ЧЕБЫШЕВСКИЙ СБОРНИК Том 16 Выпуск 3 (2015)

УДК 512.57, 512.579

FREE COMMUTATIVE q-DIMONOIDS

A. V. Zhuchok, Yu. V. Zhuchok

Department of Algebra and System Analysis, Luhansk Taras Shevchenko National University, Gogol square, 1, Starobilsk, 92703, Ukraine e-mail: zhuchok a@mail.ru, yulia.mih@mail.ru

Abstract

A dialgebra is a vector space equipped with two binary operations \dashv and \vdash satisfying the following axioms:

(D1)
$$(x \dashv y) \dashv z = x \dashv (y \dashv z),$$

(D2)
$$(x \dashv y) \dashv z = x \dashv (y \vdash z),$$

(D3)
$$(x \vdash y) \dashv z = x \vdash (y \dashv z),$$

(D4)
$$(x \dashv y) \vdash z = x \vdash (y \vdash z),$$

(D5)
$$(x \vdash y) \vdash z = x \vdash (y \vdash z).$$

This notion was introduced by Loday while studying periodicity phenomena in algebraic K-theory. Leibniz algebras are a non-commutative variation of Lie algebras and dialgebras are a variation of associative algebras. Recall that any associative algebra gives rise to a Lie algebra by [x, y] = xy - yx. Dialgebras are related to Leibniz algebras in a way similar to the relationship between associative algebras and Lie algebras. A dialgebra is just a linear analog of a dimonoid. If operations of a dimonoid coincide, the dimonoid becomes a semigroup. So, dimonoids are a generalization of semigroups.

Pozhidaev and Kolesnikov considered the notion of a 0-dialgebra, that is, a vector space equipped with two binary operations \dashv and \vdash satisfying the axioms (D2) and (D4). This notion have relationships with Rota-Baxter algebras, namely, the structure of Rota-Baxter algebras appearing on 0-dialgebras is known.

The notion of an associative 0-dialgebra, that is, a 0-dialgebra with two binary operations \dashv and \vdash satisfying the axioms (D1) and (D5), is a linear analog of the notion of a g-dimonoid. In order to obtain a g-dimonoid, we should omit the axiom (D3) of inner associativity in the definition of a dimonoid. Axioms of a dimonoid and of a q-dimonoid appear in defining identities of trialgebras and of trioids introduced by Loday and Ronco.

The class of all g-dimonoids forms a variety. In the paper of the second author the structure of free g-dimonoids and free n-nilpotent g-dimonoids was given. The class of all commutative g-dimonoids, that is, g-dimonoids with commutative operations, forms a subvariety of the variety of g-dimonoids. The free dimonoid in the variety of commutative dimonoids was constructed in the paper of the first author.

In this paper we construct a free commutative g-dimonoid and describe the least commutative congruence on a free g-dimonoid.

Keywords: dimonoid, g-dimonoid, commutative g-dimonoid, free commutative g-dimonoid, semigroup, congruence.

Bibliography: 15 titles.

2010 Mathematics Subject Classification: 08B20, 20M10, 20M50, 17A30, 17A32.

СВОБОДНЫЕ КОММУТАТИВНЫЕ g-ДИМОНОИДЫ

Анатолий В. Жучок, Юлия В. Жучок

Кафедра алгебры и системного анализа, Луганский национальный университет имени Тараса Шевченко, площадь Гоголя, 1, Старобельск, 92703, Украина e-mail: zhuchok a@mail.ru, yulia.mih@mail.ru

Аннотация

Диалгеброй называется векторное пространство, снабжённое двумя бинарными операциями ⊢ и ⊢, удовлетворяющими следующим аксиомам:

