
158 З. Х. Рахмонов

ЧЕБЫШЕВСКИЙ СБОРНИК

Том 26. Выпуск 5.

УДК: 511. 344 DOI: 10.22405/2226-8383-2025-26-5-158-183

Плотность нулей дзета-функции Римана в узких
прямоугольниках критической полосы

З. Х. Рахмонов

Рахмонов Зарулло Хусенович — доктор физико-математических наук, академик НАН
Таджикистана, Таджикский национальный университет (г. Душанбе, Таджикистан).
e-mail: zarullo-r@rambler.ru, zarullo.rakhmomov@gmail.com

Аннотация

Для количества нулей дзета-функции Римана 𝜁(𝑠) в узких прямоугольниках критиче-
ской полосы (Re 𝑠 ⩾ 𝛼 ⩾ 0,5 и 𝑇 < Im𝑠 ⩽ 𝑇 +𝐻), при

𝐻 > 𝑇 𝜃+𝜀, 𝜃 = 𝜃(𝜅, 𝜆) =
𝜅+ 𝜆

2𝜅+ 2
,

где (𝜅, 𝜆) — произвольная экспоненциальная пара, 𝜀 < 10−4 — любое фиксированное по-
ложительное число, 𝑇 ⩾ 𝑇0(𝜀) > 0, получена оценка вида

𝑁(𝛼, 𝑇 +𝐻)−𝑁(𝛼, 𝑇 )≪ 𝐻𝑎(1−𝛼) ln 𝑐 𝑇,

причём 𝑎 = 2, 4, 𝑐 = 172, если 1
2 ⩽ 𝛼 ⩽ 2

3 или 5
6 ⩽ 𝛼 ⩽ 1, и соответственно 𝑎 = 8

3 , 𝑐 = 50,
если 2

3 < 𝛼 < 5
6 .
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узкие прямоугольники критической полосы, экспоненциальная пара.
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Abstract

For the number of zeros of the Riemann zeta-function 𝜁(𝑠) in narrow rectangles of the critical
strip (Re 𝑠 ⩾ 𝛼 ⩾ 0.5 and 𝑇 < Im𝑠 ⩽ 𝑇 +𝐻), assuming

𝐻 > 𝑇 𝜃+𝜀, 𝜃 = 𝜃(𝜅, 𝜆) =
𝜅+ 𝜆

2𝜅+ 2
,

where (𝜅, 𝜆) is an arbitrary exponent pair, 𝜀 < 10−4 is any fixed positive number, and
𝑇 ⩾ 𝑇0(𝜀) > 0, an estimate of the form

𝑁(𝛼, 𝑇 +𝐻)−𝑁(𝛼, 𝑇 )≪ 𝐻𝑎(1−𝛼) ln 𝑐 𝑇,

is obtained. Here 𝑎 = 2, 4 and 𝑐 = 172 when 1
2 ⩽ 𝛼 ⩽ 2

3 or 5
6 ⩽ 𝛼 ⩽ 1, and respectively 𝑎 = 8

3
and 𝑐 = 50 when 2

3 < 𝛼 < 5
6 .
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1. Введение

Определение 1. Пусть 𝑁(𝛼, 𝑇 ) — число нулей функции Римана 𝜁(𝑠) в области
Re 𝑠 ⩾ 𝛼 ≥ 0,5 и 0 ≤ Im𝑠 ≤ 𝑇 . Оценка вида

𝑁(𝛼, 𝑇 )≪ 𝑇 𝑎(1−𝛼) ln𝑐 𝑇, ln𝑇, (1)

с положительными абсолютными постоянными 𝑎 и 𝑐 называется плотностной теоремой.

Наилучшая плотностная теорема принадлежит М. Хаксли [1]. Он доказал (1) с 𝑎 = 2.4
и 𝑐 = 244. А. А. Карацуба [2] дал новый вариант доказательства теоремы Хаксли. Методом
работы [2] С. А. Гриценко [3] доказал (1) с 𝑎 = 2.4 и 𝑐 = 33.6.

Определение 2. При 𝐻 < 𝑇 оценка вида

𝑁(𝛼, 𝑇 +𝐻)−𝑁(𝛼, 𝑇 )≪ 𝐻𝑎(1−𝛼) ln𝑐 𝑇, (2)

с положительными абсолютными постоянными 𝑎 и 𝑐 называется плотностной теоремой
в узких прямоугольниках критической полосы.

Впервые проблему распределения нулей дзета-функции Римана в узких прямоугольниках
критической полосы и в коротких промежутках критической прямой исследовал А. Сельберг
[4]. Он доказал, что если 𝐻 ⩾ 𝑇 𝜃, 𝜃 > 0,5 и 0,5 < 𝛼 ⩽ 1, то справедливы следующие оценки:

𝑁(𝛼, 𝑇 +𝐻)−𝑁(𝛼, 𝑇 ) = 𝑂

(︂
𝐻

𝛼− 0,5

)︂
, (3)

𝑁0(𝑇 +𝐻)−𝑁0(𝑇 ) ⩾ 𝑐1𝐻 ln𝑇, (4)

где 𝑁0(𝑡) — количество нулей нечетного порядка функции 𝜁(0,5 + 𝑖𝑡) на промежутке (0, 𝑇 ). В
этой работе А. Сельберг высказал гипотезы, что условие 𝜃 > 0,5 в этих оценках может быть
заменено условием 𝜃 > æ, æ < 0,5. Эти гипотезы в 1984 г. решил А. А. Карацуба [5, 6, 7, 8]

и доказал, что неравенства (3) и (4) имеют место при 𝐻 ⩾ 𝑇
27
82

+𝜀. Он [9, 8, 10, 11] также
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доказал, что при таких𝐻 для количества нулей функции Дэвенпорта-Хейльбронна в коротких
промежутках критической прямой выполняется соотношение

𝑁0(𝑇 +𝐻)−𝑁0(𝑇 ) ⩾ 𝐻(ln𝑇 )
1
2
−𝜀1 . (5)

В работах [12, 13, 14, 15, 16] доказано, что неравенства (3), (4) и (5) имеют место при

𝐻 > 𝑇 𝜃+𝜀, 𝜃 = 𝜃(𝜅, 𝜆) =
𝜅+ 𝜆

2𝜅+ 2
,

где (𝜅, 𝜆) — произвольная экспоненциальная пара. Хиз-Браун [17], с помощью своей теоремы

о четвертом моменте дзета-функции Римана на критической прямой при 𝐻 ≥ 𝑇
7
8
+𝜀 доказал

(2) с 𝑎 = 2,4 и 𝑐 = 244. Жан Тао [18] доказал (2) с 𝑎 = 8
3 и 𝑐 = 216 при условии 𝐻 > 𝑇

35
108

+𝜀.
Основным результатом этой работы является доказательство теоремы о плотности нулей

дзета-функции Римана в узких прямоугольниках критической полосы, которая ранее была
анонсирована автором в работе [19].

Теорема 1. Пусть (𝜅, 𝜆) — произвольная экспоненциальная пара, 𝜀 < 104 — любое фик-
сированное положительное число, 𝑇 ≥ 𝑇0(𝜀) > 0,

𝜃 = 𝜃(𝜅, 𝜆) =
𝜅+ 𝜆

2𝜅+ 2
, 𝐻 > 𝑇 𝜃+𝜀,

тогда (2) выполняется при 𝑎 = 2,4, 𝑐 = 172, если 1
2 ⩽ 𝛼 ⩽ 2

3 или 5
6 ⩽ 𝛼 ⩽ 1; и соответствен-

но, 𝑎 = 8
3 , 𝑐 = 50, если 2

3 < 𝛼 < 5
6 .

Показатель 𝜃(𝜅, 𝜆) также появляется в оценках остаточных членов в проблеме Гаусса о
числе целых точек в круге, проблеме делителей Дирихле и второго момента дзета-функции
Римана на критической прямой. Наилучшая оценка сверху для 𝜃(𝜅, 𝜆) принадлежит Дж. Бур-
гейну и Н. Уотту [20], которые доказали, что

𝜃0 = min
𝜅,𝜆∈𝒫

𝜃(𝜅, 𝜆) = min
𝜅,𝜆∈𝒫

𝜅+ 𝜆

2𝜅+ 2
⩽

1515

4816
= 0.314546 · · · , (6)

где 𝒫 — множество всех экспоненциальных пар.
Отсюда и из теоремы 1 следует:

Следствие 1. Неравенство (2) справедливо при

𝐻 ⩾ 𝑇
1515
4816

+𝜀, 𝑎 =
8

3
, 𝑐 = 50.

При доказательстве основной теоремы мы существенно используем метод работ А. А. Ка-
рацубы [2, 6], в которых, соответственно, доказаны плотностная теорема Хаксли и гипотеза
Сельберга о количестве нулей дзета-функции Римана в окрестности критической прямой (см.
также [21, 22, 23]).

2. Вспомогательные леммы

Лемма 1. [2]. Пусть 𝑠 = 𝜎 + 𝑖𝑡, 𝑡 ⩾ 2𝜋, положительные числа 𝑦 и 𝑧 удовлетворяют
условиям 𝑦 ⩾ 1, 𝑧 ⩾ 1, 2𝜋𝑦𝑧 = 𝑡. Тогда при 0 < 𝜎0 ⩽ 𝜎 ⩽ 2 справедливо следующее равенство:

𝜁(𝑠) =
∑︁
𝑛⩽𝑦

𝑛−𝑠 + 𝜒(𝑠)
∑︁
𝑛⩽𝑧

𝑛𝑠−1 +𝑂(𝑡0,5−𝜎𝑧−1+𝜎 + 𝑦−𝜎 ln 𝑡),

где

𝜒(𝑠) = 𝑒

(︂
− 𝑡

2𝜋
ln

𝑡

2𝜋
+

𝑡

2𝜋
− 7

8

)︂
(2𝜋)𝜎−1𝑡0,5−𝜎.
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Лемма 2. [2]. Пусть 𝑆(𝑡) — комплекснозначная непрерывно дифференцируемая на от-
резке [𝑡0, 𝑡𝑘] функция,

𝑡0 < 𝑡1 < . . . < 𝑡𝑘−1 < 𝑡𝑘.

Тогда, полагая 𝑑 = min
0⩽𝑟<𝑘

(𝑡𝑟+1 − 𝑡𝑟), будем иметь

𝑘∑︁
𝑟=1

|𝑆(𝑡𝑟)|2 ⩽ 𝑑−1

∫︁ 𝑡𝑘

𝑡0

|𝑆(𝑡)|2𝑑𝑡+ 2

(︂∫︁ 𝑡𝑘

𝑡0

|𝑆(𝑡)|2𝑑𝑡
∫︁ 𝑡𝑘

𝑡0

|𝑆′(𝑡)|2𝑑𝑡
)︂ 1

2

.

Лемма 3. [2]. Пусть 𝑎(𝑛) — произвольные комплексные числа, 0 < 𝐻 < 𝑇 , 𝑁 ≥ 2,

𝐼 =

∫︁ 𝑇+𝐻

𝑇

⃒⃒⃒⃒
⃒⃒∑︁
𝑛≤𝑁

𝑎(𝑛)𝑛𝑖𝑡

⃒⃒⃒⃒
⃒⃒
2

𝑑𝑡.

Справедливо следующее неравенство:

𝐼 ⩽ (𝐻 + 32𝑁 ln𝑁)
∑︁
𝑛≤𝑁

|𝑎(𝑛)|2.

Лемма 4. [24]. При 𝑥 ≥ 2 имеем:∑︁
𝑛⩽𝑥

𝜏 𝑙𝑟(𝑛)≪ 𝑥(ln𝑥)𝑟
𝑙−1
.

Лемма 5. [25]. Пусть 𝑓(𝑢) — вещественная дифференцируемая функция в интервале
(𝑎, 𝑏), причем внутри интервала ее производная 𝑓 ′(𝑢) монотонна и знакопостоянна и при
постоянном 𝛿 с условием 0 < 𝛿 < 1 удовлетворяет неравенству |𝑓 ′(𝑢)| ⩽ 𝛿. Тогда имеем

∑︁
𝑎<𝑛⩽𝑏

𝑒(𝑓(𝑛)) =

𝑏∫︁
𝑎

𝑒(𝑓(𝑢))𝑑𝑢+𝑂

(︂
3 +

2𝛿

1− 𝛿

)︂
.

Лемма 6. [2]. Пусть вещественные функции 𝑓(𝑛) и 𝜙(𝑛) удовлетворяют на отрезке
[𝑎, 𝑏] следующим условиям:

а) 𝑓 (4)(𝑛) и 𝜙(2)(𝑛) — непрерывные функции;

б) существуют числа 𝐻1, 𝑈 , 𝐴, 1 ⩽ 𝐴 ⩽ 𝑈 , 0 < 𝑏− 𝑎 ⩽ 𝑈 , такие что

𝐴−1 ≪ 𝑓 (2)(𝑛)≪ 𝐴−1, 𝑓 (3)(𝑛)≪ 𝐴−1𝑈−1, 𝑓 (4)(𝑛)≪ 𝐴−1𝑈−2,

𝜙(𝑛)≪ 𝐻1, 𝜙′(𝑛)≪ 𝐻1𝑈
−1, 𝜙(2)(𝑛)≪ 𝐻1𝑈

−2.

