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Аннотация

В работе изучается задача о представлении натурального числа 𝑛 в виде суммы квадра-
тов четырёх простых чисел из арифметической прогрессии. Оценено, количество натураль-
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Abstract

The work studies the problem of representing the natural number 𝑛 as the sum of the squares
of four prime numbers from an arithmetic progression. The number of natural numbers that
cannot be represented in the specified form has been estimated, i.e. the exceptional set of the
problem, is estimated.. Also, for the first time, a lower estimate was obtained for the number
of representations of a given non-exceptional 𝑛 in the indicated form.
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1. Введение

Известно, что после доказательства теоремы Ж. Л. Лагранжа (см.§6.5., гл.VI [1]), о пред-
ставлении заданного целого числа в виде суммы квадратов четырех целых чисел первым, кто
обратил внимание на задачу представления данного целого числа в виде суммы квадратов
четырех простых чисел 𝑝1, ..., 𝑝4 был Л. К.Хуа [2]. Пусть 𝑁 -достаточно большое натуральное
число и 𝑈(𝑁) = {𝑛 | 1 < 𝑛 ⩽ 𝑁,𝑛 ≡ 4(mod24), 𝑛 ̸= 𝑝21 + 𝑝22 + 𝑝23 + 𝑝24}, 𝐸(𝑁) = 𝑐𝑎𝑟𝑑𝑈(𝑁).

Л. К.Хуа доказал, что 𝐸(𝑁)≪ 𝑁 log−𝐴𝑁 , где 𝐴 > 0− некоторая постоянная, ≪ − символ
Виноградова. Jianya Liu и Ming-Chit Liu [3] улучшили этот результат и доказали новую оценку
𝐸(𝑁)≪ 𝑁 𝜃, при 𝜃 > 13/15.

Yonghui Wang [4] доказал, что диофантово уравнение 𝑛 = 𝑝21 + 𝑝22 + 𝑝23 + 𝑝24 + 𝑝25 имеет
решение, если выполняются условия 𝑝𝑖 ≡ 𝑏𝑖 (mod 𝑑) , ( 𝑖 = 1, 2, ..., 5), 𝑑 ⩽ 𝑁 𝛿, 𝑛 ≡ 5 (mod24).
Здесь и далее 𝛿 > 0− достаточно малое число. Затем в работе [5] авторы настоящей работы
получили оценки снизу для количества представлений данного 𝑛, 1 < 𝑛 ⩽ 𝑁,𝑛 ≡ 5(mod24)
в виде суммы квадратов пяти простых чисел из арифметической прогрессии. Кроме того О.
Имамов [6] получил оценку снизу, для количества решений уравнения

𝑛 = 𝑝21 + 𝑝22 + 𝑝23 + 𝑝24. (1)

В данной статье мы исследуем существования решений уравнения (1) в простых числах из
арифметической прогрессии. Для удобства введем следующие обозначения:

𝑈 (𝑁, 𝑑) =
{︀
𝑏̄ ∈ N4 : 1 ⩽ 𝑏𝑖 ⩽ 𝑑, (𝑏𝑖, 𝑑) = 1, 𝑏21 + · · ·+ 𝑏24 ≡ 𝑛 (mod𝜎(𝑑)𝑑)

}︀
. (2)

В дальнейшем будем рассматривать 𝑝𝑖 ≡ 𝑏𝑖(mod 𝑑), 𝑖 = 1, ..., 4 и 𝑏̄ = (𝑏1, . . . , 𝑏4) ∈ 𝑈(𝑁, 𝑑).
Здесь 𝜎(𝑑) = 1, 4, 2 соответственно означает 2 ∤ 𝑑, 2 ‖𝑑 и 4|𝑑.

Пусть 𝑆𝑑 (𝑛)− количество решений уравнения (1) в простых числах 𝑝𝑖 ≡ 𝑏𝑖(mod 𝑑),
𝑖 = 1, ..., 4; а 𝐸𝑑 (𝑛)— количество 𝑛 (2 < 𝑛 ⩽ 𝑁), которые не представимо в виде суммы
четырёх квадратов простых чисел из арифметической прогрессии 𝑝𝑖 ≡ 𝑏𝑖(mod 𝑑), 𝑖 = 1, ..., 4.
Положим 𝑄 = 𝑁21𝛿. Основным результатам настоящей работы является следующая.

Теорема. Если 𝑛 ≡ 4 (mod24), 2 ⩽ 𝑑 ⩽ 𝑁 𝛿 , тогда справедлива оценка

𝐸𝑑(𝑁)≪ 𝑁(𝑄15/14 𝑑)
−1
.

Метод, используемый в доказательстве теоремы, позволяет получить оценку для 𝑆𝑑 (𝑛)
при 𝑁/50 < 𝑛 ⩽ 𝑁 .
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Следствие. Для всех 𝑛 (𝑁/50 < 𝑛 ⩽ 𝑁), удовлетворяющие условию 𝑛 ≡ 4 (mod24), за

исключением не более чем 𝐸𝑑(𝑁)≪ 𝑁
(︀
𝑄15/14 𝑑

)︀−1
значений, справедлива оценка 𝑆𝑑 (𝑛)≫

≫ 𝑛1−7𝛿(𝑑1/2log4𝑛)
−1
.

Результаты сформулированном теоремы не только является обобщением сооатветствую-
щие резултать Jianya Liu и Ming-Chit Liu [3] простых чисел арифметической прогрессии, по
внем улучщена оценка множества 𝐸𝑑(𝑁) в сравниние оценки 𝐸1(𝑁) доказанные в [3] . Отметим
также, что вперые получена оценки для 𝑆𝑑(𝑁). В доказательстве теоремы, будем использовать
методы Харди-Литтлвуда [7] , метод И.М.Виноградова [8],[9] а также схема работы Аллакова
[10].

Отметим оценка для 𝑆𝑑(𝑛), получена впервые и отличается от ожидаемого главного члена
на 𝑛−7𝛿.

2. Обозначения и оценка интеграла по малым дугам

Введем обозначения:

𝑇 = 𝑁
√
𝛿, 𝐿 = 𝑁/50, 𝜏 = 𝑁−1𝑇

1
4 , 𝐿1 =

√
𝐿,𝑁1 =

√
𝑁. (3)

Положим 𝑒(𝑦) = 𝑒2𝜋𝑖𝑦 и 𝑒𝑞(𝑦) = 𝑒(𝑦/𝑞). Для любых 𝑎, 𝑞, (𝑎, 𝑞) = 1 при 1 ⩽ 𝑎 ⩽ 𝑞 ⩽ 𝑄, обозначим

m (𝑎, 𝑞) =
[︁
𝑎−𝜏
𝑞 , 𝑎+𝜏

𝑞

]︁
. Легко видеть, что эти промежутки принадлежат интервалу [𝜏, 1 + 𝜏 ] и

не пересекаются (см. §2 , гл X [11] или п.3, §5 , гл II, [12]). Обозначим объединение m(𝑎, 𝑞)
через M, то есть M =

⋃︀
𝑎,𝑞

m(𝑎, 𝑞). Разность [𝜏, 1 + 𝜏 ] ∖M обозначим через m. Пусть

𝑆𝑖(𝛼) = 𝑆𝑖(𝛼, 𝑑, 𝑏𝑖) =
∑︁

𝐿1<𝑚𝑖⩽𝑁1

𝑚𝑖≡𝑏𝑖( mod 𝑑)

Λ(𝑚𝑖)𝑒(𝛼𝑚
2
𝑖 ), (4)

и

ℛ(𝑛) :=
∑︁

𝐿1<𝑛𝑖⩽𝑁1,
𝑚2

1+···+𝑚2
4=𝑛,

𝑚𝑖≡𝑏𝑖( mod 𝑑)

Λ(𝑚1) · · ·Λ(𝑚4), (5)

где Λ(𝑚)-функция Мангольдта. Тогда, используя (4), ℛ(𝑛) можем представить в виде:

ℛ(𝑛) =
1+𝜏∫︀
𝜏

4∏︀
𝑖=1

𝑆𝑖(𝛼)𝑒(−𝑛𝛼)𝑑𝛼. Теперь ℛ(𝑛) можем записать в виде

ℛ(𝑛) =

⎧⎨⎩
∫︁
M

+

∫︁
m

⎫⎬⎭
4∏︁

𝑖=1

𝑆𝑖(𝛼)𝑒(−𝑛𝛼)𝑑𝛼 = ℛ1(𝑛) +ℛ2(𝑛). (6)

В (6) интеграл по множестве M обозначен как ℛ1(𝑛), а интеграл по m как ℛ2(𝑛).

Оценим ℛ2(𝑛). Для этого воспользуемся следующими леммами.

Лемма 2.1. Если
⃒⃒
𝛼− 𝑎𝑞−1

⃒⃒
⩽ 𝑞−2, (𝑎, 𝑞) = 1, 𝑑 ⩽ 𝑁 𝛿 и ℎ = (𝑞, 𝑑), то для любого

действительного числа 𝛼 ∈ m при 𝑁 > 𝑁0(𝛿) справедлива оценка для 𝑆𝑖(𝛼)≪ 𝑁
1
2
+ 𝜀

2𝑄− 1
2 .

Эта лемма следует из леммы 2.1 в [4].

Лемма 2.2. Для всех 𝑛 ⩽ 𝑁 , 𝜀 < 0, 6𝛿 и 𝑛 ≡ 4 (mod24) за исключением не более чем
≪ 𝑁𝑄−15/14 𝑑−1 значений 𝑛, справедлива оценка

|ℛ2(𝑛)| < 𝑁𝑄−3/7𝑑−1/2. (7)
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Доказательство. Используя неравенство Бесселя (см. §4, гл.III, [13]) и лемму 2.1, получим

∑︁
𝑁/2 ⩽𝑛⩽𝑁

|ℛ2 (𝑛)|
2
≪
∫︁
m

|𝑆 (𝛼)|8𝑑𝛼≪
(︁
𝑁

1
2
+ 𝜀

2𝑄− 1
2

)︁4 1∫︁
0

|𝑆 (𝛼)|4𝑑𝛼

Так как

1∫︁
0

|𝑆 (𝛼)|4𝑑𝛼 ⩽ log4𝑁

1∫︁
0

⃒⃒⃒⃒
⃒⃒⃒⃒ ∑︁

𝐿1<𝑚𝑖⩽𝑁1

𝑚𝑖≡𝑏𝑖( mod 𝑑)

𝑒(𝛼𝑚𝑖)

⃒⃒⃒⃒
⃒⃒⃒⃒
4

𝑑𝛼

и согласно лемме Хуа ( см. п.2.2, гл. II, [7]), существует такая постоянная 𝑐, что справедлива
оценка

1∫︁
0

⃒⃒⃒⃒
⃒⃒⃒⃒ ∑︁

𝐿1<𝑚𝑖⩽𝑁1

𝑚𝑖≡𝑏𝑖( mod 𝑑)

𝑒(𝛼𝑚)

⃒⃒⃒⃒
⃒⃒⃒⃒
4

𝑑𝛼≪ 𝑁𝑑−2log𝑐𝑁,

то получим ∑︁
𝐿<𝑛⩽𝑁

|ℛ2 (𝑛)|
2
≪ 𝑁3+2𝜀𝑄−2𝑑−2log4+𝑐𝑁.

Отсюда следует, что количество значений 𝑛, 𝑛 ⩽ 𝑁 для которых |ℛ2 (𝑛)| ⩾ 𝑁(𝑄3/7 𝑑1/2 )
−1
,

не превосходит < 𝑁(𝑄15/14𝑑)
−1
. То есть, для всех 𝐿 < 𝑛 ⩽ 𝑁 и 𝑛 ≡ 4 (mod24) за исключением

не более чем ≪ 𝑁(𝑄15/14𝑑)
−1

значений 𝑛, справедливо неравенство |ℛ2 (𝑛)| < 𝑁(𝑄3/7𝑑1/2)
−1
.

3. Упрощение интеграла ℛ1(𝑛)

Обозначим ℎ = (𝑑, 𝑞) и для любого характера 𝜒(𝑚𝑜𝑑𝑑𝑞ℎ−1) и действительного числа 𝑦,
𝑆𝑖(𝜒, 𝑦) и интегралы сумму 𝐼(𝑦), 𝐼(𝑦) и 𝐼(𝜒, 𝑦) определим следующими равенствами:

𝑆𝑖(𝜒, 𝑦) := 𝑆𝑖(𝜒, 𝑦, 𝑑, 𝑞) :=
∑︁

𝐿1<𝑚𝑖⩽𝑁1,

𝑛𝑖≡𝑏𝑖( mod 𝑑𝑞ℎ−1)

𝜒(𝑚𝑖)Λ(𝑚𝑖)𝑒(𝑚𝑖
2𝑦),

𝐼(𝑦) :=

𝑁1∫︁
𝐿1

𝑒(𝑥2𝑦)𝑑𝑥, 𝐼(𝑦) :=

𝑁1∫︁
𝐿1

𝑥𝛽−1𝑒(𝑥2𝑦)𝑑𝑥, 𝐼(𝜒, 𝑦) :=
∑︁
𝛾⩽𝑇

′
𝑁1∫︁

𝐿1

𝑥𝜌−1𝑒(𝑥2𝑦)𝑑𝑥.