(D1)
$$(x \dashv y) \dashv z = x \dashv (y \dashv z),$$

(D2)
$$(x \dashv y) \dashv z = x \dashv (y \vdash z),$$

(D3)
$$(x \vdash y) \dashv z = x \vdash (y \dashv z),$$

(D4)
$$(x \dashv y) \vdash z = x \vdash (y \vdash z),$$

(D5)
$$(x \vdash y) \vdash z = x \vdash (y \vdash z).$$

Это понятие было введено Лодэ во время изучения феномена периодичности в алгебраической K-теории. Алгебры Лейбница являются некоммутативной версией алгебр Ли, а диалгебры — версией ассоциативных алгебр. Напомним, что любая ассоциативная алгебра даёт алгебру Ли, если положить [x,y]=xy-yx. Диалгебры связаны с алгебрами Лейбница аналогично тому как связаны между собой ассоциативные алгебры и алгебры Ли. Диалгебра является линейным аналогом димоноида. Если операции димоноида совпадают, то он превращается в полугруппу. Таким образом, димоноиды обобщают полугруппы.

Пожидаев и Колесников рассмотрели понятие 0-диалгебры, то есть векторного пространства, снабжённого двумя бинарными операциями \dashv и \vdash , удовлетворяющими аксиомам (D2) и (D4). Это понятие имеет связи с алгебрами Рота-Бакстера, а именно известна структура алгебр Рота-Бакстера, возникающих на 0-диалгебрах.

Понятие ассоциативной 0-диалгебры, то есть 0-диалгебры с двумя бинарными операциями \exists и \vdash , удовлетворяющими аксиомам (D1) и (D5), является линейным аналогом понятия g-димоноида. Для того, чтобы получить g-димоноид, мы должны опустить аксиому (D3) внутренней ассоциативности в определении димоноида. Аксиомы димоноида и g-димоноида появляются в тождествах триалгебр и триоидов, введенных Лодэ и Ронко.

Класс всех g-димоноидов образует многообразие. Строение свободных g-димоноидов и свободных n-нильпотентных g-димоноидов было описано в статье второго автора. Класс всех коммутативных g-димоноидов, то есть g-димоноидов с коммутативными операциями, образует подмногообразие многообразия g-димоноидов. Свободный димоноид в многообразии коммутативных димоноидов был построен в статье первого автора.

В этой статье мы строим свободный коммутативный g-димоноид, а также описываем наименьшую коммутативную конгруэнцию на свободном g-димоноиде.

Kлючевые слова: димоноид, g-димоноид, коммутативный g-димоноид, свободный коммутативный g-димоноид, полугруппа, конгруэнция.

Библиография: 15 названий.

2010 Mathematics Subject Classification: 08B20, 20M10, 20M50, 17A30, 17A32.

1. Introduction and preliminaries

Pozhidaev [1] and Kolesnikov [2] considered the notion of a 0-dialgebra. This notion have relationships with associative dialgebras [3–6] and Rota-Baxter algebras [1]. The notion of an associative 0-dialgebra, that is, a 0-dialgebra with two binary associative operations, is a linear analog of the notion of a g-dimonoid. In order to obtain a g-dimonoid, we should omit the axiom of inner associativity in the definition of a dimonoid [7]. The class of all g-dimonoids forms a variety. Free g-dimonoids and free g-dimonoids were constructed in [8, 9] and [9], respectively. Axioms of a g-dimonoid also appear in defining identities of trialgebras and of trioids [10–12].

The class of all commutative g-dimonoids, that is, g-dimonoids with commutative operations, forms a subvariety of the variety of g-dimonoids. The free dimonoid in the variety of commutative dimonoids was constructed in [13]. In this paper we construct a free commutative g-dimonoid (Theorem 1) and describe the least commutative congruence on a free g-dimonoid (Theorem 2).

To make the paper almost self-contained, we recall basic definitions that will be used later.

A nonempty set equipped with two binary operations \dashv and \vdash satisfying the axioms (D1)–(D5) is called a dimonoid. For a general introduction and basic theory see [3, 7, 14]. A nonempty set equipped with two binary operations \dashv and \vdash satisfying the axioms (D1), (D2), (D4), (D5) is called a generalized dimonoid or simply a g-dimonoid for short. It is obvious that any dimonoid is a g-dimonoid. Other examples of g-dimonoids can be found in [3, 7–9, 13–15]. Independence of axioms of a g-dimonoid follows from independence of axioms of a dimonoid [7].