Тогда, определяя числа 𝑛𝑚 из уравнения 𝑓 ′(𝑛𝑚) = 𝑚, будем иметь:∑︁
𝑎≤𝑛≤𝑏

𝜙(𝑛)𝑒(𝑓(𝑛)) =
∑︁

𝑓 ′(𝑎)≤𝑚≤𝑓 ′(𝑏)

𝐶(𝑚)𝑍(𝑚) +𝑅,

где 𝐶(𝑚) = 1, если 𝑓 ′(𝑎) < 𝑚 < 𝑓 ′(𝑏), и 𝐶(𝑚) = 0,5, если 𝑚 = 𝑓 ′(𝑎) или 𝑚 = 𝑓 ′(𝑏),

𝑍(𝑚) =
1 + 𝑖√

2

𝜙(𝑛𝑚)√︀
𝑓 ′′(𝑛𝑚)

𝑒(𝑓(𝑛𝑚)−𝑚𝑛𝑚),

𝑅 = 𝐻1(𝑇𝑎 + 𝑇𝑏 + ln
(︀
𝑓 ′(𝑏)− 𝑓 ′(𝑎) + 2

)︀
),

𝑇𝜇 =

{︃
0, если 𝑓 ′(𝜇)− целое;

min(
√
𝐴, ‖𝑓 ′(𝜇)‖−1), если 𝑓 ′(𝜇)− нецелое.
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Лемма 7. [26]. Пусть действительная функция 𝑓(𝑢) и монотонная функция 𝑔(𝑢) удо-
влетворяют условиям: 𝑓 ′(𝑢) монотонна, |𝑓 ′(𝑢)| ⩾ 𝑚1 > 0 и |𝑔(𝑢)| ⩽ 𝑀 . Тогда справедлива
оценка: ∫︁ 𝑏

𝑎
𝑔(𝑢)𝑒(𝑓(𝑢))𝑑𝑢≪ 𝑀

𝑚1
.

Определение 3. Если 𝐵 ≥ 1, 0 < ℎ ≤ 𝐵, 𝐹 (𝑢) ∈ 𝐶∞(𝐵, 2𝐵), 𝐴 ≥ 1,

𝐴𝐵1−𝑟 ≪ |𝐹 (𝑟)(𝑢)| ≪ 𝐴𝐵1−𝑟, 𝑟 = 1, 2, 3, . . . ,

где постоянная под знаком ≪ зависит только от 𝑟, и имеет место оценка∑︁
𝐵<𝑛≤𝐵+ℎ

𝑒(𝐹 (𝑛))≪ 𝐴𝜅𝐵𝜆, 0 ⩽ 𝜅 ≤ 0,5 ≤ 𝜆 ≤ 1,

то пара (𝜅, 𝜆) называется экспоненциальной парой. Тривиальная оценка∑︁
𝐵<𝑛≤𝐵+ℎ1

𝑒(𝐹 (𝑛)) ⩽ ℎ1 ⩽ 𝐵,

показывает, что (0, 1) является экспоненциальной парой.
Э. Филлипс [27] показал, что если (𝜅, 𝜆) — экспоненциальная пара, то

𝐴(𝜅, 𝜆) =

(︂
𝜅

2𝜅+ 2
,
1

2
+

𝜆

2𝜅+ 2

)︂
, (𝐴-процесс),

𝐵(𝜅, 𝜆) = (𝜆− 0,5, 𝜅+ 0,5); (𝐵-процесс)

также являются экспоненциальными парами. 𝐴-процесс выводится из неравенства Вейля [27]
(см. также [28], стр. 26, лемма 3), а 𝐵-процесс доказывается с помощью леммы 6.

3. Доказательство теоремы 1

Не ограничивая общности, будем считать, что 𝐻 = 𝑇 𝜃+𝜀 и 2(𝜃 + 𝜀)𝜀−1 − 1 — целое число.
Пусть

𝑅 = 𝑁(𝛼, 𝑇 +𝐻)−𝑁(𝛼, 𝑇 ).

Положим в лемме 1 𝑦 = (𝑇/2𝜋)
1
2 , 2𝜋𝑧 = 𝑡, 𝑠 = 𝜎 + 𝑖𝑡, 𝜎 ⩾ 0.5, 𝑇 ⩽ 𝑡 ⩽ 𝑇 +𝐻; получим

𝜁(𝑠) =
∑︁
𝑛⩽𝑦

𝑛−𝑠 + 𝜒(𝑠)
∑︁

𝑛⩽𝑡/2𝜋𝑦

𝑛−1+𝑠 +𝑂(𝑇−0.5𝜎 ln𝑇 ).

Граница изменения 𝑛 во второй сумме зависит от 𝑡. Освободимся от этой зависимости. Имеем

|𝜒(𝑠)| = |(2𝜋)𝜎−1𝑡0.5−𝜎| ⩽ 𝑇 0.5−𝜎;

𝑦 ⩽
𝑡

2𝜋𝑦
⩽ 𝑦 +

𝐻√
2𝜋𝑇

⩽ 𝑦 + 1.

Поэтому ⃒⃒⃒⃒
⃒⃒𝜒(𝑠)

∑︁
𝑦<𝑛⩽𝑡/2𝜋𝑦

𝑛−1+𝑠

⃒⃒⃒⃒
⃒⃒≪ 𝑇 0.5−𝜎+0.5(−1+𝜎) ≪ 𝑇−0.5𝜎.

Следовательно,

𝜁(𝑠) =
∑︁
𝑛⩽𝑦

𝑛−𝑠 + 𝜒(𝑠)
∑︁
𝑛⩽𝑦

𝑛−1+𝑠 +𝑂(𝑇−0.5𝜎 ln𝑇 ). (7)



Плотность нулей дзета-функции Римана в узких прямоугольниках критической полосы 163

В этом представлении 𝜁(𝑠) границы изменения 𝑛 уже не зависят от 𝑡. Далее возьмем

𝑀𝑥(𝑠) =
∑︁
𝑚⩽𝑥

𝜇(𝑚)𝑚−𝑠, 𝑥 = 𝑇 0.5𝜀.

Умножим обе части (7) на 𝑀𝑥(𝑠) и преобразуем правую часть, получим

𝜁(𝑠)𝑀𝑥(𝑠) = 1 +
∑︁

𝑥<𝑛⩽𝑥𝑦

𝑎(𝑛)𝑛−𝑠 + 𝜒(𝑠)𝑀𝑥(𝑠)
∑︁
𝑛⩽𝑦

𝑛−1+𝑠 +𝑂(𝑇−0,2), (8)

где

𝑎(𝑛) =
∑︁
𝑚|𝑛

𝑚⩽𝑥, 𝑛
𝑚
⩽𝑦

𝜇(𝑚), |𝑎(𝑛)| ⩽ 𝜏(𝑛).

Если 𝑠 = 𝜌, то левая часть (8) обращается в нуль, поэтому

⃒⃒
1 +𝑂(𝑇−0,2)

⃒⃒
=

⃒⃒⃒⃒
⃒⃒1 +

∑︁
𝑥<𝑛⩽𝑥𝑦

𝑎(𝑛)𝑛−𝜌 + 𝜒(𝜌)𝑀𝑥(𝜌)
∑︁
𝑛⩽𝑦

𝑛−1+𝜌

⃒⃒⃒⃒
⃒⃒

или, предполагая 𝑇 ≫ 1, имеем неравенство:

1 ⩽ 2

⃒⃒⃒⃒
⃒⃒ ∑︁
𝑥<𝑛⩽𝑥𝑦

𝑎(𝑛)𝑛−𝜌

⃒⃒⃒⃒
⃒⃒+ 2

⃒⃒⃒⃒
⃒⃒𝜒(𝜌)

∑︁
𝑚⩽𝑥

𝜇(𝑚)𝑚−𝜌
∑︁
𝑛⩽𝑦

𝑛−1+𝜌

⃒⃒⃒⃒
⃒⃒ .

Промежутки суммирования по 𝑛 и 𝑚 разобьем на промежутки вида 𝑎 < 𝑏 ⩽ 2𝑎. В каждом
случае получится не более ln𝑇 промежутков и приходим к такому неравенству:

1 ⩽ 2
ln2 𝑇∑︁
|𝑆(𝜌)|, (9)

где 𝑆(𝜌) имеет один из следующих видов:

𝑆(𝜌) =
∑︁

𝑁<𝑛⩽𝑁1

𝑎(𝑛)𝑛−𝜌, 𝑥 < 𝑁 ⩽ 𝑦𝑥, (10)

𝑆(𝜌) = 𝜒(𝜌)
∑︁

𝑀<𝑚⩽𝑀1

𝜇(𝑚)𝑚−𝜌
∑︁

𝑌 <𝑛⩽𝑌1

𝑛−1+𝜌. (11)

Обозначим через 𝐷 количество сумм 𝑆(𝜌) в правой части (9); 𝐷 ≪ ln2 𝑇 . Занумеруем эти
суммы в произвольном порядке 𝑆1(𝜌), 𝑆2(𝜌), . . . , 𝑆𝐷(𝜌). Все нули 𝜌 с условием Re 𝜌 ⩾ 𝛼,
𝑇 < Im𝜌 ⩽ 𝑇 + 𝐻, а их 𝑅 штук, разобьем на классы 𝐴1, 𝐴2, . . . , 𝐴𝐷 следующим образом:
в класс 𝐴𝜈 , 1 ⩽ 𝜈 ⩽ 𝐷 отнесем те 𝜌, для которых

|𝑆𝜈(𝜌)| ⩾ (2𝐷)−1.

Каждое 𝜌 из общего количества 𝑅 попадает хотя бы в один класс 𝐴𝜈 . Действительно, если
некоторое 𝜌 не попало бы ни в один из классов 𝐴𝜈 , то для этого 𝜌:

|𝑆𝜈(𝜌)| < (2𝐷)−1, 𝜈 = 1, 2, ..., 𝐷;

2

𝐷∑︁
𝜈=1

|𝑆𝜈(𝜌)| < 1,
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что противоречит (9). Далее найдется хотя бы один класс 𝐴𝜈 , 1 ⩽ 𝜈 ⩽ 𝐷, в котором не меньше
чем 𝑅𝐷−1 нулей 𝜌. Обозначим этот класс буквой 𝐴, а отвечающую ему сумму буквой 𝑆(𝜌).
Имеем

(2𝐷)−1 ⩽ |𝑆(𝜌)|, 𝜌 ∈ 𝐴, |𝐴| ⩾ 𝑅𝐷−1.

Мнимые части 𝜌 ∈ 𝐴 лежат на промежутке (𝑇, 𝑇 +𝐻); будем считать, что 𝛾 = Im𝜌 занумеро-
ваны в порядке возрастания 𝛾.

Разделим (𝑇, 𝑇 + 𝐻] на промежутки вида 𝑛, 𝑛 + 1; те из них, для которых 𝑛 — четное
число, отнесем к множеству 𝐵1, оставшиеся — к множеству 𝐵2. В одном из множеств 𝐵1 или
𝐵2 попадет не менее чем 0.5𝑅𝐷−1 нулей 𝜌; множество этих нулей мы обозначим буквой 𝐵.
Наконец, 𝐵 разобьем на ≪ ln𝑇 множеств следующим образом: к множеству 𝐸1 отнесем те 𝜌,
у которых мнимые части 𝛾 являются первыми на своих промежутках (𝑛, 𝑛 + 1] (если таких
несколько, берем любое из них), к множеству 𝐸2 отнесем те 𝜌, у которых 𝛾 являются вторыми
на своих промежутках, и так далее. Так как на промежутке (𝑛, 𝑛+1] лежит не более чем 𝑐 ln𝑇
чисел 𝛾 = Im𝜌, то и множеств 𝐸𝜈 будет не более чем 𝑐 ln𝑇 штук. Следовательно найдется такое
𝐸𝜈 , в котором будет не менее 𝑅(𝐷𝑐 ln𝑇 )−1 нулей 𝜌. Итак, получили множество нулей 𝜌 такое,
что

(2𝐷)−1 ⩽ |𝑆(𝜌)|, 𝜌 ∈ 𝐸, |𝐸| ⩾ 𝑅(𝐷𝑐 ln𝑇 )−1. (12)

Отметим, что если 𝜌, 𝜌′ ∈ 𝐸, то

|Im𝜌− Im𝜌′| = |𝛾 − 𝛾′| ⩾ 1.

3.1. Сумма 𝑆(𝜌) имеет вид (10)

Пусть 𝑆(𝜌) имеет вид (10). Из условий на 𝑛 получаем

𝑇 0.5𝜀 = 𝑥 < 𝑁 < 𝑁1 ⩽ 𝑥𝑦 ⩽ 𝑇 0.5(1+𝜀).

Рассмотрим пять возможных случаев:

1. 𝑇 0.5𝜀 < 𝑁 ⩽ 𝐻
3
5 ;

2. 𝐻
3
5 < 𝑁 ⩽ 𝐻

4
5 ; 𝛼 ∈

(︀
2
3 ,

5
6

)︀
;

3. 𝐻
3
5 < 𝑁 ⩽ 𝐻

4
5 , 𝛼 /∈

(︀
2
3 ,

5
6

)︀
;

4. 𝐻
4
5 < 𝑁 ⩽ 𝐻;

5. 𝐻 < 𝑁 ⩽ 𝑇 0.5(1+𝜀).

