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Аннотация

Гельфонд получил результат о равномерной распределенности сумм цифр 𝑏-ичных раз-
ложений натуральных чисел по классам вычетов по произвольному модулю 𝑑. Позднее
Ламбергер и Тусвальднер, используя глубокие оценки тригонометрических сумм, получи-
ли налог теоремы Гельфонда, в котором вместо 𝑏-ичных разложений используются раз-
ложения по линейным рекуррентным последовательностям, удовлетворяющим условию
Парри и некоторому дополнительному условию на коэффициенты. В статье мы даем но-
вое, более простое и самозамкнутое доказательство теоремы Ламбергера – Тусвальднера.
Наше доказательство носит чисто комбинаторный характер и требует только условия Пар-
ри. Кроме того, мы даем достаточно простую явную формулу для показателя степени в
остаточном члене. В отличие от результата Ламбергера – Тусвальднера, полученный нами
показатель зависит только от 𝑑 и порядка линейной рекуррентной последовательности, но
не от ее коэффициентов. Однако наш результат не включает равнораспределенность по
модулю 𝑑 сумм цифр натуральных чисел, пробегающих арифметические прогрессии, что
также было доказано Ламбергером и Тусвальднером.

В конце работы кратко обсуждаются некоторые нерешенные задачи.
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мы цифр, задача Гельфонда.
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Abstract

Gelfond obtained a result on the uniform distribution of sums of digits of 𝑏-ary expansions
of natural numbers over residue classes modulo 𝑑 for an arbitrary 𝑑. Later, Lamberger and
Thuswaldner, using deep estimates of trigonometric sums, obtained an analogue of Gelfond’s
theorem, in which instead of 𝑏-ary expansions, expansions over linear recurrent bases satisfying
the Parry condition and some additional condition on the coefficients, are used. In this paper,
we give a new, simpler and self-contained, proof of the Lamberger-Tkuswaldner theorem. Our
proof is purely combinatorial and require only Parry condition. In addition, we give a quite
simple explicit formula for the exponent in the remainder term. In contrast to the Lamberger-
Thuswaldner result, obtained exponent depends only on 𝑑 and the order of the linear recurrent
sequence, but not on its coefficients. However, our result does not include the equidistribution
of the sums of the digits modulo 𝑑 of natural numbers running from an arbitrary arithmetic
progression, which was also proved by Lamberger and Thuswaldner.

At the end of the paper, some unsolved problems are briefly discussed.
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1. Введение

Пусть

𝑛 =

𝑏(𝑛)∑︁
𝑖=0

𝑏𝑖(𝑛)𝑏𝑘,

где 𝑏𝑖(𝑛) ∈ {0, 1 . . . , 𝑏−1}, 𝑏(𝑛) = max{𝑘 : 𝑏𝑘 ≤ 𝑛} – разложение 𝑛 в 𝑏-ичной системе счисления.
Пусть

𝑁
(𝑏)
𝑑,𝑎(𝑋) = ♯

⎧⎨⎩𝑚 < 𝑋 :

𝑏(𝑚)∑︁
𝑖=0

𝑏𝑖(𝑛) ≡ 𝑎 (mod 𝑑)

⎫⎬⎭
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– количество натуральных чисел, не превосходящих 𝑋, для которых сумма цифр 𝑏-ичного
разложения принадлежит заданному классу вычетов по модулю 𝑑. Известно, что при условии
взаимной простоты 𝑑 и 𝑏− 1 существует постоянная 𝜇 < 1 (зависящая от 𝑏) такая, что

𝑁
(𝑏)
𝑑,𝑎(𝑋) =

𝑋

𝑑
+𝑂(𝑛𝜇).

Данный результат был доказан Файном [1] в случае, когда 𝑑 – простое число и А.О. Гельфон-
дом [2] в общем случае.

Данный результат в дальнейшем изучался во многих направлениях. Среди них можно
выделить перенос результатов на случай, когда рассматриваются суммы цифр разложений
чисел, пробегающих некоторую последовательность (например, в упомянутых работах Файна
и Гельфонда 𝑚 могло также пробегать арифметическую прогрессию), изучение совместного
распределения сумм цифр нескольких натуральных чисел (см., например [3]), изучение ана-
логов задачи Гельфонда для разложений по линейным рекуррентным последовательностям.

Рассмотрим класс линейных рекуррентных последовательностей {𝑇𝑛}, удовлетворяющих
условиям:

1. {𝑇𝑛} является линейной рекуррентной последовательностью порядка 𝑟, то есть суще-
ствуют целые числа 𝑎𝑖 ⩾ 0 (1 ⩽ 𝑖 < 𝑟) и 𝑎𝑟 > 0 такие, что для каждого 𝑛 ⩾ 0

𝑇𝑛+𝑟 = 𝑎1𝑇𝑛+𝑟−1 + 𝑎2𝑇𝑛+𝑟−2 + . . .+ 𝑎𝑟𝑇𝑛. (1)

2. Начальные условия определяются следующим образом:

𝑇0 = 1 и 𝑇𝑛 ⩾ 𝑎1𝑇𝑛−1 + 𝑎2𝑇𝑛−2 + . . .+ 𝑎𝑛𝑇0 + 1

при 1 ⩽ 𝑛 < 𝑟. (2)

3. Коэффициенты 𝑎1, 𝑎2, ..., 𝑎𝑟 удовлетворяют условию Парри [4], то есть

(𝑎𝑠, 𝑎𝑠+1, . . . , 𝑎𝑟) ≼ (𝑎1, 𝑎2, . . . , 𝑎𝑟−𝑠+1) (3)

для 1 < 𝑠 ⩽ 𝑑, где ≼ обозначает лексикографический порядок.

Замечание 1. Условие Парри для последовательности {𝑇𝑛} может быть переписано
следующим образом: при всех 𝑛 ⩾ 0 и 1 ⩽ 𝑘 < 𝑟 справедливо неравенство

𝑇𝑛+𝑟−𝑘 >
𝑟∑︁

𝑖=𝑘+1

𝑎𝑖𝑇𝑛+𝑟−𝑖.

Любое натуральное число 𝑁 можно представить в виде

𝑁 =

𝑡(𝑁)∑︁
𝑖=0

𝑡𝑖(𝑁)𝑇𝑖, (4)

где 𝑡(𝑁) = max{𝑖 : 𝑇𝑖 ⩽ 𝑁}, 𝑡𝑖(𝑁) ∈ Z, 𝑡𝑖(𝑁) ⩾ 0, причем коэффициенты 𝑡𝑖(𝑁) подбираются
так, что для любого 𝑖 ⩾ 0 было справедливо неравенство

0 ⩽ 𝑁 −
𝑡(𝑁)∑︁
ℎ=𝑖

𝑡ℎ(𝑁)𝑇ℎ < 𝑇𝑖. (5)

Данное условие означает, что разложение (4) получается по жадному алгоритму.
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Различные задачи о суммах цифр подобных разложений изучались, в частности, в [5]–[8].
Нас будет интересовать аналог задачи Гельфонда.

Пусть 𝑁
(𝑇 )
𝑑,𝑎 (𝑋) — количество натуральных чисел, меньших 𝑋, для которых сумма коэф-

фициентов разложения (4) с условием (5) сравнима с 𝑎 по модулю 𝑑, то есть

𝑁
(𝑇 )
𝑑,𝑎 (𝑋) = ♯

⎧⎨⎩𝑚 < 𝑋 :

𝑡(𝑚)∑︁
𝑖=0

𝑡𝑖(𝑚) ≡ 𝑎 (mod 𝑑)

⎫⎬⎭ .

Нас интересуют асимптотические результаты вида

𝑁
(𝑇 )
𝑑,𝑎 (𝑋) =

𝑋

𝑑
+𝑂(𝑛𝜇).

Подобный результат впервые был получен при 𝑑 = 2 в работе [9]. Некоторые более тонкие
результаты об остаточном члене можно найти в [10]. В случае простейшей линейной рекур-
рентной последовательности – последовательности Фибоначчи, еще более тонкие результаты
содержатся в [11].

Общий результат об аналоге задачи Гельфонда для произвольного 𝑑 при дополнительном
условии взаимной простоты 𝑑 и 𝑎1 + . . .+ 𝑎𝑟 − 1 был получен в фундаментальной работе [12].
Более того, в ней был получен ряд других важных результатов, в частности, был рассмотрен
аналог задачи Гельфонда в случае, когда числа пробегают арифметическую прогрессию.

В основе доказательства из [12] лежал глубокий и имеющие многочисленные приложения

результат об оценке тригонометрической суммы
∑︀

𝑚<𝑋 𝑒2𝜋𝑖(
𝑎
𝑏

∑︀𝑡(𝑚)
𝑖=0 𝑡𝑖(𝑚)+𝑦𝑚), доказательство

которого, среди прочего, использовало сложные результаты из [13].

Отметим, что константа 𝜇 в результатах из [9] и [12] зависела от 𝑑 и линейной рекуррентной
последовательности. В случае 𝑑 = 2 методами из [9] и [10] можно получить достаточно простое
описание константы 𝜇 в виде отношения логарифмов максимумов модулей некоторых явно
выписываемых алгебраических уравнений. В случае произвольного 𝑑 работа [12] по сути тоже
содержит некоторый эффективный алгоритм вычисления константы 𝜇, однако этот алгоритм
чрезвычайно сложен (даже его описание заняло бы несколько страниц) и не был реализован
ни для одной линейной рекуррентной последовательности.

В настоящей работе мы даем новое, более простое, доказательство аналога теоремы Гель-
фонда в случае разложений по линейным рекуррентным последовательностям. Наше доказа-
тельство носит чисто комбинаторный характер и не использует оценок тригонометрических
сумм. Кроме того, оно позволяет получить достаточно простую формулу для показателя сте-
пени в остаточном члене. Более того, наш результат, в отличие от [12], не требует условия 𝑑 и
𝑎1+ . . .+𝑎𝑟−1, а показатель степени остаточного члена зависит только от модуля 𝑑 и порядка
линейного рекуррентного соотношения, но не зависит от самого соотношения.

2. Основной текст статьи

Положим 𝜀𝑑,𝑎(𝑚) равным единице, если сумма цифр соответствующего разложения 𝑚
сравнима с 𝑎 по модулю 𝑑, и равным − 1

𝑑−1 в противном случае, то есть

𝜀𝑑,𝑎(𝑚) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1, если

𝑡(𝑚)∑︀
𝑖=0

𝑡𝑖(𝑚) ≡ 𝑎 (mod 𝑑),

− 1
𝑑−1 , если

𝑡(𝑚)∑︀
𝑖=0

𝑡𝑖(𝑚) ≡/ 𝑎 (mod 𝑑).
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Лемма 1. Имеет место явная формула

𝑁
(𝑇 )
𝑑,𝑎 (𝑋) =

𝑋−1∑︁
𝑚=0

(︂
𝜀𝑑,𝑎(𝑚) +

1

𝑑− 1

)︂
· 𝑑− 1

𝑑
.

Справедливость данного утверждения следует из определения 𝜀𝑑,𝑎(𝑚).

Определим величины

𝑆𝑑,𝑎(𝑋) =

𝑋−1∑︁
𝑚=0

𝜀𝑑,𝑎(𝑚) и 𝑆*
𝑑,𝑎(𝑛) = 𝑆𝑑,𝑎(𝑇𝑛) =

𝑇𝑛−1∑︁
𝑚=0

𝜀𝑑,𝑎(𝑚).

Для 𝑆*
𝑑,𝑎(𝑛) справедлива лемма.

Лемма 2. Имеет место явная формула

𝑑−1∑︁
𝑎=0

𝑆*
𝑑,𝑎(𝑛) = 0.

Доказательство. Из определения 𝜀𝑑,𝑎(𝑚) следует очевидное равенство
𝑑−1∑︀
𝑎=0

𝜀𝑑,𝑎(𝑚) = 0,

поэтому в силу определения 𝑆*
𝑑,𝑎(𝑛) получаем

𝑑−1∑︁
𝑎=0

𝑆*
𝑑,𝑎(𝑛) =

𝑑−1∑︁
𝑎=0

𝑇𝑛−1∑︁
𝑚=0

𝜀𝑑,𝑎(𝑚) =

𝑇𝑛−1∑︁
𝑚=0

𝑑−1∑︁
𝑎=0

𝜀𝑑,𝑎(𝑚) = 0.

Лемма 2 доказана.

Обозначим через 𝐻(𝑛 + 𝑟) множество целых неотрицательных чисел, меньших 𝑇𝑛+𝑟, то
есть

𝐻(𝑛+ 𝑟) = {𝑚 : 𝑚 ∈ Z, 0 ⩽ 𝑚 < 𝑇𝑛+𝑟} .

Из условий (1) и (3) следует, что 𝑎1 ⩾ 1, 𝑎𝑟 ⩾ 1 и 𝑎𝑠 ⩾ 0 при 1 < 𝑠 < 𝑟, поэтому можно
утверждать:

0 < 𝑎1𝑇𝑛+𝑟−1 ⩽
2∑︁

ℎ=1

𝑎ℎ𝑇𝑛+𝑟−ℎ ⩽
3∑︁

ℎ=1

𝑎ℎ𝑇𝑛+𝑟−ℎ ⩽ . . . ⩽
𝑟−1∑︁
ℎ=1

𝑎ℎ𝑇𝑛+𝑟−ℎ <

𝑟∑︁
ℎ=1

𝑎ℎ𝑇𝑛+𝑟−ℎ.

Разобьем множество 𝐻(𝑛 + 𝑟) на непересекающиеся подмножества 𝐻𝑠(𝑛 + 𝑟) следующим
образом:

𝐻1(𝑛+ 𝑟) = {𝑚 : 𝑚 ∈ Z, 0 ⩽ 𝑚 < 𝑎1𝑇𝑛+𝑟−1} ;
𝐻𝑠(𝑛+ 𝑟) = ∅, если 𝑎𝑠 = 0 и 1 < 𝑠 < 𝑟;

𝐻𝑠(𝑛+ 𝑟) =

{︂
𝑚 : 𝑚 ∈ Z,

𝑠−1∑︀
ℎ=1

𝑎ℎ𝑇𝑛+𝑟−ℎ ⩽ 𝑚 <
𝑠∑︀

ℎ=1

𝑎ℎ𝑇𝑛+𝑟−ℎ

}︂
, если 𝑎𝑠 ̸= 0 и 2 ⩽ 𝑠 ⩽ 𝑟.