If $f: D_1 \to D_2$ is a homomorphism of g-dimonoids, then the corresponding congruence on D_1 will be denoted by Δ_f .

2. The main result

In this section we construct a free commutative g-dimonoid.

A g-dimonoid (D, \dashv, \vdash) will be called commutative, if both semigroups (D, \dashv) and (D, \vdash) are commutative. A g-dimonoid which is free in the variety of commutative g-dimonoids will be called a free commutative g-dimonoid.

Now we give a new example of a g-dimonoid. Let A be an arbitrary nonempty set and $\overline{A} = \{\overline{x} \mid x \in A\}$. For every $x \in A$ assume $\widetilde{\overline{x}} = x$ and introduce a map $\alpha = \alpha_A : A \cup \overline{A} \to A$ by the following rule:

$$y\alpha = \left\{ \begin{array}{l} y, \ y \in A, \\ \widetilde{y}, \ y \in \overline{A}. \end{array} \right.$$

Let further S be an arbitrary semigroup. Define operations \dashv and \vdash on $S \cup \overline{S}$ by

$$a \dashv b = (a\alpha_S)(b\alpha_S), \quad a \vdash b = \overline{(a\alpha_S)(b\alpha_S)}$$

for all $a, b \in S \cup \overline{S}$. Denote $(S \cup \overline{S}, \dashv, \vdash)$ by $S^{(\alpha)}$.

Lemma 1. $S^{(\alpha)}$ is a g-dimonoid but not a dimonoid.

Proof. The proof follows by a routine verification.

Evidently, if S is commutative, then $S^{(\alpha)}$ is a commutative g-dimonoid. If X is a generating set for a semigroup S, then, obviously, $S^{(\alpha)} \setminus \overline{X}$ is a g-subdimonoid of $S^{(\alpha)}$ generated by X. Denote by FCgD(X) the g-dimonoid $S^{(\alpha)} \setminus \overline{X}$ in which S is the free commutative semigroup on X.

THEOREM 1. FCqD(X) is the free commutative q-dimonoid.

Proof. Show that FCgD(X) is free in the variety of commutative g-dimonoids. Let (G, \dashv', \vdash') be an arbitrary commutative g-dimonoid, $\psi: X \to G$ be an arbitrary map and $x_i, y_j \in X, i \in \{1, 2, ..., m\}, j \in \{1, 2, ..., n\}$. Define a map

$$\xi: FCqD(X) \to (G, \dashv', \vdash'): w \mapsto w\xi$$
, assuming

$$w\xi = \begin{cases} x_1 \psi \dashv' \dots \dashv' x_m \psi, \ w = x_1 \dots x_m, m \ge 1, \\ x_1 \psi \vdash' \dots \vdash' x_m \psi, \ w = \overline{x_1 \dots x_m}, m > 1. \end{cases}$$

Further prove that ξ is a homomorphism.

Let $w, u \in FCgD(X)$. In the case $w = \overline{x_1...x_m}, u = \overline{y_1...y_n}$ obtain

$$(w \dashv u)\xi = x_1\psi \dashv' \dots \dashv' x_m\psi \dashv' y_1\psi \dashv' \dots \dashv' y_n\psi =$$

$$= (x_1\psi \dashv' \dots \dashv' x_m\psi) \dashv' (y_1\psi \vdash' \dots \vdash' y_n\psi) =$$

$$= (y_1\psi \vdash' \dots \vdash' y_n\psi) \dashv' (x_1\psi \dashv' \dots \dashv' x_m\psi) =$$

$$= (y_1\psi \vdash' \dots \vdash' y_n\psi) \dashv' (x_1\psi \vdash' \dots \vdash' x_m\psi) =$$

$$= (x_1\psi \vdash' \dots \vdash' x_m\psi) \dashv' (y_1\psi \vdash' \dots \vdash' y_n\psi) =$$

$$= \overline{x_1 \dots x_m}\xi \dashv' \overline{y_1 \dots y_n}\xi = w\xi \dashv' u\xi.$$

