Baxter algebras appearing on 0-dialge-
bras is known.

The notion of an associative 0-dialgebra, that is, a 0-dialgebra with two
binary operations 4 and I satisfying the axioms (D1) and (D5), is a linear
analog of the notion of a g-dimonoid. In order to obtain a g-dimonoid, we
should omit the axiom (D3) of inner associativity in the definition of a dimono-
id. Axioms of a dimonoid and of a g-dimonoid appear in defining identities of
trialgebras and of trioids introduced by Loday and Ronco.
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The class of all g-dimonoids forms a variety. In the paper of the second
author the structure of free g-dimonoids and free n-nilpotent g-dimonoids was
given. The class of all commutative g-dimonoids, that is, g-dimonoids with
commutative operations, forms a subvariety of the variety of g-dimonoids.
The free dimonoid in the variety of commutative dimonoids was constructed
in the paper of the first author.

In this paper we construct a free commutative g-dimonoid and describe the
least commutative congruence on a free g-dimonoid.

Keywords: dimonoid, g-dimonoid, commutative g-dimonoid, free commuta-
tive g-dimonoid, semigroup, congruence.
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AnHOTaIINSA

Jnasirebpoii Ha3bIBAETCSI BEKTOPHOE IIPOCTPAHCTBO, CHAOKEHHOE JIBYMsi OU-
HapHLIME OIE€PAIUSIMEA — U -, yIOBJIETBOPSIONIUMHI CJAEIYIONUM aKCHOMAaM:

(D1) (zxdy)dz=24(y=2),
(D2) (zdy)dz=x4(yF 2),
D3) (zky)dz=atF (y=2),
(D4) (xHdy)Fz=aF (yF 2),
(D5) (zFy)Fz=ak (y+ 2).

970 noHsiTHE OBLIO BBeJeHO JI013 BO Bpemsl ulydeHus: (peHOMEHa Mepuo-
JUIHOCTH B asrebpandeckoit K-teopun. Anredpst JleibamIa IBISTIOTCS HEKOM-
MyTaTuBHOI Bepcueit anredp Jlu, a quaaredpol — Bepcueli acCOIUATUBHBIX aJl-
re6op. HamomummMm, gto smrobast acconuaruBHas anredpa gaét aarebpy Jlu, ecan
HOJIOKUTE [z, Y] = zy — yx. Tnanrebpsl ces3anbl ¢ anrebpamu Jleitbanma ana-
JIOTUYTHO TOMY KaK CBSI3aHBI MEXK Ly CODOI acconnaTuBHbIE AreOphl U aareOpol
Jlu. [dunanrebpa sBiisieTcst JIMHEHHBIM aHAJIOTOM JUMOHOUIA. HKcju omeparun
JIMMOHOWJIA COBITQIAI0T, TO OH IPEBpAIlaeTcs B MOJyrpyIiny. Takum o6pasoM,
JIMMOHOUTHI 000DIIAIOT MOJIYTPYIIIIBL.



278 A. V. ZHUCHOK, YU. V. ZHUCHOK

Tloxxumaes n Komecunkop paccmorpenn mousitue 0-muanaredpbl, TO eCTh
BEKTOPHOI'O IIPOCTPAHCTBA, CHAOXKEHHOTO JBYMs OMHAPHBIMHU OMEPAIUAME
u F, yuaosiersopsirormumu akcnomam (D2) u (D4). Dro noHsiTue MMeeT CBsI3U
¢ anredbpamu Pora-Bakcrepa, a mMmenHo m3BecTHa CTpyKTypa aJyredbp Pora-
Bakcrepa, Bozuukaromux #a 0-auanredpax.

Ilongarue accormarusHoit 0-guayredpsl, To ectb 0-1ranredpsl ¢ AByMs Ou-
HAPHBIME OllepanusaMu 1 u b=, yosiaersopsiromumu akcuomam (D1) u (D5), sis-
JISIETCS JIMHEHHBIM aHAJIOIOM HMOHATHS g-AuMoHOua. st Toro, 4Tobb! moJry-
YUTH §-JUMOHOM/I, Mbl JIOJIZKHBI OILyCTUTH akcuomy (D3) BHyTpeHHeil accoru-
ATUBHOCTH B OTPEICTICHUN JUMOHOUIA. AKCHOMBI TUMOHOUIA U §-THMOHONIA
MOSIBJISTFOTCST B TOXK/IECTBAX TPUAJTEOD M TPUOUJIOB, BBeJIeHHBIX JIom» n Porko.