(6)

Возможны два случая: 𝑎1 > 1 и 𝑎1 = 1. При 𝑎1 > 1 промежуток 0 ⩽ 𝑚 < 𝑎1𝑇𝑛+𝑟−1

разделим на 𝑎1 частей и введем множества

𝐻1
𝑗 (𝑛+ 𝑟) = {𝑚 : 𝑚 ∈ Z, (𝑗 − 1)𝑇𝑛+𝑟−1 ⩽ 𝑚 < 𝑗𝑇𝑛+𝑟−1} , (7)

где 1 ⩽ 𝑗 ⩽ 𝑎1. Если 𝑎1 = 1, то будем полагать 𝐻1
1 (𝑛+ 𝑟) = 𝐻1(𝑛+ 𝑟).
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Для каждого непустого множества𝐻𝑠(𝑛+𝑟) также рассмотрим два случая: 𝑎𝑠 > 1 и 𝑎𝑠 = 1.
В том случае, когда 𝑎𝑠 > 1 множество 𝐻𝑠(𝑛+ 𝑟) разобьем на 𝑎𝑠 подмножеств 𝐻

𝑠
𝑗 (𝑛+ 𝑟):

𝐻𝑠
𝑗 (𝑛+ 𝑟) =

{︃
𝑚 : 𝑚 ∈ Z,

𝑠−1∑︁
ℎ=1

𝑎ℎ𝑇𝑛+𝑟−ℎ + (𝑗 − 1)𝑇𝑛+𝑟−𝑠 ⩽ 𝑚 <

𝑠−1∑︁
ℎ=1

𝑎ℎ𝑇𝑛+𝑟−ℎ + 𝑗𝑇𝑛+𝑟−𝑠

}︃
,

где 1 ⩽ 𝑗 ⩽ 𝑎𝑠. При 𝑎𝑠 = 1 будем считать, что 𝐻𝑠
1(𝑛+ 𝑟) = 𝐻𝑠(𝑛+ 𝑟).

Очевидно, что у всех чисел𝑚 ∈ 𝐻(𝑛+𝑟), а, следовательно, у𝑚 ∈ 𝐻𝑠(𝑛+𝑟), где 1 ⩽ 𝑠 ⩽ 𝑟, а
также и 𝑚 ∈ 𝐻𝑠

𝑗 (𝑛+𝑟), где 1 ⩽ 𝑠 ⩽ 𝑟, 1 ⩽ 𝑗 ⩽ 𝑎𝑠, при ℎ ⩾ 𝑛+𝑟 все коэффициенты разложения
(4) равны нулю, то есть 𝑡ℎ(𝑚) = 0 при ℎ ⩾ 𝑛+ 𝑟, поэтому условие (5) можно записать как

0 ⩽ 𝑚−
𝑛+𝑟−1∑︁
ℎ=𝑖

𝑡ℎ(𝑚)𝑇ℎ < 𝑇𝑖 (8)

при всех 0 ⩽ 𝑖 ⩽ 𝑛+ 𝑟 − 1.

Лемма 3. Если 𝑚 ∈ 𝐻1
𝑗 (𝑛+ 𝑟), где 1 ⩽ 𝑗 ⩽ 𝑎1, то в разложении (4) числа 𝑚 коэффици-

ент 𝑡𝑛+𝑟−1(𝑚) равен 𝑗 − 1. Если 𝑚 ∈ 𝐻𝑠
𝑗 (𝑛 + 𝑟), где 2 ⩽ 𝑠 ⩽ 𝑟, 1 ⩽ 𝑗 ⩽ 𝑎𝑠, и 𝐻

𝑠(𝑛 + 𝑟) ̸= ∅,
то в представлении (4) числа 𝑚 будут следующие коэффициенты: 𝑡𝑛+𝑟−1(𝑚) = 𝑎1, . . . ,
𝑡𝑛+𝑟−𝑠+1(𝑚) = 𝑎𝑠−1, 𝑡𝑛+𝑟−𝑠(𝑚) = 𝑗 − 1.

Утверждение леммы 3 получается из определения множества 𝐻𝑠
𝑗 (𝑛+ 𝑟) и условия (8).

Лемма 4. Пусть 𝑡𝑖(𝑚) — коэффициенты разложения числа 𝑚 по последовательности
{𝑇𝑛}. Если 0 ⩽ 𝑘 < 𝑎𝑖 (при 1 ⩽ 𝑖 ⩽ 𝑟), 0 ⩽ 𝑚′ < 𝑇𝑛+𝑟−𝑖 и 𝑛 ⩾ 0, то для

𝑚 =
𝑖−1∑︁
ℎ=1

𝑎ℎ𝑇𝑛+𝑟−𝑖 + 𝑘𝑇𝑛+𝑟−𝑖 +𝑚′

выполняются равенства

𝑡𝑙(𝑚) = 𝑡𝑙(𝑚
′) при 0 ⩽ 𝑙 < 𝑛+ 𝑟 − 𝑖,

𝑡𝑛+𝑟−𝑖(𝑚) = 𝑘,
𝑡𝑙(𝑚) = 𝑎𝑛+𝑟−𝑙 при 𝑛+ 𝑟 − 𝑖 < 𝑙 < 𝑛+ 𝑟.

Кроме того, для произвольного 𝑚0 и 𝑗 ⩽ 𝐿 = 𝑡(𝑚0), 𝑘 < 𝑡𝑗(𝑚0) и 𝑚
′ < 𝑇𝑗, то для

𝑚 = 𝑡𝐿(𝑚0)𝑇𝐿 + 𝑡𝐿−1(𝑚0)𝑇𝐿−1 + . . .+ 𝑡𝑗+1(𝑚0)𝑇𝑗+1 + 𝑘𝑇𝑗 +𝑚′

справедливы равенства
𝑡𝑙(𝑚) = 𝑡𝑙(𝑚

′) при 0 ⩽ 𝑙 < 𝑗,
𝑡𝑗(𝑚) = 𝑘,

𝑡𝑙(𝑚) = 𝑡𝑙(𝑚0) при 𝑗 < 𝑙 ⩽ 𝐿.

Замечание 2. Данное утверждение с дополнительным условием о взаимной простоте
ненулевых коэффициентов 𝑎𝑖 сформулировано и доказано в статье [8] (лемма 3.2), причем
при доказательстве этой леммы авторы условие взаимной простоты ненулевых 𝑎𝑖 не ис-
пользовали.

Обозначим 𝐼 = {𝑠 : 1 ⩽ 𝑠 ⩽ 𝑟, 𝑎𝑠 ̸= 0}, 𝑃𝑠 =
𝑠∑︀

𝑖=1
𝑎𝑖, 𝑃0 = 0, 𝑎⊖ 𝑙 = (𝑎− 𝑙)mod𝑑, то есть 𝑎⊖ 𝑙

— единственное целое 𝑔 такое, что 0 ⩽ 𝑔 < 𝑑 и 𝑔 ≡ 𝑎− 𝑙 (mod 𝑑).
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Лемма 5. При всех 𝑛 ⩾ 0 имеет место рекуррентное соотношение

𝑆*
𝑑,𝑎(𝑛+ 𝑟) =

∑︁
𝑠∈𝐼

𝑎𝑠∑︁
𝑗=1

𝑆*
𝑑,𝑎⊖(𝑃𝑠−1+(𝑗−1))(𝑛+ 𝑟 − 𝑠). (9)

Доказательство. Согласно определению

𝑆*
𝑑,𝑎(𝑛+ 𝑟) = 𝑆𝑑,𝑎(𝑇𝑛+𝑟) =

𝑇𝑛+𝑟−1∑︁
𝑚=0

𝜀𝑑,𝑎(𝑚) =
∑︁

𝑚∈𝐻(𝑛+𝑟)

𝜀𝑑,𝑎(𝑚).

Множество 𝐻(𝑛+ 𝑟) можно представить как объединение непересекающихся подмножеств
𝐻𝑠(𝑛+ 𝑟), где 1 ⩽ 𝑠 ⩽ 𝑟, некоторые из которых могут быть пустыми, поэтому, учитывая (6),
имеем:

𝑆*
𝑑,𝑎(𝑛+ 𝑟) =

∑︁
𝑠∈𝐼

∑︁
𝑚∈𝐻𝑠(𝑛+𝑟)

𝜀𝑑,𝑎(𝑚) =
∑︁

𝑚∈𝐻1(𝑛+𝑟)

𝜀𝑑,𝑎(𝑚) +
∑︁
𝑠∈𝐼,
𝑠>1

∑︁
𝑚∈𝐻𝑠(𝑛+𝑟)

𝜀𝑑,𝑎(𝑚). (10)

Возможны два случая: 𝑎1 = 1 и 𝑎1 > 1. Если 𝑎1 = 1, то по определению 𝐻1(𝑛+ 𝑟) = 𝐻1
1 (𝑛+ 𝑟).

Если 𝑎1 > 1, то 𝐻1(𝑛 + 𝑟) представим как объединение непересекающихся множеств
𝐻1

𝑗 (𝑛 + 𝑟), где 1 ⩽ 𝑗 ⩽ 𝑎1, определяемых как (7). Пусть 𝑚 ∈ 𝐻1
𝑗 (𝑛 + 𝑟), где 2 ⩽ 𝑗 ⩽ 𝑎1.

Будем полагать, что сумма коэффициентов разложения (4) числа 𝑚 сравнима с 𝑎 по модулю

𝑑, то есть
𝑡(𝑚)∑︀
𝑖=0

𝑡𝑖(𝑚) ≡ 𝑎 (mod 𝑑). Согласно лемме 4, для каждого𝑚 ∈ 𝐻1
𝑗 (𝑛+𝑟), где 2 ⩽ 𝑗 ⩽ 𝑎1,

найдется 𝑚′ ∈ 𝐻1
1 (𝑛+ 𝑟) такое, что

𝑡(𝑚)∑︁
𝑖=0

𝑡𝑖(𝑚)−
𝑡(𝑚′)∑︁
𝑖=0

𝑡𝑖(𝑚
′) = 𝑡𝑛+𝑟−1(𝑚) = 𝑗 − 1,

в соответствии с утверждением леммы 3. В таком случае сумма коэффициентов разложения

(4) числа 𝑚′ будет сравнима с 𝑎− (𝑗 − 1) по модулю 𝑑, то есть
∞∑︀
𝑖=0

𝑡𝑖(𝑚
′) ≡ 𝑎− (𝑗 − 1) (mod 𝑑).

В силу определения 𝜀𝑑,𝑎(𝑚) и того, что 𝑚 ∈ 𝐻1
𝑗 (𝑛+ 𝑟), где 2 ⩽ 𝑗 ⩽ 𝑎1, а 𝑚

′ ∈ 𝐻1
1 (𝑛+ 𝑟), можно

утверждать, что 𝜀𝑑,𝑎(𝑚) = 𝜀𝑑,𝑎⊖(𝑗−1)(𝑚
′) или 𝜀𝑑,𝑎(𝑚) = 𝜀𝑑,𝑎⊖(𝑃0+(𝑗−1))(𝑚

′).

В таком случае, при 𝑎1 ⩾ 1 первое слагаемое в формуле (10) примет вид

∑︁
𝑚∈𝐻1(𝑛+𝑟)

𝜀𝑑,𝑎(𝑚) =

𝑎1∑︁
𝑗=1

∑︁
𝑚∈𝐻1

𝑗 (𝑛+𝑟)

𝜀𝑑,𝑎(𝑚) =

𝑎1∑︁
𝑗=1

𝑇𝑛+𝑟−1−1∑︁
𝑚=0

𝜀𝑑,𝑎⊖(𝑃0+(𝑗−1))(𝑚
′) =

=

𝑎1∑︁
𝑗=1

𝑆*
𝑑,𝑎⊖(𝑃0+(𝑗−1))(𝑛+ 𝑟 − 1). (11)

Рассмотрим теперь второе слагаемое суммы из формулы (10). Пусть 𝐻𝑠(𝑛 + 𝑟) ̸= ∅ и сумма
коэффициентов представления (4) числа 𝑚 ∈ 𝐻𝑠

𝑗 (𝑛+ 𝑟), где 2 ⩽ 𝑠 ⩽ 𝑟 и 1 ⩽ 𝑗 ⩽ 𝑎𝑠, сравнима

с 𝑎 по модулю 𝑑. Тогда согласно лемме 4 в множестве 𝐻1
1 (𝑛 + 𝑟 − 𝑠 + 1) найдется число 𝑚′

такое, что
𝑡(𝑚)∑︁
𝑖=0

𝑡𝑖(𝑚)−
𝑡(𝑚′)∑︁
𝑖=0

𝑡𝑖(𝑚
′) =

𝑛+𝑟−1∑︁
𝑖=𝑛+𝑟−𝑠

𝑡𝑖(𝑚).
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Воспользуемся утверждением леммы 3 для 𝑚 ∈ 𝐻𝑠
𝑗 (𝑛+ 𝑟) и получим, что

𝑛+𝑟−1∑︁
𝑖=𝑛+𝑟−𝑠

𝑡𝑖(𝑚) =
𝑠−1∑︁
𝑖=1

𝑎𝑖 + (𝑗 − 1) = 𝑃𝑠−1 + (𝑗 − 1).

Следовательно,
𝑡(𝑚′)∑︁
𝑖=0

𝑡𝑖(𝑚
′) ≡ 𝑎− (𝑃𝑠−1 + (𝑗 − 1)) (mod 𝑑).

Вновь воспользуемся определением 𝜀𝑑,𝑎(𝑚) и получим, что если𝑚 ∈ 𝐻𝑠
𝑗 (𝑛+𝑟), а𝑚′ ∈ 𝐻1

1 (𝑛+𝑟−
− 𝑠+ 1), то 𝜀𝑑,𝑎(𝑚) = 𝜀𝑑,𝑎⊖(𝑃𝑠−1+(𝑗−1))(𝑚

′) при всех 2 ⩽ 𝑠 ⩽ 𝑟, 𝑠 ∈ 𝐼 и 1 ⩽ 𝑗 ⩽ 𝑎𝑠.
В таком случае, второе слагаемое равенства (10) может быть представлено как

∑︁
𝑠∈𝐼,
𝑠>1

∑︁
𝑚∈𝐻𝑠(𝑛+𝑟)

𝜀𝑑,𝑎(𝑚) =
∑︁
𝑠∈𝐼,
𝑠>1

𝑎𝑠∑︁
𝑗=1

∑︁
𝑚′∈𝐻1

1 (𝑛+𝑟−𝑠+1)

𝜀𝑑,𝑎⊖(𝑃𝑠−1+(𝑗−1))(𝑚
′) =

=
∑︁
𝑠∈𝐼,
𝑠>1

𝑎𝑠∑︁
𝑗=1

𝑆𝑑,𝑎⊖(𝑃𝑠−1+(𝑗−1))(𝑇𝑛+𝑟−𝑠) =
∑︁
𝑠∈𝐼,
𝑠>1

𝑎𝑠∑︁
𝑗=1

𝑆*
𝑑,𝑎⊖(𝑃𝑠−1+(𝑗−1))(𝑛+ 𝑟 − 𝑠). (12)

Подставляя равенства (2) и (2) в формулу (10), приходим к выводу, что

𝑆*
𝑑,𝑎(𝑛+ 𝑟) =

∑︁
𝑠∈𝐼

𝑎𝑠∑︁
𝑗=1

𝑆*
𝑑,𝑎⊖(𝑃𝑠−1+(𝑗−1))(𝑛+ 𝑟 − 𝑠).