3.1.1. Случай 𝑇 0.5𝜀 < 𝑁 ⩽ 𝐻
3
5

Промежуток (𝑇 0.5𝜀, 𝐻
3
5 ] разделим точками 𝐻

1
𝑟 , 𝑟 = 2, 3, · · · , 𝑟0; 𝑟0 = 2(𝜃 + 𝜀)𝜀−1 − 1,

𝜃 = 𝜃(𝑘, 𝜆) = 𝑘+𝜆
2𝑘+2 , на 𝑟0 промежутков 𝐹𝑟:

𝐹𝑟 =
(︁
𝐻

1
𝑟+1 , 𝐻

1
𝑟

)︁
, 𝑟 = 𝑟0, · · · , 2, 𝐹1 =

(︁
𝐻

1
2 , 𝐻

3
5

)︁
.

Возведя обе части (12) в степень 2(𝑟 + 1), найдем

(2𝐷)−2(𝑟+1) ⩽ |𝑆𝑟+1(𝜌)|2 =

⃒⃒⃒⃒
⃒⃒ ∑︁
𝑁𝑟+1<𝑛⩽𝑁𝑟+1

1

𝐴𝑟+1(𝑛)𝑛−𝜌

⃒⃒⃒⃒
⃒⃒
2

, (13)
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где
𝐴𝑟+1(𝑛) =

∑︁
𝑛1···𝑛𝑟+1=𝑛

𝑎(𝑛1) · · · 𝑎(𝑛𝑟+1).

Так как |𝑎(𝑛)| ⩽ 𝜏(𝑛), то

|𝐴𝑟+1(𝑛)| ⩽
∑︁

𝑛1···𝑛𝑟+1=𝑛

𝜏(𝑛1) · · · 𝜏(𝑛𝑟+1) =
∑︁

𝑑1𝑘1···𝑑𝑟+1𝑘𝑟+1=𝑛

1 = 𝜏2𝑟+2(𝑛). (14)

Суммируя обе части неравенства (13) по 𝜌 ∈ 𝐸 и имея в виду, что 𝐷 ≪ ln2 𝑇 , |𝐸| ≫ 𝑅 ln−3 𝑇 ,
получим

𝑅≪ ln4𝑟+7 𝑇
∑︁
𝜌∈𝐸

⃒⃒⃒⃒
⃒⃒ ∑︁
𝑁𝑟+1<𝑛⩽𝑁𝑟+1

1

𝐴𝑟+1(𝑛)𝑛−𝜌

⃒⃒⃒⃒
⃒⃒
2

.

Во внутренней сумме по 𝑛 сделаем частное суммирование и, помня, что 𝛽 ⩾ 𝛼, найдем

𝑅 ⩽ 𝑁−2(𝑟+1)𝛼 ln4𝑟+7 𝑇
∑︁
𝜌∈𝐸

⃒⃒⃒⃒
⃒⃒ ∑︁
𝑁𝑟+1<𝑛⩽𝑢

𝐴𝑟+1(𝑛)𝑛−𝑖𝛾

⃒⃒⃒⃒
⃒⃒
2

. (15)

Здесь 𝑢 ⩽ 𝑁 𝑟+1
1 такое, при котором правая часть (15) максимальна. К сумме по 𝜌 применим

лемму 2, полагая в ней 𝑡𝜈 = 𝛾, 𝛿 = 1. Находим

𝑅 ⩽ 𝑁−2(𝑟+1)𝛼 ln4𝑟+7 𝑇
(︁
𝐼1 +

√︀
𝐼1𝐼2

)︁
, (16)

где

𝐼1 =

𝑇+𝐻∫︁
𝑇

⃒⃒⃒⃒
⃒⃒ ∑︁
𝑁𝑟+1<𝑛⩽𝑢

𝐴𝑟+1(𝑛)𝑛−𝑖𝑡

⃒⃒⃒⃒
⃒⃒
2

𝑑𝑡,

𝐼2 =

𝑇+𝐻∫︁
𝑇

⃒⃒⃒⃒
⃒⃒ ∑︁
𝑁𝑟+1<𝑛⩽𝑢

𝐴𝑟+1(𝑛)𝑛−𝑖𝑡 ln𝑛

⃒⃒⃒⃒
⃒⃒
2

𝑑𝑡.

Каждый из интегралов 𝐼1 и 𝐼2 оцениваем, пользуясь леммами 3 и 4:

𝐼1 ≪ (𝐻 +𝑁 𝑟+1 ln𝑇 )
∑︁

𝑁𝑟+1<𝑛⩽𝑁𝑟+1
1

|𝐴𝑟+1(𝑛)|2 ≪

≪ (𝐻 +𝑁 𝑟+1) ln𝑇
∑︁

𝑁𝑟+1<𝑛⩽𝑁𝑟+1
1

𝜏22𝑟+2(𝑛)≪ (𝐻 +𝑁 𝑟+1)𝑁 𝑟+1 ln(2𝑟+2)2 𝑇 ;

𝐼2 ≪ (𝐻 +𝑁 𝑟+1) ln3 𝑇
∑︁

𝑁𝑟+1<𝑛⩽𝑁𝑟+1
1

𝜏22𝑟+2(𝑛)≪ (𝐻 +𝑁 𝑟+1)𝑁 𝑟+1 ln(2𝑟+2)2+2 𝑇.

Подставляя эти оценки в правую часть неравенства (16), получим

𝑅 ⩽ 𝑁−2(𝑟+1)𝛼 ln4𝑟+7 𝑇 · (𝐻 +𝑁 𝑟+1)𝑁 𝑟+1 ln(2𝑟+2)2+1 𝑇 ≪

≪ (𝐻 +𝑁 𝑟+1)𝑁 (𝑟+1)(1−2𝛼) ln(2𝑟+2)2+4𝑟+8 𝑇. (17)

Так как 𝑁 ∈ 𝐹𝑟, то 𝐻
1

𝑟+1 < 𝑁 , то есть 𝐻 < 𝑁 𝑟+1, и, следовательно,

𝑅≪ 𝑁2(𝑟+1)(1−𝛼) ln(2𝑟+2)2+4𝑟+8 𝑇. (18)
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Опять так как 𝑁 ∈ 𝐹𝑟, то 𝑁 ⩽ 𝐻
1
𝑟 при 𝑟 = 𝑟0, · · · , 2 и 𝑁 ⩽ 𝐻

3
5 при 𝑟 = 1. Поэтому, если

𝑟 = 𝑟0, · · · , 5 или 𝑟 = 1, то из (18) имеем

𝑅≪ 𝐻2.4(1−𝛼) ln172 𝑇.

Осталось рассмотреть случай 𝑁 ∈ 𝐹𝑟, 𝑟 = 2, 3, 4. Если 𝑁 ⩽ 𝐻
6

5(𝑟+1) , то из (18) следует

𝑅 ⩽ 𝐻2.4(1−𝛼) ln124 𝑇.

Итак, пусть 𝑟 = 2, 3, 4 и 𝐻
6

5(𝑟+1) < 𝑁 ⩽ 𝐻
1
𝑟 . Заменяя в (17) 𝑟 + 1 на 𝑟, найдем

𝑅≪ (𝐻 +𝑁 𝑟)𝑁 𝑟(1−2𝛼) ln4𝑟2+4𝑟+4 𝑇.

Так как 𝐻 ⩾ 𝑁 𝑟, 𝛼 ⩾ 0.5, то

𝑅≪ 𝐻𝑁 𝑟(1−2𝛼) ln4𝑟2+4𝑟+4 𝑇 ≪ 𝐻
1+ 6𝑟

5(𝑟+1)
(1−2𝛼)

ln84 𝑇. (19)

Если для 𝛼 выполняются неравенства 1
2 ⩽ 𝛼 ⩽ 1

2 + 𝑟+1
12 , то

1 +
6𝑟

5(𝑟 + 1)
(1− 2𝛼) =

12

5
(1− 𝛼) +

12

5(𝑟 + 1)

(︂
𝛼− 1

2
− 𝑟 + 1

12

)︂
⩽ 2.4(1− 𝛼),

и нужная оценка следует из (19).

Пусть теперь
1

2
+
𝑟 + 1

12
⩽ 𝛼 ⩽ 1, 2 ⩽ 𝑟 ⩽ 4.

Вернемся к (12)

1 ⩽ ln2𝑟 𝑇 |𝑆𝑟(𝜌)| = ln2𝑟 𝑇

⃒⃒⃒⃒
⃒⃒ ∑︁
𝑁𝑟<𝑛⩽𝑁𝑟

1

𝐴𝑟(𝑛)𝑛−𝜌

⃒⃒⃒⃒
⃒⃒ . (20)

Пусть

𝜙 = 𝜙(𝜌) = arg
∑︁

𝑁𝑟<𝑛⩽𝑁𝑟
1

𝐴𝑟(𝑛)𝑛−𝜌.

Тогда (20) перепишется так:

1 ⩽ ln2𝑟 𝑇𝑒−𝑖𝜙(𝜌)
∑︁

𝑁𝑟<𝑛⩽𝑁𝑟
1

𝐴𝑟(𝑛)𝑛−𝜌,

Суммируя обе части последнего неравенства по 𝜌 ∈ 𝐸 и меняя порядок суммирования, найдем:

𝑅≪ ln2𝑟+3 𝑇
∑︁

𝑁𝑟<𝑛⩽𝑁𝑟
1

|𝐴𝑟(𝑛)|

⃒⃒⃒⃒
⃒⃒∑︁
𝜌∈𝐸

𝑒−𝑖𝜙(𝜌)𝑛−𝜌

⃒⃒⃒⃒
⃒⃒ ;

𝑅2 ≪ ln4𝑟+6 𝑇
∑︁

𝑁𝑟<𝑛⩽𝑁𝑟
1

|𝐴𝑟(𝑛)|2
∑︁

𝑁𝑟<𝑛⩽𝑁𝑟
1

⃒⃒⃒⃒
⃒⃒∑︁
𝜌∈𝐸

𝑒−𝑖𝜙(𝜌)𝑛−𝜌

⃒⃒⃒⃒
⃒⃒
2

.

Для первой суммы имеем оценку:∑︁
𝑁𝑟<𝑛⩽𝑁𝑟

1

|𝐴𝑟(𝑛)|2 ⩽
∑︁

𝑁𝑟<𝑛⩽𝑁𝑟
1

𝜏22𝑟(𝑛)≪ 𝑁 𝑟 ln4𝑟2−1 𝑇.
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Следовательно,

𝑅2 ⩽ 𝑁 𝑟 ln4𝑟2+4𝑟+5 𝑇 ·𝑊, 𝑊 =
∑︁

𝑁𝑟<𝑛⩽𝑁𝑟
1

⃒⃒⃒⃒
⃒⃒∑︁
𝜌∈𝐸

𝑒−𝑖𝜙(𝜌)𝑛−𝜌

⃒⃒⃒⃒
⃒⃒
2

. (21)

Далее,

𝑊 =
∑︁

𝑁𝑟<𝑛⩽𝑁𝑟
1

∑︁
𝜌,𝜌1∈𝐸

𝑒−𝑖(𝜙(𝜌)−𝜙(𝜌1))𝑛−𝛽−𝛽1−𝑖(𝛾−𝛾1) =

=
∑︁

𝜌,𝜌1∈𝐸
𝛾=𝛾1

∑︁
𝑁𝑟<𝑛⩽𝑁𝑟

1

𝑛−𝛽−𝛽1 +
∑︁

𝜌,𝜌1∈𝐸
𝛾 ̸=𝛾1

𝑒−𝑖(𝜙(𝜌)−𝜙(𝜌1))
∑︁

𝑁𝑟<𝑛⩽𝑁𝑟
1

𝑛−𝛽−𝛽1−𝑖(𝛾−𝛾1) ≪

≪ 𝑅𝑁 𝑟(1−2𝛼) +
∑︁

𝜌,𝜌1∈𝐸
𝛾 ̸=𝛾1

⃒⃒⃒⃒
⃒⃒ ∑︁
𝑁𝑟<𝑛⩽𝑁𝑟

1

𝑛−𝛽−𝛽1−𝑖(𝛾−𝛾1)

⃒⃒⃒⃒
⃒⃒ .