Здесь
∑︀
𝛾⩽𝑇

′− обозначает сумму по всем нулям 𝜌 = 𝛽 + 𝑖𝛾 функции 𝐿(𝑠, 𝜒) в области

1
2 ⩽ 𝛽 ⩽ 1− 𝑐1(ln𝑇 )−1, |𝛾| ⩽ 𝑇, за кроме исключительного нуля 𝛽.
Для дальнейших исследований нам понадобится следующые леммы.

Лемма 3.1. Для любого действительного числа 𝑦 и характера 𝜒(𝑚𝑜𝑑𝑑𝑞ℎ−1) при
𝑑𝑞ℎ−1 ⩽ 𝑇 справедливо следующее равенство

𝑆(𝜒, 𝑦) = 𝛿𝜒0𝐼(𝑦)− 𝛿𝜒̃𝐼(𝑦)− 𝐼(𝜒, 𝑦) +𝑂
(︀
(1 + |𝑦|𝑁)𝑁1𝑇

−1log2𝑁
)︀
,

где 𝛿𝜒0 =

{︂
1, если 𝜒 ≡ 𝜒0(𝑚𝑜𝑑𝑑𝑞ℎ

−1),
0, в противном случае,

𝛿𝜒̃ =

{︂
1 , если 𝜒 ≡ 𝜒̃𝜒0(𝑚𝑜𝑑𝑑𝑞ℎ

−1),
0, в противном случае.

Доказательство этой леммы приведено в [11, 12, 14] (например, см. страницу 120 в [14]).
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Чтобы упростить ℛ1(𝑛) нам потребуются следующие обозначения. Для положитель-
ных целых чисел 𝑑, 𝑞 обозначим ℎ (𝑞) := (𝑑, 𝑞), то есть наибольший общий делитель чи-
сел 𝑑 и 𝑞.Через положительные целые числа 𝛼𝑖, 𝛽𝑖, 𝛾𝑖 определим ℎ (𝑞) следующим образом:

𝑑 = 𝑝𝛼1
1 · · · 𝑝𝛼𝑠

𝑠 𝑑0, 𝑞 = 𝑝𝛽1
1 · · · 𝑝

𝛽𝑠
𝑠 𝑞0, (𝑑0, 𝑞0) = 1,

ℎ (𝑞) = 𝑝𝛾11 · · · 𝑝
𝛾𝑠
𝑠 , (8)

где 𝛾𝑖 = min (𝛼𝑖, 𝛽𝑖) , 𝑖 = 1, ..., 𝑠. Определим ℎ1 (𝑞) и ℎ2 (𝑞) следующим образом.

ℎ1 (𝑞) : = 𝑝𝛿11 · · · 𝑝
𝛿𝑠
𝑠 , 𝛿𝑖 =

{︃
𝛼𝑖, если 𝛽𝑖 > 𝛼𝑖

0, в противном случае.
(9)

Согласно (8) и (9)

ℎ2 (𝑞) : = ℎ (𝑞)/ℎ1 (𝑞). (10)

Для удобства записи обозначим ℎ = ℎ (𝑞), ℎ1 = ℎ1 (𝑞) и ℎ2 = ℎ2 (𝑞). Легко видеть, что
(ℎ1, ℎ2) = 1 и (𝑑/ℎ1, 𝑞/ℎ2 ) = 1.

Лемма 3.2. Если 𝛼 = 𝑎𝑞−1 + 𝜆, то справедливо равенство

𝑆𝑖(𝛼) = 𝜙−1 (𝑑/ℎ1 )𝜙−1 (𝑞/ℎ2 )
∑︁

𝜁( mod 𝑑/ℎ1)

𝜁(𝑏𝑖)
∑︁

𝜂( mod 𝑞/ℎ2)

𝐺𝑖(𝑎, 𝜂, 𝑞)𝑆(𝜁𝜂, 𝜆) +𝑂
(︀
log2𝑁

)︀
,

где

𝐺𝑖 (𝑎, 𝜂, 𝑞) = 𝐺 (ℎ, 𝑏𝑖, 𝑎, 𝜂, 𝑞) =
∑︁
(𝑐,𝑞)=1

𝑐≡𝑏𝑖( mod ℎ)

𝑒
(︀
𝑎𝑐2/𝑞

)︀
𝜂(𝑐), (11)

а 𝜂 и 𝜁 — характеры по модулям 𝑞/ℎ2 и 𝑑/ℎ1 соответственно.

Доказательство. В силу определения 𝑆𝑖 (𝛼) имеем:

𝑆𝑖 (𝛼) =
∑︁

𝐿1<𝑚𝑖⩽𝑁1,
𝑚𝑖≡𝑏𝑖( mod 𝑑)

(𝑚𝑖,𝑞)=1

Λ(𝑚𝑖)𝑒
(︀
𝛼𝑚2

𝑖

)︀
+𝑂

⎛⎜⎜⎜⎝ ∑︁
𝑝𝑘⩽𝑁1

𝑝|𝑞

log 𝑝 𝑒(𝑝2𝑘𝛼)

⎞⎟⎟⎟⎠ =

=
∑︁

(𝑐,𝑞)=1
𝑐≡𝑏𝑖( mod ℎ)

𝑒

(︂
𝑎𝑐2

𝑞

)︂ ∑︁
𝐿1<𝑚𝑖⩽𝑁1

𝑚𝑖≡𝑏𝑖( mod 𝑑)
𝑚𝑖≡𝑐( mod 𝑞)

Λ(𝑚𝑖)𝑒(𝑚
2
𝑖𝜆) +𝑂

(︀
log2𝑁

)︀
.

Если 𝑐 ≡ 𝑏𝑖(modℎ), то внутренняя сумма в главном члене превращяется в нуль. Поэтому мы
можем применить условие 𝑐 ≡ 𝑏𝑖(modℎ) к суммированию по 𝑐. С другой стороны, условие
𝑐 ≡ 𝑏𝑖(𝑚𝑜𝑑ℎ) эквивалентно условиям 𝑚𝑖 ≡ 𝑏𝑖(mod 𝑑) и 𝑚𝑖 ≡ 𝑐(mod𝑞) которые, в свою оче-
редь, эквивалентны условиям 𝑚𝑖 ≡ 𝑏𝑖(mod 𝑑/ℎ1), и 𝑚𝑖 ≡ 𝑐(mod 𝑞/ℎ2 ). В этом случае, соглас-
но свойству ортогональности характеров ( см. §4,5, [14]), для 𝑆𝑖 (𝛼) справедливо следующее
равенство

𝑆𝑖 (𝛼) = 𝜙−1 (𝑑/ℎ1 )𝜙−1 (𝑞/ℎ2 )
∑︁

𝜁( mod 𝑑/ℎ1)

𝜁 (𝑏𝑖)×

×
∑︁

𝜂( mod 𝑞/ℎ2)

∑︁
(𝑐,𝑞)=1

𝑐≡𝑏𝑖( mod ℎ)

𝑒

(︂
𝑎𝑐2

𝑞

)︂
𝜂 (𝑐)

∑︁
𝐿1<𝑚𝑖⩽𝑁1

𝑚𝑖≡𝑏𝑖( mod 𝑑)

𝜁𝜂(𝑚𝑖)Λ(𝑚𝑖)𝑒(𝑚
2
𝑖𝜆)+𝑂(log2𝑁).
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Следовательно, используя (11) получим

𝑆𝑖(𝛼) = 𝜙−1(𝑑/ℎ1)𝜙
−1(𝑞/ℎ2)

∑︁
𝜁( mod 𝑑/ℎ1)

𝜁(𝑏𝑖)
∑︁

𝜂( mod 𝑞/ℎ2)

𝐺𝑖(𝑎, 𝜂, 𝑞)𝑆(𝜁𝜂, 𝜆) +𝑂
(︀
log2𝑁

)︀
.

Отсюда следует утверждение леммы 3.2.

Теперь, используя приведённые леммы, упростим 𝑅1(𝑛) следующим образом. Для любого
𝛼 = 𝑎/𝑞 + 𝜆 ∈m(𝑎, 𝑞) выполняются условия |𝜆| < 𝜏/𝑞 и 𝑞 ⩽ 𝑄. Согласно леммам 3.1 и 3.2,
𝑆𝑖 (𝛼) можно записать следующим образом:

𝑆𝑖(𝛼) = 𝜙−1(𝑑/ℎ1)𝜙
−1(𝑞/ℎ2){𝐺𝑖(𝑎, 𝜂0, 𝑞)𝐼(𝜆)− 𝛿𝑞𝜁𝜁0 (𝑏𝑖)𝐺𝑖(𝑎, 𝜂𝜂0, 𝑞)𝐼(𝜆)−

−
∑︁

𝜁 (mod 𝑑/ℎ1)𝜂 (mod 𝑞/ℎ2)

𝜁 (𝑏𝑖)𝐺𝑖(𝑎, 𝜂, 𝑞)𝐼(𝜁𝜂, 𝜆)}+

+𝑂(𝜙−1(𝑞/ℎ2)
∑︁

𝜂 (mod 𝑞/ℎ2)

|𝐺𝑖(𝑎, 𝜂, 𝑞)|(1 + |𝜆|𝑁)𝑁1/2𝑇−1log2𝑁) +𝑂(log2𝑁),

где 𝜁𝜁0 (mod𝑑/ℎ1) 𝜂𝜂0 (mod𝑞/ℎ2) = 𝜒̃𝜒0 (mod𝑑𝑞/ℎ ), 𝜁 и 𝜂 — примитивные характеры и

𝛿𝑞 :=

{︂
1, если существует 𝜒̃ (mod𝑟) и 𝑟 | (𝑑𝑞/ℎ),
0, в противном случае.

Так как |𝜆| ≪ 𝜏/𝑞 и |𝜆|𝑁 < 𝑇 1/4𝑞−1, то тривиально получаем следующую оценку:∑︀
𝜂 (mod 𝑞/ℎ2)

|𝐺𝑖(𝑎, 𝜂, 𝑞)| ≪ 𝜙(𝑞/ℎ2)𝜙(𝑞), |𝐺𝑖 (𝑎, 𝜒, 𝑞)| ⩽
∑︀

(𝑐,𝑞)=1
𝑐≡𝑏𝑖( mod 𝑞)

⃒⃒⃒
𝑒
(︁
𝑎𝑐2

𝑞

)︁⃒⃒⃒
|𝜒 (𝑐)| ⩽𝜙 (𝑞).

Используя это и (3), можно оценить остаток следующим образом.
≪ 𝜙(𝑞)𝑇 1/4𝑞−1𝑁1𝑇

−1log2𝑁 ≪ 𝑁1𝑇
−3/4log2𝑁. Таким образом, для 𝛼 = 𝑎/𝑞 + 𝜆 ∈m (𝑎, 𝑞)

имеем следующего:

𝑆𝑖 (𝛼) = 𝜙−1 (𝑑/ℎ1 )𝜙−1 (𝑞/ℎ2 )𝐻𝑖 (𝑎, 𝑞, 𝜆) +𝑂
(︁
𝑁1𝑇

−3/4log2𝑁
)︁
. (12)

где

𝐻𝑖 (𝑎, 𝑞, 𝜆) := 𝐺𝑖(𝑎, 𝜂0, 𝑞)𝐼(𝜆)− 𝛿𝑞𝜁𝜁0 (𝑏𝑖)𝐺𝑖(𝑎, 𝜂𝜂0, 𝑞)𝐼(𝜆)− 𝐹𝑖 (𝑎, 𝑞, 𝜆) (13)

𝐹𝑖 (𝑎, 𝑞, 𝜆) :=
∑︁

𝜁 (mod 𝑑/ℎ1)𝜂 (mod 𝑞/ℎ2)

𝜁 (𝑏𝑖)𝐺𝑖(𝑎, 𝜂, 𝑞)𝐼(𝜁𝜂, 𝜆). (14)

Согласно лемме 3.3. а) работы [4], имеем 𝜙−1 (𝑑/ℎ1 )𝜙−1 (𝑞/ℎ2 )𝐻𝑖 (𝑎, 𝑞, 𝜆)≪ 𝜙 (𝑞)𝑁1. Учиты-
вая это и (12) из (6) получим

ℛ1 (𝑛) =
∑︁
𝑞⩽𝑄

1

𝜙4
(︁

𝑑
ℎ1

)︁
𝜙4
(︁

𝑞
ℎ2

)︁ ∑︁
(𝑎,𝑞)=1

𝜏/𝑞∫︁
−𝜏/𝑞

𝑒

(︂
−𝑛
(︂
𝑎

𝑞
+ 𝜆

)︂)︂ 4∏︁
𝑖=1

𝐻𝑖 (𝑎, 𝑞, 𝜆)𝑑𝜆+𝑂

(︂
𝑁𝑄4log2𝑁

𝑇 1/2

)︂
.