Таким образом, лемма 5 полностью доказана.
По условию коэффициенты 𝑎𝑠 не ограничены сверху, поэтому число слагаемых во внут-

ренней сумме (9) может быть любым. Воспользуемся леммой 2 и ограничим число слагаемых
в сумме по 𝑗 в равенстве (9). Будем полагать

𝑎′𝑠 =

⎧⎨⎩
0 при 𝑎𝑠 = 0,

𝑎𝑠mod𝑑 при 𝑎𝑠 ≡/ 0 (mod 𝑑),
𝑑 при 𝑎𝑠 ̸= 0 и 𝑎𝑠 ≡ 0 (mod 𝑑).

(13)

Из леммы 5 вытекает следующий результат.

Лемма 6. При всех 𝑛 ⩾ 0 имеет место рекуррентное соотношение

𝑆*
𝑑,𝑎(𝑛+ 𝑟) =

∑︁
𝑠∈𝐼

𝑎′𝑠∑︁
𝑗=1

𝑆*
𝑑,𝑎⊖(𝑃𝑠−1+(𝑗−1))(𝑛+ 𝑟 − 𝑠). (14)

Доказательство. Пусть 𝑎𝑠 ⩾ 1 тогда представим 𝑎𝑠 как 𝑘𝑑+𝑎′𝑠, где 𝑘 ⩾ 0. В этом случае

𝑎𝑠∑︁
𝑗=1

𝑆*
𝑑,𝑎⊖𝑗(𝑚) =

𝑘−1∑︁
𝑖=0

(𝑖+1)𝑑∑︁
𝑙=𝑖𝑑+1

𝑆*
𝑑,𝑎⊖𝑙(𝑚) +

𝑘𝑑+𝑎′𝑠∑︁
𝑙=𝑘𝑑+1

𝑆*
𝑑,𝑎⊖𝑙(𝑚) =

𝑎′𝑠∑︁
𝑙=1

𝑆*
𝑑,𝑎⊖𝑙(𝑚),

так как из леммы 2 следует, что
(𝑖+1)𝑑∑︀
𝑙=𝑖𝑑+1

𝑆*
𝑑,𝑎⊖𝑙(𝑚) =

𝑑∑︀
𝑙=1

𝑆*
𝑑,𝑎⊖𝑙(𝑚) = 0.

Из последнего равенства и рекуррентной формулы (9) следует утверждение леммы 6.
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В соотношении (14) 𝑎 может принимать любое значение из множества {0, 1, . . . , 𝑑 − 1}.
Очевидно, что 𝑎 ⊖ (𝑃𝑠−1 + (𝑗 − 1)), где 𝑗 ∈ {1, 2, . . . , 𝑎′𝑠}, пробегает некоторое подмножество
множеста {0, 1, . . . , 𝑑 − 1}, поэтому при 𝑛 ⩾ 1 к слагаемому 𝑆*

𝑑,𝑎⊖(𝑃𝑠−1+(𝑗−1))(𝑛 + 𝑟 − 1) мож-

но применить равенство (14), и, следовательно, выразить 𝑆*
𝑑,𝑎(𝑛+ 𝑟) через 𝑆*

𝑑,𝑎(𝑛+ 𝑟− 𝑠), где
2 ⩽ 𝑠 ⩽ 𝑟+1. Если 𝑛 ⩾ 2, то воспользовавшись соотношением (14) для слагаемого 𝑆*

𝑑,𝑎(𝑛+𝑟−2),
сможем представить 𝑆*

𝑑,𝑎(𝑛 + 𝑟) через 𝑆*
𝑑,𝑎(𝑛 + 𝑟 − 𝑠), где 3 ⩽ 𝑠 ⩽ 𝑟 + 2. Выполняя это преоб-

разование конечное число раз (𝑘 раз) при 𝑛 ⩾ 𝑘 можно получить выражение для 𝑆*
𝑑,𝑎(𝑛 + 𝑟)

через 𝑆*
𝑑,𝑎(𝑛 + 𝑟 − 𝑘 − 𝑠), где 1 ⩽ 𝑠 ⩽ 𝑟. Выразить этот итерационный процесс с помощью

рекуррентной формулы можно, если равенство (14) переписать как

𝑆*
𝑑,𝑎(𝑛+ 𝑟) =

𝑟∑︁
𝑠=1

𝑑−1∑︁
𝑙=0

𝜉𝑠𝑙,0(𝑛+ 𝑟)𝑆*
𝑑,𝑎⊖𝑙(𝑛+ 𝑟 − 𝑠), (15)

где

𝜉𝑠𝑙,0(𝑛+ 𝑟) =

{︂
0 если 𝑠 ∈ 𝐼, или, если 𝑠 ∈ 𝐼 и 𝑎′𝑠 ⩽ 𝑙 ⊖ 𝑃𝑠−1 < 𝑑,
1 если 𝑠 ∈ 𝐼 и 0 ⩽ 𝑙 ⊖ 𝑃𝑠−1 < 𝑎′𝑠.

(16)

Лемма 7. Для любого целого 𝑘 ⩾ 0 и 𝑛 ⩾ 𝑘 справедливо равенство

𝑆*
𝑑,𝑎(𝑛+ 𝑟) =

𝑟∑︁
𝑠=1

𝑑−1∑︁
𝑙=0

𝜉𝑠𝑙,𝑘(𝑛+ 𝑟)𝑆*
𝑑,𝑎⊖𝑙(𝑛+ 𝑟 − 𝑘 − 𝑠), (17)

где

𝜉𝑠𝑙,𝑘+1(𝑛+ 𝑟) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝜒1(𝑠)

𝑎′𝑠∑︀
𝑗=1

𝜉1𝑙⊖(𝑃𝑠−1+(𝑗−1)),𝑘(𝑛+ 𝑟) + 𝜉𝑠+1
𝑙,𝑘 (𝑛+ 𝑟) при 1 ⩽ 𝑠 < 𝑟,

𝑎′𝑟∑︀
𝑗=1

𝜉1𝑙⊖(𝑃𝑟−1+(𝑗−1)),𝑘(𝑛+ 𝑟) при 𝑠 = 𝑟,

(18)

𝜒1(𝑠) =

{︂
1 если 𝑠 ∈ 𝐼,
0 если 𝑠 ∈ 𝐼. (19)

Кроме того, коэффициенты 𝜉𝑠𝑙,𝑘(𝑛), где 1 ⩽ 𝑠 ⩽ 𝑟, неотрицательны при всех 𝑘 ⩾ 0.

Доказательство. Доказательство проведем, используя индукцию по 𝑘. При 𝑘 = 0 ра-
венство (17) полностью совпадает с (15).

Предположим, что утверждение леммы верно при 𝑘 = 𝑚, то есть

𝑆*
𝑑,𝑎(𝑛+ 𝑟) =

𝑟∑︁
𝑠=1

𝑑−1∑︁
𝑙=0

𝜉𝑠𝑙,𝑚(𝑛+ 𝑟)𝑆*
𝑑,𝑎⊖𝑙(𝑛+ 𝑟 −𝑚− 𝑠). (20)

Распишем 𝑆*
𝑑,𝑎⊖𝑙(𝑛+ 𝑟 −𝑚− 1), пользуясь равенством (14), как

𝑆*
𝑑,𝑎⊖𝑙(𝑛+ 𝑟 −𝑚− 1) =

∑︁
𝑠∈𝐼

𝑎′𝑠∑︁
𝑗=1

𝑆*
𝑑,𝑎⊖𝑙⊖(𝑃𝑠−1+(𝑗−1))(𝑛+ 𝑟 −𝑚− 𝑠− 1)

и подставим в (20). Имеем:

𝑆*
𝑑,𝑎(𝑛+ 𝑟) =

𝑑−1∑︁
𝑙=0

𝜉1𝑙,𝑚(𝑛+ 𝑟)
∑︁
𝑠∈𝐼

𝑎′𝑠∑︁
𝑗=1

𝑆*
𝑑,𝑎⊖𝑙⊖(𝑃𝑠−1+(𝑗−1))(𝑛+ 𝑟 −𝑚− 𝑠− 1)+
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+
𝑟∑︁

𝑠=2

𝑑−1∑︁
𝑙=0

𝜉𝑠𝑙,𝑚(𝑛+ 𝑟)𝑆*
𝑑,𝑎⊖𝑙(𝑛+ 𝑟 −𝑚− 𝑠).

Введем характеристическую функцию (19) для множества 𝐼, изменим порядок суммирова-
ния в первой части суммы и начнем суммирование с 𝑠 = 1 во второй части суммы. Получаем

𝑆*
𝑑,𝑎(𝑛+ 𝑟) =

𝑟∑︁
𝑠=1

𝑑−1∑︁
𝑙=0

𝜒1(𝑠)

𝑎′𝑠∑︁
𝑗=1

𝜉1𝑙,𝑚(𝑛+ 𝑟)𝑆*
𝑑,𝑎⊖𝑙⊖(𝑃𝑠−1+(𝑗−1))(𝑛+ 𝑟 −𝑚− 𝑠− 1)+

+

𝑟−1∑︁
𝑠=1

𝑑−1∑︁
𝑙=0

𝜉𝑠+1
𝑙,𝑚 (𝑛+ 𝑟)𝑆*

𝑑,𝑎⊖𝑙(𝑛+ 𝑟 −𝑚− 𝑠− 1).

Обозначим 𝑎⊖𝑙⊖(𝑃𝑠−1+(𝑗−1)) как 𝑎⊖𝑙 и перегруппируем слагаемые следующим образом:

𝑆*
𝑑,𝑎(𝑛+𝑟) =

𝑟−1∑︁
𝑠=1

𝑑−1∑︁
𝑙=0

⎛⎝𝜒1(𝑠)

𝑎′𝑠∑︁
𝑗=1

𝜉1𝑙⊖(𝑃𝑠−1+(𝑗−1)),𝑚(𝑛+ 𝑟) + 𝜉𝑠+1
𝑙,𝑚 (𝑛+ 𝑟)

⎞⎠ ·𝑆*
𝑑,𝑎⊖𝑙(𝑛+𝑟−𝑚−𝑠−1)+

+

𝑑−1∑︁
𝑙=0

𝑎′𝑟∑︁
𝑗=1

𝜉1𝑙⊖(𝑃𝑟−1+(𝑗−1)),𝑚(𝑛+ 𝑟)𝑆*
𝑑,𝑎⊖𝑙(𝑛−𝑚− 1). (21)

Введем обозначения:

𝜉𝑠𝑙,𝑚+1(𝑛+ 𝑟) = 𝜒1(𝑠)

𝑎′𝑠∑︁
𝑗=1

𝜉1𝑙⊖(𝑃𝑠−1+(𝑗−1)),𝑚(𝑛+ 𝑟) + 𝜉𝑠+1
𝑙,𝑚 (𝑛+ 𝑟),

где 1 ⩽ 𝑠 < 𝑟, и

𝜉𝑟𝑙,𝑚+1(𝑛+ 𝑟) =

𝑎′𝑟∑︁
𝑗=1

𝜉1𝑙⊖(𝑃𝑟−1+(𝑗−1)),𝑚(𝑛+ 𝑟).

В этом случае равенство (2) будет полностью совпадать с утверждением леммы 7 при
𝑘 = 𝑚 + 1. Следовательно, равенство (17) справедливо при всех 𝑘 ⩾ 0. Неотрицательность
коэффициентов 𝜉𝑠𝑙,𝑘(𝑛+ 𝑟) следует из неотрицательности 𝜉𝑠𝑙,0(𝑛+ 𝑟) и равенств (18).

Выясним, какими свойствми обладает соотношение (17). Для этого обозначим

𝐴𝑠
𝑘(𝑛+ 𝑟) =

𝑑−1∑︁
𝑙=0

𝜉𝑠𝑙,𝑘(𝑛+ 𝑟).

Из равенств (13) и (16) следует, что

𝐴𝑠
0(𝑛+ 𝑟) = 𝑎′𝑠 для всех 1 ⩽ 𝑠 ⩽ 𝑟. (22)

Лемма 8. Справедливы следующие рекуррентные соотношения

𝐴𝑠
𝑘(𝑛+ 𝑟) = 𝑎′𝑠𝐴

1
𝑘−1(𝑛+ 𝑟) +𝐴𝑠+1

𝑘−1(𝑛+ 𝑟) при 1 ⩽ 𝑠 < 𝑟

и 𝐴𝑟
𝑘(𝑛+ 𝑟) = 𝑎′𝑟𝐴

1
𝑘−1(𝑛+ 𝑟).
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Доказательство. Воспользуемся определением 𝐴𝑠
𝑘(𝑛 + 𝑟) и равенствами (18) для полу-

чения доказываемого соотношения. При 1 ⩽ 𝑠 < 𝑟 имеем

𝐴𝑠
𝑘(𝑛+ 𝑟) =

𝑑−1∑︁
𝑙=0

𝜉𝑠𝑙,𝑘(𝑛+ 𝑟) = 𝜒1(𝑠)

𝑎′𝑠∑︁
𝑗=1

𝑑−1∑︁
𝑙=0

𝜉1𝑙⊖(𝑃𝑠−1+(𝑗−1)),𝑘−1(𝑛+ 𝑟) +

𝑑−1∑︁
𝑙=0

𝜉𝑠+1
𝑙,𝑘−1(𝑛+ 𝑟) =

= 𝜒1(𝑠)

𝑎′𝑠∑︁
𝑗=1

𝐴1
𝑘−1(𝑛+ 𝑟) +𝐴𝑠+1

𝑘−1(𝑛+ 𝑟) = 𝑎′𝑠𝐴
1
𝑘−1(𝑛+ 𝑟) +𝐴𝑠+1

𝑘−1(𝑛+ 𝑟).

Если 𝑠 = 𝑟, то

𝐴𝑟
𝑘(𝑛+ 𝑟) =

𝑑−1∑︁
𝑙=0

𝑎′𝑟∑︁
𝑗=1

𝜉1𝑙⊖(𝑃𝑟−1+(𝑗−1)),𝑘−1(𝑛+ 𝑟) =

𝑎′𝑟∑︁
𝑗=1

𝐴1
𝑘−1(𝑛+ 𝑟) = 𝑎′𝑟𝐴

1
𝑘−1(𝑛+ 𝑟).

Таким образом, лемма 8 доказана.