К последней сумме по 𝑛 применим формулу частного суммирования; учитывая, что 𝛽, 𝛽1 ⩾ 𝛼,
найдем:

𝑊 ≪ 𝑅𝑁 𝑟(1−2𝛼) +𝑁−2𝑟𝛼
∑︁

𝜌,𝜌1∈𝐸
𝛾 ̸=𝛾1

⃒⃒⃒⃒
⃒⃒ ∑︁
𝑁𝑟<𝑛⩽𝑢

𝑛−𝑖(𝛾−𝛾1)

⃒⃒⃒⃒
⃒⃒ ,

причем 𝑢 ⩽ 𝑁 𝑟
1 и такое, при котором правая часть максимальна. Двойную сумму по 𝜌, 𝜌1 ∈ 𝐸,

𝛾 ̸= 𝛾1 разобьем на ≪ ln𝑇 сумм вида 𝑉 < 𝛾 − 𝛾1 ⩽ 𝑉1, 1 ⩽ 𝑉 < 𝑉1 ⩽ 2𝑉 ⩽ 𝐻. Переходя к
максимальной сумме, получим, что

𝑊 ≪ 𝑅𝑁 𝑟(1−2𝛼) +𝑁−2𝑟𝛼 ln𝑇
∑︁

𝑉 <𝛾−𝛾1⩽𝑉1

⃒⃒⃒⃒
⃒⃒ ∑︁
𝑁𝑟<𝑛⩽𝑢

𝑛−𝑖(𝛾−𝛾1)

⃒⃒⃒⃒
⃒⃒≪

≪ 𝑅𝑁 𝑟(1−2𝛼) +𝑅𝑁−2𝑟𝛼 ln𝑇
∑︁

𝑉 <𝛾−𝛾0⩽𝑉1

⃒⃒⃒⃒
⃒⃒ ∑︁
𝑁𝑟<𝑛⩽𝑢

𝑛−𝑖(𝛾−𝛾0)

⃒⃒⃒⃒
⃒⃒ ,

где внешнее суммирование проводится по числам 𝛾, а 𝛾0 — фиксированное число из проме-
жутка (𝑇, 𝑇 +𝐻].

Если 𝑉1 ⩽ 𝜋𝑁 𝑟, то к сумме по 𝑛 применим лемму 5:

∑︁
𝑁𝑟<𝑛⩽𝑢

𝑛−𝑖(𝛾−𝛾0) =

𝑢∫︁
𝑁𝑟

𝑛−𝑖(𝛾−𝛾0)𝑑𝑛≪ 𝑁 𝑟

|𝛾 − 𝛾0|+ 1
;

𝑊 ≪ 𝑅𝑁 𝑟(1−2𝛼) +𝑅𝑁−2𝑟𝛼 ln𝑇
∑︁

𝑉 <𝛾−𝛾0⩽𝑉1

𝑁 𝑟

𝛾 − 𝛾0 + 1
≪ 𝑅𝑁 𝑟(1−2𝛼) ln2 𝑇.

Если 𝑉1 > 𝜋𝑁 𝑟, то к сумме по 𝑛 применим лемму 6:∑︁
𝑁𝑟<𝑛⩽𝑢

𝑛−𝑖(𝛾−𝛾0) =
∑︁

𝑀⩽𝑚⩽𝑀1

(︂
𝛾 − 𝛾0

2𝜋

)︂1/2

𝑚−1𝑒

(︂
−𝛾 − 𝛾0

2𝜋
ln
𝛾 − 𝛾0

2𝜋𝑒
+
𝛾 − 𝛾0

2𝜋
ln𝑚

)︂
+

+𝑂(𝑁 𝑟𝑉 −0.5)≪ 𝑉 0.5

⃒⃒⃒⃒
⃒⃒ ∑︁
𝑀⩽𝑚⩽𝑀1

𝑚𝑖(𝛾−𝛾0)−1

⃒⃒⃒⃒
⃒⃒+𝑁 𝑟𝑉 −0.5,

𝑀 =
𝛾 − 𝛾0
2𝜋𝑢

, 𝑀1 =
𝛾 − 𝛾0
2𝜋𝑁 𝑟

.
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Таким образом, при любом 𝑉 , 1 ⩽ 𝑉 ⩽ 𝐻, для 𝑊 выполняется такая оценка:

𝑊 ≪ 𝑅𝑁 𝑟(1−2𝛼) ln2 𝑇 +𝑅𝑉 0.5𝑁−2𝑟𝛼 ln𝑇
∑︁

𝑉 <𝛾−𝛾0⩽𝑉1

⎛⎝⃒⃒⃒⃒⃒⃒ ∑︁
𝑀⩽𝑚⩽𝑀1

𝑚−1+𝑖(𝛾−𝛾0)

⃒⃒⃒⃒
⃒⃒+𝑁 𝑟𝑉 −1

⎞⎠ . (22)

Границы изменения 𝑚 зависят от переменной суммирования 𝛾. Освободимся от этой зависи-
мости за счет незначительного огрубления оценки. Возьмем

𝐵 =
[︀
𝑉 𝑁−𝑟

]︀
+ 1, 𝑈 = 𝑉 (2𝜋𝑢)−1, 𝑈1 = 𝑉 (𝜋𝑁 𝑟)−1.

Имеем цепочку равенств:∑︁
𝑀⩽𝑚⩽𝑀1

𝑚−1+𝑖(𝛾−𝛾0) =
∑︁

𝑈⩽𝑛⩽𝑈1

𝑛−1+𝑖(𝛾−𝛾0)
∑︁

𝑀⩽𝑚⩽𝑀1

1

2𝐵 + 1

∑︁
|𝑏|⩽𝐵

𝑒

(︂
𝑏(𝑛−𝑚)

2𝐵 + 1

)︂
=

=
1

2𝐵 + 1

∑︁
𝑀⩽𝑚⩽𝑀1

∑︁
𝑈⩽𝑛⩽𝑈1

𝑛−1+𝑖(𝛾−𝛾0)+

+
1

2𝐵 + 1

∑︁
0<|𝑏|⩽𝐵

∑︁
𝑈⩽𝑛⩽𝑈1

𝑛−1+𝑖(𝛾−𝛾0)𝑒

(︂
𝑏𝑛

2𝐵 + 1

)︂ ∑︁
𝑀⩽𝑚⩽𝑀1

𝑒

(︂
−𝑏𝑚

2𝐵 + 1

)︂
.

Последняя сумма по 𝑚 суммируется и легко оценивается по абсолютной величине числом
(2𝐵 + 1)|𝑏|−1. Следовательно,

∑︁
𝑀⩽𝑚⩽𝑀1

𝑚−1+𝑖(𝛾−𝛾0) ≪
∑︁
|𝑏|⩽𝐵

1

|𝑏|+ 1

⃒⃒⃒⃒
⃒⃒ ∑︁
𝑈⩽𝑛⩽𝑈1

𝑛−1+𝑖(𝛾−𝛾0)𝑒

(︂
𝑏𝑛

2𝐵 + 1

)︂⃒⃒⃒⃒⃒⃒≪
≪ ln𝑇

⃒⃒⃒⃒
⃒⃒ ∑︁
𝑈⩽𝑛⩽𝑈1

𝑛−1+𝑖(𝛾−𝛾0)𝑒

(︂
𝑏𝑛

2𝐵 + 1

)︂⃒⃒⃒⃒⃒⃒ ,
где |𝑏| ⩽ 𝐵 и такое, при котором правая часть максимальна. Подставляя эту оценку в (22),
находим:

𝑊 ≪ 𝑅𝑁 𝑟(1−2𝛼) ln2 𝑇 +𝑅𝑉 0.5𝑁−2𝑟𝛼 ln2 𝑇
∑︁

𝑉 <𝛾−𝛾0⩽𝑉1

⎛⎝⃒⃒⃒⃒⃒⃒ ∑︁
𝑈⩽𝑛⩽𝑈1

𝑛−1+𝑖(𝛾−𝛾0)𝑒

(︂
𝑏𝑛

2𝐵 + 1

)︂⃒⃒⃒⃒⃒⃒+
𝑁 𝑟

𝑉

⎞⎠ .

(23)
Возводя основное неравенство (12) в степень 𝑟, будем считать:

1 ⩽ ln2𝑟 𝑇

⃒⃒⃒⃒
⃒⃒ ∑︁
𝑁𝑟<𝑘⩽𝑁𝑟

1

𝐴𝑟(𝑘)𝑘−𝛽+𝑖𝛾

⃒⃒⃒⃒
⃒⃒ . (24)

Заменяя единицу в правой части (23) под знаком суммы по 𝛾 большой величиной, именно
правой частью (24), получим:

𝑊 ≪ 𝑅𝑁 𝑟(1−2𝛼) ln2 𝑇 +𝑅𝑉 0.5𝑁−2𝑟𝛼 ln2𝑟+2 𝑇 ·𝑊1, (25)

𝑊1 =
∑︁

𝑉 <𝛾−𝛾0⩽𝑉1

⎛⎝⃒⃒⃒⃒⃒⃒ ∑︁
𝑈⩽𝑛⩽𝑈1

∑︁
𝑁𝑟<𝑘⩽𝑁𝑟

1

𝑛−1+𝑖(𝛾−𝛾0)𝑒

(︂
𝑏𝑛

2𝐵 + 1

)︂
𝐴𝑟(𝑘)𝑘−𝛽+𝑖𝛾

⃒⃒⃒⃒
⃒⃒+

+𝑁 𝑟𝑉 −1

⃒⃒⃒⃒
⃒⃒ ∑︁
𝑁𝑟<𝑘⩽𝑁𝑟

1

𝐴𝑟(𝑘)𝑘−𝛽+𝑖𝛾

⃒⃒⃒⃒
⃒⃒
⎞⎠ .
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Наконец, в последних двух суммах сделаем частное суммирование по 𝑛 и 𝑘; при этом за
знак модуля выносятся максимумы величин 𝑛−1 и 𝑘−𝛽 , а верхние границы изменения 𝑛 и 𝑘
заменяются какими-то другими; получим:

𝑊1 ≪ 𝑁 𝑟−𝑟𝛼𝑉 −1(𝑊2 +𝑊3), (26)

𝑊2 =
∑︁

𝑉 <𝛾−𝛾0⩽𝑉1

⃒⃒⃒⃒
⃒⃒ ∑︁
𝑈⩽𝑛⩽𝑈2

∑︁
𝑁𝑟<𝑘⩽𝑁𝑟

2

𝑛𝑖(𝛾−𝛾0)𝑒

(︂
𝑏𝑛

2𝐵 + 1

)︂
𝐴𝑟(𝑘)𝑘𝑖𝛾

⃒⃒⃒⃒
⃒⃒ ,

𝑊3 =
∑︁

𝑉 <𝛾−𝛾0⩽𝑉3

⃒⃒⃒⃒
⃒⃒ ∑︁
𝑁𝑟<𝑘⩽𝑁𝑟

3

𝐴𝑟(𝑘)𝑘𝑖𝛾

⃒⃒⃒⃒
⃒⃒ , 𝑈2 ⩽ 𝑈1, 𝑁2, 𝑁3 ⩽ 𝑁1.

Записывая модуль внутренней суммы в 𝑊2 в виде произведения суммы на 𝑒−𝑖𝜙(𝛾) и меняя
порядки суммирования, находим:

𝑊2 ≪
∑︁

𝑈⩽𝑛⩽𝑈2

∑︁
𝑁𝑟<𝑘⩽𝑁𝑟

2

|𝐴𝑟(𝑘)|

⃒⃒⃒⃒
⃒⃒ ∑︁
𝑉 <𝛾−𝛾0⩽𝑉1

𝑒−𝑖𝜙(𝛾)(𝑛𝑘)𝑖𝛾

⃒⃒⃒⃒
⃒⃒≪

≪
∑︁

𝑈𝑁𝑟⩽𝑚⩽𝑈2𝑁𝑟
2

𝐵(𝑚)

⃒⃒⃒⃒
⃒⃒ ∑︁
𝑉 <𝛾−𝛾0⩽𝑉1

𝑒−𝑖𝜙(𝛾)𝑚𝑖(𝛾−𝛾0)

⃒⃒⃒⃒
⃒⃒ , (27)

𝐵(𝑚) ⩽
∑︁

𝑛𝑘=𝑚

|𝐴𝑟(𝑘)| ≪
∑︁
𝑘|𝑚

𝜏2𝑟(𝑘) = 𝜏2𝑟+1(𝑚);

𝑊3 =
∑︁

𝑁𝑟⩽𝑘⩽𝑁𝑟
3

|𝐴𝑟(𝑘)|

⃒⃒⃒⃒
⃒⃒ ∑︁
𝑉 <𝛾−𝛾0⩽𝑉1

𝑒−𝑖𝜙(𝛾)𝑘𝑖(𝛾−𝛾0)

⃒⃒⃒⃒
⃒⃒ . (28)

Применяя к (27) и (28) неравенство Коши, оценку (14) и лемму 4, получим

𝑊 2
2 ≪ 𝑉 ln(2𝑟+1)2−1 𝑇

∑︁
𝑈𝑁𝑟⩽𝑚⩽𝑈2𝑁𝑟

2

⃒⃒⃒⃒
⃒⃒ ∑︁
𝑉 <𝛾−𝛾0⩽𝑉1

𝑒−𝑖𝜙(𝛾)𝑚𝑖(𝛾−𝛾0)

⃒⃒⃒⃒
⃒⃒
2

,

𝑊 2
3 ≪ 𝑁 𝑟 ln4𝑟2−1 𝑇

∑︁
𝑁𝑟⩽𝑘⩽𝑁𝑟

3

⃒⃒⃒⃒
⃒⃒ ∑︁
𝑉 <𝛾−𝛾0⩽𝑉1

𝑒−𝑖𝜙(𝛾)𝑘𝑖(𝛾−𝛾0)

⃒⃒⃒⃒
⃒⃒
2

.