For $w = \overline{x_1...x_m}$, $u = y_1...y_n$ get

$$(w \dashv u)\xi = x_1\psi \dashv' \dots \dashv' x_m\psi \dashv' y_1\psi \dashv' \dots \dashv' y_n\psi =$$

$$= (y_1\psi \dashv' \dots \dashv' y_n\psi) \dashv' (x_1\psi \dashv' \dots \dashv' x_m\psi) =$$

$$= (y_1\psi \dashv' \dots \dashv' y_n\psi) \dashv' (x_1\psi \vdash' \dots \vdash' x_m\psi) =$$

$$= (x_1\psi \vdash' \dots \vdash' x_m\psi) \dashv' (y_1\psi \dashv' \dots \dashv' y_n\psi) =$$

$$= \overline{x_1...x_m}\xi \dashv' (y_1...y_n)\xi = w\xi \dashv' u\xi.$$

The remaining two cases are considered in a similar way. So, $(w \dashv u)\xi = w\xi \dashv' u\xi$ for all $w, u \in FCgD(X)$.

Similarly, one can check that $(w \vdash u)\xi = w\xi \vdash' u\xi$ for all $w, u \in FCgD(X)$.

Consequently, ξ is a homomorphism and FCgD(X) is the free commutative q-dimonoid.

If N_+ is the additive semigroup of all positive integers, obviously, $N_+^{(\alpha)}\setminus\{\overline{1}\}$ is the free commutative g-dimonoid of rank 1.

It is not difficult to see that the automorphism group of the free commutative g-dimonoid FCgD(X) is isomorphic to the symmetric group on X and semigroups of FCgD(X) are isomorphic.

We conclude this section with some additional property of g-dimonoids.

LEMMA 2. Operations of a g-dimonoid (D, \dashv, \vdash) with a commutative idempotent operation \dashv (respectively, \vdash) coincide.

Proof. For all $x, y, z \in D$ we have

$$x \vdash y = (x \vdash y) \dashv (x \vdash y) = (x \vdash y) \dashv (x \dashv y) =$$
$$= (x \dashv y) \dashv (x \vdash y) = (x \dashv y) \dashv (x \dashv y) = x \dashv y$$

according to the idempotency, the commutativity of \dashv and the axioms (D1), (D2) of a g-dimonoid. The case with the operation \vdash is proved similarly.

From Lemma 2 it follows that there do not exist commutative g-dimonoids with different idempotent operations.

3. The least commutative congruence on a free g-dimonoid

In this section we present the least commutative congruence on a free g-dimonoid. If ρ is a congruence on a g-dimonoid (D, \dashv, \vdash) such that $(D, \dashv, \vdash)/\rho$ is a commutative g-dimonoid, we say that ρ is a commutative congruence.

In our next result we need the following construction.

Let X be an arbitrary nonempty set and let w be an arbitrary word in the alphabet X. The length of w will be denoted by l(w). Let further T be the free monoid on the two-element set $\{a,b\}$, $\theta \in T$ be an empty word and * denotes the operation on T. By definition, $l(\theta) = 0$. For every $u \in T \setminus \{\theta\}$ denote the last letter of u by $u^{(1)}$. Define operations \exists and \vdash on T, assuming

$$u_1 \dashv u_2 = u_1 * a^{l(u_2)+1}, \quad u_1 \vdash u_2 = u_2 * b^{l(u_1)+1}$$

for all $u_1, u_2 \in T$. The obtained algebra is denoted by $T_a^b(1)$.

Let F[X] be the free semigroup on X and

$$XT_a^b(1) = \{(w, u) \in F[X] \times T_a^b(1) \, | \, l(w) - l(u) = 1\}.$$

By Theorem 1 from [9] $XT_a^b(1)$ is the free g-dimonoid.

Theorem 2. Let $XT_a^b(1)$ be the free g-dimonoid and FCgD(X) be the free commutative g-dimonoid. A map

$$\beta: XT_a^b(1) \to FCgD(X):$$

$$(w,u) \mapsto (w,u)\beta = \left\{ \begin{array}{ll} \overline{w}, & u^{(1)} = b, \\ w & otherwise \end{array} \right.$$

is an epimorphism inducing the least commutative congruence on $XT_a^b(1)$.