Перейдем к получению оценки сверху для 𝐴𝑠
𝑘(𝑛+ 𝑟).

Лемма 9. При всех 1 ⩽ 𝑠 ⩽ 𝑟 справедливо неравенство

𝐴𝑠
𝑘(𝑛+ 𝑟) ⩽ (𝑑+ 1)𝑘+1. (23)

Доказательство. Проведем доказательство неравенства, используя метод математиче-
ской индукции. При 𝑘 = 0, согласно определению 𝐴𝑠

0(𝑛 + 𝑟), для всех 1 ⩽ 𝑠 ⩽ 𝑟, имеем:
𝐴𝑠

0(𝑛+ 𝑟) = 𝑎′𝑠 ⩽ 𝑑 ⩽ 𝑑+ 1. Значит, при 𝑘 = 0 неравенство (23) выполняется.

Предположим, что утверждение леммы 9 справедливо при 𝑘 = 𝑚, то есть для любых
1 ⩽ 𝑠 ⩽ 𝑟: 𝐴𝑠

𝑚(𝑛 + 𝑟) ⩽ (𝑑 + 1)𝑚+1. Воспользуемся леммой 8, чтобы получить оценку для
𝐴𝑠

𝑚+1(𝑛+ 𝑟). Если 1 ⩽ 𝑠 < 𝑟, то

𝐴𝑠
𝑚+1(𝑛+ 𝑟) = 𝑎′𝑠𝐴

1
𝑚(𝑛+ 𝑟) +𝐴𝑠+1

𝑚 (𝑛+ 𝑟) ⩽ 𝑑(𝑑+ 1)𝑚+1 + (𝑑+ 1)𝑚+1 = (𝑑+ 1)𝑚+2.

В том случае, когда 𝑠 = 𝑟, получаем

𝐴𝑠
𝑚+1(𝑛+ 𝑟) = 𝑎′𝑟𝐴

1
𝑚(𝑛+ 𝑟) ⩽ 𝑑(𝑑+ 1)𝑚+1 ⩽ (𝑑+ 1)𝑚+2.

Значит, при 𝑘 = 𝑚 + 1 неравенство (23) также выполняется, что доказывает справедливость
леммы 9 при всех целых неотрицательных 𝑘.

Теперь выясним, как связаны между собой члены рекуррентной последовательности {𝑇𝑛}
и 𝐴𝑠

𝑘(𝑛+ 𝑟).

Лемма 10. При всех 0 ⩽ 𝑘 ⩽ 𝑛 справедливо неравенство

𝑇𝑛+𝑟 ⩾
𝑟∑︁

𝑠=1

𝐴𝑠
𝑘(𝑛+ 𝑟)𝑇𝑛+𝑟−𝑘−𝑠.

Доказательство. Применим метод математической индукции. При 𝑘 = 0, в силу ра-
венств (1), (13) и (22) можно записать, что

𝑇𝑛+𝑟 =

𝑟∑︁
𝑠=1

𝑎𝑠𝑇𝑛+𝑟−𝑠 ⩾
𝑟∑︁

𝑠=1

𝑎′𝑠𝑇𝑛+𝑟−𝑠 =

𝑟∑︁
𝑠=1

𝐴𝑠
0(𝑛+ 𝑟)𝑇𝑛+𝑟−𝑠,
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то есть при 𝑘 = 0 утверждение леммы справедливо. Предположим, что лемма 10 верна при
𝑘 = 𝑚, где 𝑚 < 𝑛, то есть

𝑇𝑛+𝑟 ⩾
𝑟∑︁

𝑠=1

𝐴𝑠
𝑚(𝑛+ 𝑟)𝑇𝑛+𝑟−𝑚−𝑠 = 𝐴1

𝑚(𝑛+ 𝑟)𝑇𝑛+𝑟−𝑚−1 +

𝑟∑︁
𝑠=2

𝐴𝑠
𝑚(𝑛+ 𝑟)𝑇𝑛+𝑟−𝑚−𝑠.

Распишем 𝑇𝑛+𝑟−𝑚−1, используя равенство (1), как 𝑇𝑛+𝑟−𝑚−1 =
𝑟∑︀

𝑠=1
𝑎𝑠𝑇𝑛+𝑟−𝑚−𝑠−1 и подставим

в предыдущее неравенство. Имеем

𝑇𝑛+𝑟 ⩾ 𝐴1
𝑚(𝑛+ 𝑟)

𝑟∑︁
𝑠=1

𝑎𝑠𝑇𝑛+𝑟−𝑚−𝑠−1 +
𝑟∑︁

𝑠=2

𝐴𝑠
𝑚(𝑛+ 𝑟)𝑇𝑛+𝑟−𝑚−𝑠.

В первой части суммы воспользуемся тем, что 𝑎′𝑠 ⩽ 𝑎𝑠, а во второй — суммирование начнем с
𝑠 = 1. В результате получаем:

𝑇𝑛+𝑟 ⩾ 𝐴1
𝑚(𝑛+ 𝑟)

𝑟∑︁
𝑠=1

𝑎′𝑠𝑇𝑛+𝑟−𝑚−𝑠−1 +
𝑟−1∑︁
𝑠=1

𝐴𝑠+1
𝑚 (𝑛+ 𝑟)𝑇𝑛+𝑟−𝑚−𝑠−1.

Внесем 𝐴1
𝑚(𝑛+ 𝑟) под знак суммы и перегруппируем слагаемые

𝑇𝑛+𝑟 ⩾
𝑟−1∑︁
𝑠=1

(︀
𝑎′𝑠𝐴

1
𝑚(𝑛+ 𝑟) +𝐴𝑠+1

𝑚 (𝑛+ 𝑟)
)︀
𝑇𝑛+𝑟−𝑚−𝑠−1 + 𝑎′𝑟𝐴

1
𝑚(𝑛+ 𝑟)𝑇𝑛−𝑚−𝑠−1.

Применим утверждение леммы 8 к последнему неравенству и получим, что

𝑇𝑛+𝑟 ⩾
𝑟∑︁

𝑠=1

𝐴𝑠
𝑚+1(𝑛+ 𝑟)𝑇𝑛+𝑟−𝑚−𝑠−1,

что соответствует утверждению леммы 10 при 𝑘 = 𝑚+ 1. Таким образом, лемма 10 доказана.
В силу леммы 7 все 𝜉𝑠𝑙,𝑘(𝑛+𝑟) неотрицательны. Изучим вопрос о положительности 𝜉𝑠𝑙,𝑘(𝑛+𝑟).

Пусть 𝐷𝑠
𝑘(𝑛 + 𝑟) — множество индексов 𝑙 из {0, 1, . . . , 𝑑 − 1} таких, что значения 𝜉𝑠𝑙,𝑘(𝑛 + 𝑟)

отличны от нуля, то есть для 1 ⩽ 𝑠 ⩽ 𝑟

𝐷𝑠
𝑘(𝑛+ 𝑟) =

{︀
𝑙 : 𝜉𝑠𝑙,𝑘(𝑛+ 𝑟) > 0

}︀
,

причем из равенства (16) следует, что мощность множества 𝐷𝑠
0(𝑛 + 𝑟) равна 𝑎′𝑠, то есть

♯𝐷𝑠
0(𝑛+ 𝑟) = 𝑎′𝑠.
Для двух множеств 𝐴,𝐵 ∈ {0, 1, . . . , 𝑑− 1} определим

𝐴⊖𝐵 = {𝑎⊖ 𝑏 : 𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵} .

Лемма 11. При всех натуральных 𝑘 ⩽ 𝑛 справедливы равенства

𝐷𝑠
𝑘+1(𝑛+ 𝑟) =

𝑎′𝑠⋃︁
𝑗=1

(︀
𝐷1

𝑘(𝑛+ 𝑟) ⊖ {𝑃𝑠−1 + (𝑗 − 1)}
)︀
∪𝐷𝑠+1

𝑘 (𝑛+ 𝑟) при 𝑠 ∈ 𝐼 и 𝑠 < 𝑟; (24)

𝐷𝑠
𝑘+1(𝑛+ 𝑟) = 𝐷𝑠+1

𝑘 (𝑛+ 𝑟) при 𝑠 ∈ 𝐼 и 𝑠 < 𝑟; (25)

𝐷𝑟
𝑘+1(𝑛+ 𝑟) =

𝑎′𝑟⋃︁
𝑗=1

(︀
𝐷1

𝑘(𝑛+ 𝑟) ⊖ {𝑃𝑟−1 + (𝑗 − 1)}
)︀
. (26)
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Утверждение леммы следует из равенства (18).

Пусть 𝑑 ⩾ 3, и обозначим 𝑑0 =
[︀
𝑑
2

]︀
. Перейдем к изучению первого слагаемого в равенстве

(17), а именно,
𝑑−1∑︁
𝑙=0

𝜉1𝑙,𝑘(𝑛+ 𝑟)𝑆*
𝑑,𝑎⊖𝑙(𝑛+ 𝑟 − 𝑘 − 1). (27)

Выясним, какое число итераций необходимо сделать, чтобы к последней сумме можно было
бы применить равенство из леммы 2 и уменьшить число слагаемых в (27) по крайней мере на
1.

Лемма 12. Справедливо неравенство

♯𝐷1
𝑘0(𝑛+ 𝑟) > 𝑑0, (28)

где

𝑘0 = 𝑟(𝑑0 − 1) + 1.

Доказательство. Пусть

𝑘′0 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
[︁
𝑑0−1
𝑎′1−1

]︁
при 𝑎′1 > 1;[︁

2(𝑑0−1)
𝑎′2

]︁
+ 1 при 𝑎′1 = 1 и 𝑎′2 > 0;[︁

𝑠0(𝑑0−1)
𝑎′𝑠0

]︁
+ 1 при 𝑎′1 = 1, 𝑎′2 = 𝑎′3 = . . . = 𝑎′𝑠0−1 = 0 и 𝑎′𝑠0 > 0.

(29)

Покажем, что

♯𝐷1
𝑘′0

(𝑛+ 𝑟) > 𝑑0 (30)

Вначале заметим, что из равенства (24) следует, что при всех 𝑘 ⩽ 𝑛

𝐷1
𝑘(𝑛+ 𝑟) ⊇ 𝐷1

𝑘−1(𝑛+ 𝑟). (31)

Докажем три соотношения, характеризующих мощность множества 𝐷1
𝑘(𝑛+ 𝑟) в зависимости

от значений коэффициентов 𝑎′𝑠:

♯𝐷1
𝑘(𝑛+ 𝑟) ⩾ ♯𝐷1

𝑘−1(𝑛+ 𝑟) + 𝑎′1 − 1 при 𝑎′1 > 1; (32)

♯𝐷1
𝑘(𝑛+ 𝑟) ⩾ ♯𝐷1

𝑘−2(𝑛+ 𝑟) + 𝑎′2 при 𝑎′1 = 1 и 𝑎′2 > 0; (33)

♯𝐷1
𝑘(𝑛+ 𝑟) ⩾ ♯𝐷1

𝑘−𝑠0(𝑛+ 𝑟) + 𝑎′𝑠0 при 𝑎′1 = 1, 𝑎′2 = 𝑎′3 = . . . = 𝑎′𝑠0−1 = 0 и 𝑎′𝑠0 > 0. (34)

Пусть 𝑎′1 > 1, тогда согласно равенству (24), имеем:

𝐷1
𝑘(𝑛+ 𝑟) =

𝑎′1⋃︁
𝑗=1

(︀
𝐷1

𝑘−1(𝑛+ 𝑟) ⊖ {𝑃0 + (𝑗 − 1)}
)︀
∪𝐷2

𝑘−1(𝑛+ 𝑟) ⊇
𝑎′1⋃︁
𝑗=1

(︀
𝐷1

𝑘−1(𝑛+ 𝑟) ⊖ {𝑗 − 1}
)︀
,

так как 𝑃0 = 0. Множество 𝐷1
𝑘(𝑛+ 𝑟) содержит 𝑎′1 множеств: 𝐷

1
𝑘−1(𝑛+ 𝑟), 𝐷1

𝑘−1(𝑛+ 𝑟) ⊖ {1},
. . . , 𝐷1

𝑘−1(𝑛 + 𝑟) ⊖ {𝑎′1 − 1}, причем каждое из них отличается хотя бы одним элементом от
другого, поэтому неравенство (32) выполняется.

Пусть 𝑎′1 = 1 и 𝑎′2 > 0, тогда в соответствии с равенством (24) можно утверждать, что

𝐷1
𝑘(𝑛+ 𝑟) = 𝐷1

𝑘−1(𝑛+ 𝑟) ∪𝐷2
𝑘−1(𝑛+ 𝑟). (35)



Задача Гельфонда для разложений по линeйным. . . 123

Зная, что 𝑎′2 > 0, можем воспользоваться равенством (24) для 𝐷2
𝑘−1(𝑛+ 𝑟) и включением (31)

для 𝐷1
𝑘−1(𝑛+ 𝑟). Имеем

𝐷1
𝑘(𝑛+ 𝑟) ⊇ 𝐷1

𝑘−2(𝑛+ 𝑟) ∪

⎛⎝ 𝑎′2⋃︁
𝑗=1

(︀
𝐷1

𝑘−2(𝑛+ 𝑟) ⊖ {𝑃1 + (𝑗 − 1)}
)︀⎞⎠ ⊇ 𝑎′2⋃︁

𝑗=0

(︀
𝐷1

𝑘−2(𝑛+ 𝑟) ⊖ {𝑗}
)︀
,

так как 𝑃1 ≡ 1 (mod 𝑑) при 𝑎′1 = 1. Последнее включение означает, что множество 𝐷1
𝑘(𝑛+ 𝑟)

содержит 𝑎′2 + 1 множество: 𝐷1
𝑘−2(𝑛+ 𝑟), 𝐷1

𝑘−2(𝑛+ 𝑟)⊖ {1}, . . . , 𝐷1
𝑘−2(𝑛+ 𝑟)⊖ {𝑎′2}, каждое из

которых отличается хотя бы одним элементом. Следовательно, неравенство (33) справедливо.
Пусть 𝑎′1 = 1, 𝑎′2 = 𝑎′3 = . . . = 𝑎′𝑠0−1 = 0 и 𝑎′𝑠0 > 0, тогда 𝑠0 − 2 раза воспользуемся

включением (31) для множества 𝐷1
𝑘−1(𝑛+ 𝑟) и равенством (25) для множества 𝐷2

𝑘−1(𝑛+ 𝑟) в
формуле (35), и получим, что

𝐷1
𝑘(𝑛+ 𝑟) ⊇ 𝐷1

𝑘−2(𝑛+ 𝑟) ∪𝐷3
𝑘−2(𝑛+ 𝑟) ⊇ 𝐷1

𝑘−3(𝑛+ 𝑟) ∪𝐷4
𝑘−3(𝑛+ 𝑟) ⊇ . . . ⊇

⊇ 𝐷1
𝑘−𝑠0+1(𝑛+ 𝑟) ∪𝐷𝑠0

𝑘−𝑠0+1(𝑛+ 𝑟). (36)

По условию 𝑎′𝑠0 > 0, поэтому применив либо равенство (24), если 𝑠0 < 𝑟, либо тождество (26)
если 𝑠0 = 𝑟, и, учитывая включение (31), перепишем (2) как

𝐷1
𝑘(𝑛+𝑟) ⊇ 𝐷1

𝑘−𝑠0(𝑛+𝑟)∪

⎛⎝𝑎′𝑠0⋃︁
𝑗=1

(︀
𝐷1

𝑘−𝑠0(𝑛+ 𝑟) ⊖ {𝑃𝑠0−1 + (𝑗 − 1)}
)︀⎞⎠ =

𝑎′𝑠0⋃︁
𝑗=0

(︀
𝐷1

𝑘−𝑠0(𝑛+ 𝑟) ⊖ {𝑗}
)︀
,

так как 𝑃𝑠0−1 =
𝑠0−1∑︀
𝑖=1

𝑎𝑖, и, следовательно, 𝑃𝑠0−1 ≡ 1 (mod 𝑑). Множества 𝐷1
𝑘−𝑠0

(𝑛 + 𝑟),

𝐷1
𝑘−𝑠0

(𝑛+𝑟)⊖{1}, . . . , 𝐷1
𝑘−𝑠0

(𝑛+𝑟)⊖{𝑎′𝑠0} отличаются друг от друга хотя бы одним элементом,
поэтому неравенство (34) будет иметь место.