Применив к правым частям полученных неравенств лемму 2, получим:

𝑊 2
2 ≪ 𝑉 ln(2𝑟+1)2−1 𝑇

(︁
𝐼1 +

√︀
𝐼1𝐼2

)︁
, 𝑊 2

3 ≪ 𝑁 𝑟 ln4𝑟2−1 𝑇
(︁
𝐼3 +

√︀
𝐼3𝐼4

)︁
, (29)
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где

𝐼1 =

𝑈2𝑁𝑟
2∫︁

𝑈𝑁𝑟

⃒⃒⃒⃒
⃒⃒ ∑︁
𝑉 <𝛾−𝛾0⩽𝑉1

𝑒−𝑖𝜙(𝛾)𝑚𝑖(𝛾−𝛾0)

⃒⃒⃒⃒
⃒⃒
2

𝑑𝑚,

𝐼2 =

𝑈2𝑁𝑟
2∫︁

𝑈𝑁𝑟

⃒⃒⃒⃒
⃒⃒ ∑︁
𝑉 <𝛾−𝛾0⩽𝑉1

(𝛾 − 𝛾0)𝑒−𝑖𝜙(𝛾)𝑚𝑖(𝛾−𝛾0)−1

⃒⃒⃒⃒
⃒⃒
2

𝑑𝑚,

𝐼3 =

𝑁𝑟
3∫︁

𝑁𝑟

⃒⃒⃒⃒
⃒⃒ ∑︁
𝑉 <𝛾−𝛾0⩽𝑉1

𝑒−𝑖𝜙(𝛾)𝑘𝑖(𝛾−𝛾0)

⃒⃒⃒⃒
⃒⃒
2

𝑑𝑘,

𝐼4 =

𝑁𝑟
3∫︁

𝑁𝑟

⃒⃒⃒⃒
⃒⃒ ∑︁
𝑉 <𝛾−𝛾0⩽𝑉1

(𝛾 − 𝛾0)𝑒−𝑖𝜙(𝛾)𝑘𝑖(𝛾−𝛾0)−1

⃒⃒⃒⃒
⃒⃒
2

𝑑𝑘.

Интегралы 𝐼1, 𝐼2, 𝐼3 и 𝐼4 оцениваются одинаково: после возведения модуля соответствующей
суммы в квадрат, интеграл берется и сумма по 𝛾 и 𝛾1 оценивается тривиально суммой модулей
слагаемых (следует помнить, что число слагаемых по 𝛾, 𝛾1 не превосходит 𝑅, а 𝛾, 𝛾1 таковы,
что |𝛾 − 𝛾1| ⩾ 1 и 𝑈 = 𝑉 (2𝜋𝑢)−1 ≍ 𝑉 𝑁−𝑟). Последовательно находим:

𝐼1 =
∑︁

𝑉 <𝛾−𝛾0⩽𝑉1
𝑉 <𝛾1−𝛾0⩽𝑉1

𝑒𝑖(𝜙(𝛾1)−𝜙(𝛾))

𝑈2𝑁𝑟
2∫︁

𝑈𝑁𝑟

𝑚𝑖(𝛾−𝛾1)𝑑𝑚 =

=
∑︁

𝑉 <𝛾−𝛾0⩽𝑉1
𝑉 <𝛾1−𝛾0⩽𝑉1

𝑒𝑖(𝜙(𝛾1)−𝜙(𝛾)) (𝑈2𝑁
𝑟
2 )𝑖(𝛾−𝛾1)+1 − (𝑈𝑁 𝑟)𝑖(𝛾−𝛾1)+1

𝑖(𝛾 − 𝛾1) + 1
≪

≪ 𝑅𝑈𝑁 𝑟 + 𝑈𝑁 𝑟
∑︁

𝑉 <𝛾−𝛾0⩽𝑉1
𝑉 <𝛾1−𝛾0⩽𝑉1

𝛾 ̸=𝛾1

(|𝛾 − 𝛾1|+ 1)−1 ≪ 𝑅𝑈𝑁 𝑟 ln𝑇 ≪ 𝑅𝑉 ln𝑇 ;

𝐼2 =
∑︁

𝑉 <𝛾−𝛾0⩽𝑉1
𝑉 <𝛾1−𝛾0⩽𝑉1

𝑒𝑖(𝜙(𝛾1)−𝜙(𝛾))(𝛾 − 𝛾0)(𝛾1 − 𝛾0)
𝑈2𝑁𝑟

2∫︁
𝑈𝑁𝑟

𝑚𝑖(𝛾−𝛾1)−2𝑑𝑚 =

=
∑︁

𝑉 <𝛾−𝛾0⩽𝑉1
𝑉 <𝛾1−𝛾0⩽𝑉1

𝑒𝑖(𝜙(𝛾1)−𝜙(𝛾)) (𝛾 − 𝛾0)(𝛾1 − 𝛾0)
(𝑈2𝑁

𝑟
2 )𝑖(𝛾−𝛾1)−1 − (𝑈𝑁 𝑟)𝑖(𝛾−𝛾1)−1

𝑖(𝛾 − 𝛾1)− 1
≪

≪ 𝑉 2(𝑈𝑁 𝑟)−1𝑅+ 𝑉 2(𝑈𝑁 𝑟)−1
∑︁

𝑉 <𝛾−𝛾0⩽𝑉1
𝑉 <𝛾1−𝛾0⩽𝑉1

𝛾 ̸=𝛾1

|𝛾 − 𝛾1|−1 ≪ 𝑉 2(𝑈𝑁 𝑟)−1𝑅 ln𝑇 ≪ 𝑅𝑉 ln𝑇 ;

𝐼3 ≪ 𝑅𝑁 𝑟 ln𝑇 ;

𝐼4 ≪ 𝑉 2𝑁−𝑟𝑅 ln𝑇.

Подставляя найденные оценки для интегралов 𝐼1, 𝐼2, 𝐼3 и 𝐼4 в (29), а при оценке𝑊3 пользуясь
условием 𝑉1 > 𝜋𝑁 𝑟, найдем
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𝑊 2
2 ≪ 𝑉 ln(2𝑟+1)2−1 𝑇

(︁
𝑅𝑉 ln𝑇 +

√
𝑅𝑉 ln𝑇 ·𝑅𝑉 ln𝑇

)︁
≪ 𝑅𝑉 2 ln(2𝑟+1)2 𝑇,

𝑊 2
3 ≪ 𝑁 𝑟 ln4𝑟2−1 𝑇

(︁
𝑅𝑁 𝑟 ln𝑇 +

√
𝑅𝑁 𝑟 ln𝑇 · 𝑉 2𝑁−𝑟𝑅 ln𝑇

)︁
≪

≪ 𝑅 ln4𝑟2−1 𝑇 (𝑁2𝑟 ln𝑇 +𝑁 𝑟𝑉 ln𝑇 )≪ 𝑅𝑉 2 ln4𝑟2 𝑇.

Из (26), (25) и (21) последовательно получаем:

𝑊1 ≪ 𝑁 𝑟−𝑟𝛼𝑉 −1
(︁
𝑅0,5𝑉 ln2𝑟2+2𝑟+0,5 𝑇 +𝑅0,5𝑉 ln2𝑟2 𝑇

)︁
≪ 𝑅0.5𝑁 𝑟(1−𝛼) ln2𝑟2+2𝑟+0,5 𝑇 ;

𝑊 ≪ 𝑅𝑁 𝑟(1−2𝛼) ln2 𝑇 +𝑅𝑉 0.5𝑁−2𝑟𝛼 ln2𝑟+2 𝑇 ·𝑅0.5𝑁 𝑟(1−𝛼) ln2𝑟2+2𝑟+0,5 𝑇 ≪

≪ 𝑅𝑁 𝑟(1−2𝛼) ln2 𝑇 +𝑅1.5𝑉 0.5𝑁 𝑟(1−3𝛼) ln2𝑟2+4𝑟+2,5 𝑇 ;

𝑅 ⩽ 𝑁 𝑟 ln4𝑟2+4𝑟+5 𝑇 ·
(︁
𝑁 𝑟(1−2𝛼) ln2 𝑇 +𝑅0.5𝑉 0.5𝑁 𝑟(1−3𝛼) ln2𝑟2+4𝑟+2,5 𝑇

)︁
≪

≪ 𝑁2𝑟(1−𝛼) ln4𝑟2+4𝑟+7 𝑇 +𝑅0.5𝑉 0.5𝑁 𝑟(2−3𝛼) ln6𝑟2+8𝑟+7.5 𝑇.

Помня, что 𝑉 ⩽ 𝐻, перепишем последнюю оценку для величины 𝑅 в следующей удобной
форме:

𝑅≪ 𝑁2𝑟(1−𝛼) ln4𝑟2+4𝑟+7 𝑇 +𝐻𝑁 𝑟(4−6𝛼) ln12𝑟2+16𝑟+15 𝑇. (30)

Мы рассматриваем случай:

𝐻
6

5(𝑟+1) < 𝑁 ⩽ 𝐻
1
𝑟 ,

1

2
+
𝑟 + 1

12
⩽ 𝛼 ⩽ 1, 𝑟 = 2, 3, 4.

Легко видеть, что 𝛼 > 3
4 >

2
3 , тогда

𝑅≪ 𝐻2(1−𝛼) ln4𝑟2+4𝑟+7 𝑇 +𝐻
1+ 12𝑟

5(𝑟+1)
(2−3𝛼)

ln12𝑟2+16𝑟+15 𝑇.

Отсюда, пользуясь соотношением

1 +
12𝑟

5(𝑟 + 1)
(2− 3𝛼)− 12

5
(1− 𝛼) =

12(2𝑟 − 1)

5(𝑟 + 1)

(︂
17𝑟 − 7

12(2𝑟 − 1)
− 𝛼

)︂
⩽

⩽
12(2𝑟 − 1)

5(𝑟 + 1)

(︂
17𝑟 − 7

12(2𝑟 − 1)
− 1

2
− 𝑟 + 1

12

)︂
= −2𝑟(𝑟 − 2)

5(𝑟 + 1)
⩽ 0,

имеем

𝑅≪ 𝐻2.4(1−𝛼) ln95 𝑇.

3.1.2. Случай 𝐻0.6 < 𝑁 ⩽ 𝐻0.8; 𝛼 /∈
(︀
2
3 ,

5
6

)︀
Если 1/2 ⩽ 𝛼 ⩽ 2/3, то, полагая в (17) 𝑟 = 0, найдем

𝑅≪ (𝐻𝑁1−2𝛼 +𝑁2(1−𝛼)) ln12 𝑇 ⩽ (𝐻1+0.6(1−2𝛼) +𝐻1.6(1−𝛼)) ln14 𝑇 =

= (𝐻2.4(1−𝛼)+1.2(𝛼−2/3) +𝐻1.6(1−𝛼)) ln14 𝑇 ≪ 𝐻2.4(1−𝛼) ln14 𝑇.

При 5/6 ⩽ 𝛼 ⩽ 1 применим оценку (30), полагая в ней 𝑟 = 1. Находим

𝑅≪ (𝑁2(1−𝛼) +𝐻𝑁4−6𝛼) ln𝑐 𝑇 ≪ (𝐻1.6(1−𝛼) +𝐻1+0.6(4−6𝛼)) ln43 𝑇 =

= (𝐻1.6(1−𝛼) +𝐻2.4(1−𝛼)+1.2(5/6−𝛼)) ln43 𝑇 ≪ 𝐻2.4(1−𝛼) ln43 𝑇.
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3.1.3. Случай 𝐻0.6 < 𝑁 ⩽ 𝐻0.8; 2/3 ⩽ 𝛼 ⩽ 5/6

Пусть сначала 𝐻0.6 < 𝑁 ⩽ 𝐻2/3. Полагая в оценке (17) 𝑟 = 1, найдем:

𝑅≪ (𝐻𝑁2−4𝛼 +𝑁4(1−𝛼)) ln28 𝑇 ≪ 𝐻8/3(1−𝛼) ln28 𝑇.

Пусть теперь 𝐻2/3 ⩽ 𝑁 ⩽ 𝐻0.8, 2/3 ⩽ 𝛼 ⩽ 3/4. Применим (17) при 𝑟 = 0. Находим

𝑅≪ (𝐻𝑁1−2𝛼 +𝑁2(1−𝛼)) ln14 𝑇 ≪ (𝐻1+2/3(1−2𝛼) +𝐻8/5(1−𝛼)) ln14 𝑇 =

= (𝐻8/3(1−𝛼)+4/3(𝛼−3/4) +𝐻8/5(1−𝛼)) ln14 𝑇 ≪ 𝐻8/3(1−𝛼) ln14 𝑇.

Наконец, если 𝐻2/3 ⩽ 𝑁 ⩽ 𝐻0.8 и 3/4 ⩽ 𝛼 ⩽ 5/6, то, пользуясь оценкой (30) при 𝑟 = 1,
получим:

𝑅≪ (𝑁2(1−𝛼) +𝐻𝑁4−6𝛼) ln50 𝑇 ≪ (𝐻8/5(1−𝛼) +𝐻1+2/3(4−6𝛼)) ln50 𝑇 =

= (𝐻8/5(1−𝛼) +𝐻8/3(1−𝛼)+4/3(3/4−𝛼)) ln50 𝑇 ≪ 𝐻8/3(1−𝛼) ln50 𝑇.