В произведении
4∏︀

𝑖=1
𝐻𝑖 (𝑎, 𝑞, 𝜆) содержится (𝜙 (𝑑𝑞/ℎ) + 2)4 слагаемых. Каждое из этих слагае-

мых представляет собой
4∏︀

𝑖=1
𝐸𝑖, где 𝐸𝑖 принимает одно из следующих значений: 𝐺𝑖 (𝑞) 𝐼 (𝜆),

−𝛿𝑞𝜁 (𝑏𝑖)𝐺𝑖(𝑎, 𝜂𝜂0, 𝑞)𝐼(𝜆) или −𝜁 (𝑏𝑖)𝐺𝑖(𝑎, 𝜂, 𝑞)𝐼 (𝜁𝜂, 𝜆) Используя оценки для 𝐼 (𝜆), 𝐼 (𝜆) и
𝐼 (𝜒, 𝜆) из пункта a) леммы 3.3 в [4], и учитывая, что |𝜆| > 𝜏/𝑞 > 𝐿−1, видим, что среди
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этих оценок самой слабой является оценка ≪ 𝑁1/2(𝐿 |𝜆|)−1/2. Тогда, на основании пункта b)
леммы 3.3 из [4] и неравенства Коши, получаем

∫︁
𝑅∖[−𝜏/𝑞, 𝜏/𝑞 ]

4∏︁
𝑖=1

𝐸𝑖𝑑𝜆≪ 𝜙2 (𝑞) [𝜏/𝑞 ]−1

∞∫︁
−∞

|𝐸1𝐸2|𝑑𝜆≪ 𝜙4 (𝑞) [𝜏/𝑞 ]−1,

поскольку

|𝐸𝑖| ≪ |𝐺𝑖 (𝑞) 𝐼 (𝜆)| ≪ 𝜙 (𝑞)𝑁1/2(𝐿 |𝜆|)−1/2 ≪ 𝜙 (𝑞) (𝜏/𝑞)−1/2.

Поэтому имеем оценку

∑︁
𝑞⩽𝑄

𝜙−4 (𝑑/ℎ1 )𝜙−4 (𝑞/ℎ2 )
∑︁

(𝑎,𝑞)=1

∫︁
𝑅∖[−𝜏/𝑞, 𝜏/𝑞 ]

𝑒 (−𝑛𝜆)
4∏︁

𝑖=1

𝐻𝑖 (𝑎, 𝑞, 𝜆)𝑑𝜆≪ 𝑁𝑄−1.

Таким образом,

ℛ1 (𝑛) =
∑︁
𝑞⩽𝑄

1

𝜙4
(︁

𝑑
ℎ1

)︁
𝜙4
(︁

𝑞
ℎ2

)︁ ∑︁
(𝑎,𝑞)=1

𝑒𝑞 (−𝑛𝑎)

∞∫︁
−∞

𝑒 (−𝑛𝜆)
4∏︁

𝑖=1

𝐻𝑖 (𝑎, 𝑞, 𝜆)𝑑𝜆+𝑂
(︀
𝑁𝑄−1

)︀
. (15)

4. Особый ряд и особый интеграл задачи

Для исследования особого ряда нам необходимо изучить следующие суммы :

𝑍 (𝑞) := 𝑍 (𝑞, 𝜂1, ..., 𝜂4) :=
∑︁

(𝑎,𝑞)=1

𝑒𝑞 (−𝑛𝑎)

4∏︁
𝑖=1

𝐺𝑖 (𝑎, 𝜂𝑖, 𝑞), (16)

𝑌 (𝑞) := 𝑌 (𝑞, 𝜂1, ..., 𝜂4) :=

𝑞∑︁
𝑎=1

𝑒𝑞 (−𝑛𝑎)
4∏︁

𝑖=1

𝐺𝑖 (𝑎, 𝜂𝑖, 𝑞), (17)

где 𝜂𝑖 характер по модулю 𝑞/ℎ2 (𝑞). (17) можно записать в следующем виде:

𝑌 (𝑞, 𝜂1, ..., 𝜂4) = 𝑞
∑︁
(𝑞)

𝜂1 (𝑐1) · · · 𝜂4 (𝑐4). (18)

Здесь запись
∑︀
(𝑞)

− означает суммирование по всем 𝑐1, ... , 𝑐4, удовлетворяющим условиям

1 ⩽ 𝑐1, ... , 𝑐4 ⩽ 𝑞, 𝑐𝑖 ≡ 𝑏𝑖 (mod (𝑑, 𝑞)) , (𝑐𝑖, 𝑞) = 1,
4∑︁

𝑖=1

𝑐2𝑖 ≡ 𝑛 (mod𝑞). (19)

Пусть𝑁 (𝑞)- количество решений сравнения, удовлетворяющие условию (19). Из работы Jianya
Liu и Ming-Chit Liu [3] следует, что если 𝑛 ≡ 4(mod24) и 𝑛 удовлетворяет условию (2), то для
всех 𝑞 выполняется неравенство 𝑁 (𝑞) ⩾ 1. Если все 𝜂𝑖 являются главными характерами, тогда
из (18) получим

𝑌 (𝑞, 𝜂0, ..., 𝜂0) = 𝑞𝑁 (𝑞) . (20)

Кроме того, мы обозначим

𝐴 (𝑞) : = 𝜙−4
(︀
𝑞(𝑑, 𝑞)⊙/ℎ

)︀
𝑍 (𝑞, 𝜂0, ..., 𝜂0) , (21)
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где (𝑑, 𝑞)⊙— имеет те же простые делители, что (𝑑, 𝑞) и (𝑑, 𝑞)⊙
⃦⃦
𝑑 что означает: если 𝑝𝛼‖ (𝑑, 𝑞)⊙

то 𝑝𝛼‖ 𝑑.
Лемма 4.1. Для любого положительного целого числа 𝑞 справедлива оценка

𝜙−4
(︁

𝑑𝑞
ℎ(𝑞)

)︁
𝑍 (𝑞)≪ ℎ4(𝑞)

𝑑4
𝑞−1ℒ−4, где ℒ = log log 𝑑𝑞

ℎ(𝑞)

Доказательство. Предположим, что 𝑞 =
∏︀
𝑝|𝑞
𝑝𝛽𝑝 является разложением числа 𝑞 на простые

множители. Тогда, из леммы 4.1 работы [4], учитывая, что функция 𝑍 (𝑞) является мульти-
пликативной функцией получим:

|𝑍 (𝑞)| =
∏︁
𝑝|𝑞

⃒⃒⃒⃒
⃒⃒⃒ ∑︁
(𝑎,𝑝𝛽𝑝)=1

𝑒

(︂
−𝑛𝑎
𝛽𝑝

)︂ 4∏︁
𝑖=1

𝐺𝑖

(︁
𝑎, 𝜂𝑖, 𝑝

𝛽𝑝

)︁⃒⃒⃒⃒⃒⃒⃒ ⩽∏︁
𝑝|𝑞

𝜙
(︁
𝑝𝛽𝑝

)︁ 4∏︁
𝑖=1

2 (2, 𝑝) 𝑝
𝛽𝑝
2 ≪ 𝑞3.

Теперь принимая во вниманию, что 𝜙 (𝑞)≫ 𝑞/ log log 𝑞 получим утверждение леммы.
Если в лемме 4.4 работы [4] положить 𝜒1 = ... = 𝜒4 = 𝜒0 и 𝛽 = 0, то получим следующее.
Следствие 4.2. Пусть 𝑁 (𝑞), 𝐴 (𝑞) и 𝛼 = 𝛼 (𝑝) определены соответственно, как в (21),

(20) и лемме 4.4 из работы [4]. Тогда справедливы следующие утверждения:
a) Если 𝑝 ⩾ 3, 𝑡 ⩾ 1 + 𝛼, то 𝐴

(︀
𝑝𝑡
)︀

= 0 и если 𝑡 ⩾ 2 + max {2, 𝛼}, то 𝐴
(︀
2𝑡
)︀

= 0;
b) Если 𝑝 ⩾ 3, 𝑡 ⩾ 𝛼, то 𝑝𝑡𝜙−4

(︀
𝑝𝑡
)︀
𝑁
(︀
𝑝𝑡
)︀

= 𝑝𝛼𝜙−4 (𝑝𝛼)𝑁 (𝑝𝛼) ;

c) 𝑡 ⩾ 𝛼′, 𝑎′ = 1 + max {2, 𝛼}, то 2𝑡𝜙−4
(︀
2𝑡
)︀
𝑁
(︀
2𝑡
)︀

= 2𝛼
′
𝜙−4

(︁
𝑝𝛼

′
)︁
𝑁
(︁
𝑝𝛼

′
)︁
.

Далее, обозначим

𝑠 (𝑝) :=
∑︁

0⩽𝑡<𝜃+max{𝜃,𝛼(𝑝)}

𝐴
(︀
𝑝𝑡
)︀

= 𝜙−4
(︁
𝜎
(︁
𝑝𝛼(𝑝)

)︁
𝑝𝛼(𝑝)

)︁
𝑁
(︁
𝜎
(︁
𝑝𝛼(𝑝)

)︁
𝑝𝛼(𝑝)

)︁
𝜎
(︁
𝑝𝛼(𝑝)

)︁
𝑝𝛼(𝑝). (22)

Здесь 𝜎 (𝑞) определено в (2). Теперь упростим 𝑠 (𝑝).
Лемма 4.3. Справедливы следующие утверждения:

a) если 𝑝 ̸= 2 и 𝛼 = 𝛼 (𝑝) ⩾ 1, то 𝑠(𝑝) = 𝜙−4 (𝑝𝛼) 𝑝𝛼;
b)

𝑠(2) =

⎧⎨⎩23, если 𝛼 (2) = 1;

𝜙−5
(︁

2𝛼(2)
)︁

2𝛼(2)+1, если 𝛼 (2) ⩾ 2.

Поэтому 𝑠 (2) = 𝜙−5 (2𝛼) 2𝛼𝜎 (𝑑)
c) если 𝑝 ̸= 2, 𝑝 ∤ 𝑑, то 𝑠 (𝑝) = 1 +𝐴 (𝑝), если, 2 ∤ 𝑑 то 𝑠 (2) = 1 +𝐴 (2) +𝐴

(︀
22
)︀

+𝐴
(︀
23
)︀
.

Доказательство. (a) В силу (22) имеем

𝑠 (𝑝) =
∑︁

0⩽𝑡<𝜃+max{𝜃,𝛼(𝑝)}

𝐴
(︀
𝑝𝑡
)︀

=
∑︁

0⩽𝑡⩽𝜃+max{𝜃,𝛼(𝑝)}

𝜙−4
(︁
𝑝𝑡
(︀
𝑑, 𝑝𝑡

)︀⊙
/ℎ
)︁
𝑍
(︀
𝑝𝑡, 𝜂0, ..., 𝜂0

)︀
=

=
∑︁

0⩽𝑡⩽𝜃+max{𝜃,𝛼(𝑝)}

𝜙−4 (𝑝𝛼)𝑍
(︀
𝑝𝑡
)︀

= 𝜙−4 (𝑝𝛼) 𝑝𝛼

b) Аналогичными рассуждениями при 𝑡 ⩽ 𝛼 получим, что
𝐴
(︀
2𝑡
)︀

= 𝜙−4 (2𝛼)𝑍
(︀
2𝑡
)︀

= 𝜙−4 (2𝛼)𝜙
(︀
2𝑡
)︀
. Если 𝛼 = 1 остаётся рассмотреть случаи 𝑡 = 2, 3.