Теперь перейдем к доказательству неравенства, приведенного в утверждении леммы 12.
Если 𝑎′1 > 1, то применяя неравенство (32) 𝑘 раз, и учитывая, что ♯𝐷1

0(𝑛+ 𝑟) = 𝑎′1, приходим
к выводу, что

♯𝐷1
𝑘(𝑛+ 𝑟) ⩾ ♯𝐷1

𝑘−1(𝑛+ 𝑟) + 𝑎′1 − 1 ⩾ ♯𝐷1
𝑘−2(𝑛+ 𝑟) + 2(𝑎′1 − 1) ⩾ . . . ⩾

⩾ ♯𝐷1
0(𝑛+ 𝑟) + 𝑘(𝑎′1 − 1) = (𝑘 + 1)𝑎′1 − 𝑘.

Очевидно, что последнее выражение будет больше, чем 𝑑0, если 𝑘 =
[︁
𝑑0−1
𝑎′1−1

]︁
.

Если 𝑎′1 = 1, а 𝑎′2 > 0, то используя неравенство (33) ровно
[︀
𝑘
2

]︀
раз, получаем

♯𝐷1
𝑘(𝑛+ 𝑟) ⩾ ♯𝐷1

𝑘−2(𝑛+ 𝑟) + 𝑎′2 ⩾ ♯𝐷1
𝑘−4(𝑛+ 𝑟) + 2𝑎′2 ⩾ . . . ⩾ ♯𝐷1

0(𝑛+ 𝑟) +

[︂
𝑘

2

]︂
𝑎′2 =

[︂
𝑘

2

]︂
𝑎′2 + 1.

Если 𝑘 =
[︁
2(𝑑0−1)

𝑎′2

]︁
+ 1, то мощность множества 𝐷1

𝑘(𝑛+ 𝑟) будет превышать 𝑑0.

В том случае, когда 𝑎′1 = 1, 𝑎′2 = 𝑎′3 = . . . = 𝑎′𝑠0−1 = 0 и 𝑎′𝑠0 > 0, применяя неравенство (34)[︁
𝑘
𝑠0

]︁
раз, имеем

♯𝐷1
𝑘(𝑛+𝑟) ⩾ ♯𝐷1

𝑘−𝑠0(𝑛+𝑟)+𝑎′𝑠0 ⩾ ♯𝐷1
𝑘−2𝑠0(𝑛+𝑟)+2𝑎′𝑠0 ⩾ . . . ⩾ ♯𝐷1

0(𝑛+𝑟)+

[︂
𝑘

𝑠0

]︂
𝑎′𝑠0 =

[︂
𝑘

𝑠0

]︂
𝑎′𝑠0+1.

При 𝑘 =
[︁
𝑠0(𝑑0−1)

𝑎′𝑠0

]︁
+ 1 мощность множества 𝐷1

𝑘(𝑛+ 𝑟) будет больше 𝑑0.

Таким образом (30) доказано. Для доказательства леммы 12 остается воспользоваться (31)
и очевидным неравенством 𝑘′0 ≤ 𝑘0.
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Замечание 3. Из определения 𝐴1
𝑘(𝑛+𝑟) и леммы 12 вытекает, что если 𝑘0 определяется

равенствами (29), то 𝐴1
𝑘0

(𝑛+ 𝑟) > 𝑑0.

Пусть

𝜂𝑑,𝑟 =

(︂
1 +

1

𝑟(𝑑+ 1)𝑘0+1

)︂ 1
𝑘0+𝑟

. (37)

Лемма 13. При всех натуральных 𝑛 справедлива оценка⃒⃒
𝑆*
𝑑,𝑎(𝑛)

⃒⃒
≪ 𝑇𝑛

𝜂𝑛𝑑,𝑟
.

Доказательство. Введем в рассмотрение последовательность {𝑀𝑑(𝑛)}, определяемую
следующим образом:

𝑀𝑑(𝑛) = max
0⩽𝑎<𝑑

⃒⃒
𝑆*
𝑑,𝑎(𝑛)

⃒⃒
(38)

при 0 ⩽ 𝑛 ⩽ 𝑟 + 𝑘0 и

𝑀𝑑(𝑛+ 𝑟) =
(︀
𝐴1

𝑘0(𝑛+ 𝑟)− 1
)︀
𝑀𝑑(𝑛+ 𝑟 − 𝑘0 − 1) +

𝑟∑︁
𝑠=2

𝐴𝑠
𝑘0(𝑛+ 𝑟)𝑀𝑑(𝑛+ 𝑟 − 𝑘0 − 𝑠) (39)

в остальных случаях. Пользуясь индукцией по 𝑛, докажем, что⃒⃒
𝑆*
𝑑,𝑎(𝑛)

⃒⃒
⩽𝑀𝑑(𝑛). (40)

При 𝑛 ⩽ 𝑟+ 𝑘0 неравенство (40) следует из (38). Предположим, что неравенство (40) справед-
ливо при 𝑛+ 𝑟− 𝑘0 − 𝑠, где 1 ⩽ 𝑠 ⩽ 𝑟. Распишем 𝑆*

𝑑,𝑎(𝑛+ 𝑟), воспользовавшись соотношением
(17) при 𝑘 = 𝑘0, как 𝑆

*
𝑑,𝑎(𝑛+ 𝑟) = Σ1 + Σ2, где

Σ1 =
𝑑−1∑︁
𝑙=0

𝜉1𝑙,𝑘0(𝑛+ 𝑟)𝑆*
𝑑,𝑎⊖𝑙(𝑛+ 𝑟 − 𝑘0 − 1)

и

Σ2 =
𝑟∑︁

𝑠=2

𝑑−1∑︁
𝑙=0

𝜉𝑠𝑙,𝑘0(𝑛+ 𝑟)𝑆*
𝑑,𝑎⊖𝑙(𝑛+ 𝑟 − 𝑘0 − 𝑠).

Используя определение множества 𝐷1
𝑘0

(𝑛+ 𝑟), перепишем Σ1 следующим образом:

Σ1 =
∑︁

𝑙∈𝐷1
𝑘0

(𝑛+𝑟)

𝜉1𝑙,𝑘0(𝑛+ 𝑟)𝑆*
𝑑,𝑎⊖𝑙(𝑛+ 𝑟 − 𝑘0 − 1) =

=
∑︁

𝑙∈𝐷1
𝑘0

(𝑛+𝑟)

𝑆*
𝑑,𝑎⊖𝑙(𝑛+ 𝑟 − 𝑘0 − 1) +

∑︁
𝑙∈𝐷1

𝑘0
(𝑛+𝑟)

(︀
𝜉1𝑙,𝑘0(𝑛+ 𝑟)− 1

)︀
𝑆*
𝑑,𝑎⊖𝑙(𝑛+ 𝑟 − 𝑘0 − 1),

где 𝜉1𝑙,𝑘0(𝑛+𝑟)−1 ⩾ 0 в силу определения 𝐷1
𝑘0

(𝑛+𝑟). Применим лемму 2 к первому слагаемому
последней суммы и получим, что

Σ1 = −
∑︁

𝑙 /∈𝐷1
𝑘0

(𝑛+𝑟)

𝑆*
𝑑,𝑎⊖𝑙(𝑛+ 𝑟 − 𝑘0 − 1) +

∑︁
𝑙∈𝐷1

𝑘0
(𝑛+𝑟)

(︀
𝜉1𝑙,𝑘0(𝑛+ 𝑟)− 1

)︀
𝑆*
𝑑,𝑎⊖𝑙(𝑛+ 𝑟 − 𝑘0 − 1).

Найдем оценку сверху для |Σ1|. Имеем

|Σ1| ⩽
∑︁

𝑙 /∈𝐷1
𝑘0

(𝑛+𝑟)

⃒⃒
𝑆*
𝑑,𝑎⊖𝑙(𝑛+ 𝑟 − 𝑘0 − 1)

⃒⃒
+

∑︁
𝑙∈𝐷1

𝑘0
(𝑛+𝑟)

(︀
𝜉1𝑙,𝑘0(𝑛+ 𝑟)− 1

)︀ ⃒⃒
𝑆*
𝑑,𝑎⊖𝑙(𝑛+ 𝑟 − 𝑘0 − 1)

⃒⃒
⩽
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⩽

⎛⎜⎝ ∑︁
𝑙 /∈𝐷1

𝑘0
(𝑛+𝑟)

1 +
∑︁

𝑙∈𝐷1
𝑘0

(𝑛+𝑟)

(︀
𝜉1𝑙,𝑘0(𝑛+ 𝑟)− 1

)︀⎞⎟⎠ · max
0⩽𝑎<𝑑

⃒⃒
𝑆*
𝑑,𝑎⊖𝑙(𝑛+ 𝑟 − 𝑘0 − 1)

⃒⃒
=

= 𝐵(𝑛+ 𝑟) max
0⩽𝑎<𝑑

⃒⃒
𝑆*
𝑑,𝑎⊖𝑙(𝑛+ 𝑟 − 𝑘0 − 1)

⃒⃒
,

где

𝐵(𝑛+ 𝑟) =
∑︁

𝑙 /∈𝐷1
𝑘0

(𝑛+𝑟)

1 +
∑︁

𝑙∈𝐷1
𝑘0

(𝑛+𝑟)

(︀
𝜉1𝑙,𝑘0(𝑛+ 𝑟)− 1

)︀
=

∑︁
𝑙 /∈𝐷1

𝑘0
(𝑛+𝑟)

1 +
∑︁

𝑙∈𝐷1
𝑘0

(𝑛+𝑟)

𝜉1𝑙,𝑘0(𝑛+ 𝑟)−

−
∑︁

𝑙∈𝐷1
𝑘0

(𝑛+𝑟)

1 ⩽
(︀
𝑑− ♯𝐷1

𝑘0(𝑛+ 𝑟)
)︀

+𝐴1
𝑘0(𝑛+ 𝑟)− ♯𝐷1

𝑘0(𝑛+ 𝑟) = 𝑑+𝐴1
𝑘0(𝑛+ 𝑟)− 2♯𝐷1

𝑘0(𝑛+ 𝑟).

Из (28) получаем, что ♯𝐷1
𝑘0

(𝑛 + 𝑟) ⩾ 𝑑0 + 1, а, следовательно, при 𝑑 — четном: 𝑑0 = 𝑑
2 ,

2♯𝐷1
𝑘0

(𝑛+𝑟) ⩾ 𝑑+2 и 𝐵(𝑛+𝑟) ⩽ 𝐴1
𝑘0

(𝑛+𝑟)−2, а при 𝑑 — нечетном: 𝑑0 = 𝑑−1
2 , 2♯𝐷1

𝑘0
(𝑛+𝑟) ⩾ 𝑑+1

и 𝐵(𝑛+ 𝑟) ⩽ 𝐴1
𝑘0

(𝑛+ 𝑟)− 1, то есть, в любом случае, 𝐵(𝑛+ 𝑟) ⩽ 𝐴1
𝑘0

(𝑛+ 𝑟)− 1.
Учитывая последнее неравенство и предположение индукции, можно утверждать, что

|Σ1| ⩽
(︀
𝐴1

𝑘0(𝑛+ 𝑟)− 1
)︀

max
0⩽𝑎<𝑑

⃒⃒
𝑆*
𝑑,𝑎⊖𝑙(𝑛+ 𝑟 − 𝑘0 − 1)

⃒⃒
⩽

⩽
(︀
𝐴1

𝑘0(𝑛+ 𝑟)− 1
)︀
𝑀𝑑(𝑛+ 𝑟 − 𝑘0 − 1).