3.1.4. Случай 𝐻0.8 < 𝑁 ⩽ 𝐻

Если 0.5 ⩽ 𝛼 ⩽ 3/4, то, полагая в (17) 𝑟 = 0, найдем:

𝑅≪ (𝐻𝑁1−2𝛼 +𝑁2(1−𝛼)) ln14 𝑇 ≪ (𝐻1+4/5(1−2𝛼) +𝐻2(1−𝛼)) ln14 𝑇 =

= (𝐻2.4(1−𝛼)+0.8(𝛼−3/4) +𝐻2(1−𝛼)) ln14 𝑇 ≪ 𝐻2.4(1−𝛼) ln14 𝑇.

При 0.75 ⩽ 𝛼 ⩽ 1 применим оценку (20), полагая в ней 𝑟 = 1. Находим

𝑅≪ (𝑁2(1−𝛼) +𝐻𝑁4−6𝛼) ln14 𝑇 ≪ (𝐻2(1−𝛼) +𝐻1+4/5(4−6𝛼)) ln14 𝑇 =

= (𝐻2(1−𝛼) +𝐻2.4(1−𝛼)+2.4(0.75−𝛼)) ln14 𝑇 ≪ 𝐻2.4(1−𝛼) ln14 𝑇.

3.1.5. Случай 𝐻 ⩽ 𝑁 ⩽ 𝑇 0.5(1+𝜀)

Возводя основное неравенство (12) в квадрат и просуммировав обе части получившегося
неравенства по 𝜌 ∈ 𝐸, получим

𝑅≪ ln7 𝑇
∑︁
𝜌∈𝐸

⃒⃒⃒⃒
⃒⃒ ∑︁
𝑁<𝑛⩽𝑁1

𝑎(𝑛)𝑛−𝜌

⃒⃒⃒⃒
⃒⃒
2

.

Во внутренней сумме по 𝑛 сделаем частное суммирование. При этом за знак модуля вынесется
максимум величины 𝑛−𝛽 , а верхняя граница изменения 𝑛 заменится на 𝑁2, 𝑁2 ⩽ 𝑁1. Помня,
что 𝛽 ⩾ 𝛼, получим

𝑅≪ 𝑁−2𝛼 ln7 𝑇
∑︁
𝜌∈𝐸

⃒⃒⃒⃒
⃒⃒ ∑︁
𝑁<𝑛⩽𝑁2

𝑎(𝑛)𝑛−𝑖𝛾

⃒⃒⃒⃒
⃒⃒
2

.

К сумме по 𝜌 применим лемму 2, полагая в ней 𝑡𝜈 = 𝛾, 𝛿 = 1. Находим

𝑅≪ 𝑁−2𝛼
(︁
𝐼1 +

√︀
𝐼1𝐼2

)︁
ln7 𝑇. (31)

где

𝐼1 =

𝑇+𝐻∫︁
𝑇

⃒⃒⃒⃒
⃒⃒ ∑︁
𝑁<𝑛⩽𝑁2

𝑎(𝑛)𝑛−𝑖𝑡

⃒⃒⃒⃒
⃒⃒
2

𝑑𝑡,

𝐼2 =

𝑇+𝐻∫︁
𝑇

⃒⃒⃒⃒
⃒⃒ ∑︁
𝑁<𝑛⩽𝑁2

𝑎(𝑛)𝑛−𝑖𝑡 ln𝑛

⃒⃒⃒⃒
⃒⃒
2

𝑑𝑡.



Плотность нулей дзета-функции Римана в узких прямоугольниках критической полосы 173

Оценим сверху интеграл 𝐼1. Имеем

𝐼1 =

𝐻∫︁
0

⃒⃒⃒⃒
⃒⃒ ∑︁
𝑁<𝑛⩽𝑁2

𝑎(𝑛)𝑛−𝑖(𝑇+𝑡)

⃒⃒⃒⃒
⃒⃒
2

𝑑𝑡 ⩽

𝐻∫︁
0

exp

(︃
1−

(︂
𝑡

𝐻

)︂2
)︃ ⃒⃒⃒⃒
⃒⃒ ∑︁
𝑁<𝑛⩽𝑁2

𝑎(𝑛)𝑛−𝑖(𝑇+𝑡)

⃒⃒⃒⃒
⃒⃒
2

𝑑𝑡 ⩽

⩽ 𝑒

∞∫︁
−∞

exp

(︃
−
(︂
𝑡

𝐻

)︂2
)︃ ⃒⃒⃒⃒
⃒⃒ ∑︁
𝑁<𝑛⩽𝑁2

𝑎(𝑛)𝑛−𝑖(𝑇+𝑡)

⃒⃒⃒⃒
⃒⃒
2

𝑑𝑡 =

= 𝑒
∑︁

𝑁<𝑛1,𝑛2⩽𝑁2

𝑎(𝑛1)𝑎(𝑛2)

(︂
𝑛1
𝑛2

)︂−𝑖𝑇
∞∫︁

−∞

exp

(︃
−
(︂
𝑡

𝐻

)︂2

− 𝑖𝑡 ln
𝑛1
𝑛2

)︃
𝑑𝑡.

При вещественном 𝛼 справедливо равенство

∞∫︁
−∞

exp
(︀
−𝑡2 − 𝑖𝛼𝑡

)︀
𝑑𝑡 =

√
𝜋 exp

(︂
−
(︁𝛼

2

)︁2)︂
.

Поэтому

𝐼1 ⩽ 𝑒
√
𝜋𝐻

∑︁
𝑁<𝑛1,𝑛2⩽𝑁2

𝑎(𝑛1)𝑎(𝑛2)

(︂
𝑛1
𝑛2

)︂−𝑖𝑇

exp

(︃
−
(︂
𝐻

2
ln
𝑛1
𝑛2

)︂2
)︃
.

Представляя последнюю сумму в виде двух слагаемых, одно из которых получается при
𝑛1 = 𝑛2, приходим к оценке

𝐼1 ≪ 𝐻(Σ0 +𝑊0), Σ0 =
∑︁

𝑁<𝑛⩽𝑁2

𝑎2(𝑛),

𝑊0 ⩽
∑︁

𝑁<𝑛1<𝑛2⩽𝑁2

𝑎(𝑛1)𝑎(𝑛2)

(︂
𝑛1
𝑛2

)︂−𝑖𝑇

exp

(︃
−
(︂
𝐻

2
ln
𝑛2
𝑛1

)︂2
)︃
.

Оценим сумму Σ0, пользуясь леммой 4 и имея в виду, что |𝑎(𝑛)| ⩽ 𝜏(𝑛). Найдем:

Σ0 ⩽
∑︁

𝑁<𝑛⩽𝑁2

𝜏2(𝑛)≪ 𝑁 ln2 𝑇.

Теперь оценим 𝑊0. Если в 𝑊0 выполняется условие 𝑛2 − 𝑛1 ⩾ 𝐾 = 𝑁𝐻−1 ln𝑇 , то

ln
𝑛2
𝑛1

= ln

(︂
1 +

𝑛2 − 𝑛1
𝑛1

)︂
⩾ ln

(︂
1 +

ln𝑇

2𝐻

)︂
⩾

ln𝑇

4𝐻
.

Следовательно

exp

(︃
−
(︂
𝐻

2
ln
𝑛2
𝑛1

)︂2
)︃

⩽ exp

(︂
− ln2 𝑇

64

)︂
.

Таким образом, если 𝑛2−𝑛1 > 𝐾, то соответствующая часть суммы𝑊0 есть величина порядка

𝑂
(︀
exp

(︀
−0.01 ln2 𝑇

)︀)︀
.

Оценим оставшуюся часть суммы 𝑊0, которую обозначим 𝑊1:

𝑊1 =
∑︁

𝑁<𝑛1⩽𝑁2

𝑎(𝑛1)
∑︁

𝑛1<𝑛2⩽𝑛1+𝐾
𝑛2⩽𝑁2

𝑎(𝑛2)

(︂
𝑛1
𝑛2

)︂−𝑖𝑇

exp

(︃
−
(︂
𝐻

2
ln
𝑛2
𝑛1

)︂2
)︃
.
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Записывая коэффициенты 𝑎(𝑛1) и 𝑎(𝑛2) в явном виде, получим:

𝑊1 =
∑︁

𝑚1,𝑚2⩽𝑥

𝜇(𝑚1)𝜇(𝑚2)𝑊 (𝑚1,𝑚2), 𝑦 =

(︂
𝑇

2𝜋

)︂ 1
2

, (32)

𝑊 (𝑚1,𝑚2) =
∑︁

𝑁<𝑚1𝑛1⩽𝑁2
𝑛1⩽𝑦

∑︁
𝑚1𝑛1<𝑚2𝑛2⩽𝑚1𝑛1+𝐾

𝑛2⩽𝑦, 𝑚2𝑛2⩽𝑁2

exp

(︃
−
(︂
𝐻

2
ln
𝑚2𝑛2
𝑚1𝑛1

)︂2
)︃(︂

𝑚1𝑛1
𝑚2𝑛2

)︂−𝑖𝑇

.

Обозначим через 𝑑 наибольший общий делитель чисел 𝑚1 и 𝑚2. Тогда 𝑚1 = 𝑎𝑑, 𝑚2 = 𝑏𝑑,
(𝑎, 𝑏) = 1. Переменные суммирования представим так:

𝑛1 = 𝑏𝑛3 + 𝑛′3, 𝑛2 = 𝑎𝑛4 + 𝑛′4.

Причем 𝑛′3 и 𝑛
′
4 меняются в пределах 0 ⩽ 𝑛′3 < 𝑏, 0 ⩽ 𝑛′4 < 𝑎, а при заданных 𝑛′3, 𝑛

′
4 переменные

𝑛3, 𝑛4 меняются в пределах

𝑁3 = (𝑁𝑚−1
1 − 𝑛

′
3)𝑏

−1 < 𝑛3 ⩽ (𝑁2𝑚
−1
1 − 𝑛

′
3)𝑏

−1 = 𝑁 ′
3, 𝑛3 ⩽ (𝑦 − 𝑛′3)𝑏−1,

(𝑛1𝑚1𝑚
−1
2 − 𝑛

′
4)𝑎

−1 < 𝑛4 ⩽ (𝑛1𝑚1𝑚
−1
2 − 𝑛

′
4 +𝐾𝑚−1

2 )𝑎−1,

𝑛4 ⩽ (𝑦 − 𝑛′4)𝑎−1, 𝑛4 ⩽ (𝑁2𝑚
−1
2 − 𝑛

′
4)𝑎

−1 = 𝑁4.

Далее имеем:

(𝑛1𝑚1𝑚
−1
2 − 𝑛

′
4)𝑎

−1 = ((𝑏𝑛3 + 𝑛′3)𝑎𝑏
−1 − 𝑛′4)𝑎−1 = 𝑛3 + 𝑛′3𝑏

−1 − 𝑛′4𝑎−1 = 𝑛3 + 𝛼− 𝛽,
𝛼 = 𝑛′3𝑏

−1, 𝛽 = 𝑛′4𝑎
−1.

Поэтому

𝑛3 + 𝛼− 𝛽 < 𝑛4 ⩽ 𝑛3 + 𝛼− 𝛽 +𝐾1, 𝐾1 = 𝐾(𝑎𝑏𝑑)−1, 𝑛4 ⩽ (𝑦 − 𝑛′4)𝑎−1, 𝑛4 ⩽ 𝑁4.

Пользуясь введенными обозначениями, дробь 𝑛1𝑚1/𝑛2𝑚2 представим так:

𝑚1𝑛1
𝑚2𝑛2

=
𝑎𝑛1
𝑏𝑛2

=
𝑎𝑏𝑛3 + 𝑎𝑛′3
𝑎𝑏𝑛4 + 𝑏𝑛′4

=
𝑛3 + 𝛼

𝑛4 + 𝛽
.

Сумма 𝑊 (𝑚1,𝑚2) будет теперь выглядеть следующим образом:

𝑊 (𝑚1,𝑚2) =
∑︁

0⩽𝑛′
3<𝑏

∑︁
0⩽𝑛′

4<𝑎

𝑊 (𝑛′3, 𝑛
′
4), (33)

𝑊 (𝑛′3, 𝑛
′
4) =

∑︁
𝑁3<𝑛3⩽𝑁 ′

3

𝑛3⩽(𝑦−𝑛′
3)𝑏

−1

∑︁
𝑛3+𝛼−𝛽<𝑛4⩽𝑛3+𝛼−𝛽+𝐾1

𝑛4⩽𝑁4, 𝑛4⩽(𝑦−𝑛′
4)𝑎

−1

exp

(︃
−
(︂
𝐻

2
ln
𝑛4 + 𝛽

𝑛3 + 𝛼

)︂2
)︃(︂

𝑛3 + 𝛼

𝑛4 + 𝛽

)︂−𝑖𝑇

.

Переменная суммирования 𝑛4 принимает все значения натуральных чисел из полуинтервала

ℎ3 + 𝛼− 𝛽 < 𝑛4 ⩽ min
{︀
𝑛3 + 𝛼− 𝛽 +𝐾1, 𝑁4, (𝑦 − 𝑛′4)𝑎−1

}︀
.