Поскольку
∑︀

(𝑎,𝑝𝑡)=1

=
𝑝𝑡∑︀
𝑎=1
−

𝑝𝑡∑︀
𝑎=1
𝑝|𝑎

, то

𝐴
(︀
2𝑡
)︀

= 𝜙−4
(︀
2𝑡
)︀ ∑︁
(𝑎,2𝑡)=1

𝑒

(︂
−𝑛𝑎
2𝑡

)︂ 4∏︁
𝑖=1

⎛⎜⎜⎝ 2𝑡∑︁
𝑐𝑖=1

𝑐𝑖≡𝑏𝑖( mod 2)

𝑒

(︂
𝑎𝑐2𝑖
2𝑡

)︂⎞⎟⎟⎠ =
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= 𝜙−4
(︀
2𝑡
)︀ (︀

2𝑡𝑁
(︀
2𝑡
)︀
− 2𝑡−124𝑁

(︀
2𝑡−1

)︀)︀
= 𝜙−4

(︀
2𝑡
)︀

2𝑡𝑁
(︀
2𝑡
)︀
− 𝜙−4

(︀
2𝑡−1

)︀
2𝑡−1𝑁

(︀
2𝑡−1

)︀
,

где 𝑁
(︀
2𝑡
)︀
обозначает количество решений

{︃
𝑐21 + ...+ 𝑐24 ≡ 𝑛

(︀
mod2𝑡

)︀
𝑐𝑖 ≡ 𝑏𝑖 (mod2)

системы, которые удо-

влетворяют условию 1 ⩽ 𝑐𝑖 ⩽ 2𝑡, (𝑐𝑖, 2) = 1 .
Не посредственным вычислением видим, что 𝑁

(︀
23
)︀

= 28, 𝑁 (2) = 1, то есть количество чисел
𝑐𝑖, удовлетворяющих условиям 1 ⩽ 𝑐𝑖 ⩽ 23 и

(︀
𝑐𝑖, 2

3
)︀

= 1, равно 𝜙
(︀
23
)︀

= 22 = 4. Поскольку в
сравнение 𝑐21 + ...+ 𝑐24 ≡ 𝑛

(︀
mod2𝑡

)︀
число неизвестных равно четырём, перебором возможных

значений 𝑐𝑖 и их комбинируя находим, что число решений данного сравнения равно 44 = 28.
Сравнение 𝑐𝑖 ≡ 𝑏𝑖 (mod2) при условии (𝑐𝑖, 2) = 1 имеет единственное решение, следователь-
но, мы учли значения 𝑐𝑖 только один раз, поэтому 𝑁

(︀
23
)︀

= 28. Аналогичными рассужде-
ниями можно прийти к тому, что 𝑁 (2) = 1. Тогда, учитывая, что при 𝑡 ⩽ 𝛼 выполняется
𝐴
(︀
2𝑡
)︀

= 𝜙−4 (2𝛼)𝑍
(︀
2𝑡
)︀

= 𝜙−4 (2𝛼)𝜙
(︀
2𝑡
)︀
, мы имеем:

при 𝑡 = 0, то 𝐴
(︀
20
)︀

= 𝜙−4 (2𝛼)𝑍
(︀
20
)︀

= 𝜙−4 (2𝛼)𝜙
(︀
20
)︀

= 𝜙−4
(︀
21
)︀
𝜙
(︀
20
)︀

= 1,
при 𝑡 = 1, то 𝐴

(︀
21
)︀

= 𝜙−4
(︀
21
)︀
𝜙
(︀
21
)︀

= 𝜙−4
(︀
21
)︀
𝜙
(︀
21
)︀

= 1.
если учитывать, что при 𝑡 > 𝛼 выполняется 𝐴

(︀
2𝑡
)︀

= 𝜙−4
(︀
2𝑡
)︀

2𝑡𝑁
(︀
2𝑡
)︀
−𝜙−4

(︀
2𝑡−1

)︀
2𝑡−1𝑁

(︀
2𝑡−1

)︀
,

то получаем
𝑡 = 2, 𝐴

(︀
22
)︀

= 𝜙−4
(︀
22
)︀

22𝑁
(︀
22
)︀
− 𝜙−4

(︀
21
)︀

21𝑁
(︀
21
)︀
,

𝑡 = 3, 𝐴
(︀
23
)︀

= 𝜙−4
(︀
23
)︀

23𝑁
(︀
23
)︀
− 𝜙−4

(︀
22
)︀

22𝑁
(︀
22
)︀
.

Обобщая это, получаем следующую оценку для 𝑠 (2).

𝑠 (2) = 1+𝐴 (2)+𝐴
(︀
22
)︀

+𝐴
(︀
23
)︀

= 1+1−𝜙−4 (2) 2𝑁 (2)+𝜙−4
(︀
23
)︀

23𝑁
(︀
23
)︀

= 2−2+ 2328

(22)4
= 23.

Если 𝛼 > 1, остается рассмотреть случай 𝑡 = 𝛼+ 1. В этом случае имеем:

𝐴
(︀
2𝛼+1

)︀
= 𝜙−4

(︀
2𝛼+1

)︀ ∑︁
(𝑎,2𝛼+1)=1

𝑒

(︂
−𝑛𝑎
2𝛼+1

)︂ 4∏︁
𝑖=1

⎛⎜⎜⎝ 2𝛼+1∑︁
𝑐𝑖=1

𝑐𝑖≡𝑏𝑖( mod 2𝛼)

𝑒

(︂
𝑎𝑐2𝑖

2𝛼+1

)︂⎞⎟⎟⎠ =

𝜙−4
(︀
2𝛼+1

)︀ (︀
2𝛼+1𝑁

(︀
2𝛼+1

)︀
− 24𝑌 (2𝛼)

)︀
= 𝜙−4

(︀
2𝛼+1

)︀
2𝛼+1𝑁

(︀
2𝛼+1

)︀
− 𝜙−4 (2𝛼) 2𝛼,

где 𝑁
(︀
2𝛼+1

)︀
обозначает количество решений

{︃
𝑐21 + ...+ 𝑐24 ≡ 𝑛

(︀
mod2𝛼+1

)︀
𝑐𝑖 ≡ 𝑏𝑖 (mod2𝛼)

системы, которые

удовлетворяют условию 1 ⩽ 𝑐𝑖 ⩽ 2𝛼+1, (𝑐𝑖, 2) = 1 . Следуя тем же рассуждениям, что при
вычислении 𝑁

(︀
23
)︀
, мы получим 𝑁

(︀
2𝛼+1

)︀
= 24. Если учитывать, что при 𝑡 ⩽ 𝛼 выполняется

𝐴
(︀
2𝑡
)︀

= 𝜙−4 (2𝛼)𝑍
(︀
2𝑡
)︀

= 𝜙−4 (2𝛼)𝜙
(︀
2𝑡
)︀
, то

𝑡 = 0, 𝐴
(︀
20
)︀

= 𝜙−4 (2𝛼)𝑍
(︀
20
)︀

= 𝜙−4 (2𝛼)𝜙
(︀
20
)︀

= 𝜙−4 (2𝛼),
𝑡 = 1, 𝐴

(︀
21
)︀

= 𝜙−4 (2𝛼)𝑍
(︀
21
)︀

= 𝜙−4 (2𝛼)𝜙
(︀
21
)︀

= 𝜙−4 (2𝛼),
𝑡 = 2, 𝐴

(︀
22
)︀

= 𝜙−4 (2𝛼)𝑍
(︀
22
)︀

= 𝜙−4 (2𝛼)𝜙
(︀
22
)︀

= 𝜙−4 (2𝛼)
(︀
22 − 2

)︀
,

𝑡 = 3, 𝐴
(︀
23
)︀

= 𝜙−4 (2𝛼)𝑍
(︀
23
)︀

= 𝜙−4 (2𝛼)𝜙
(︀
23
)︀

= 𝜙−4 (2𝛼)
(︀
23 − 22

)︀
,

. . .
𝑡 = 𝛼− 1, 𝐴

(︀
2𝛼−1

)︀
= 𝜙−4 (2𝛼)𝑍

(︀
2𝛼−1

)︀
= 𝜙−4 (2𝛼)𝜙

(︀
2𝛼−1

)︀
= 𝜙−4 (2𝛼)

(︀
2𝛼−1 − 2𝛼

)︀
,

𝑡 = 𝛼, 𝐴 (2𝛼) = 𝜙−4 (2𝛼)𝑍 (2𝛼) = 𝜙−4 (2𝛼)𝜙 (2𝛼) = 𝜙−4 (2𝛼)
(︀
2𝛼 − 2𝛼−1

)︀
,

Если учитывать, что при 𝑡 > 𝛼 выполняется
𝐴
(︀
2𝑡
)︀

= 𝜙−4
(︀
2𝑡
)︀

2𝑡𝑁
(︀
2𝑡
)︀
− 𝜙−4

(︀
2𝑡−1

)︀
2𝑡−1𝑁

(︀
2𝑡−1

)︀
, то получаем

𝑡 = 𝛼+ 1, 𝐴
(︀
2𝛼+1

)︀
= 𝜙−4

(︀
2𝛼+1

)︀
2𝛼+1𝑁

(︀
2𝛼+1

)︀
− 𝜙−4 (2𝛼) 2𝛼

Обобщая это, получаем следующую оценку для 𝑠 (2).
𝑠 (2) = 𝜙−4 (2𝛼) +𝐴 (2) + ...+𝐴 (2𝛼) +𝐴

(︀
2𝛼+1

)︀
= 𝜙−4 (2𝛼) 2𝛼+1.

Утверждение (c) непосредственно следует из равенства (22) и следствия 4.2. В самое деле.
Если 𝑝 ̸= 2, 𝑝 ∤ 𝑑, то 𝑠 (𝑝) = 1 + 𝐴 (𝑝), 0 ⩽ 𝑡 < 𝜃 + max {𝜃, 𝛼 (𝑝)}, 𝜃 = 1 + [2/𝑝 ] = 1 + 0 = 1,
0 ⩽ 𝑡 < 1 + max {1, 𝛼} . По следствию 4.2 (a), при 𝑝 ⩾ 3, 𝑡 ⩾ 1 + 𝛼, так как 𝐴

(︀
𝑝𝑡
)︀

= 0, имеем:
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𝑠 (𝑝) =
∑︀

0⩽𝑡<1+𝛼
𝐴
(︀
𝑝𝑡
)︀

= 1 + 𝐴 (𝑝) . Если 2 ∤ 𝑑, то 𝑠 (𝑝) = 1 + 𝐴 (𝑝), 0 ⩽ 𝑡 < 𝜃 + max {𝜃, 𝛼 (𝑝)},

𝜃 = 1 + [2/2 ] = 1 + 1 = 2, 0 ⩽ 𝑡 < 2 + max {2, 𝛼} . По следствию 4.2 (a), при 𝑡 ⩾ 2 + max {2, 𝛼}
так как 𝐴

(︀
2𝑡
)︀

= 0, имеем: 𝑠 (2) =
∑︀

0⩽𝑡<2+max{2,𝛼}
𝐴
(︀
2𝑡
)︀

= 1 +𝐴 (2) +𝐴
(︀
22
)︀

+𝐴
(︀
23
)︀

Лемма 4.4. Справедливы следующие утверждения:
(a) если 𝑝 ∤ 𝑑 то, 𝐴 (𝑝) < 9𝑝−2;
(b)

∏︀
𝑝
𝑠 (𝑝) абсолютно сходящийся и

∏︀
𝑝
𝑠 (𝑝)≫ 𝜙−4 (𝑑) 𝑑𝜎 (𝑑)

(c)
∞∑︀
𝑞=1

(𝑞,𝑟)=1

𝜙−4 (𝑑𝑞/ℎ )𝑍 (𝑞; 𝜂0, ..., 𝜂0) =
∏︀
𝑝∤𝑟
𝑠 (𝑝) = 𝜎(𝑑/(𝑑,𝑟) )𝑑/(𝑑,𝑟)

𝜙4(𝑑/(𝑑,𝑟) )

∏︀
𝑝∤𝑟
𝑝∤𝑑

𝑠 (𝑝);

(d)
∑︀
𝑞⩾𝑦

𝜙−4 (𝑑𝑞/ℎ )𝑍 (𝑞; 𝜂0, ..., 𝜂0)≪ 𝑦−1𝑑−2log9 (𝑦 + 1) .

Доказательство. (a) Если 𝑝 ∤ 𝑑, то ℎ (𝑝) = 1. Пусть 𝑔 квадратные невычет по модулю 𝑝.
Тогда

𝐴 (𝑝) = 𝜙−4 (𝑝)

𝑝−1∑︁
𝑎=1

(︃
𝑒

(︂
−𝑛𝑎
𝑝

)︂ 4∏︁
𝑖=1

(︃
𝑝−1∑︁
𝑐𝑖=1

𝑒

(︂
𝑎𝑐2𝑖
𝑝

)︂)︃)︃
=

=
1

2
𝜙−4 (𝑝)

𝑝−1∑︁
𝑎=1

(︃
𝑒

(︂
−𝑛𝑎2

𝑝

)︂ 4∏︁
𝑖=1

𝐶𝑝

(︀
𝑎2
)︀

+ 𝑒

(︂
−𝑛𝑔𝑎2

𝑝

)︂ 4∏︁
𝑖=1

𝐶𝑝

(︀
𝑔𝑎2
)︀)︃
.