В свою очередь

|Σ2| ⩽
𝑟∑︁

𝑠=2

𝑑−1∑︁
𝑙=0

𝜉𝑠𝑙,𝑘0(𝑛+ 𝑟) max
0⩽𝑎<𝑑

⃒⃒
𝑆*
𝑑,𝑎⊖𝑙(𝑛+ 𝑟 − 𝑘0 − 𝑠)

⃒⃒
=

=

𝑟∑︁
𝑠=2

𝐴𝑠
𝑘0(𝑛+ 𝑟) max

0⩽𝑎<𝑑

⃒⃒
𝑆*
𝑑,𝑎⊖𝑙(𝑛+ 𝑟 − 𝑘0 − 𝑠)

⃒⃒
=

𝑟∑︁
𝑠=2

𝐴𝑠
𝑘0(𝑛+ 𝑟)𝑀𝑑(𝑛+ 𝑟 − 𝑘0 − 𝑠),

поэтому, используя (39) из неравенства
⃒⃒⃒
𝑆*
𝑑,𝑎(𝑛+ 𝑟)

⃒⃒⃒
⩽ |Σ1|+ |Σ2| получаем, что⃒⃒

𝑆*
𝑑,𝑎(𝑛+ 𝑟)

⃒⃒
⩽
(︀
𝐴1

𝑘0(𝑛+ 𝑟)− 1
)︀
𝑀𝑑(𝑛+ 𝑟 − 𝑘0 − 1)+

+
𝑟∑︁

𝑠=2

𝐴𝑠
𝑘0(𝑛+ 𝑟)𝑀𝑑(𝑛+ 𝑟 − 𝑘0 − 𝑠) = 𝑀𝑑(𝑛+ 𝑟),

что совпадает с неравенством (40). Перейдем к доказательству соотношения

𝑀𝑑(𝑛)≪ 𝑇𝑛
𝜂𝑛𝑑,𝑟

, (41)

то есть покажем, что найдется постоянная 𝐶(𝑑, 𝑟) > 0 такая, что

𝑇𝑛 ⩾ 𝐶(𝑑, 𝑟)𝑀𝑑(𝑛)𝜂𝑛𝑑,𝑟. (42)

Пусть 0 ⩽ 𝑛 ⩽ 𝑟 + 𝑘0, тогда, очевидно, при 𝐶(𝑑, 𝑟) = max
0⩽𝑛⩽𝑟+𝑘0

𝑇𝑛
𝜂𝑛𝑑,𝑟

неравенство (42) будет

выполняться. Предположим, что существует положительная постоянная 𝐶(𝑑, 𝑟) такая, что

𝑇𝑛+𝑟−𝑚 ⩾ 𝐶(𝑑, 𝑟)𝑀𝑑(𝑛+ 𝑟 −𝑚)𝜂𝑛+𝑟−𝑚
𝑑,𝑟 (43)
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при всех 1 ⩽ 𝑚 ⩽ 𝑛+ 𝑟, тогда воспользуемся утверждением леммы 10 при 𝑘 = 𝑘0. Имеем:

𝑇𝑛+𝑟 ⩾
𝑟∑︁

𝑠=1

𝐴𝑠
𝑘0(𝑛+ 𝑟)𝑇𝑛+𝑟−𝑘0−𝑠 = 𝐴1

𝑘0(𝑛+ 𝑟)𝑇𝑛+𝑟−𝑘0−1 +

𝑟∑︁
𝑠=2

𝐴𝑠
𝑘0(𝑛+ 𝑟)𝑇𝑛+𝑟−𝑘0−𝑠 =

=
(︀
𝐴1

𝑘0(𝑛+ 𝑟)− 1
)︀
𝑇𝑛+𝑟−𝑘0−1 +

𝑟∑︁
𝑠=2

𝐴𝑠
𝑘0(𝑛+ 𝑟)𝑇𝑛+𝑟−𝑘0−𝑠 + 𝑇𝑛+𝑟−𝑘0−1. (44)

Из равенства (1) и неравенства (1) следует, что при всех 1 ⩽ 𝑠 ⩽ 𝑟 справедливо соотношение
𝑇𝑛+𝑟−𝑘0−𝑠 ⩽ 𝑇𝑛+𝑟−𝑘0−1, поэтому

𝑇𝑛+𝑟−𝑘0−1 ⩾
1

𝑟

𝑟∑︁
𝑠=1

𝑇𝑛+𝑟−𝑘0−𝑠.

Учитывая это неравенство, из соотношения (2) получаем, что

𝑇𝑛+𝑟 ⩾
(︀
𝐴1

𝑘0(𝑛+ 𝑟)− 1
)︀
𝑇𝑛+𝑟−𝑘0−1 +

𝑟∑︁
𝑠=2

𝐴𝑠
𝑘0(𝑛+ 𝑟)𝑇𝑛+𝑟−𝑘0−𝑠 +

1

𝑟

𝑟∑︁
𝑠=1

𝑇𝑛+𝑟−𝑘0−𝑠.

Применим предположение индукции (43) к последнему неравенству. Находим

𝑇𝑛+𝑟 ⩾ 𝐶(𝑑, 𝑟)𝜂𝑛−𝑘0
𝑑,𝑟

(︃(︀
𝐴1

𝑘0(𝑛+ 𝑟)− 1
)︀
𝑀𝑑(𝑛+ 𝑟 − 𝑘0 − 1)𝜂𝑟−1

𝑑,𝑟 +

+
𝑟∑︁

𝑠=2

𝐴𝑠
𝑘0(𝑛+ 𝑟)𝑀𝑑(𝑛+ 𝑟 − 𝑘0 − 𝑠)𝜂𝑟−𝑠

𝑑,𝑟 +
1

𝑟

𝑟∑︁
𝑠=1

𝑀𝑑(𝑛+ 𝑟 − 𝑘0 − 𝑠)𝜂𝑟−𝑠
𝑑,𝑟

)︃
.

В силу того, что 𝜂𝑑,𝑟 > 1, получаем, что

𝑇𝑛+𝑟 ⩾ 𝐶(𝑑, 𝑟)𝜂𝑛−𝑘0
𝑑,𝑟

(︃(︀
𝐴1

𝑘0(𝑛+ 𝑟)− 1
)︀
𝑀𝑑(𝑛+ 𝑟 − 𝑘0 − 1)+

+

𝑟∑︁
𝑠=2

𝐴𝑠
𝑘0(𝑛+ 𝑟)𝑀𝑑(𝑛+ 𝑟 − 𝑘0 − 𝑠) +

1

𝑟

𝑟∑︁
𝑠=1

𝑀𝑑(𝑛+ 𝑟 − 𝑘0 − 𝑠)

)︃
.

Согласно определению (39), имеем

𝑇𝑛+𝑟 ⩾ 𝐶(𝑑, 𝑟)𝜂𝑛−𝑘0
𝑑,𝑟

(︃
𝑀𝑑(𝑛+ 𝑟) +

1

𝑟

𝑟∑︁
𝑠=1

𝑀𝑑(𝑛+ 𝑟 − 𝑘0 − 𝑠)

)︃
. (45)

Очевидно, что

𝑟∑︁
𝑠=1

𝑀𝑑(𝑛+ 𝑟 − 𝑘0 − 𝑠) ⩾
1

max
1⩽𝑠⩽𝑟

𝐴𝑠
𝑘0

(𝑛+ 𝑟)

𝑟∑︁
𝑠=1

𝐴𝑠
𝑘0(𝑛+ 𝑟)𝑀𝑑(𝑛+ 𝑟 − 𝑘0 − 𝑠) ⩾

⩾
1

max
1⩽𝑠⩽𝑟

𝐴𝑠
𝑘0

(𝑛+ 𝑟)

(︃(︀
𝐴1

𝑘0(𝑛+ 𝑟)− 1
)︀
𝑀𝑑(𝑛+ 𝑟 − 𝑘0 − 1)+

+
𝑟∑︁

𝑠=2

𝐴𝑠
𝑘0(𝑛+ 𝑟)𝑀𝑑(𝑛+ 𝑟 − 𝑘0 − 𝑠)

)︃
=

𝑀𝑑(𝑛+ 𝑟)

max
1⩽𝑠⩽𝑟

𝐴𝑠
𝑘0

(𝑛+ 𝑟)
.
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Из неравенства (23) следует, что

1

max
1⩽𝑠⩽𝑟

𝐴𝑠
𝑘0

(𝑛+ 𝑟)
⩾

1

(𝑑+ 1)𝑘0+1
,

поэтому
𝑟∑︁

𝑠=1

𝑀𝑑(𝑛+ 𝑟 − 𝑘0 − 𝑠) ⩾
𝑀𝑑(𝑛+ 𝑟)

(𝑑+ 1)𝑘0+1
. (46)

Подставим (46) в (45) и получим, что

𝑇𝑛+𝑟 ⩾ 𝐶(𝑑, 𝑟)𝜂𝑛−𝑘0
𝑑,𝑟 𝑀𝑑(𝑛+ 𝑟)

(︂
1 +

1

𝑟(𝑑+ 1)𝑘0+1

)︂
.

Так как

𝜂𝑘0+𝑟
𝑑,𝑟 = 1 +

1

𝑟(𝑑+ 1)𝑘0+1
,

то

𝑇𝑛+𝑟 ⩾ 𝐶(𝑑, 𝑟)𝜂𝑛+𝑟
𝑑,𝑟 𝑀𝑑(𝑛+ 𝑟).

Из соотношений (40) и (41) получается утверждение леммы 13.

Перейдем к изучению 𝑆𝑑,𝑎(𝑋), где𝑋 — целое неотрицательное число, имеющее разложение
(4), удовлетворяющее условию (5).

Лемма 14. Справедливо неравенство

|𝑆𝑑,𝑎(𝑋)| ≪
𝑡(𝑋)∑︁
𝑖=0

max
0⩽𝑎<𝑑

⃒⃒
𝑆*
𝑑,𝑎(𝑖)

⃒⃒
.

Доказательство. Утверждение леммы 14, очевидно, следует из неравенства

|𝑆𝑑,𝑎(𝑋)| ⩽
𝑡(𝑋)∑︁
𝑖=0

𝑡′𝑖 max
0⩽𝑎<𝑑

⃒⃒
𝑆*
𝑑,𝑎(𝑖)

⃒⃒
, (47)

где 𝑡′𝑖 = 𝑡𝑖(𝑋)mod𝑑, и тривиальной оценки 𝑡′𝑖 < 𝑑. Прежде, чем доказать соотношение (47),
покажем выполнимость при любых 𝑖 неравенства

|𝑆𝑑,𝑎(𝑡𝑖𝑇𝑖)| ⩽ 𝑡′𝑖 max
0⩽𝑎<𝑑

⃒⃒
𝑆*
𝑑,𝑎(𝑖)

⃒⃒
. (48)

Имеем

𝑆𝑑,𝑎(𝑡𝑖𝑇𝑖) =

𝑡𝑖𝑇𝑖−1∑︁
𝑚=0

𝜀𝑑,𝑎(𝑚) =

𝑡𝑖−1∑︁
𝑙=0

𝑇𝑖−1∑︁
𝑋′=0

𝜀𝑑,𝑎(𝑙𝑇𝑖 +𝑋 ′) =

𝑡𝑖−1∑︁
𝑙=0

𝑇𝑖−1∑︁
𝑋′=0

𝜀𝑑,𝑎⊖𝑙(𝑋
′) =

=

𝑡𝑖−1∑︁
𝑙=0

𝑆𝑑,𝑎⊖𝑙(𝑇𝑖) =

𝑡𝑖−1∑︁
𝑙=0

𝑆*
𝑑,𝑎⊖𝑙(𝑖).

Пусть 𝑡𝑖 = 𝑞𝑑+ 𝑡′𝑖, где 𝑞 ⩾ 0, 0 ⩽ 𝑡′𝑖 < 𝑑, тогда

𝑡𝑖−1∑︁
𝑙=0

𝑆*
𝑑,𝑎⊖𝑙(𝑖) =

𝑞−1∑︁
𝑘=0

𝑑−1∑︁
𝑠=0

𝑆*
𝑑,𝑎⊖(𝑘𝑑+𝑠)(𝑖) +

𝑡′𝑖−1∑︁
𝑠=0

𝑆*
𝑑,𝑎⊖(𝑞𝑑+𝑠)(𝑖) =

𝑡′𝑖−1∑︁
𝑠=0

𝑆*
𝑑,𝑎⊖(𝑞𝑑+𝑠)(𝑖),
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так как при любом 𝑘 в силу леммы 2 получаем
𝑑−1∑︀
𝑠=0

𝑆*
𝑑,𝑎⊖(𝑘𝑑+𝑠)(𝑖) = 0. В таком случае

|𝑆𝑑,𝑎(𝑡𝑖𝑇𝑖)| ⩽
𝑡′𝑖−1∑︁
𝑠=0

⃒⃒⃒
𝑆*
𝑑,𝑎⊖(𝑞𝑑+𝑠)(𝑖)

⃒⃒⃒
⩽ 𝑡′𝑖 max

0⩽𝑎<𝑑

⃒⃒
𝑆*
𝑑,𝑎(𝑖)

⃒⃒
,

то есть неравенство (48) выполняется.
Доказательство неравенства (47) проведем, используя индукцию по 𝑡(𝑋). Пусть 𝑡(𝑋) = 0,

тогда получаем, что 𝑋 = 𝑡0𝑇0, и в силу (48) |𝑆𝑑,𝑎(𝑋)| = |𝑆𝑑,𝑎(𝑡0𝑇0)| ⩽ 𝑡′0 max
0⩽𝑎<𝑑

⃒⃒⃒
𝑆*
𝑑,𝑎(0)

⃒⃒⃒
, что

совпадает с (47) при 𝑡(𝑋) = 0. Предположим, что неравенство (47) верно при 𝑡(𝑋) = 𝑝, то

есть при 𝑋 =
𝑝∑︀

𝑖=0
𝑡𝑖𝑇𝑖

|𝑆𝑑,𝑎(𝑋)| ⩽
𝑝∑︁

𝑖=0

𝑡′𝑖 max
0⩽𝑎<𝑑

⃒⃒
𝑆*
𝑑,𝑎(𝑖)

⃒⃒
. (49)

Если 𝑡(𝑋) = 𝑝+ 1, то 𝑋 =
𝑝+1∑︀
𝑖=0

𝑡𝑖𝑇𝑖 = 𝑋 ′ + 𝑡𝑝+1𝑇𝑝+1, где 𝑋
′ =

𝑝∑︀
𝑖=0

𝑡𝑖𝑇𝑖, и

𝑆𝑑,𝑎(𝑋) =

𝑡𝑝+1𝑇𝑝+1−1∑︁
𝑚=0

𝜀𝑑,𝑎(𝑚) +

𝑡𝑝+1𝑇𝑝+1+𝑋′−1∑︁
𝑚=𝑡𝑝+1𝑇𝑝+1

𝜀𝑑,𝑎(𝑚). (50)

В соответствии с определением 𝜀𝑑,𝑎(𝑚) и 𝑆𝑑,𝑎(𝑋) получаем, что

𝑡𝑝+1𝑇𝑝+1+𝑋′−1∑︁
𝑚=𝑡𝑝+1𝑇𝑝+1

𝜀𝑑,𝑎(𝑚) =

𝑡𝑝+1𝑇𝑝+1+𝑋′−1∑︁
𝑚=𝑡𝑝+1𝑇𝑝+1

𝜀𝑑,𝑎⊖𝑡𝑝+1(𝑚− 𝑡𝑝+1𝑇𝑝+1) =
𝑋′−1∑︁
𝑚=0

𝜀𝑑,𝑎⊖𝑡𝑝+1(𝑚) = 𝑆𝑑,𝑎⊖𝑡𝑝+1(𝑋 ′),

а
𝑡𝑝+1𝑇𝑝+1−1∑︀

𝑚=0
𝜀𝑑,𝑎(𝑚) = 𝑆𝑑,𝑎(𝑡𝑝+1𝑇𝑝+1), поэтому из неравенства (50) имеем

|𝑆𝑑,𝑎(𝑋)| ⩽ |𝑆𝑑,𝑎(𝑡𝑝+1𝑇𝑝+1)|+
⃒⃒
𝑆𝑑,𝑎⊖𝑡𝑝+1(𝑋 ′)

⃒⃒
.

