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Аннотация

Для системы линейных алгебраических уравнений (СЛАУ) 𝐴𝑥 = 𝑏 в конечномерном
евклидовом пространстве 𝐸 с помощью ортогонализации Грама-Шмидта получено кон-
структивное описание многообразия ее решений Φ(𝐴, 𝑏), состоящее в ее безусловной ли-
нейной параметризации.

Это обстоятельство открывает совершенно новые возможности в использовании СЛАУ,
поскольку позволяет теоретически учесть априорную информацию о свойствах истинного
решения 𝑥и в его поиске на многообразии Φ(𝐴, 𝑏). Технически это выглядит так: экспертная
точка зрения на решение 𝑥и формализуется неотрицательным функционалом 𝐹 на Φ(𝐴, 𝑏),
а решение 𝑥и его минимизирует. Благодаря линейной параметризации Φ(𝐴, 𝑏) минимизация
𝐹 является безусловной.

Особое внимание в работе уделено случаю, когда экспертная информация о решении
𝑥и формально предстает нечеткой структурой 𝜇 весов координат пространства 𝐸, выра-
жающих их роль в СЛАУ 𝐴𝑥 = 𝑏. Пару (𝐴𝑥 = 𝑏, 𝜇) мы называем нечеткой СЛАУ. Форми-
рование ее решений Φ(𝐴, 𝑏, 𝜇) ⊆ Φ(𝐴, 𝑏) связано с нелинейной оптимизацией, для которой
в работе разработаны алгоритмы полиномиального спуска.

Результаты исследований иллюстрируются примерами.

Ключевые слова: проекционный метод, пространство решений, полиномиальный спуск,
нечеткие линейные системы.
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Abstract

For a system of linear algebraic equations (SLAE) 𝐴𝑥 = 𝑏 in a finite-dimensional Euclidean
space 𝐸, a constructive description of the manifold of its solutions Φ(𝐴, 𝑏) is obtained using
the Gram-Schmidt orthogonalization. This description consists of an unconditional linear
parameterization.

This circumstance opens up entirely new possibilities for using SLAEs, as it allows one to
theoretically take into account a priori information about the properties of the true solution
𝑥и in its search on the manifold Φ(𝐴, 𝑏). Technically, this looks like this: the expert opinion
on the solution 𝑥и is formalized by a non-negative functional 𝐹 on Φ(𝐴, 𝑏), and the solution
𝑥и minimizes it. Thanks to the linear parameterization of Φ(𝐴, 𝑏), the minimization of 𝐹 is
unconditional.

The paper pays special attention to the case where expert information about the solution 𝑥и

is formally represented by a fuzzy structure 𝜇 of coordinate weights in the space 𝐸, expressing
their role in the SLAE 𝐴𝑥 = 𝑏. We call the pair (𝐴𝑥 = 𝑏, 𝜇) a fuzzy SLAE. The formation of its
solutions Φ(𝐴, 𝑏, 𝜇) ⊆ Φ(𝐴, 𝑏) is associated with nonlinear optimization, for which polynomial
descent algorithms are developed in the paper.

The research results are illustrated with examples.
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1. Введение

Конструктивное описание многообразия решений Φ(𝐴, 𝑏) линейной системы (СЛАУ)
𝐴𝑥 = 𝑏 в конечномерном евклидовом пространстве 𝐸 позволяет учесть априорную информа-
цию о свойствах нужного (истинного) решения 𝑥и путем его поиска на многообразии Φ(𝐴, 𝑏).
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Технически это выглядит так: экспертная точка зрения на решение 𝑥и формализуется
неотрицательным функционалом 𝐹 на Φ(𝐴, 𝑏), а решение 𝑥и его минимизирует. Если точек
зрения на 𝑥и несколько и за них отвечает система функционалов ℱ = (𝐹1, . . . , 𝐹𝑘), то поиск
𝑥и сводится к многокритериальному выбору 𝐵(Φ(𝐴, 𝑏),ℱ) относительно ℱ на Φ(𝐴, 𝑏).

Сказанное выше графически передает схема

𝐴𝑥 = 𝑏→ Φ(𝐴, 𝑏)→ ℱ → 𝐵(ℱ ,Φ(𝐴, 𝑏))→ 𝑥и (1)

Первый переход в (1) полностью относится к линейной алгебре и в настоящей работе будет
выполнен с помощью ортогонализации Грама-Шмидта.

Второй переход в (1) формализует априорную информацию об истинном решении 𝑥и в си-
стему функционалов ℱ на многообразии Φ(𝐴, 𝑏) и потому требует широкого спектра методов.
Мы будем иметь дело с высказываниями двух типов 𝐸𝑦 и 𝐸𝜇:

𝐸𝑦: решение 𝑥
и похоже на известный вектор 𝑦 ∈ 𝐸

𝐸𝜇: 𝜇 – неотрицательный вектор весов координат пространства 𝐸, выражающих их роль в
СЛАУ 𝐴𝑥 = 𝑏. Модули координат решения 𝑥и похожи на веса 𝜇.