Здесь 𝐶𝑝 (𝑎) =
𝑝−1∑︀
𝑐=1

𝑒
(︁
𝑎𝑐2

𝑝

)︁
. Далее, рассуждаю как доказательстве леммы 9 в работы [10] нахо-

дим

𝐴 (𝑝) =
1

2
𝜙−4 (𝑝)

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

2 (𝑝− 1)
(︀
𝜆4 + 6𝜆2 + 1

)︀
, если 𝑝 |𝑛,

− 2
(︀
𝜆4 + 10𝜆2 + 1

)︀
, если 𝑝 ∤ 𝑛 и

(︂
𝑛

𝑝

)︂
=1,

2
(︀
3𝜆4 − 2𝜆2 − 1

)︀
если 𝑝 ∤ 𝑛 и

(︂
𝑛

𝑝

)︂
=− 1,

где
(︁
𝑛
𝑝

)︁
− символ Лежандра и

𝜆 =

⎧⎪⎨⎪⎩
√
𝑝 , если 𝑝 ≡ 1 (mod4) ,

0 , если 𝑝 ≡ 2 (mod4) ,

𝑖
√
𝑝, если 𝑝 ≡ −1 (mod4) .

Следовательно, при 𝑝 ̸= 2, 𝑝 ∤ 𝑑 выполняется неравенство |𝐴 (𝑝)| < 9𝑝−2.
(b) На основании леммы 4.3 и леммы 4.4 (a), имеем;∏︀
𝑝
𝑠 (𝑝) =

∏︀
𝑝|𝑑
𝑠 (𝑝)

∏︀
𝑝∤𝑑

(1 +𝐴 (𝑝))≫ 𝜎 (𝑑)𝜙−4 (𝑑) 𝑑.

Сходимость доказывается аналогичным образом.

(c) Пусть 𝑞 = 𝑞′𝑞′′, (𝑞′, 𝑞′′) = 1 и 𝑞′| 𝑑⊙, (𝑞′′, 𝑑) = 1. В силу мультипликативности 𝑍 (𝑞)
имеем

∞∑︁
𝑞=1

(𝑞,𝑟)=1

𝜙−4 (𝑑𝑞/ℎ )𝑍 (𝑞) =

⎛⎜⎜⎜⎝
∞∑︁

𝑞′=1, (𝑞′,𝑟)=1

𝑞′|𝑑⊙

𝜙−4
(︀
𝑑𝑞′/ℎ

)︀
𝑍
(︀
𝑞′
)︀
⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎝

∞∑︁
𝑞′′=1, (𝑞′′,𝑟)=1

(𝑞′′,𝑑)=1

𝜙−4
(︀
𝑑𝑞′′/ℎ

)︀
𝑍
(︀
𝑞′′
)︀
⎞⎟⎟⎟⎠ .

Отсюда используя следствия 4.2, равенства (22) и леммы 4.3 получим утверждение с).
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(d) Пусть 𝛿 = (log (𝑦 + 1))−1. Поскольку 1 + 𝑛𝑥≪ (1− 𝑥)−𝑛 и 𝜁 (1 + 𝛿) ∼ 𝛿−1 находим

∑︁
𝑞⩾𝑦

𝜙−4 (𝑑𝑞/ℎ )𝑍 (𝑞) ⩽
∑︁
𝑞⩾𝑦

|𝐴 (𝑞)| ≪ 𝑦−1 𝑑

𝜙4 (𝑑)

∏︁
𝑝|𝑑

𝑝𝛼(𝑝)
∏︁
𝑝

(︁
1− 𝑝−1−𝛿

)︁−9
≪ 𝑦−1 𝑑2

𝜙4 (𝑑)
𝛿−9.

Лемма 4.5. Пусть 𝑟𝑖|
(︁
𝑑𝑞
ℎ

)︁
, 𝑖 = 1, ..., 4 и 𝜒𝑖 (mod𝑟𝑖) = 𝜁𝑖

(︁
mod

(︁
𝑟𝑖,

𝑞
ℎ1

)︁)︁
𝜂𝑖

(︁
mod

(︁
𝑟𝑖,

𝑞
ℎ2

)︁)︁
все примитивные характеры, и пусть 𝑟 = [𝑟1, ..., 𝑟4] , тогда справедливы следующие утвер-
ждения:

(a)
∑︀
𝑞⩽𝑄

𝑟|(𝑑𝑞/ℎ )

⃒⃒⃒⃒
𝜙−4 (𝑑𝑞/ℎ )𝑍 (𝑞, 𝜂1𝜂0, ..., 𝜂4𝜂0)

4∏︀
𝑖=1

𝜁𝑖𝜁0 (𝑏𝑖)

⃒⃒⃒⃒
≪ 𝑟−1ℒ−4 ;

(b) Пусть 𝛼 (𝑝) определено так же, как в лемме 4.4 из работе [4], и пусть 𝑟𝑖 = 𝑟
(1)
𝑖 𝑟

(2)
𝑖 ,(︁

𝑟
(1)
𝑖 , 𝑟

(2)
𝑖

)︁
= 1, причем выполняется 𝑝𝛽

⃦⃦
𝑟
(1)
𝑖 , тогда 𝛽 ⩽ 𝛼 (𝑝), а если 𝑝𝛽

⃦⃦
𝑟
(2)
𝑖 , то 𝛽 ⩽ 𝛼 (𝑝).

Если 𝑑 = 𝑑1𝑑2, (𝑑1, 𝑑2) = 1, 𝑝𝛽
⃦⃦
𝑟 и 𝑝| 𝑑1, то 𝛽 ⩽ 𝛼 (𝑝). Если 𝑝𝛽

⃦⃦
𝑟 и 𝑝| 𝑑2, то 𝛽 > 𝛼 (𝑝). Если

𝑟(1) =
[︁
𝑟
(1)
1 , ..., 𝑟

(1)
4

]︁
и 𝜒𝑖 (mod𝑟𝑖) = 𝜒

(1)
𝑖

(︁
mod𝑟

(1)
𝑖

)︁
𝜒
(2)
𝑖

(︁
mod𝑟

(2)
𝑖

)︁
, то получаем:

ℱ :=
∑︁
𝑞⩽𝑄

𝑟|(𝑑𝑞/ℎ )

𝜙−4

(︂
𝑑𝑞

ℎ

)︂
𝑍 (𝑞, 𝜂1𝜂0, ..., 𝜂4𝜂0)

4∏︁
𝑖=1

𝜁𝑖𝜁0 (𝑏𝑖) =

=

4∏︁
𝑖=1

𝜒
(2)
𝑖 (𝑏𝑖) (mod𝑟2)

𝜎 (𝑑1) 𝑑1
𝜙4 (𝑑1)

·
𝑌
(︀
𝜎
(︀
𝑟(1)
)︀
𝑟(1)
)︀

𝜙4
(︀
𝜎
(︀
𝑟(1)
)︀
𝑟(1)
)︀ ∏︁

𝑝∤𝑑
𝑝∤𝑟

𝑠 (𝑝) +𝑂
(︀
𝑄−1log9𝑄

)︀
.

Доказательство. Утверждения (a) непосредственно следует из леммы 4.1. Докажем (b).
Воспользуемся мультипликативности 𝑍 (𝑞) и 𝑌 (𝑞). Пусть 𝑑 = 𝑑′𝑑′′, 𝑞 = 𝑞′𝑞′′, (𝑑′′, 𝑟) = 1,
(𝑞′′, 𝑟) = 1 и 𝑑′|𝑟⊙, 𝑞′|𝑟⊙. Здесь 𝑞| 𝑟⊙ означает, что каждый простой множитель 𝑞 является
делителем 𝑟. Для удобства обозначим ℎ′′ = ℎ′′ (𝑞), ℎ′ = ℎ′ (𝑞), ℎ′′𝑖 = ℎ′′𝑖 (𝑞), ℎ′𝑖 = ℎ′𝑖 (𝑞). В
соответствии с (10) и тем, что 𝑟𝑖| (𝑑𝑞/ℎ ), имеем:

ℱ :=
∑︁

𝑞′⩽𝑄, 𝑟′|𝑑′𝑞′/ℎ′

𝑞′|𝑟∞, 𝑑′|𝑟∞

𝜙−4

(︂
𝑑′𝑞′

ℎ′

)︂
𝑍
(︀
𝑞′, 𝜂1𝜂0, ..., 𝜂4𝜂0

)︀ 4∏︁
𝑖=1

𝜁𝑖𝜁0 (𝑏𝑖)×

×
∑︁
𝑞′′⩽𝑄/𝑞′

(𝑞′′,𝑟)=1, (𝑑′′,𝑟)=1

𝜙−4

(︂
𝑑′′𝑞′′

ℎ′′

)︂
𝑍
(︀
𝑞′′, 𝜂0, ..., 𝜂0

)︀
=: ℱ1ℱ2. (23)

В силу (c) и (d) леммы 4.4, имеем:

ℱ2 =

⎛⎜⎜⎜⎜⎜⎜⎝
∞∑︁
𝑞′′=1

(𝑞′′,𝑟)=1,
(𝑑′′,𝑟)=1

−
∑︁

𝑞′′⩾𝑄/𝑞′

⎞⎟⎟⎟⎟⎟⎟⎠
1

𝜙4
(︁
𝑑′′𝑞′′

ℎ′′

)︁𝑍 (︀𝑞′′, 𝜂0, ..., 𝜂0)︀ =
𝜎 (𝑑′′) 𝑑′′

𝜙4 (𝑑′′)

∏︁
𝑝∤𝑟
𝑝∤𝑑′′

𝑠 (𝑝) +𝑂

(︂
𝑞′log9𝑄

𝑄𝑑′′2

)︂
.

(24)
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Таким образом, согласно лемме 4.1 и пункту (a) леммы 4.5, из равенства (23) и (24) следует

ℱ = ℱ1𝜙
−4
(︀
𝑑′′
)︀
𝜎
(︀
𝑑′′
)︀
𝑑′′
∏︁
𝑝∤𝑟
𝑝∤𝑑′′

𝑠 (𝑝) +𝑂

⎛⎜⎜⎜⎝ ∑︁
𝑞′⩽𝑄

𝑟|𝑑′𝑞′/ℎ′

𝑞′𝑄−1
(︀
𝑑′′
)︀−2

log9𝑄
(︀
𝑞′
)︀−1ℒ−4

⎞⎟⎟⎟⎠ =

= ℱ1𝜙
−4
(︀
𝑑′′
)︀
𝜎
(︀
𝑑′′
)︀
𝑑′′
∏︁
𝑝∤𝑟
𝑝∤𝑑′′

𝑠 (𝑝) +𝑂
(︁
𝑄−1

(︀
𝑑′′
)︀−2

𝜏 (𝑑) log9𝑄
)︁
. (25)

Поскольку далее в доказательстве будет показано, что число 𝑞′ будет меньше функции числа
делителей 𝜏 (𝑑). Предположим, что 𝑞′ = 𝑚′𝑚′′, где (𝑚′′, 𝑑) = 1 и 𝑚′| (𝑑′)⊙, а также 𝑟𝑖 = 𝑟′𝑖𝑟

′′
𝑖,

при этом (𝑟′′, 𝑑) = 1 и 𝑟′| (𝑑′)⊙. Понятно, что 𝑚′| (𝑟, 𝑑)⊙ и выполняются следующие соотноше-
ния: 𝜁𝑖 (mod (𝑟𝑖, 𝑞

′/ℎ′1 )) = 𝜁 ′𝑖 (mod (𝑟′𝑖, 𝑞
′/ℎ′1 )), 𝜂𝑖 (mod (𝑟𝑖, 𝑞

′/ℎ′2 )) =
= 𝜂′𝑖 (mod (𝑟′𝑖,𝑚

′/ℎ2 (𝑚′) )) 𝜂′′𝑖 (mod (𝑟′′𝑖,𝑚
′′/ℎ2 (𝑚′′) )) Воспользовавшись тем, что 𝑍 (𝑞) яв-

ляется мультипликативной функцией, получаем:

ℱ1 =
∑︁

𝑚′′⩽𝑄
𝑟′′|𝑚′′

𝜙−4
(︀
𝑚′′)︀𝑍 (︀𝑚′′, 𝜂′′1, ..., 𝜂

′′
4

)︀ 4∏︁
𝑖=1

𝜁𝑖𝜁0 (𝑏𝑖)×

×
∑︁
𝑞′⩽𝑄

𝑟′|𝑚′𝑑′/ℎ′

𝜙−4

(︂
𝑑′𝑞′

ℎ′

)︂
𝑍
(︀
𝑚′, 𝜂′1𝜂0, ..., 𝜂

′
4𝜂0
)︀ 4∏︁
𝑖=1

𝜁 ′𝑖𝜁0 (𝑏𝑖) =: 𝐺1𝐺2. (26)