Применим к первому слагаемому соотношение (48), а ко второму — предположение индук-
ции (49), и получим, что

|𝑆𝑑,𝑎(𝑋)| ⩽ 𝑡′𝑝+1 max
0⩽𝑎<𝑑

⃒⃒
𝑆*
𝑑,𝑎(𝑝+ 1)

⃒⃒
+

𝑝∑︁
𝑖=0

𝑡′𝑖 max
0⩽𝑎<𝑑

⃒⃒
𝑆*
𝑑,𝑎(𝑖)

⃒⃒
=

𝑝+1∑︁
𝑖=0

𝑡′𝑖 max
0⩽𝑎<𝑑

⃒⃒
𝑆*
𝑑,𝑎(𝑖)

⃒⃒
.

Таким образом, лемма 14 доказана.
Для нахождения асимптотической формулы для 𝑇𝑛 сформулируем и докажем следующую

лемму.

Лемма 15. Предположим, что 𝐺0, 𝐺1, . . . , 𝐺𝑟−1 положительны, что 𝐺𝑗 =
𝑟∑︀

𝑖=1
𝑎𝑖𝐺𝑗−𝑖

для 𝑗 ⩾ 𝑟, где 𝑎𝑖 ⩾ 0, 1 ⩽ 𝑖 ⩽ 𝑟. Тогда характеристический многочлен 𝑃 (𝑢) = 𝑢𝑟 −
𝑟∑︀

𝑖=1
𝑎𝑖𝑢

𝑟−𝑖

имеет единственный корень 𝛼 максимального модуля, который является действительным
и большим 1. Кроме того,

𝐺𝑗 = 𝐶𝛼𝑗 +𝑂(𝛼(1−𝛿)𝑗) (51)

для действительной константы 𝐶 > 0 и некоторого 𝛿 > 0.
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Доказательство. Сначала покажем, что 𝑃 (𝑢) имеет единственный положительный дей-

ствительный корень 𝛼 > 1 максимального модуля. Положим 𝐺(𝑢) = 1 − 𝑢𝑟𝑃 (𝑢−1) =
𝑟∑︀

𝑗=1
𝑎𝑗𝑢

𝑗 .

Тогда 𝐺(𝑢) строго возрастает для действительных 𝑢 ⩾ 0. Поскольку 𝐺(0) = 0 и lim
𝑢→+∞

𝐺(𝑢) =

= +∞, то существует единственное 𝑢0 > 0, такое что 𝐺(𝑢0) = 1. Поскольку 𝐺𝑛 строго воз-

растает, то
𝑟∑︀

𝑗=1
𝑎𝑗 = 𝐺(1) > 1 и, следовательно, 𝑢0 < 1. Более того, 𝐺′(𝑢0) =

𝑟∑︀
𝑗=1

𝑗𝑎𝑗𝑢
𝑗−1
0 > 0.

Таким образом, 𝛼 = 1
𝑢0
> 1 является простым корнем 𝑃 (𝑢). Если |𝑢| < 𝑢0, то

|𝐺(𝑢)| ⩽ 𝐺(|𝑢|) < 𝐺(𝑢0) = 1.

то 𝑢 ∈ C.
Для комплексных чисел 𝑧1, 𝑧2, . . . , 𝑧𝑛, то справедливо неравенство

|𝑧1 + 𝑧2 + . . .+ 𝑧𝑛| ⩽ |𝑧1|+ |𝑧2|+ . . .+ |𝑧𝑛|. (52)

Равенство в (52) будет достигаться только в том случае, для некоторого 𝑧 выполняются
равенства 𝑧𝑗 = 𝛼𝑗𝑧, где 𝛼𝑗 ∈ R, 𝛼𝑗 > 0.

Пусть 𝑢 ∈ C, тогда 𝑎𝑗𝑢𝑗 ∈ C и можно воспользоваться неравенством (52) для |𝐺(𝑢)|:

|𝐺(𝑢)| =

⃒⃒⃒⃒
⃒⃒ 𝑟∑︁
𝑗=1

𝑎𝑗𝑢
𝑗

⃒⃒⃒⃒
⃒⃒ ⩽ 𝑟∑︁

𝑗=1

⃒⃒
𝑎𝑗𝑢

𝑗
⃒⃒

=

𝑟∑︁
𝑗=1

𝑎𝑗 |𝑢|𝑗 = 𝐺(|𝑢|).

Как было показано, равенство в последнем соотношении будет достигаться только в том слу-
чае, когда при всех 𝑗 выполняется равенство 𝑎𝑗𝑢

𝑗 = 𝛼𝑗𝑧, то есть 𝑢
𝑗 =

𝛼𝑗

𝑎𝑗
𝑧, где 𝛼𝑗 > 0, 𝑎𝑗 > 0

и 𝑧 ∈ C. Последнее равенство возможно только если 𝑢 ∈ R и 𝑧 ∈ R.
Итак, если |𝑢| = 𝑢0 и 𝑢 ̸= 𝑢0, то

|𝐺(𝑢)| < 𝐺(|𝑢|) = 𝐺(𝑢0) = 1,

то есть такое 𝑢 не является корнем характеристического многочлена 𝑃 (𝑢). Следовательно,
нет корней 𝑃 (𝑢), отличных от 𝛼 с модулем большим или равным 𝛼. Далее ясно, что 𝐺𝑗 имеет
представление вида (51) для некоторого вещественного 𝐶. Нам нужно только показать, что
𝐶 > 0. Для этого определим 𝐹𝑗(𝑥0, . . . , 𝑥𝑟−1) как 𝐹𝑗(𝑥0, . . . , 𝑥𝑟−1) = 𝑥𝑗 , если 0 ⩽ 𝑗 < 𝑟 и как

𝐹𝑗(𝑥0, . . . , 𝑥𝑟−1) =

𝑟∑︁
𝑖=1

𝑎𝑖𝐹𝑗−𝑖(𝑥0, . . . , 𝑥𝑟−1)

для 𝑗 ⩾ 𝑟. Тогда 𝐹𝑗(𝑥0, . . . , 𝑥𝑟−1) является полилинейной и монотонной по всем перемен-
ным. Кроме того, 𝐹𝑗(𝐺0, ..., 𝐺𝑟−1) = 𝐺𝑗 и 𝐹𝑗(1, 𝛼, . . . , 𝛼

𝑟−1) = 𝛼𝑗 . Следовательно, установив
𝑐1 = min

0⩽𝑗<𝑟
𝐺𝑗𝛼

−𝑗 , получаем

𝑐1𝛼
𝑗 = 𝐹𝑗(𝑐1, 𝑐1𝛼, . . . , 𝑐1𝛼

𝑟−1) ⩽ 𝐹𝑗(𝐺0, . . . , 𝐺𝑟−1) = 𝐶𝑗 = 𝐶𝛼𝑗 +𝑂(𝛼(1−𝛿)𝑗).

Таким образом, 𝐶 > 0.

Замечание 4. Приведенное выше утверждение аналогично лемме 3.1 работы [8], в ко-
торой, однако, имеется дополнительное условие о взаимной простоте ненулевых коэффици-
ентов 𝑎𝑖. Доказательство, за исключением утверждения |𝐺(𝑢)| < 1 при |𝑢| = 𝑢0, 𝑢 ̸= 𝑢0
аналогично доказательству из упомянутой работы.
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Члены рекуррентной последовательности {𝑇𝑛}, определяемые условиями (1)–(3), удовле-
творяют утверждению леммы 15. Пусть 𝛼 – наибольший по модулю корень характеристиче-
ского уравнения линейной рекуррентной последовательности {𝑇𝑛}. Из леммы 15 вытекает, что
𝛼 определен однозначно, является действительным и 𝛼 > 1. Более того, в силу равенства (51)
имеем

𝑇𝑛 ∼ 𝐶𝛼𝑛 (53)

с некоторым 𝐶 > 0.

Лемма 16. При всех 𝑛 ⩾ 0 имеет место оценка

⃒⃒
𝑆*
𝑑,𝑎(𝑛)

⃒⃒
≪ min

(︃
𝛼𝑛

𝜂𝑛𝑑,𝑟
, 𝜏𝑛𝑑0

)︃
,

где 𝛼 — наибольший по модулю корень характеристического уравнения линейной рекур-
рентной последовательности {𝑇𝑛}, 𝛼 > 1, 𝜏𝑑0 — наибольший по модулю корень уравнения

𝑢𝑟 − 𝑑0
𝑟∑︀

𝑠=1
𝑢𝑟−𝑠 = 0, 𝜂𝑑,𝑟 определяется равенством (37).

Доказательство. Характеристический многочлен 𝑓(𝑢) = 𝑢𝑟 − 𝑑0
𝑟∑︀

𝑠=1
𝑢𝑟−𝑠, где 𝑑0 ⩾ 1,

удовлетворяет тем же условиям, что и характеристический многочлен 𝑃 (𝑢) из условия леммы
15, поэтому максимальный по модулю корень 𝜏𝑑0 уравнения 𝑓(𝑢) = 0 действительный и, более
того, больший единицы. Покажем, что 𝜏𝑑0 > 𝑑0. Действительно,

𝑓(𝑑0) = 𝑑𝑟0 − 𝑑0
𝑟∑︁

𝑠=1

𝑑𝑟−𝑠
0 = 𝑑𝑟0 − 𝑑0

(︀
𝑑𝑟−1
0 + 𝑑𝑟−2

0 + . . .+ 𝑑0 + 1
)︀

= −𝑑𝑟−1
0 − 𝑑𝑟−2

0 − . . .− 𝑑0 − 1 < 0,

а lim
𝑢→+∞

𝑓(𝑢) = +∞, значит найдется действительный корень уравнения 𝑓(𝑢) = 0, больший 𝑑0.

Так как 𝜏𝑑0 — наибольший корень уравнения 𝑓(𝑢) = 0, то 𝜏𝑑0 > 𝑑0.

Используя индукцию по 𝑛, докажем, что
⃒⃒⃒
𝑆*
𝑑,𝑎(𝑛)

⃒⃒⃒
≪ 𝜏𝑛𝑑0 . Заметим, что всегда можно вы-

брать 𝐶(𝑑, 𝑟) так, чтобы
⃒⃒⃒
𝑆*
𝑑,𝑎(𝑛)

⃒⃒⃒
⩽ 𝐶(𝑑, 𝑟)𝜏𝑛𝑑0 при 𝑛 = 0, 1, . . . , 𝑟 − 1. Действительно, можно

взять 𝐶(𝑑, 𝑟) = max
0⩽𝑎<𝑑

max
(︁⃒⃒⃒
𝑆*
𝑑,𝑎(0)

⃒⃒⃒
,

|𝑆*
𝑑,𝑎(1)|
𝜏𝑑0

, . . . ,
|𝑆*

𝑑,𝑎(𝑟−1)|
𝜏𝑟−1
𝑑0

)︂
.

Рассмотрим доказательство шага индукции. Перепишем равенство (14) как 𝑆*
𝑑,𝑎(𝑛+ 𝑟) =

= 𝑆1 + 𝑆2, где

𝑆1 =
∑︁
𝑠∈𝐼,

1⩽𝑎′𝑠⩽𝑑0

𝑎′𝑠∑︁
𝑗=1

𝑆*
𝑑,𝑎⊖(𝑃𝑠−1+(𝑗−1))(𝑛+ 𝑟 − 𝑠), 𝑆2 =

∑︁
𝑠∈𝐼,

𝑑0<𝑎′𝑠⩽𝑑

𝑎′𝑠∑︁
𝑗=1

𝑆*
𝑑,𝑎⊖(𝑃𝑠−1+(𝑗−1))(𝑛+ 𝑟 − 𝑠).

Найдем оценку каждой из сумм 𝑆1 и 𝑆2:

|𝑆1| ⩽
∑︁
𝑠∈𝐼,

1⩽𝑎′𝑠⩽𝑑0

𝑎′𝑠∑︁
𝑗=1

⃒⃒⃒
𝑆*
𝑑,𝑎⊖(𝑃𝑠−1+(𝑗−1))(𝑛+ 𝑟 − 𝑠)

⃒⃒⃒
⩽

∑︁
𝑠∈𝐼,

1⩽𝑎′𝑠⩽𝑑0

max
0⩽𝑎<𝑑

⃒⃒
𝑆*
𝑑,𝑎(𝑛+ 𝑟 − 𝑠)

⃒⃒ 𝑎′𝑠∑︁
𝑗=1

1 ⩽

⩽ 𝑑0
∑︁
𝑠∈𝐼,

1⩽𝑎′𝑠⩽𝑑0

max
0⩽𝑎<𝑑

⃒⃒
𝑆*
𝑑,𝑎(𝑛+ 𝑟 − 𝑠)

⃒⃒
.
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Для получения оценки 𝑆2 воспользуемся утверждением леммы 2, в силу которого

|𝑆2| ⩽
∑︁
𝑠∈𝐼,

𝑑0<𝑎′𝑠⩽𝑑

⃒⃒⃒⃒
⃒⃒− 𝑑∑︁

𝑗=𝑎′𝑠+1

𝑆*
𝑑,𝑎⊖(𝑃𝑠−1+(𝑗−1))(𝑛+ 𝑟 − 𝑠)

⃒⃒⃒⃒
⃒⃒ ⩽

⩽
∑︁
𝑠∈𝐼,

𝑑0<𝑎′𝑠⩽𝑑

max
0⩽𝑎<𝑑

⃒⃒
𝑆*
𝑑,𝑎(𝑛+ 𝑟 − 𝑠)

⃒⃒ 𝑑∑︁
𝑗=𝑎′𝑠+1

1 ⩽ 𝑑0
∑︁
𝑠∈𝐼,

𝑑0<𝑎′𝑠⩽𝑑

max
0⩽𝑎<𝑑

⃒⃒
𝑆*
𝑑,𝑎(𝑛+ 𝑟 − 𝑠)

⃒⃒
.

Из полученных оценок для |𝑆1| и |𝑆2| следует, что⃒⃒
𝑆*
𝑑,𝑎(𝑛+ 𝑟)

⃒⃒
⩽ 𝑑0

∑︁
𝑠∈𝐼

max
0⩽𝑎<𝑑

⃒⃒
𝑆*
𝑑,𝑎(𝑛+ 𝑟 − 𝑠)

⃒⃒
.