Proof. Take arbitrary elements $(w_1, u_1), (w_2, u_2) \in XT_a^b(1)$. We have

$$((w_1, u_1) \dashv (w_2, u_2))\beta = (w_1 w_2, u_1 * a^{l(u_2)+1})\beta =$$

$$= w_1 w_2 = (w_1, u_1)\beta \dashv (w_2, u_2)\beta,$$

$$((w_1, u_1) \vdash (w_2, u_2))\beta = (w_1 w_2, u_2 * b^{l(u_1)+1})\beta =$$

$$= \overline{w_1 w_2} = (w_1, u_1)\beta \vdash (w_2, u_2)\beta.$$

Thus, β is a homomorphism.

Let FC[X] be the free commutative semigroup on X and $\omega, x \in FC[X]$, where $l(\omega) > 1$ and l(x) = 1. For elements $\omega, \overline{\omega}, x \in FCgD(X)$ there exist elements (ω, ua) , $(\omega, ub), (x, \theta) \in XT_a^b(1)$, where $u \in T$, such that

$$(\omega, ua)\beta = \omega, \quad (\omega, ub)\beta = \overline{\omega}, \quad (x, \theta)\beta = x.$$

So, β is surjective. By Theorem 1 FCgD(X) is the free commutative g-dimonoid. Then Δ_{β} is the least commutative congruence on $XT_a^b(1)$.

Let α be an arbitrary fixed congruence on F[X]. Define a relation α' on $XT_a^b(1)$ by

$$(w_1, u_1)\alpha'(w_2, u_2) \Leftrightarrow w_1 \alpha w_2$$

for all $(w_1, u_1), (w_2, u_2) \in XT_a^b(1)$.

It is not hard to prove the following lemma.

LEMMA 3. The relation α' is a congruence on the free g-dimonoid $XT_a^b(1)$. Besides, operations of $XT_a^b(1)/\alpha'$ coincide.

From Lemma 3 we obtain

COROLLARY 1. If α is a diagonal of F[X], then $XT_a^b(1)/\alpha'$ is the free semigroup.

4. Conclusions

In this paper we consider g-dimonoids which are sets with two binary associative operations satisfying additional axioms. Dimonoids in the sense of Loday are examples of g-dimonoids. The main result of this paper is the construction of a free commutative g-dimonoid. We also present the least commutative congruence on a free g-dimonoid.

REFERENCES

- 1. Pozhidaev, A. P. 2009, "0-dialgebras with bar-unity and nonassociative Rota-Baxter algebras", Sib. Math. J., vol. 50, no. 6, pp. 1070–1080.
- 2. Kolesnikov, P. S. 2008, "Varieties of dialgebras and conformal algebras", Sib. Math. J., vol. 49, no. 2, pp. 257–272.
- 3. Loday, J.-L. 2001, "Dialgebras. In: Dialgebras and related operads", *Lecture Notes in Math.*, *Berlin: Springer-Verlag*, vol. 1763, pp. 7–66.
- 4. Frabetti, A. 2001, "Dialgebra (co)homology with coefficients. In: Dialgebras and related operads", *Lecture Notes in Math.*, *Berlin: Springer-Verlag*, vol. 1763, pp. 67–103.
- 5. Bokut, L. A., Chen, Y. & Liu, C. 2010, "Gröbner-Shirshov bases for dialgebras", Int. J. Algebra Comput., vol. 20, no. 3, pp. 391–415.
- 6. Kolesnikov, P. S. & Voronin, V. Yu. 2013, "On the special identities for dialgebras", *Linear and Multilinear Algebra*, vol. 61, no. 3, pp. 377–391.