Kiracc Bcex g-mumonounoB obpasyer MHOroobpasue. CTpoeHne CBOOOIHBIX
g-JIUMOHOUJIOB U CBOOOJIHBIX 7-HUJIBIIOTEHTHBIX ¢-TUMOHOUIOB OBIIO OIUCAHO
B CTaThbe BTOPOro aBTopa. Kjacc Bcex KOMMYyTaTUBHBIX ¢-TMMOHOUJIOB, TO €CTh
g-JIMMOHOUJIOB ¢ KOMMYTATUBHBIMU OIEpaIusiMi, 00pa3yeT MoJMHOTroo0pa3ue
MHOTro00pasust g-auMoHon10B. CBOOOIHBIN JUMOHOU B MHOTOOOPA3UU KOM-
MYTaTUBHBIX JUMOHOUJIOB OBLJI IIOCTPOEH B CTATHE IIEPBOTO aBTOPA.

B sr10it cTaTbe MBI CTPOMM CBOOOIHDLIM KOMMYTATUBHBIN ¢-TMMOHOUI, a
TaK>Ke OIHMCHIBAEM HAMMEHBIIYI0 KOMMYTATHBHYIO KOHI'DYIHITHIO HA CBODO/I-
HOM ¢-JIUMOHOU/IE.

Karouesvie crosa: TUMOHOU, §-TUMOHOUJ, KOMMYTATUBHBIA ¢-TUMOHOU,
CBODOOJIHBINT KOMMYTATUBHBIN ¢-IUMOHOW/I, [TOJIYTPYIIA, KOHIDYIHITH.

Bbubauoepapun: 15 Hazpanmii.

2010 Mathematics Subject Classification: 08B20, 20M 10, 20M50, 17A30, 17A32.

1. Introduction and preliminaries

Pozhidaev [1] and Kolesnikov [2] considered the notion of a 0-dialgebra. This
notion have relationships with associative dialgebras [3-6] and Rota-Baxter algebras
[1]. The notion of an associative 0-dialgebra, that is, a O-dialgebra with two binary
associative operations, is a linear analog of the notion of a g-dimonoid. In order to
obtain a g-dimonoid, we should omit the axiom of inner associativity in the definition
of a dimonoid [7]. The class of all g-dimonoids forms a variety. Free g-dimonoids and
free n-nilpotent g-dimonoids were constructed in [8, 9] and [9], respectively. Axioms
of a g-dimonoid also appear in defining identities of trialgebras and of trioids [10-12].

The class of all commutative g-dimonoids, that is, g-dimonoids with commutative
operations, forms a subvariety of the variety of g-dimonoids. The free dimonoid in the
variety of commutative dimonoids was constructed in [13]. In this paper we construct
a free commutative g-dimonoid (Theorem 1) and describe the least commutative
congruence on a free g-dimonoid (Theorem 2).

To make the paper almost self-contained, we recall basic definitions that will be
used later.
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A nonempty set equipped with two binary operations 4 and F satisfying the
axioms (D1)—(D5) is called a dimonoid. For a general introduction and basic theory
see [3, 7, 14]. A nonempty set equipped with two binary operations 4 and F satisfying
the axioms (D1), (D2), (D4), (D5) is called a generalized dimonoid or simply
a g-dimonoid for short. It is obvious that any dimonoid is a g-dimonoid. Other
examples of g-dimonoids can be found in [3, 7-9, 13-15]. Independence of axioms of
a g-dimonoid follows from independence of axioms of a dimonoid [7].

If f: Dy — Dy is a homomorphism of g-dimonoids, then the corresponding
congruence on Dy will be denoted by Ay.

2. The main result

In this section we construct a free commutative g-dimonoid.

A g-dimonoid (D, ,F) will be called commutative, if both semigroups (D, ) and
(D,F) are commutative. A g-dimonoid which is free in the variety of commutative
g-dimonoids will be called a free commutative g-dimonoid.

Now we give a new example of a g-dimonoid. Let A be an arbitrary nonempty
set and A = {T|z € A}. For every © € A assume T = x and introduce a map
a=oy: AUA — A by the following rule:

_Jy. yeA,
ya_{g,yeA.

Let further S be an arbitrary semigroup. Define operations 4 and - on SU S by
a—b=(ang)(bag), at b= (aas)(bas)
for all a,b € SUS. Denote (SUS,H,F) by S,
LEMMA 1. 8@ s a g-dimonoid but not a dimonoid.

Proof. The proof follows by a routine verification. 0

Evidently, if S is commutative, then S® is a commutative g-dimonoid. If X is
a generating set for a semigroup S, then, obviously, S\ X is a g-subdimonoid of
S generated by X. Denote by FCgD(X) the g-dimonoid S\ X in which S is
the free commutative semigroup on X.

THEOREM 1. FCgD(X) is the free commutative g-dimonoid.