С учетом предположения индукции получаем, что

⃒⃒
𝑆*
𝑑,𝑎(𝑛+ 𝑟)

⃒⃒
⩽ 𝑑0

∑︁
𝑠∈𝐼

𝐶(𝑑, 𝑟)𝜏𝑛+𝑟−𝑠
𝑑0

⩽ 𝑑0𝐶(𝑑, 𝑟)
∑︁
𝑠∈𝐼

𝜏𝑛+𝑟−𝑠
𝑑0

= 𝑑0𝐶(𝑑, 𝑟)𝜏𝑛𝑑0
𝜏 𝑟𝑑0 − 1

𝜏𝑑0 − 1
=

= 𝐶(𝑑, 𝑟)
𝑑0

𝜏𝑑0 − 1
𝜏𝑛𝑑0
(︀
𝜏 𝑟𝑑0 − 1

)︀
< 𝐶(𝑑, 𝑟)

𝜏𝑑0
𝜏𝑑0 − 1

𝜏𝑛𝑑0
(︀
𝜏 𝑟𝑑0 − 1

)︀
< 𝐶(𝑑, 𝑟)𝜏𝑛+𝑟

𝑑0
.

Из последнего неравенства следует справедливость оценки
⃒⃒⃒
𝑆*
𝑑,𝑎(𝑛)

⃒⃒⃒
≪ 𝜏𝑛𝑑0 . Кроме того, приме-

няя асимптотику (53) к утверждению леммы 13, получаем, что
⃒⃒⃒
𝑆*
𝑑,𝑎(𝑛)

⃒⃒⃒
≪ 𝛼𝑛

𝜂𝑛𝑑,𝑟
. Из последних

двух оценок следует утверждение леммы 16.
Перейдем к оценке 𝑡(𝑋).

Лемма 17. Пусть 𝑋 имеет разложение (4) по линейным рекуррентным последователь-
ностям {𝑇𝑛}, определяемых условиями (1)–(3), и удовлетворяет условию (5), тогда

log𝛼
𝑋

𝐶(𝑎1 + 1)
< 𝑡(𝑋) < log𝛼

𝑋

𝐶𝑎1
,

где 𝛼 — корень характеристического уравнения для равенства (1), 𝛼 > 1 и 𝐶 > 0.

Доказательство. По условию 𝑋 =
𝑡(𝑋)∑︀
𝑖=0

𝑡𝑖𝑇𝑖 удовлетворяет условию (5), значит 𝑎1𝑇𝑡(𝑋) <

< 𝑋 < (𝑎1 + 1)𝑇𝑡(𝑋) и в силу асимптотики (53) 𝑎1𝐶𝛼
𝑡(𝑋) < 𝑋 < (𝑎1 + 1)𝐶𝛼𝑡(𝑋), где 𝑎1 > 1,

𝛼 > 1 и 𝐶 > 0, тогда

log𝛼(𝐶𝑎1) + 𝑡(𝑋) < log𝛼𝑋 < log𝛼(𝐶(𝑎1 + 1)) + 𝑡(𝑋),

или

log𝛼𝑋 − log𝛼(𝐶(𝑎1 + 1)) < 𝑡(𝑋) < log𝛼𝑋 − log𝛼(𝐶𝑎1),

из которого следует утверждение леммы.
Сформулируем и докажем следующую теорему.

Теорема 1. Для любого 𝑑 ⩾ 3 справедлива асимптотическая формула

𝑁
(𝑇 )
𝑑,𝑎 (𝑋) =

𝑋

𝑑
+𝑂

(︁
𝑋𝜆
)︁
,
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где 𝜆 = log𝜏𝑑0𝜂𝑑,𝑟
𝜏𝑑0, 𝜏𝑑0 — наибольший по модулю корень уравнения 𝑢𝑟 − 𝑑0

𝑟∑︀
𝑠=1

𝑢𝑟−𝑠 = 0,

𝜂𝑑,𝑟 =

(︂
1 +

1

𝑟(𝑑+ 1)𝑘0+1

)︂ 1
𝑘0+𝑟

,

𝑘0 = 𝑟(𝑑0 − 1) + 1,

𝑑0 =

[︂
𝑑

2

]︂
.

Замечание 5. Легко видеть, что полученное значение 𝜆 зависит только от 𝑑 и 𝑟, но не
от коэффициентов 𝑎𝑖 линейного рекуррентного соотношения. Константа, скрытая в 𝑂(𝑋𝜆),
может зависеть от этих коэффициентов.

Доказательство. Из утверждения леммы 1 следует, что

𝑁
(𝑇 )
𝑑,𝑎 (𝑋) =

𝑋

𝑑
+

𝑋−1∑︁
𝑚=0

𝜀𝑑,𝑎(𝑚) =
𝑋

𝑑
+ 𝑆𝑑,𝑎(𝑋).

Рассмотрим два случая.

1) 𝛼 > 𝜏𝑑0𝜂𝑑,𝑟. В этом случае, используя утверждения лемм 14 и 16, находим |𝑆𝑑,𝑎(𝑋)| ≪

≪
𝑡(𝑋)∑︀
𝑖=0

𝜏 𝑖𝑑0 . Суммируя геометрическую прогрессию, имеем |𝑆𝑑,𝑎(𝑋)| ≪ 𝜏
𝑡(𝑋)
𝑑0

. Применив оценку

𝑡(𝑋) из леммы 17, получаем |𝑆𝑑,𝑎(𝑋)| ≪ 𝜏
log𝛼

𝑋
𝐶𝑎1

𝑑0
. При этом

𝜏
log𝛼

𝑋
𝐶𝑎1

𝑑0
= 𝜏

log𝜏𝑑0

𝑋
𝐶𝑎1

log𝜏𝑑0
𝛼

𝑑0
=

(︂
𝑋

𝐶𝑎1

)︂ 1
log𝜏𝑑0

𝛼

=

(︂
𝑋

𝐶𝑎1

)︂log𝛼 𝜏𝑑0
.

Таким образом, существует постоянная 𝐶1(𝑎1, 𝑑, 𝑟) такая, что при 𝛼 > 𝜏𝑑0𝜂𝑑,𝑟 выполняется
неравенство

|𝑆𝑑,𝑎(𝑋)| ⩽ 𝐶1(𝑎1, 𝑑, 𝑟)𝑋
log𝛼 𝜏𝑑0 < 𝐶1(𝑎1, 𝑑, 𝑟)𝑋

log𝜏𝑑0𝜂𝑑,𝑟
𝜏𝑑0 = 𝐶1(𝑎1, 𝑑, 𝑟)𝑋

𝜆.

2) 𝛼 ⩽ 𝜏𝑑0𝜂𝑑,𝑟. В этом случае для получения оценки 𝑆𝑑,𝑎(𝑋) воспользуемся леммами 14 и
13. Имеем

|𝑆𝑑,𝑎(𝑋)| ≪
𝑡(𝑋)∑︁
𝑖=0

max
0⩽𝑎<𝑑

⃒⃒
𝑆*
𝑑,𝑎(𝑖)

⃒⃒
≪

𝑡(𝑋)∑︁
𝑖=0

𝑇𝑖
𝜂𝑖𝑑,𝑟

. (54)

При всех 𝑖 ⩾ 𝑟 из условий (1) и (3) следует, что 𝑇𝑖 ⩾ 𝑇𝑖−1 + 𝑇𝑖−𝑟 ⩾ 2𝑇𝑖−𝑟, поэтому 𝑇𝑖−𝑟 ⩽ 1
2𝑇𝑖,

поэтому
𝑇𝑖−𝑟

𝜂𝑖−𝑟
𝑑,𝑟

⩽
𝜂𝑟𝑑,𝑟
2
· 𝑇𝑖
𝜂𝑖𝑑,𝑟

. (55)

По условию 𝑟 ⩾ 2, 𝑑 ⩾ 3 и 𝑘0 ⩾ 1, следовательно, 1
2 <

𝜂𝑟𝑑,𝑟
2 < 1. Перепишем соотношение (54)

как

|𝑆𝑑,𝑎(𝑋)| ≪
𝑟−1∑︁
𝑠=0

∑︁
0⩽𝑘⩽𝑡(𝑋),

𝑘≡𝑠 (mod 𝑟)

𝑇𝑡(𝑋)−𝑘

𝜂
𝑡(𝑋)−𝑘
𝑑,𝑟

. (56)
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Воспользуемся неравенством (55) 𝑘−𝑠
𝑟 раз. Имеем:

𝑇𝑡(𝑋)−𝑘

𝜂
𝑡(𝑋)−𝑘
𝑑,𝑟

⩽
𝜂𝑟𝑑,𝑟
2
·
𝑇𝑡(𝑋)−𝑘+𝑟

𝜂
𝑡(𝑋)−𝑘+𝑟
𝑑,𝑟

⩽

(︂
𝜂𝑟𝑑,𝑟
2

)︂2

·
𝑇𝑡(𝑋)−𝑘+2𝑟

𝜂
𝑡(𝑋)−𝑘+2𝑟
𝑑,𝑟

⩽ . . . ⩽

(︂
𝜂𝑟𝑑,𝑟
2

)︂ 𝑘−𝑠
𝑟

·
𝑇𝑡(𝑋)−𝑠

𝜂
𝑡(𝑋)−𝑠
𝑑,𝑟

.

Воспользуемся последним неравенством для преобразования соотношения (56). Получаем

|𝑆𝑑,𝑎(𝑋)| ≪
𝑟−1∑︁
𝑠=0

∑︁
0⩽𝑘⩽𝑡(𝑋),

𝑘≡𝑠 (mod 𝑟)

(︂
𝜂𝑟𝑑,𝑟
2

)︂ 𝑘−𝑠
𝑟

·
𝑇𝑡(𝑋)−𝑠

𝜂
𝑡(𝑋)−𝑠
𝑑,𝑟

=

𝑟−1∑︁
𝑠=0

𝑇𝑡(𝑋)−𝑠

𝜂
𝑡(𝑋)−𝑠
𝑑,𝑟

∑︁
0⩽𝑘⩽𝑡(𝑋),𝑘≡𝑠 (mod 𝑟)

(︂
𝜂𝑟𝑑,𝑟
2

)︂ 𝑘−𝑠
𝑟

.

Из равенства (1) следует, что 𝑇𝑡(𝑋)−𝑟+1 ⩽ 𝑇𝑡(𝑋)−𝑟+2 ⩽ . . . ⩽ 𝑇𝑡(𝑋), поэтому

|𝑆𝑑,𝑎(𝑋)| ≪
𝑇𝑡(𝑋)

𝜂
𝑡(𝑋)
𝑑,𝑟

𝑟−1∑︁
𝑠=0

∑︁
0⩽𝑘⩽𝑡(𝑋),

𝑘≡𝑠 (mod 𝑟)

(︂
𝜂𝑟𝑑,𝑟
2

)︂ 𝑘
𝑟

≪
𝑇𝑡(𝑋)

𝜂
𝑡(𝑋)
𝑑,𝑟

∑︁
𝑘⩾0

(︂
𝜂𝑟𝑑,𝑟
2

)︂ 𝑘
𝑟

.

Найдем сумму бесконечной убывающей геометрической прогрессии

∑︁
𝑘⩾0

(︂
𝜂𝑟𝑑,𝑟
2

)︂ 𝑘
𝑟

=
1

1−
(︁
𝜂𝑟𝑑,𝑟
2

)︁ 1
𝑟

=
2

1
𝑟

2
1
𝑟 − 𝜂𝑑,𝑟

.

Данная величина является положительной постоянной, так как 𝜂𝑑,𝑟 < 2
1
𝑟 , поэтому, прини-

мая во внимание тот факт, что 𝑇𝑡(𝑋) ⩽ 𝑋, получаем |𝑆𝑑,𝑎(𝑋)| ≪ 𝑋

𝜂
𝑡(𝑋)
𝑑,𝑟

. В силу леммы 17

𝑡(𝑋) > log𝛼
𝑋

𝐶(𝑎1+1) , поэтому

𝜂
𝑡(𝑋)
𝑑,𝑟 ⩾ 𝜂

log𝛼
𝑋

𝐶(𝑎1+1)

𝑑,𝑟 = 𝜂

log𝜂𝑑,𝑟
𝑋

𝐶(𝑎1+1)
log𝜂𝑑,𝑟

𝛼

𝑑,𝑟 =

(︂
𝑋

𝐶(𝑎1 + 1)

)︂ 1
log𝜂𝑑,𝑟

𝛼

=

(︂
𝑋

𝐶(𝑎1 + 1)

)︂log𝛼 𝜂𝑑,𝑟

.

Таким образом, существует постоянная 𝐶2(𝑎1, 𝑑, 𝑟) такая, что при 𝛼 ⩽ 𝜏𝑑0𝜂𝑑,𝑟 выполняется
неравенство

|𝑆𝑑,𝑎(𝑋)| ⩽ 𝐶2(𝑎1, 𝑑, 𝑟)𝑋
1−log𝛼 𝜂𝑑,𝑟 < 𝐶2(𝑎1, 𝑑, 𝑟)𝑋

1−log𝜏𝑑0𝜂𝑑,𝑟
𝜂𝑑,𝑟

= 𝐶2(𝑎1, 𝑑, 𝑟)𝑋
𝜆.

Выберем 𝐶(𝑎1, 𝑑, 𝑟) = min(𝐶1(𝑎1, 𝑑, 𝑟), 𝐶2(𝑎1, 𝑑, 𝑟)) и получим утверждение теоремы 1.

3. Заключение

В настоящей работе было получено новое, чисто комбинаторное, доказательство аналога
теоремы Гельфонда о распределении сумм цифр разложений натуральных чисел для разло-
жений по линейным рекуррентным последовательностям, удовлетворяющим условию Парри,
и произвольного модуля 𝑑.

В отличие от ранее известного доказательства из [12], наш подход дает достаточно простое
и явное выражение для показателя степени в остаточном члене задачи. Кроме того, данный
показатель степени зависит только от модуля 𝑑 и порядка линейного рекуррентного соотно-
шения (в [12] была зависимость от коэффициентов линейного рекуррентного соотношения).
Также наше доказательство не требует некоторых технических условий на коэффициенты
линейного рекуррентного соотношения, имевшихся в [12].
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С другой стороны, методы [12] позволяют также получить результат о равномерности рас-
пределения сумм цифр натуральных чисел, пробегающих некоторую арифметическую про-
грессию. Получить данный результат нашими методами пока не удается. Было бы интересно
попробовать обобщить методы настоящей работы для построения элементарного доказатель-
ства данного результата.

В простейшем случае линейной рекуррентной последовательности Фибоначчи в [14] был
получен результат о точном порядке остаточного члена для произвольного 𝑑. Хотелось бы
уметь получать такие результаты и для других линейных рекуррентных последовательностей.

Рассмотренный класс систем счисления, связанный с разложениями по линейным рекур-
рентным последовательностям, является частным случаем систем счисления, связанных с под-
становками. Конструкцию таких систем счисления и ряд важных результатов об их суммах
цифр можно найти в [15]–[17]. Было бы интересно получить аналог теоремы Гельфонда и в
этом случае.
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