В рассуждениях леммы 3.8 работы [15], используя (15), и на основании леммы 4.4 из работы
[4], получаем, что если выполняется условие 𝜎 (𝑟′′) 𝑟′′ ⩽ 𝑄, то 𝐺1 = 𝜙−4 (𝜎 (𝑟′′) 𝑟′′)𝑌 (𝜎 (𝑟′′) 𝑟′′).
В действительности, мы можем предположить, что 𝜎 (𝑟) 𝑟 ⩽ 𝑄 если же 𝜎 (𝑟) 𝑟 > 𝑄, то, на
основании леммы 4.1 и части (a) леммы 4.5, получаем оценки:
ℱ1 ≪ 𝑄−1ℒ, 𝜙−4 (𝜎 (𝑟′′) 𝑟′′)𝑌 (𝜎 (𝑟′′) 𝑟′′)𝐺2 ≪ (𝑟′𝑟′′)−1ℒ 2 ≪ 𝑄−1ℒ 2. Из этого и из (26) следует

ℱ1 = 𝜙−4
(︀
𝜎
(︀
𝑟′′
)︀
𝑟′′
)︀
𝑌
(︀
𝜎
(︀
𝑟′′
)︀
𝑟′′
)︀
𝐺2 +𝑂

(︀
𝑄−1ℒ 2

)︀
(27)

Кроме того, мы можем предположить, что 𝜎 (𝑟′) 𝑟′ ⩽ 𝑄/𝑚′′ ; в противном случае, если
𝜎 (𝑟′) 𝑟′ > 𝑄/𝑚′′ , то согласно части (a) леммы 4.5, имеем 𝐺2 ≪ 𝑄−1(𝑚′′)−1ℒ. Тогда, в си-
лу леммы 4.1, ℱ1 ≪

∑︀
𝑚′′⩽𝑄
𝑟′′|𝑚′′

𝑄−1ℒ 2 ≪ 𝑄−1ℒ 2, поскольку, как и в доказательстве леммы 3.8 из

работы [15], 𝑚′′ = 𝑢𝑟′′. Следовательно, сумма по 𝜎 (𝑟′) 𝑟′ > 𝑄/𝑚′′ входит в остаточный член.
Теперь упростим 𝐺2 при условии 𝜎 (𝑟′) 𝑟′ ⩽ 𝑄/𝑚′′ . Поскольку 𝑚′| (𝑑′)⊙ и 𝑚′| (𝑟′)⊙ явля-

ются выражениями для 𝑚′| (𝑟, 𝑑)⊙ |𝑟⊙ , 𝑑⊙, мы можем записать 𝑑′ = 𝑝𝛼1
1 · · · 𝑝

𝛼𝑡
𝑡 𝑟′ = 𝑝𝛽1

1 · · · 𝑝
𝛽𝑡
𝑡 ,

𝑚′ = 𝑝𝑠11 · · · 𝑝
𝑠𝑡
𝑡 . Здесь 𝑝

𝛼𝑖
𝑖 ‖ 𝑑, 𝑝

𝛽𝑖
𝑖

⃦⃦⃦
𝑟 va 𝛼𝑖, 𝛽𝑖 > 0. Из условия 𝑝𝛽𝑖

𝑖

⃒⃒⃒⃒
𝑝
𝑠𝑖
𝑖 𝑝

𝛼𝑖
𝑖

ℎ(𝑝𝑠𝑖𝑖 )
, если 𝛽𝑖 > 𝛼𝑖, то 𝑠𝑖 > 𝛽𝑖;

если 𝛽𝑖 ⩽ 𝛼𝑖, то 𝑠𝑖 ⩾ 0. Таким образом, мы получаем 𝜁 ′𝑖 (mod (𝑟′𝑖, 𝑑
′|ℎ1 (𝑚′))) =

=
∏︀

𝛽𝑗⩽𝛼𝑗

𝑠𝑗⩽𝛼𝑗

𝜁𝑖𝑗

(︁
mod𝑝

𝛽𝑗

𝑗

)︁
, 𝜂′𝑖 (mod (𝑟𝑖, 𝑚

′|ℎ2 (𝑚′))) =
∏︀

𝛽𝑗⩽𝛼𝑗
𝑠𝑗>𝛼𝑗

𝜂𝑖𝑗

(︁
mod𝑝

𝛽𝑗

𝑗

)︁ ∏︀
𝛽𝑗>𝛼𝑗

𝜂𝑖𝑗

(︁
mod𝑝

𝛽𝑗

𝑗

)︁
Пусть

𝑢∏︀
𝑗=1

𝜒𝑖𝑗

(︁
mod𝑝

𝛽𝑗

𝑗

)︁
= 𝜁 ′𝑖 𝜂

′
𝑖 (mod𝑟′𝑖), тогда можно записать

𝜒𝑖𝑗 =

⎧⎪⎨⎪⎩
𝜁𝑖𝑗 , если 𝛽𝑗 ⩽ 𝛼𝑗 , 𝑠𝑗 ⩽ 𝛼𝑗 ,

𝜂𝑖𝑗 , если 𝛽𝑗 ⩽ 𝛼𝑗 , 𝑠𝑗 > 𝛼𝑗 ,

𝜂𝑖𝑗 , если 𝛽𝑗 > 𝛼𝑗 .
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На основании лемм 4.2 и 4.4 работы [4], а также равенства (26), получаем

𝐺2 = 𝑊2

∏︁
𝑝𝑗 ̸=2
𝛽𝑗>𝛼𝑗

𝜙−4
(︁
𝑝
𝛽𝑗

𝑗

)︁
𝑌
(︁
𝑝
𝛽𝑗

𝑗 ; 𝜒1𝑗𝜂0, ..., 𝜒4𝑗𝜂0

)︁ ∏︁
𝑝𝑗 ̸=2
𝛽𝑗⩽𝛼𝑗

𝑊𝑝𝑗 (28)

Здесь 𝑊𝑝𝑗 = 𝜙−4
(︁
𝑝
𝛼𝑗

𝑗

)︁(︂ 𝛼𝑗∑︀
𝑡=0

𝑍
(︁
𝑝𝑡𝑗 ; 𝜂0, ..., 𝜂0

)︁ 4∏︀
𝑖=1

𝜒𝑖𝑗𝜁0 (𝑏𝑖)

)︂
и в силу пунктов (b) и (c) леммы

4.4 работы [4] имеем

𝑊2 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1, если 2 ∤ (𝑟, 𝑑) ,

𝜙−4
(︁

2𝛽2+1
)︁
𝑌
(︁

2𝛽2+1
)︁
, если 2| (𝑟, 𝑑) , 𝛽2 > 𝛼2 > 0,

𝜙−4 (2)

(︃
1∑︁

𝑡=0

𝑍
(︀
2𝑡; 𝜂0, ..., 𝜂0

)︀ 4∏︁
𝑖=1

𝜒𝑖2𝜁0 (𝑏𝑖)

)︃
+

+

3∑︁
𝑡=2

𝜙−4
(︀
2𝑡
)︀
𝑍
(︀
2𝑡; 𝜒12𝜂0, ..., 𝜒42𝜂0

)︀
, если 2| (𝑟, 𝑑) , 𝛽2 ⩽ 𝛼2 = 1,

𝜙−4 (2𝛼)

(︃
𝛼∑︁

𝑡=0

𝑍
(︀
2𝑡; 𝜂0, ..., 𝜂0

)︀ 4∏︁
𝑖=1

𝜒𝑖2𝜁0 (𝑏𝑖)

)︃
+

+ 𝜙−4
(︀
2𝛼+1

)︀
𝑍
(︀
2𝛼+1; 𝜒12𝜂0, ..., 𝜒42𝜂0

)︀
, если 2| (𝑟, 𝑑) , 𝛽2 ⩽ 𝛼2, 𝛼2 > 1.

Мы оцениваем 𝑊2 при 2| (𝑟, 𝑑), 𝛽2 ⩽ 𝛼2 и 𝑊𝑝𝑗 при 𝛽𝑗 ⩽ 𝛼𝑗 . Рассуждая аналогично доказатель-
ству леммы 4.4 из работы [4] и исходя из равенства (11), получаем, что при 𝑡 ⩽ 𝛼 (𝑝) и (𝑏𝑖, 𝑑) = 1

выполняется
4∏︀

𝑖=1
𝜁𝑖𝑗𝜁0 (𝑏𝑖)𝑍

(︁
𝑝𝑡𝑗

)︁
=

4∏︀
𝑖=1

𝜒𝑖𝑗 (𝑏𝑖)𝜙
(︀
𝑝𝑡
)︀
. Тогда при 𝑊𝑝𝑗 =

4∏︀
𝑖=1

𝜒𝑖𝑗 (𝑏𝑖)𝜙
−4
(︀
𝑝𝛼(𝑝)

)︀
𝑝𝛼(𝑝)

и 2| (𝑟, 𝑑) имеем следующее равенство:

𝑍
(︀
2𝛼2+1

)︀
=

∑︁
(𝛼, 2𝛼2+1)=1

𝑒
(︁
− 𝑛𝑎

2𝛼2+1

)︁ 4∏︁
𝑖=1

𝑒

(︂
𝑎𝑐2𝑖

2𝛼2+1

)︂
𝜒𝑖2𝜂0 (𝑐𝑖) =

= 𝑌
(︀
2𝛼2+1

)︀
− 2𝛼224

4∏︁
𝑖=1

𝜒𝑖2 (𝑏𝑖) =
(︀
2𝛼2+1𝑁

(︀
2𝛼2+1

)︀
− 2𝛼2+4

)︀ 4∏︁
𝑖=1

𝜒𝑖2 (𝑏𝑖).

Таким образом, при 𝛼2 > 1 из доказательства утверждения (b) леммы 4.3 видно, что

𝑁
(︀
2𝛼2+1

)︀
= 24 и следовательно, получаем 𝑊2 =

4∏︀
𝑖=1

𝜒𝑖2 (𝑏𝑖)𝜙
−4 (2𝛼2) 2𝛼2+1. Если 𝛼2 = 1, то

𝛽2 = 1, поскольку 0 < 𝛽2 ⩽ 𝛼2 и следовательно,

𝑊2 = 𝜙−4 (2)

(︃
1∑︁

𝑡=0

𝑍
(︀
2𝑡; 𝜂0, ..., 𝜂0

)︀ 4∏︁
𝑖=1

𝜒𝑖2 (𝑏𝑖)

)︃
+

3∑︁
𝑡=2

𝜙−4
(︀
2𝑡
)︀
𝑍
(︀
2𝑡; 𝜒12𝜂0, ..., 𝜒42𝜂0

)︀
=

=
4∏︁

𝑖=1

𝜒𝑖2 (𝑏𝑖)
(︀
1 +𝐴 (2) +𝐴

(︀
22
)︀

+𝐴
(︀
23
)︀)︀

= 23
4∏︁

𝑖=1

𝜒𝑖2 (𝑏𝑖)

Последнее равенство следует из доказательства утверждения (b) леммы 4.3. Поэтому при
2 ∤ (𝑟, 𝑑) получаем

𝑊2 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
4∏︁

𝑖=1

𝜒𝑖2 (𝑏𝑖)
𝜎 (2𝛼2) 2𝛼2

𝜙4 (2𝛼2)
, если 𝛼2 ⩾ 𝛽2,

𝜙−4
(︁

2𝛽2+1
)︁
𝑌
(︁

2𝛽2+1
)︁
, если 𝛼2 < 𝛽2.

(29)
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Тогда, на основании равенств (25)-(29), получаем равенство

ℱ =
4∏︀

𝑖=1
𝜒
(2)
𝑖 (𝑏𝑖) (mod𝑟2)

𝜎(𝑑1)𝑑1
𝜙4(𝑑1)

· 𝑌 (𝜎(𝑟(1))𝑟(1))
𝜙4(𝜎(𝑟(1))𝑟(1))

∏︀
𝑝∤𝑑
𝑝∤𝑟

𝑠 (𝑝) + 𝑂
(︀
𝑄−1log9𝑄

)︀
. Здесь остаточный член

следует из леммы 4.4 работы [4] и пункта (a) леммы 4.5.
Лемма 4.6. Для любых комплексных чисел 𝜌𝑖, 0 < Re 𝜌𝑖 ⩽ 1, 𝑖 = 1, ..., 4, выполняется

следующее равенство

∞∫︁
−∞

𝑒 (−𝑛𝜂)

4∏︁
𝑖=1

⎛⎝ 𝑁1∫︁
𝐿1

𝑥𝜌𝑖−1𝑒
(︀
𝜂𝑥2
)︀
𝑑𝑥

⎞⎠𝑑𝜂 =
𝑁

24

∫︁
𝐷

4∏︁
𝑖=1

(𝑁𝑥𝑖)
(𝜌𝑖−1)/2𝑥

−1/2
𝑖 𝑑𝑥1...𝑑𝑥3. (30)

где 𝑥4 := 𝑛𝑁−2
1 −

3∑︀
𝑖=1

𝑥𝑖 и

𝐷 := {(𝑥1, ..., 𝑥3) : 𝐿/𝑁 ⩽ 𝑥1, 𝑥2, 𝑥3, 𝑥4 ⩽ 1} . (31)

Кроме того, имеет место равенство∫︁
𝐷

(︃
4∏︁

𝑖=1

𝑥
−1/2
𝑖

)︃
𝑑𝑥1𝑑𝑥2𝑑𝑥3 ≫ 1. (32)

Доказательство. Доказывается путем рассуждений, аналогичных доказательству леммы 4.9
из работы [4].