Proof. Show that FCgD(X) is free in the variety of commutative g-dimonoids.
Let (G, ,F') be an arbitrary commutative g-dimonoid, ¥ : X — G be an
arbitrary map and x;,y; € X, ¢ € {1,2,....,m},j € {1,2,...,n}. Define a map

£:FCgD(X) — (G,4,F) : w— w€, assuming
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wE = 1 . T, W= T1...Tpm, m > 1,
Tz F oL ), w=T@,,m > L

Further prove that £ is a homomorphism.
Let w,u € FCgD(X). In the case w = T1...T,, U = Y1...y, obtain

(wAweE=ayp 4 A zpp o+ A yap =

= (x4 A zpd) A (O F L ya) =
= (o o F yad) A (@ z) =
=Y F o F oy A (@ F L aa) =
= (@Y F o F r) A (o L y) =
=T1.. T - UY1---Yn& = W& - ué.
For w =712, u = y1...y, get
(waAwe =29+ A 2y 4 o+ Ay =
=t A yd) A (A A p) =
= (oA T yad) A (o F L F ze) =
= (e F o F ) A (A ) =
=T a4 (n )§:w§—| ué.
The remaining two cases are considered in a similar way. So, (w 4 u)¢ = wé 4 ué
for all w,u € FCgD(X).
Similarly, one can check that (w F u)é = wé F ué for all w,u € FCgD(X).
Consequently, ¢ is a homomorphism and FCgD(X) is the free commutative
g-dimonoid. 0
If N, is the additive semigroup of all positive integers, obviously, NJ(FO‘)\{T} is
the free commutative g-dimonoid of rank 1.
It is not difficult to see that the automorphism group of the free commutative
g-dimonoid FCgD(X) is isomorphic to the symmetric group on X and semigroups

of FCgD(X) are isomorphic.
We conclude this section with some additional property of g-dimonoids.

LEMMA 2. Operations of a g-dimonoid (D, -, F) with a commutative idempotent
operation | (respectively, =) coincide.

Proof. For all x,y, 2 € D we have
rhy=(@hy Aty =(@ky @4y =
=@Ady) Aty =@y Aedy) =z -y

according to the idempotency, the commutativity of - and the axioms (D1), (D2)
of a g-dimonoid. The case with the operation I is proved similarly. 0

From Lemma 2 it follows that there do not exist commutative g-dimonoids with
different idempotent operations.
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3. The least commutative congruence on a free
g-dimonoid

In this section we present the least commutative congruence on a free g-dimonoid.

If p is a congruence on a g-dimonoid (D, -, ) such that (D, -, F)/p is a commuta-
tive g-dimonoid, we say that p is a commutative congruence.

In our next result we need the following construction.

Let X be an arbitrary nonempty set and let w be an arbitrary word in the
alphabet X. The length of w will be denoted by I(w). Let further 7" be the free
monoid on the two-element set {a,b}, 6 € T be an empty word and * denotes the
operation on 7T'. By definition, [(#) = 0. For every u € T\{0} denote the last letter
of u by uM. Define operations 4 and + on T, assuming

g Hug = ug ka2 by = g x BT

for all uy,uy € T. The obtained algebra is denoted by TP(1).
Let F[X] be the free semigroup on X and

XT,(1) = {(w,u) € FIX] x T,(1) | {(w) — I(u) = 1}.
By Theorem 1 from [9] XT?(1) is the free g-dimonoid.

THEOREM 2. Let XTP(1) be the free g-dimonoid and FCgD(X) be the free
commutative g-dimonoid. A map

B:XTh(1) = FCgD(X) :

w  otherwise

(w,u) = (w,u)f = { W, u=b

is an epimorphism inducing the least commutative congruence on XTP(1).

Proof. Take arbitrary elements (wy,u1), (wy, us) € XTP(1). We have
((wi,u1) A (w2, u2))B = (wiwa, uy * al(u2)+1)5 =

= (w1, u1)B = (w2, uz) s,
((wl, ul) (’LUQ, 2)) (wlwg, Ug * bl(ul)—’—l)ﬁ =
= wiwy = (wy,u1)P = (we, usz)p.

Thus, [ is a homomorphism.

Let FC|[X] be the free commutative semigroup on X and w,x € FC[X], where
l(w) > 1land I(z) = 1. For elements w, w, z € FCgD(X) there exist elements (w, ua),
(w,ub), (x,0) € XTb(1), where u € T, such that

(w,ua)pf =w, (w,ub)f=w, (z,0)f=
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So, /3 is surjective. By Theorem 1 FCgD(X) is the free commutative g-dimonoid.
Then Apg is the least commutative congruence on XTP(1). O
Let a be an arbitrary fixed congruence on F[X]. Define a relation o’ on XT?(1)
by
(wy,uy)a’ (we, ug) € wy awsy
for all (wy,uy), (wo, us) € XTP(1).

It is not hard to prove the following lemma.

LEMMA 3. The relation o' is a congruence on the free g-dimonoid XT?(1).
Besides, operations of XTP(1)/a’ coincide.

From Lemma 3 we obtain

COROLLARY 1. If a is a diagonal of F[X], then XT?(1)/a’ is the free semigroup.

4. Conclusions

In this paper we consider g-dimonoids which are sets with two binary associative
operations satisfying additional axioms. Dimonoids in the sense of Loday are examp-
les of g-dimonoids. The main result of this paper is the construction of a free
commutative g-dimonoid. We also present the least commutative congruence on
a free g-dimonoid.
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