Поэтому 𝑛4 можно заменить величиной 𝑛3 + ℎ; 𝑛4 = 𝑛3 + ℎ, где ℎ принимает значения:

𝛼− 𝛽 < ℎ ⩽ min
{︀
𝛼− 𝛽 +𝐾1, 𝑁4 − 𝑛3, (𝑦 − 𝑛′4)𝑎−1 − 𝑛3

}︀
= ℎ1.
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Таким образом

𝑊 (𝑛′3, 𝑛
′
4) =

∑︁
𝑁3<𝑛3⩽𝑁 ′

3

𝑛3⩽(𝑦−𝑛′
3)𝑏

−1

∑︁
𝛼−𝛽<ℎ⩽ℎ1

𝐸(𝑛3, ℎ)

(︂
𝑛3 + 𝛼

𝑛3 + ℎ+ 𝛽

)︂−𝑖𝑇

,

𝐸(𝑛3, ℎ) = exp

(︃
−
(︂
𝐻

2
ln
𝑛3 + ℎ+ 𝛽

𝑛3 + 𝛼

)︂2
)︃
.

Меняя порядок суммирования, найдем:

𝑊 (𝑛′3, 𝑛
′
4) ⩽

∑︁
𝛼−𝛽<ℎ⩽𝛼−𝛽+𝐾1

⃒⃒⃒⃒
⃒⃒ ∑︁
𝑁3<𝑛3⩽𝑁5

𝐸(𝑛3, ℎ)

(︂
𝑛3 + 𝛼

𝑛3 + ℎ+ 𝛽

)︂−𝑖𝑇
⃒⃒⃒⃒
⃒⃒ ,

где
𝑁5 = min

{︀
𝑁 ′

3, (𝑦 − 𝑛′3)𝑏−1, 𝑁4 − ℎ, (𝑦 − 𝑛′4)𝑎−1 − ℎ
}︀
.

Во внутренней сумме по 𝑛3 сделаем частное суммирование, а затем с учетом следующих со-
отношений

𝐸′
𝑢(𝑢, ℎ) = 𝐸(𝑢, ℎ)

𝐻(𝛼− 𝛽 − ℎ)

(𝑢+ ℎ+ 𝛽)(𝑢+ 𝛼)
ln
𝑛3 + ℎ+ 𝛽

𝑛3 + 𝛼
< 0,

𝐶(𝑢, ℎ) =
∑︁

𝑁3<𝑛3⩽𝑢

(︂
𝑛3 + 𝛼

𝑛3 + ℎ+ 𝛽

)︂−𝑖𝑇

, 0 < 𝐸(𝑢, ℎ) ⩽ 1,

то есть в частности, пользуясь монотонностью функции 𝐸(𝑢, ℎ), последовательно получим:

𝑊 (𝑛′
3, 𝑛

′
4) ⩽

∑︁
𝛼−𝛽<ℎ⩽𝛼−𝛽+𝐾1

⃒⃒⃒⃒
⃒⃒−

𝑁5∫︁
𝑁3

𝐶(𝑢, ℎ)𝐸′
𝑢(𝑢, ℎ)𝑑𝑢+ 𝐸(𝑁5, ℎ)𝐶(𝑁5, ℎ)

⃒⃒⃒⃒
⃒⃒ ⩽

⩽
∑︁

𝛼−𝛽<ℎ⩽𝛼−𝛽+𝐾1

⃒⃒
𝐶(𝑁 ′

5, ℎ)
⃒⃒
(2𝐸(𝑁5, ℎ) + 𝐸(𝑁3, ℎ)) ≪

∑︁
𝛼−𝛽<ℎ⩽𝛼−𝛽+𝐾1

⃒⃒⃒⃒
⃒⃒ ∑︁
𝑁3<𝑛3⩽𝑁′

5

(︂
𝑛3 + 𝛼

𝑛3 + ℎ+ 𝛽

)︂−𝑖𝑇

⃒⃒⃒⃒
⃒⃒ ,

где 𝑁3 < 𝑁 ′
5 ⩽ 𝑁5. Отметим, что для 𝑊1(𝑛1, 𝑛

′
4) выполняются следующие условия, которыми

мы будем далее пользоваться:

ℎ+ 𝛽 − 𝛼 =
𝑚2𝑛2 −𝑚1𝑛1

𝑎𝑏𝑑
⩾ (𝑎𝑏)−1,

𝑁2 ⩽ 𝑚1𝑚2𝑦
2 ⩽ 𝑎𝑏𝑑2𝑇.

Для оценки внутренней суммы в𝑊1(𝑛
′
3, 𝑛

′
4) пользуемся методом экспоненциальных пар (опре-

деление 3). Положим

𝑓(𝑢) =
𝑇

2𝜋
ln
𝑢+ ℎ+ 𝛽

𝑢+ 𝛼
;

ℎ1 = 𝑁 ′
5 −𝑁3 ⩽ 𝑁3 = (𝑁𝑚−1

1 − 𝑛
′
3)𝑏

−1;

𝐵 = 𝑁(𝑎𝑏𝑑)−1;

𝐴 = 𝑇 (ℎ+ 𝛽 − 𝛼)(𝑎𝑏𝑑)2𝑁−2 ⩾ 1.

Производная порядка 𝑟, 𝑟 = 1, 2, · · · функции 𝑓(𝑢) имеет вид

𝑓 (𝑟)(𝑢) =
(−1)𝑟(𝑟 − 1)!𝑇

2𝜋(𝑢+ ℎ+ 𝛽)𝑟(𝑢+ 𝛼)𝑟

𝑟∑︁
𝑖=1

𝐶𝑖
𝑟(𝑢+ 𝛼)𝑟−1(ℎ+ 𝛽 − 𝛼),
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и выполняются следующие соотношения

𝐴𝐵1−𝑟 ≪ 𝑓 (𝑟)(𝑢)≪ 𝐴𝐵1−𝑟, 𝐴𝐵1−𝑟 = 𝑇 (ℎ+ 𝛽 − 𝛼)(𝑎𝑏𝑑)𝑟+1𝑁−𝑟−1.

Следовательно, для любой экспоненциальной пары (𝜅, 𝜆) имеем:

𝑊 (𝑛′3, 𝑛
′
4) ⩽

∑︁
𝛼−𝛽<ℎ⩽𝛼−𝛽+𝐾1

𝐴𝜅𝐵𝜆 ≪ 𝑇 𝜅𝑁𝜆−2𝜅(𝑎𝑏𝑑)2𝜅−𝜆𝐾𝜅+1
1 ≪

≪ 𝑁1+𝜆−𝜅𝑇 𝑘𝐻−𝜅−1(𝑎𝑏𝑑)𝜅−𝜆−1 ln𝜅+1 𝑇.

Тем самым из (32) и (33) получим:

𝑊 (𝑚1,𝑚2)≪ 𝑁1+𝜆−𝜅𝑇 𝑘𝐻−𝜅−1(𝑚1𝑚2)
𝜅−𝜆 ln𝜅+1 𝑇 ;

𝑊1 ≪ 𝑁1+𝜆−𝜅𝑇 𝜅𝐻−𝜅−1𝑥2(1+𝜅−𝜆) ln𝜅+1 𝑇.

Так как 𝑥 < 𝑁 ≪ 𝑥𝑇 0.5, 𝑥 = 𝑇 0.5𝜀 и 𝜅 ⩽ 𝜆, то

𝑊1 ≪ 𝑁𝑇
𝜅+𝜆
2 𝐻−𝜅−1𝑥2+𝜅−𝜆 ln𝜅+1 𝑇 ⩽ 𝑁𝑇

𝜅+𝜆
2

+𝜀𝐻−𝜅−1 ln𝜅+1 𝑇 =

= 𝑁

(︃
𝑇

𝜅+𝜆
2(𝜅+1)

+ 𝜀
𝜅+1

𝐻

)︃𝜅+1

ln𝜅+1 𝑇.

Поэтому, если 𝐻 ⩾ 𝑇
𝜅+𝜆
2𝜅+2

+𝜀, то
𝑊1 ≪ 𝑁 ln2 𝑇.

Объединяя это с оценками 𝑊0 и Σ0, находим:

𝐼1 ≪ 𝐻𝑁 ln2 𝑇.

Оценивая интеграл 𝐼2 также как и 𝐼1, получим:

𝐼2 ≪ 𝐻𝑁 ln3 𝑇.

Отсюда и из (31), пользуясь соотношением 𝑁 ⩾ 𝐻, найдем:

𝑅≪ 𝐻𝑁1−2𝛼 ln10 𝑇 ≪ 𝐻2(1−𝛼) ln10 𝑇.

Таким образом, случай, когда 𝑆(𝜌) имеет вид (10), рассмотрен полностью.

3.2. Сумма 𝑆(𝜌) имеет вид (11)

Пусть 𝑆(𝜌) имеет вид (11). Так как

|𝜒(𝜌)| ≪ 𝑇 0.5−𝛽, 𝛽 = Re 𝜌,

то, переходя в (11) к неравенствам, найдем:

1 ⩽ 𝑇 0.5−𝛽 ln2 𝑇

⃒⃒⃒⃒
⃒⃒ ∑︁
𝑌 <𝑛⩽𝑌1

𝑛−1+𝜌
∑︁

𝑀<𝑚⩽𝑀1

𝜇(𝑚)𝑚−𝜌

⃒⃒⃒⃒
⃒⃒ , 𝑌 ⩽ 𝑦 =

(︂
𝑇

2𝜋

)︂ 1
2

, 𝑀1 ⩽ 𝑥 = 𝑇 0.5𝜀.

Производя частное суммирование по 𝑚 и 𝑛, приходим к неравенству:

1 ⩽ 𝑇 0.5−𝛽𝑌 −1+𝛽𝑀−𝛽 ln2 𝑇

⃒⃒⃒⃒
⃒⃒ ∑︁
𝑌 <𝑛⩽𝑌2

𝑛−𝑖𝛾
∑︁

𝑀<𝑚⩽𝑀2

𝜇(𝑚)𝑚−𝑖𝛾

⃒⃒⃒⃒
⃒⃒ , 𝑌2 ⩽ 𝑌1, 𝑀2 ⩽𝑀1.
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Возводя это неравенство в квадрат и просуммировав обе части получившегося неравенства по
𝜌 ∈ 𝐸, получим:

𝑅≪ 𝑇 1−2𝛼𝑌 2𝛼−2𝑀−2𝛼 ln7 𝑇
∑︁
𝜌∈𝐸

⃒⃒⃒⃒
⃒⃒ ∑︁
𝑀<𝑚⩽𝑀2

𝜇(𝑚)𝑚−𝑖𝛾
∑︁

𝑌 <𝑛⩽𝑌2

𝑛−𝑖𝛾

⃒⃒⃒⃒
⃒⃒
2

.

К сумме по 𝜌 применяя лемму 2, получим:

𝑅≪ 𝑇 1−2𝛼𝑌 2𝛼−2𝑀−2𝛼 ln7 𝑇
(︁
𝐼1 +

√︀
𝐼1𝐼2

)︁
, (34)

𝐼1 =

𝑇+𝐻∫︁
𝑇

⃒⃒⃒⃒
⃒⃒ ∑︁
𝑀<𝑚⩽𝑀2

𝜇(𝑚)𝑚−𝑖𝑡
∑︁

𝑌 <𝑛⩽𝑌2

𝑛−𝑖𝑡

⃒⃒⃒⃒
⃒⃒
2

𝑑𝑡,

𝐼2 =

𝑇+𝐻∫︁
𝑇

⃒⃒⃒⃒
⃒⃒ ∑︁
𝑀<𝑚⩽𝑀2

𝜇(𝑚)𝑚−𝑖𝑡
∑︁

𝑌 <𝑛⩽𝑌2

𝑛−𝑖𝑡 ln𝑚𝑛

⃒⃒⃒⃒
⃒⃒
2

𝑑𝑡.

Оценим сверху интеграл 𝐼1. Применяя прием, который был использован при преобразовании
𝐼1 в пункте 3.1.5, найдем:

𝐼1 ⩽ 𝑒
√
𝜋𝐻

∑︁
𝑀<𝑚1,𝑚2⩽𝑀2

𝜇(𝑚1)𝜇(𝑚2)
∑︁

𝑌 <𝑛1,𝑛2⩽𝑌2

exp

(︃
−
(︂
𝐻

2
ln
𝑚1𝑛1
𝑚2𝑛2

)︂2
)︃(︂

𝑚1𝑛1
𝑚2𝑛2

)︂−𝑖𝑇

.

Представляя последнюю сумму в виде двух слагаемых, одно из которых получается при
𝑚1𝑛1 = 𝑚2𝑛2, приходим к оценке

𝐼1 ≪ 𝐻(Σ0 +𝑊0),

где

Σ0 =
∑︁

𝑀<𝑚1,𝑚2⩽𝑀2

𝜇(𝑚1)𝜇(𝑚2)
∑︁

𝑌 <𝑛1,𝑛2⩽𝑌2
𝑚1𝑛1=𝑚2𝑛2

1≪
∑︁

𝑀𝑌<𝑘⩽𝑀1𝑌1

𝜏2(𝑘)≪𝑀𝑌 ln3 𝑇,

𝑊0 =
∑︁

𝑀<𝑚1,𝑚2⩽𝑀2

𝜇(𝑚1)𝜇(𝑚2)
∑︁

𝑌 <𝑛1,𝑛2⩽𝑌2
𝑚1𝑛1<𝑚2𝑛2

exp

(︃
−
(︂
𝐻

2
ln
𝑚2𝑛2
𝑚1𝑛1

)︂2
)︃(︂

𝑚1𝑛1
𝑚2𝑛2

)︂−𝑖𝑇

.