5. Оценка интеграла ℛ1(𝑛) и завершение доказательства теоремы

Теперь постараемся получить необходимую нижнюю оценку для ℛ1(𝑛). Как видно из (13),

произведение
4∏︀

𝑖=1
𝐻𝑖 (𝑎, 𝑞, 𝜆) представляет собой сумму из 34 слагаемого. Эти слагаемые мы

разобьём на следующие три категории.

(C1):
4∏︀

𝑖=1
𝐺𝑖(𝑎, 𝜂0, 𝑞)𝐼(𝜆) слагаемое;

(C2): 65 слагаемых, в каждом из которых множитель 𝐹𝑖 (𝑎, 𝑞, 𝜆) входит по крайней мере один
раз;
(C3): 15 оставшихся слагаемых.
Для удобства обозначим

𝒯𝑖 =
∑︁
𝑞⩽𝑄

𝜙−4 (𝑑𝑞/ℎ )
∑︁

(𝑎,𝑞)=1

𝑒𝑞 (−𝑛𝛼)

∞∫︁
−∞

𝑒 (−𝑛𝜆) { сумма слагаемых в (𝐶𝑖) } 𝑑𝜆, (33)

при 𝑖 = 1, 2, 3. На основании (15) имеем

ℛ1 (𝑛) = 𝒯1 + 𝒯2 + 𝒯3 +
(︀
𝑁𝑄−1

)︀
(34)

Мы будем выбирать 𝑚1,𝑚2, ... различных чисел из множества {1, ... , 4}. Введём следующие
обозначения:

𝑃 (𝑚1,𝑚2, ...) := 𝑁2−4

∫︁
𝐷

(︃
4∏︁

𝑖=1

𝑥
−1/2
𝑖

)︃
(𝑁𝑥𝑚1)(𝛽−1)/2 (𝑁𝑥𝑚2)(𝛽−1)/2 ... 𝑑𝑥1𝑑𝑥2𝑑𝑥3, (35)
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и

Δ (𝑚1,𝑚2, ...) := 𝜒̃ (𝑛𝑚1) 𝜒̃ (𝑛𝑚2) ... (36)

Здесь область 𝐷 определяется с помощью (31), а 𝜒̃ и 𝛽 обозначают, соответственно, исключи-
тельные характеры и исключительные нули. Пусть

𝑃0 := 𝑁2−4

∫︁
𝐷

(︃
4∏︁

𝑖=1

𝑥
−1/2
𝑖

)︃
𝑑𝑥1𝑑𝑥2𝑑𝑥3. (37)

Из (32), (35) и (37) следует справедливость равенства

|𝑃 (𝑚1,𝑚2, ...)| ⩽ 𝑃0 ≪ 𝑁. (38)

Лемма 5.1. Справедливо следующее равенство.

𝒯1 = 𝜙−4 (𝑑)𝜎 (𝑑) 𝑑
∏︁
𝑝∤𝑑

𝑠 (𝑝)𝑃0 +𝑂
(︀
𝑁𝑑−2𝑄−1log9𝑄

)︀
.

Доказательство. На основании (33)

𝒯1 =
∑︁
𝑞⩽𝑄

𝜙−4 (𝑑𝑞/ℎ )
∑︁

(𝑎,𝑞)=1

𝑒𝑞 (−𝑛𝛼)
4∏︁

𝑖=1

𝐺𝑖(𝑎, 𝜂0, 𝑞)

∞∫︁
−∞

𝑒 (−𝑛𝜆)
4∏︁

𝑖=1

𝐼 (𝜆)𝑑𝜆.

Согласно равен(37) указанный выше интеграл равен 𝑃0. В силу (16) две суммы в приведённом
выше равенстве равны

∑︀
𝑞⩽𝑄

𝜙−4 (𝑑𝑞/ℎ )𝑍 (𝑞). На основании пунктов (c) и (d) леммы 4.4 можем

писать следующее.

∑︁
𝑞⩽𝑄

𝜙−4 (𝑑𝑞/ℎ )𝑍 (𝑞) = 𝜙−4 (𝑑)𝜎 (𝑑) 𝑑
∏︁
𝑝∤𝑑

𝑠 (𝑝) +𝑂

⎛⎝∑︁
𝑞>𝑄

|𝐴 (𝑞)|

⎞⎠ =

= 𝜙−4 (𝑑)𝜎 (𝑑) 𝑑
∏︁
𝑝∤𝑑

𝑠 (𝑝) +𝑂
(︀
𝑄−1𝑑−2log9𝑄

)︀
.

Из этого и равенства (38) следует доказательство леммы.

Лемма 5.2. Если существует исключительный нуль 𝛽, а параметры 𝑟1 и 𝑑1 определя-
ются так, как в утверждении (b) леммы 4.5, и если положить 𝑟(1) = 𝑟1, то выполняются
утверждения:
(a)

𝒯3 =
𝜎 (𝑑1) 𝑑1
𝜙4 (𝑑1)

· 𝜎 (𝑟1) 𝑟1
𝜙4 (𝜎 (𝑟1) 𝑟1)

∏︁
𝑝∤𝑑
𝑝∤𝑟1

𝑠 (𝑝)×
∑︁

(𝜎(𝑟1)𝑟1)

(︃
−

4∑︁
𝑖=1

Δ (𝑖)𝑃 (𝑖) + . . .

· · ·+
∑︁

1⩽𝑖<𝑗⩽4

Δ (𝑖, 𝑗)𝑃 (𝑖, 𝑗)− · · ·+ Δ (1, 2, 3, 4)𝑃 (1, 2, 3, 4)

⎞⎠+𝑂

(︂
𝑁 log9𝑄

𝑄

)︂
.

(b) 𝒯3 ≪ 𝑁𝑟1
−1ℒ
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Доказательство. На основании (13) 15 слагаемых из (C3) можно разделить на 5 типов в
зависимости от количества множителей 𝜁 (𝑏𝑖)𝐺𝑖 (𝑎, 𝜂, 𝑞) 𝐼 (𝜆). Слагаемое типа с 𝑘 множителя-

ми имеет вид (−1)𝑘𝛿𝑞

(︂
𝑘∏︀

𝑖=1
𝜁 (𝑏𝑖)𝐺𝑖 (𝑎, 𝜂, 𝑞) 𝐼 (𝜆)

)︂(︃
4∏︀

𝑖=𝑘+1

𝐺𝑖 (𝑎, 𝜂0, 𝑞) 𝐼 (𝜆)

)︃
. Если 𝒯3,𝑘 обознача-

ет вклад такого слагаемого в 𝒯3, то на основании (33) получаем следующее.

𝒯3,𝑘 = (−1)𝑘

⎛⎜⎜⎝∑︁
𝑞⩽𝑄
𝑟|𝑞

𝜙−4 (𝑑𝑞/ℎ )
∑︁

(𝑎,𝑞)=1

𝑒𝑞 (−𝑛𝛼)

𝑘∏︁
𝑖=1

𝜁 (𝑏𝑖)𝐺𝑖 (𝑎, 𝜂, 𝑞)

4∏︁
𝑖=𝑘+1

𝐺𝑖 (𝑎, 𝜂0, 𝑞)

⎞⎟⎟⎠×

×
∞∫︁

−∞

𝑒 (−𝑛𝜆) 𝐼
𝑘

(𝜆) 𝐼4−𝑘 (𝜆) 𝑑𝜆 =: (−1)𝑘𝑊𝐵.

Интеграл по (30) равен 𝑃 (1, ... , 𝑘) . Согласно (16), 𝑊 представляет собой следующий сингу-
лярный ряд: 𝑊 =

∑︀
𝑞⩽𝑄
𝑟|𝑞

𝜙−4 (𝑑𝑞/ℎ )𝑍 (𝑞, 𝜂𝜂0, ..., 𝜂𝜂0, 𝜂0, ..., 𝜂0) 𝜁𝜁0 · ... · 𝜁𝜁0 · 𝜁0 · ... · 𝜁0. Учитывая,

что в пункте (b) леммы 4.5 выполняется∑︁
𝑞⩽𝑄

𝑟|𝑑𝑞/ℎ

𝜙−4

(︂
𝑑𝑞

ℎ

)︂
𝑍 (𝑞, 𝜂1𝜂0, ..., 𝜂4𝜂0)

4∏︁
𝑖=1

𝜁𝑖𝜁0 (𝑏𝑖) =

=
4∏︁

𝑖=1

𝜒
(2)
𝑖 (𝑏𝑖) (mod𝑟2)

𝜎 (𝑑1) 𝑑1
𝜙4 (𝑑1)

·
𝑌
(︀
𝜎
(︀
𝑟(1)
)︀
𝑟(1)
)︀

𝜙4
(︀
𝜎
(︀
𝑟(1)
)︀
𝑟(1)
)︀ ∏︁

𝑝∤𝑑
𝑝∤𝑟

𝑠 (𝑝) +𝑂
(︀
𝑄−1log9𝑄

)︀
.

(36) равенство и 𝑌 (𝜎𝑟1) = 𝜎𝑟1
∑︀

(𝜎𝑟1)

..., получаем выражение для

𝒯3,𝑘 = (−1)𝑘
𝜎 (𝑑1) 𝑑1
𝜙4 (𝑑1)

· 𝜎 (𝑟1) 𝑟1
𝜙4 (𝜎 (𝑟1) 𝑟1)

∏︁
𝑝∤𝑑
𝑝∤𝑟1

𝑠 (𝑝)
∑︁

(𝜎(𝑟1)𝑟1)

Δ (1, ..., 𝑘)𝑃 (1, ..., 𝑘)+𝑂
(︀
𝑁𝑄−1log9𝑄

)︀
.

Таким образом, суммируя вклады по всем 𝑘, получаем утверждение (a). Утверждение (b)
следует из леммы 4.1.

Определим Ω следующим образом: Ω =

⎧⎨⎩
(︁

1− 𝛽
)︁

log 𝑇, если существует 𝛽,

1, в противном случае.

Из следствия 4.2, леммы 4.3 и равенства (22) получаем следующие результаты.∏︁
𝑝∤𝑑
𝑝∤𝑟1

𝑠 (𝑝) = 𝜎
(︀
𝑟′′
)︀
𝑟′′𝜙−4

(︀
𝜎
(︀
𝑟′′
)︀
𝑟′′1
)︀
𝑁
(︀
𝜎
(︀
𝑟′′
)︀
𝑟′′1
)︀
, (39)

𝜎 (𝑟′1) 𝑟
′
1

𝜙4 (𝜎 (𝑟′1) 𝑟′1)
𝑁
(︀
𝜎
(︀
𝑟′1
)︀
𝑟′
)︀

=
𝜎 (𝑑2) 𝑑2

𝜙4 (𝜎 (𝑑2) 𝑑2)
𝑁 (𝜎 (𝑑2) 𝑑2) =

𝜎 (𝑑2) 𝑑2
𝜙4 (𝑑2)

. (40)

Здесь 𝑟′′𝑟′ = 𝑟,(𝑟′′, 𝑟′) = 1, (𝑟′′, 𝑑) = 1, 𝑟′| 𝑑⊙, 𝑟′1 , 𝑑 |(𝑟, 𝑑) имеют одинаковые простые мно-
жители, и степень каждого простого делителя числа 𝑑2 меньше степени соответствующего
делителя в 𝑟′1. Таким образом, мы можем записать 𝒯1 в следующем виде.

𝒯1 =
𝜎 (𝑑1) 𝑑1
𝜙4 (𝑑1)

· 𝜎 (𝑟1) 𝑟1
𝜙4 (𝜎 (𝑟1) 𝑟1)

∏︁
𝑝∤𝑑
𝑝∤𝑟1

𝑠 (𝑝)
∑︁

(𝜎(𝑟1)𝑟1)

𝑃0 +𝑂
(︀
𝑁𝑑−2𝑄−1log9𝑄

)︀
.
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Используя выражение для 𝒯3 из утверждения (a) леммы 5.2, получаем

𝒯1 + 𝒯3 =
𝜎 (𝑑1) 𝑑1
𝜙4 (𝑑1)

· 𝜎 (𝑟1) 𝑟1
𝜙4 (𝜎 (𝑟1) 𝑟1)

∏︁
𝑝∤𝑑
𝑝∤𝑟1

𝑠 (𝑝)𝑁2−4
∑︁

(𝜎(𝑟1)𝑟1)

∫︁
𝐷

(︃
4∏︁

𝑖=1

𝑥
−1/2
𝑖

)︃
×

×
4∏︁

𝑖=1

(︁
1− 𝜒̃(𝑁𝑥𝑖)

(𝛽−1)/2
)︁
𝑑𝑥1𝑑𝑥2𝑑𝑥3 +𝑂

(︀
𝑁𝑄−1log9𝑄

)︀
. (41)

Остаётся оценить интеграл. Так как
4∏︀

𝑖=1

(︁
1− 𝜒̃(𝑁𝑥𝑖)

(𝛽−1)/2
)︁

=
4∏︀

𝑖=1

(︁
1− 𝐿(𝛽−1)/2

)︁
является

голоморфной в области 𝐷, при этом 𝑥𝑖 ⩾ 𝐿/𝑁 . Таким образом, получаем следующее:

1− 𝐿
𝛽−1
2 ⩾ 1− exp

(︂
−1

2

(︁
1− 𝛽

)︁
log𝑁

)︂
⩾ min

{︂
1

2
,

1

4

(︁(︁
1− 𝛽

)︁
log𝑁

)︁}︂
⩾ Ω.