- 7. Zhuchok, A. V. 2011, "Dimonoids", *Algebra and Logic*, vol. 50, no. 4, pp. 323–340.
- 8. Movsisyan, Y., Davidov, S. & Safaryan, Mh. 2014, "Construction of free g-dimonoids", Algebra and Discrete Math., vol. 18, no. 1, pp. 138–148.
- 9. Zhuchok, Yul. V. 2014, "On one class of algebras", Algebra and Discrete Math., vol. 18, no. 2, pp. 306–320.
- 10. Loday, J.-L. & Ronco, M. O. 2004, "Trialgebras and families of polytopes", *Contemp. Math.*, vol. 346, pp. 369–398.
- 11. Casas, J. M. 2006, "Trialgebras and Leibniz 3-algebras", *Boletín de la Sociedad Matemática Mexicana*, vol. 12, no. 2, pp. 165–178.
- 12. Zhuchok, A. V. 2014, "Semiretractions of trioids", *Ukr. Math. J.*, vol. 66, no. 2, pp. 218–231.
- 13. Zhuchok, A. V. 2010, "Free commutative dimonoids", Algebra and Discrete Math., vol. 9, no. 1, pp. 109–119.
- 14. Zhuchok, A. V. 2014, "Elements of dimonoid theory", Mathematics and its Applications. Proceedings of Institute of Mathematics of NAS of Ukraine, Kiev, vol. 98, 304 p. (in Ukrainian).
- 15. Zhuchok, A. V. 2011, "Semilattices of subdimonoids", Asian-Eur. J. Math., vol. 4, no. 2, pp. 359–371.

СПИСОК ЦИТИРОВАННОЙ ЛИТЕРАТУРЫ

- 1. Pozhidaev A. P. 0-dialgebras with bar-unity and nonassociative Rota-Baxter algebras // Sib. Math. J. 2009. Vol. 50, no. 6. P. 1070–1080.
- 2. Kolesnikov P. S. Varieties of dialgebras and conformal algebras // Sib. Math. J. 2008. Vol. 49, no. 2. P. 257–272.
- 3. Loday J.-L. Dialgebras. In: Dialgebras and related operads // Lecture Notes in Math. Berlin: Springer-Verlag. 2001. Vol. 1763. P. 7–66.
- Frabetti A. Dialgebra (co)homology with coefficients. In: Dialgebras and related operads // Lecture Notes in Math. Berlin: Springer-Verlag. 2001. Vol. 1763. P. 67–103.
- 5. Bokut L. A., Chen Y., Liu C. Gröbner-Shirshov bases for dialgebras // Int. J. Algebra Comput. 2010. Vol. 20, no. 3. P. 391–415.

- Kolesnikov P. S., Voronin V. Yu. On the special identities for dialgebras // Linear and Multilinear Algebra. 2013. Vol. 61, no. 3. P. 377–391.
- 7. Zhuchok A. V. Dimonoids // Algebra and Logic. 2011. Vol. 50, no. 4. P. 323–340.
- 8. Movsisyan Y., Davidov S., Safaryan Mh. Construction of free g-dimonoids // Algebra and Discrete Math. 2014. Vol. 18, no. 1. P. 138–148.
- 9. Zhuchok Yul. V. On one class of algebras // Algebra and Discrete Math. 2014. Vol. 18, no. 2. P. 306–320.
- 10. Loday J.-L., Ronco M. O. Trialgebras and families of polytopes // Contemp. Math. 2004. Vol. 346. P. 369–398.
- 11. Casas J. M. Trialgebras and Leibniz 3-algebras // Boletín de la Sociedad Matemática Mexicana. 2006. Vol. 12, no. 2. P. 165–178.
- 12. Zhuchok A. V. Semiretractions of trioids // Ukr. Math. J. 2014. Vol. 66, no. 2. P. 218–231.
- 13. Zhuchok A. V. Free commutative dimonoids // Algebra and Discrete Math. 2010. Vol. 9, no. 1. P. 109–119.
- 14. Жучок А. В. Елементи теорії дімоноїдів // Математика та її застосування. Праці Інституту математики НАН України, Київ. 2014. Т. 98. 304 с.
- 15. Zhuchok A. V. Semilattices of subdimonoids // Asian-Eur. J. Math. 2011. Vol. 4, no. 2. P. 359–371.

Луганский национальный университет имени Тараса Шевченко, Украина. Получено 01.07.2015