Оценим 𝑊0. Если в 𝑊0 выполняется условие 𝑚2𝑛2 −𝑚1𝑛1 ⩾ 𝐾, 𝐾 = 𝑀𝑌𝐻−1 ln𝑇 , то

ln
𝑚2𝑛2
𝑚1𝑛1

= ln

(︂
1 +

𝑚2𝑛2 −𝑚1𝑛1
𝑚1𝑛1

)︂
⩾ ln

(︂
1 +

ln𝑇

4𝐻

)︂
⩾

ln𝑇

8𝐻
;

Следовательно

exp

(︃
−
(︂
𝐻

2
ln
𝑚2𝑛2
𝑚1𝑛1

)︂2
)︃

⩽ exp

(︂
− ln2 𝑇

256

)︂
.

Таким образом, если 𝑚2𝑛2 −𝑚1𝑛1 > 𝐾, то соответствующая часть суммы 𝑊0 есть величина
порядка

𝑂
(︀
exp

(︀
−0.01 ln2 𝑇

)︀)︀
. (35)

Отметим, что при 𝑌𝑀 ⩽ 𝐻 ln𝑇 , все суммы𝑊0 также имеют порядок (35). Оценим оставшуюся
часть суммы 𝑊0, которую обозначим 𝑊1:

𝑊1 =
∑︁

𝑀<𝑚1,𝑚2⩽𝑀2

𝜇(𝑚1)𝜇(𝑚2)𝑊 (𝑚1,𝑚2), (36)

𝑊 (𝑚1,𝑚2) =
∑︁

𝑌 <𝑛1,𝑛2⩽𝑌2

∑︁
𝑚1𝑛1<𝑚2𝑛2⩽𝑚1𝑛1+𝐾

𝑌<𝑛2⩽𝑌2

exp

(︃
−
(︂
𝐻

2
ln
𝑚2𝑛2
𝑚1𝑛1

)︂2
)︃(︂

𝑚1𝑛1
𝑚2𝑛2

)︂−𝑖𝑇

.
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Обозначим через 𝑑 наибольший общий делитель чисел 𝑚1 и 𝑚2. Тогда 𝑚1 = 𝑎𝑑, 𝑚2 = 𝑏𝑑,
(𝑎, 𝑏) = 1. Переменные суммирования представим так:

𝑛1 = 𝑏𝑛3 + 𝑛′3, 𝑛2 = 𝑎𝑛4 + 𝑛′4.

Причем 𝑛′3 и 𝑛
′
4 меняются в пределах 0 ⩽ 𝑛′3 < 𝑏, 0 ⩽ 𝑛′4 < 𝑎, а при заданных 𝑛′4, 𝑛

′
4 переменные

𝑛3, 𝑛4 меняются в пределах

𝑌3 = (𝑌 − 𝑛′3)𝑏−1 < 𝑛3 ⩽ (𝑌2 − 𝑛′3)𝑏−1 = 𝑌 ′
3 ,

(𝑛1𝑚1𝑚
−1
2 − 𝑛

′
4)𝑎

−1 < 𝑛4 ⩽ (𝑛1𝑚1𝑚
−1
2 − 𝑛

′
4 +𝐾𝑚−1

2 )𝑎−1,

𝑌4 = (𝑌 − 𝑛′4)𝑎−1 < 𝑛4 ⩽ (𝑌2 − 𝑛′4)𝑎−1 = 𝑌 ′
4 .

Далее имеем:

(𝑛1𝑚1𝑚
−1
2 − 𝑛

′
4)𝑎

−1 = ((𝑏𝑛3 + 𝑛′3)𝑎𝑏
−1 − 𝑛′4)𝑎−1 = 𝑛3 + 𝑛′3𝑏

−1 − 𝑛′4𝑎−1 =

= 𝑛3 + 𝛼− 𝛽, 𝛼 = 𝑛′3𝑏
−1, 𝛽 = 𝑛′4𝑎

−1.

Поэтому

𝑛3 + 𝛼− 𝛽 < 𝑛4 ⩽ 𝑛3 + 𝛼− 𝛽 +𝐾1, 𝐾1 = 𝐾(𝑎𝑏𝑑)−1, 𝑌4 < 𝑛4 ⩽ 𝑌 ′
4 .

Пользуясь введенными обозначениями, дробь 𝑚1𝑛1/𝑚2𝑛2 представим так:

𝑚1𝑛1
𝑚2𝑛2

=
𝑎𝑛1
𝑏𝑛2

=
𝑎𝑏𝑛3 + 𝑎𝑛′3
𝑎𝑏𝑛4 + 𝑏𝑛′4

=
𝑛3 + 𝛼

𝑛4 + 𝛽
.

Сумма 𝑊 (𝑚1,𝑚2) будет теперь выглядеть следующим образом:

𝑊 (𝑚1,𝑚2) =
∑︁

0⩽𝑛′
3<𝑏

∑︁
0⩽𝑛′

4<𝑎

𝑊 (𝑛′3, 𝑛
′
4), (37)

𝑊 (𝑛′3, 𝑛
′
4) =

∑︁
𝑌3<𝑛3⩽𝑌 ′

3

∑︁
𝑛3+𝛼−𝛽<𝑛4⩽𝑛3+𝛼−𝛽+𝐾1

𝑌4<𝑛4⩽𝑌 ′
4

exp

(︃
−
(︂
𝐻

2
ln
𝑛4 + 𝛽

𝑛3 + 𝛼

)︂2
)︃(︂

𝑛3 + 𝛼

𝑛4 + 𝛽

)︂−𝑖𝑇

.

Переменная суммирования 𝑛4 принимает все значения натуральных чисел из полуинтервала

max(𝑌4, ℎ3 + 𝛼− 𝛽) < 𝑛4 ⩽ min(𝑌 ′
4 , 𝑛3 + 𝛼− 𝛽 +𝐾1).

Поэтому 𝑛4 можно заменить величиной 𝑛3 + ℎ; 𝑛4 = 𝑛3 + ℎ, где ℎ принимает значения:

ℎ1 = max(𝑌4 − 𝑛3, 𝛼− 𝛽) < ℎ ⩽ min(𝑌 ′
4 − 𝑛3, 𝛼− 𝛽 +𝐾1) = ℎ2.

Таким образом

𝑊1(𝑛
′
3, 𝑛

′
4) =

∑︁
𝑌3<𝑛3⩽𝑌 ′

3

∑︁
ℎ1<ℎ⩽ℎ2

𝐸(𝑛3, ℎ)

(︂
𝑛3 + 𝛼

𝑛3 + ℎ+ 𝛽

)︂−𝑖𝑇

,

𝐸(𝑛3, ℎ) = exp

(︃
−
(︂
𝐻

2
ln
𝑛3 + ℎ+ 𝛽

𝑛3 + 𝛼

)︂2
)︃
.

Меняя порядок суммирования, найдем:

𝑊1(𝑛
′
3, 𝑛

′
4) ⩽

∑︁
𝛼−𝛽<ℎ⩽𝛼−𝛽+𝐾1

⃒⃒⃒⃒
⃒⃒ ∑︁
𝑁<𝑛3⩽𝑁1

𝐸(𝑛3, ℎ)

(︂
𝑛3 + 𝛼

𝑛3 + ℎ+ 𝛽

)︂−𝑖𝑇
⃒⃒⃒⃒
⃒⃒ ,
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где 𝑁 = max(𝑌3, 𝑌4−ℎ), 𝑁1 = min(𝑌 ′
3 , 𝑌

′
4−ℎ). Поступая аналогично как при оценке𝑊 (𝑛′3, 𝑛

′
4)

пункта 3.1.5, найдем:

𝑊1(𝑛
′
3, 𝑛

′
4)≪

∑︁
𝛼−𝛽<ℎ⩽𝛼−𝛽+𝐾1

⃒⃒⃒⃒
⃒⃒ ∑︁
𝑁<𝑛3⩽𝑁2

(︂
𝑛3 + 𝛼

𝑛3 + ℎ+ 𝛽

)︂−𝑖𝑇
⃒⃒⃒⃒
⃒⃒ ,

где 𝑁2 ⩽ 𝑁1. Отметим, что для 𝑊1(𝑛
′
3, 𝑛

′
4) выполняются следующие условия, которыми мы

будем далее пользоваться:

ℎ+ 𝛽 − 𝛼 =
𝑚2𝑛2 −𝑚1𝑛1

𝑎𝑏𝑑
⩾ (𝑎𝑏)−1,

𝑌 (𝑎𝑏)−0.5 ≪𝑌 𝑎−1 ≪ 𝑌 𝑏−1 ≪ 𝑌 𝑏−1 ≪ 𝑌 𝑎−1 ≪ 𝑌 (𝑎𝑏)−0.5, 𝑌 ⩽ 𝑇 0.5.

Для оценки внутренней суммы в 𝑊1(𝑛
′
3, 𝑛

′
4) применим метод экспоненциальных пар (опреде-

ление 3). Положим

𝑓(𝑢) =
𝑇

2𝜋
ln
𝑢+ ℎ+ 𝛽

𝑢+ 𝛼
, 𝐵 = 𝑌 (𝑎𝑏)−0.5;

ℎ1 = 𝑁2 −𝑁 ⩽ 𝑁, 𝐴 = 𝑇 (ℎ+ 𝛽 − 𝛼)𝑎𝑏𝑌 −2 ⩾ 1.

Следовательно, для произвольной экспоненциальной пары (𝜅, 𝜆) имеем:

𝑊1(𝑛
′
3, 𝑛

′
4) ⩽

∑︁
𝛼−𝛽<𝑛⩽𝛼−𝛽+𝐾1

𝐴𝜅𝐵𝜆 ≪ 𝑇 𝜅𝑌 𝜆−2𝜅(𝑎𝑏)𝜅−0.5𝜆𝐾𝑘+1
1 ≪

≪ 𝑌 1+𝜆−𝜅𝑀𝜅+1𝑇 𝜅𝐻−𝜅−1(𝑎𝑏)−1−0.5𝜆𝑑−𝜅−1 ln𝜅+1 𝑇.

Тем самым из (37) с учетом 𝜆− 𝜅− 1 < 0, а затем из (36) для 𝑊1 получаем:

𝑊 (𝑚1,𝑚2)≪ 𝑌 1+𝜆−𝜅𝑀𝜅+1𝑇 𝜅𝐻−𝜅−1(𝑎𝑏)−0.5𝜆𝑑−𝜅−1 ln𝜅+1 𝑇 ≪
≪ 𝑌 1+𝜆−𝜅𝑀𝜅+1𝑇 𝜅𝐻−𝜅−1(𝑚1𝑚2)

−0.5𝜆 ln𝜅+1 𝑇,

𝑊1 ≪ 𝑌 1+𝜆−𝜅𝑇 𝑘𝐻−𝜅−1𝑀3+𝜅−𝜆 ln𝜅+1 𝑇.

Так как 𝑌 ⩽ 𝑇 0.5, 𝑥 = 𝑇 0.5𝜀 и 𝜅− 𝜆 ⩽ 0, то

𝑊1 ≪ 𝑌𝑀𝑇
𝜅+𝜆
2

+𝜀𝐻−𝜅−1 ln𝑘+1 𝑇 = 𝑌𝑀

(︃
𝑇

𝜅+𝜆
2(𝜅+1)

+ 𝜀
𝜅+1

𝐻

)︃𝜅+1

ln𝑘+1 𝑇.

Поэтому, если 𝐻 ⩾ 𝑇
𝜅+𝜆
2𝜅+2

+𝜀, то
𝑊1 ≪ 𝑌𝑀 ln2 𝑇.

Объединяя это с оценками 𝑊0 и Σ0, находим:

𝐼1 ≪ 𝐻𝑌𝑀 ln2 𝑇.

Оценивая интеграл 𝐼2 также как и 𝐼1, получим:

𝐼2 ≪ 𝐻𝑌𝑀 ln3 𝑇.

Отсюда и из (34), пользуясь соотношениями

𝑌 ⩽ 𝑦 =

(︂
𝑇

2𝜋

)︂ 1
2

, 1 ⩽𝑀 ⩽ 𝑥 = 𝑇 0.5𝜀, 𝐻 = 𝑇 𝜃+𝜀 < 𝑇
1
2 ,

последовательно найдем:

𝑅≪ 𝑇 1−2𝛼𝑌 2𝛼−2𝑀−2𝛼 ln7 𝑇
(︁
𝐼1 +

√︀
𝐼1𝐼2

)︁
≪ 𝐻𝑇 1−2𝛼𝑌 2𝛼−1𝑀1−2𝛼 ln10 𝑇 ≪

≪ 𝐻𝑇 0,5(1−2𝛼) ln10 𝑇 ≪ 𝐻2(1−𝛼) ln10 𝑇.

Таким образом, случай, когда 𝑆(𝜌) имеет вид (11), рассмотрен полностью, и теорема 1 дока-
зана.
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