В этом случае главный член в (41) имеет следующий вид:

≫ Ω4𝜎 (𝑑1) 𝑑1
𝜙4 (𝑑1)

· 𝜎 (𝑟1) 𝑟1
𝜙4 (𝜎 (𝑟1) 𝑟1)

∏︁
𝑝∤𝑑
𝑝∤𝑟1

𝑠 (𝑝)
∑︁

(𝜎(𝑟1)𝑟1)

𝑃0.

Поэтому, на основании (39) и (40), справедлива следующая.
Лемма 5.3.

𝒯1 + 𝒯3 ⩾ Ω4𝜙−4 (𝑑)𝜎 (𝑑) 𝑑
∏︁
𝑝∤𝑑

𝑠 (𝑝)𝑃0 +𝑂
(︀
𝑁𝑄−1log9𝑄

)︀
.

Теперь оценим 𝒯2.
Лемма 5.4.

𝒯2 ≪ Ω4 exp
(︁
−𝑐/
√
𝛿
)︁
𝜙−4 (𝑑)𝜎 (𝑑) 𝑑

∏︁
𝑝∤𝑑

𝑠 (𝑝)𝑃0 +𝑂
(︀
𝑁𝑄−1log9𝑄

)︀
.

Доказательство. Поскольку выполняется равенство (13) и (14), в каждом слагаемом из
(C2) присутствует множитель вида

∑︀
𝜁𝜂

𝜁 (𝑏𝑖)𝐺𝑖 (𝑎, 𝜂, 𝑞) 𝐼 (𝜁𝜂, 𝜆) . Действительно, мы ограничим-

ся указанием метода оценки для типичного слагаемого вида

𝛿𝑞

⎛⎝ 2∏︁
𝑖=1

∑︁
𝜁𝜂

𝜁 (𝑏𝑖)𝐺𝑖 (𝑎, 𝜂, 𝑞) 𝐼 (𝜁𝜂, 𝜆)

⎞⎠𝐺3 (𝑎, 𝜂0, 𝑞) 𝐼 (𝜆)𝛽 (𝑏4)𝐺4 (𝑎, 𝜂, 𝑞) 𝐼 (𝜆) .

Вклад этого слагаемого в 𝒯2 обозначим через 𝜅. Согласно (33),

𝜅 =
∑︁
𝑞⩽𝑄
𝑟|𝑑𝑞/ℎ

𝛿𝑞𝜙
−4 (𝑑𝑞/ℎ)

∑︁
(𝑎,𝑞)=1

𝑒𝑞 (−𝑛𝑎)𝐺3 (𝑎, 𝜂0, 𝑞) 𝜁 (𝑏4)𝐺4 (𝑎, 𝜂, 𝑞)×

×

⎛⎝ 2∏︁
𝑖=1

∑︁
𝜁𝜂

𝜁 (𝑏𝑖)𝐺𝑖 (𝑎, 𝜂, 𝑞)

⎞⎠ ∑︁
|𝛾|⩽𝑇

∞∫︁
−∞

𝑒 (−𝑛𝜆)

⎛⎝ 2∏︁
𝑖=1

𝑁1∫︁
𝐿1

𝑥𝜌𝑖−1𝑒
(︀
𝜆𝑥2

)︀
𝑑𝑥

⎞⎠×
×

⎛⎝ 𝑁1∫︁
𝐿1

𝑒
(︀
𝜆𝑥2

)︀
𝑑𝑥

⎞⎠⎛⎝ 𝑁1∫︁
𝐿1

𝑥𝛽−1𝑒
(︀
𝜆𝑥2

)︀
𝑑𝑥

⎞⎠ 𝑑𝜆.
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В соответствии с (30),
∞∫︀

−∞
...𝑑𝜆 равно 𝑁

24

∫︀
𝐷

(︂
4∏︀

𝑖=1
𝑥
−1/2
𝑖

)︂(︂
2∏︀

𝑖=1
(𝑁𝑥𝑖)

(𝜌𝑖−1)/2

)︂
(𝑁𝑥𝑖)

𝛽−1
2 𝑑𝑥1𝑑𝑥2𝑑𝑥3.

Как известно [13], каждый характер интегрируется (т.е. получается) с помощью единствен-
ного примитивного характера, и наоборот, для каждого характера 𝜒* (mod𝑟) и для каждого
делителя 𝑟 числа 𝑞 существует единственный характер 𝜒 (mod𝑞), индуцированный характером
𝜒*. Кроме того, функция Дирихле 𝐿 (𝑠, 𝜒*) и 𝐿 (𝑠, 𝜒) имеют нули с положительной действи-
тельной частью, кроме тривиальных. Соответственно, переставив порядок суммирования в 𝜅,
мы можем писать 𝜅 следующим образом:

𝜅 = 𝑁2−4

∫︁
𝐷

(︃
4∏︁

𝑖=1

𝑥
−1/2
𝑖

)︃
(𝑁𝑥4)

(𝛽−1)/2

⎛⎝ 2∏︁
𝑖=1

∑︁
𝑟𝑖⩽𝑑𝑄

∑︁
*

𝜒𝑖≡𝜁𝑖𝜂𝑖( mod 𝑟𝑖)

∑︁
|𝛾|⩽𝑇

′
(𝑁𝑥𝑖)

(𝜌𝑖−1)/2

⎞⎠×
×
∑︁
𝑞⩽𝑄
𝑟|𝑑𝑞/ℎ

𝜙−4 (𝑑𝑞/ℎ)
∑︁

(𝑎,𝑞)=1

𝐺3 (𝑎, 𝜂0, 𝑞) 𝜁𝜁0 (𝑏4)𝐺4 (𝑎, 𝜂𝜂0, 𝑞)

(︃
2∏︁

𝑖=1

𝜁 (𝑏𝑖)𝐺𝑖 (𝑎, 𝜂, 𝑞)

)︃
𝑑𝑥1𝑑𝑥2𝑑𝑥3.

(42)
Здесь

∑︀ *− означает сумму по всем примитивным характерам по модулю 𝑟𝑖, а 𝑟 = [𝑟1, 𝑟2, 𝑟] .
В соответствии с леммой 4.5, внутренняя сумма

∑︀
𝑞⩽𝑄
𝑟|𝑑𝑞/ℎ

равна выражению

2∏︀
𝑖=1

𝜒
(2)
𝑖 (𝑏𝑖)𝜒̃

(2)
𝑖 (𝑏𝑖)𝜙

−4 (𝑑1)𝜎 (𝑑1) 𝑑1 ·
𝑌 (𝜎(𝑟(1))𝑟(1))
𝜙4(𝜎(𝑟(1))𝑟(1))

∏︀
𝑝∤𝑑,𝑟

𝑠 (𝑝) +𝑂
(︀
𝑁𝑑−2𝑄−1log9𝑄

)︀
. Здесь 𝑑1 и 𝑟

(1)

определяются так же, как в пункте (b) леммы 4.5. В силу того, что 𝑌 (𝜎 (𝑟1) 𝑟1) ⩽
⩽ 𝜎 (𝑟1) 𝑟1𝑁 (𝜎 (𝑟1) 𝑟1) комбинируя это с (39) и (40), получаем следующее:⃒⃒⃒⃒

⃒⃒⃒⃒ ∑︁
𝑞⩽𝑄
𝑟|𝑑𝑞/ℎ

...

⃒⃒⃒⃒
⃒⃒⃒⃒ ⩽ 𝜙−4 (𝑑)𝜎 (𝑑) 𝑑

∏︁
𝑝∤𝑑

𝑠 (𝑝) +𝑂
(︀
𝑁𝑑−2𝑄−1log9𝑄

)︀
.

На основе идеи [16] и доказательства леммы 6.2 из [15], с применением метода большого сито,
для любого числа 𝑐 и любого действительного числа 𝑦 ⩾ 𝑁1 справедливо неравенство:∑︁

𝑞⩽𝑇

∑︁
*

𝜒(modq)

∑︁
|𝛾|⩽𝑇

′
𝑦𝛽−1 ≪ Ω4 exp

(︁
−𝑐/
√
𝛿
)︁
.

Используя это в кратной сумме из (42) и комбинируя с (31), мы получаем доказательство лем-
мы. Объединяя полученные выше результаты и используя равенство (34), мы можем получить
оценку для ℛ1 (𝑛) . Для этого рассмотрим два случая.

1-случай. Eсли не существует 𝛽-исключительный нуль 𝐿-функции Дирихле или же он
существует и модуль соответствующего исключительного характера 𝑟 > 𝑄1/8. Из леммы 5.1
и части (b) леммы 5.2, а также из лемм 5.4 при достаточно малом 𝛿, получим:

ℛ1 (𝑛) ⩾
1

2
𝜙−4 (𝑑)𝜎 (𝑑) 𝑑

∏︁
𝑝∤𝑑

𝑠 (𝑝)𝑃0 +𝑂
(︁
𝑁𝑄−1/8log9𝑄

)︁
. (43)

Тогда, согласно леммы 4.4 (a), имеем: ℛ1 (𝑛)≫ 𝑁
(︀
𝑄5/42 𝑑1/2

)︀−1
. Здесь 𝑑 ⩽ 𝑄1/21.

2-случай. Если существует 𝛽-исключительный нуль 𝐿-функции Дирихле и модуль соот-
ветствующего исключительного характера 𝑟 ⩽ 𝑄1/8. Тогда, исполдьзуля на леммы 5.3 и 5.4 и
при достаточно малом 𝛿, получим:

ℛ1 (𝑛) ⩾
1

2
Ω4𝜙−4 (𝑑)𝜎 (𝑑) 𝑑

∏︁
𝑝∤𝑑

𝑠 (𝑝)𝑃0 +𝑂
(︀
𝑁𝑄−1log9𝑄

)︀
. (44)
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Отсюда, учитывая, что Ω≫
(︁
𝑟

1
2 log2𝑟

)︁−1
log 𝑇≫𝑄−1/16log−1𝑄, имеем: ℛ1 (𝑛)≫𝑁

(︀
𝑄1/3𝑑1/2

)︀−1
.

Из оценки (43), (44) и (7) следуют, что ℛ1 (𝑛) > |ℛ2 (𝑛)|. Таким образом, наша теорема
доказана.

6. Доказательство следствие

Используя равенство (5), для ℛ (𝑛) получим:

ℛ (𝑛) ⩽ 𝑆𝑑 (𝑛) log4𝑁 +𝑂
(︁
𝑁

3/2
1 log𝑁

)︁
. (45)

Согласно равенству (6), имеем: ℛ (𝑛) > ℛ1 (𝑛) − |ℛ2 (𝑛)|. Используя оценки ℛ1 (𝑛) и ℛ2 (𝑛),

а также (45), получим: ℛ1 (𝑛) − |ℛ2 (𝑛)| ⩽ 𝑆𝑑 (𝑛) log4𝑁 + 𝑂
(︁
𝑁

3/2
1 log𝑁

)︁
. Отсюда следует:

𝑆𝑑 (𝑛) ⩾ ℛ1(𝑛)−|ℛ2(𝑛)|
log4𝑁

− 𝑂
(︁
𝑁

3/2
1 log−3𝑁

)︁
и следовательно, 𝑆𝑑 (𝑛) ≫ 𝑁

𝑄1/3𝑑1/2log4𝑁
. Пользуясь

тем, что 𝑄 = 𝑁21𝛿, а также условиями 𝑛 ≡ 4 (mod24), 𝐿 < 𝑛 ⩽ 𝑁 , получим, что для всех 𝑛

за исключением не более, чем 𝐸𝑑(𝑁) ≪ 𝑁
(︀
𝑄15/14 𝑑

)︀−1
значений из них справедлива оценка:

𝑆𝑑 (𝑛)≫ 𝑛1−7𝛿
(︀
𝑑1/2log4𝑛

)︀−1
. Следствие доказано.
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