При условии нечеткости 𝜇 (‖𝜇‖∞ = 1) пару (𝐴𝑥 = 𝑏, 𝜇) считаем нечеткой СЛАУ, так
что высказывание 𝐸𝜇 связано с формированием ее решения Φ(𝐴, 𝑏, 𝜇) ⊆ Φ(𝐴, 𝑏). Будут
рассмотрены и проанализированы три варианта 𝐸𝑦 и два варианта 𝐸𝜇.

Третий переход в (1) представляет собой оптимизацию функционалов из ℱ на многообра-
зии Φ(𝐴, 𝑏) в широком смысле. В работе она выполнена как аналитическими методами (явное
определение экстремальных точек через градиенты), так и новыми, полиномиальными вер-
сиями градиентного и покоординатного спусков. Их результатом будут те или иные версии
истинного решения 𝑥и. Изложение иллюстрируется примерами из магнитометрии, поскольку
настоящая работы выполнена в рамках связанного с ней гранта РНФ.

2. Проекционный метод

Исходное пространство 𝐸 предполагается 𝑛-мерным Евклидовым относительно скалярного
произведения ( , ). В линейной системе

𝐴𝑥 = 𝑏 = (𝑎𝑖, 𝑥) = 𝑏𝑖; 𝑖 = 1, . . . ,𝑚; 𝑥 ∈ 𝐸 (2)

под 𝐴 одновременно понимается как совокупность векторов 𝑎𝑖 из 𝐸, так и матрица 𝑚 × 𝑛 с
векторами 𝑎𝑖 в качестве строк, 𝑏 = (𝑏𝑖|𝑚1 ).

Проекционный метод (ПМ) применительно к системе (2) состоит в эффективном постро-
ении многообразия ее решений Φ(𝐴, 𝑏). Эта задача была решена авторами в работах [1, 2, 3]
на основе систематического использования ортопроектора 𝐻(𝑎) перпендикулярно к 𝑎 ∈ 𝐸:

𝐻(𝑎) = 1− 𝑎𝑎⊤

𝑎⊤𝑎
, если 𝑎 ̸= 0 и 𝐻(0) = 1.

В настоящей работе в изложении ПМ главную роль будет играть ортогонализация Грама-
Шмидта (ГШ) [4] в 𝐸.

Однородные системы. Для однородной системы 𝐴𝑥 = 0 пространство решений Φ(𝐴, 0) в
точности совпадает с ортогональным дополнением в 𝐸 к подпространству 𝐿(𝐴), порожденно-
му 𝐴: Φ(𝐴, 0) = 𝐿(𝐴)⊤. Поэтому для решения системы 𝐴𝑥 = 0 нужно построить ортопроектор

𝐻 = 𝐻(𝐴) : 𝐸 −→ 𝐿(𝐴)⊤.
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Сделаем это с помощью ортогонализации ГШ: если 𝒢 = {𝑔𝑖|𝑁1 }, 𝑁 = rang𝐴 результат ее
применения к совокупности 𝐴: 𝒢 = ГШ(𝐴), то

𝐻𝑥 = 𝑥−
𝑁∑︁
𝑖=1

(𝑥, 𝑔𝑖)

(𝑔𝑖, 𝑔𝑖)
𝑔𝑖 ∀𝑥 ∈ 𝐸. (3)

Неоднородные системы. Произвольное решение неоднородной системы 𝐴𝑥 = 𝑏 есть сумма
частного 𝑥* и однородного, так что Φ(𝐴, 𝑏) = 𝑥* + Φ(𝐴, 0). Воспользуемся в поиске 𝑥* приво-
димой ниже эквивалентностью и реализацией ее правой части с помощью ортогонализации
ГШ:

𝑥 ∈ Φ(𝐴, 𝑏) ≡ 𝑥 вектор в 𝐸, чей образ 𝐴𝑥 является
проекцией 𝑏 на образ Im𝐴 в R𝑚 .

Если {𝑒𝑗 |𝑛1} базис 𝐸, то система 𝑃 = {𝐴𝑒𝑗 |𝑛1} порождает образ Im𝐴 в R𝑚. Применим к
𝑃 ортоганилизацию ГШ и получим ортогональную систему 𝐺 = ГШ(𝑃 ) в R𝑚: 𝐺 = {𝑔𝑖

⃒⃒
𝑁
1 },

𝑁 = rang𝑃 .

Нам нужны прообразы 𝑦𝑖 векторов 𝑔𝑖 при отображении 𝐴: 𝐴𝑦𝑖 = 𝑔𝑖. Если они известны, то

𝑏 =
𝑁∑︁
𝑖=1

(𝑏, 𝑔𝑖)

(𝑔𝑖, 𝑔𝑖)
𝑔𝑖 =

𝑁∑︁
𝑖=1

(𝑏, 𝑔𝑖)

(𝑔𝑖, 𝑔𝑖)
𝐴𝑦𝑖 = 𝐴

(︃
𝑁∑︁
𝑖=1

(𝑏, 𝑔𝑖)

(𝑔𝑖, 𝑔𝑖)
𝑦𝑖

)︃

Таким образом, вектор

𝑥* =
𝑁∑︁
𝑖=1

(𝑏, 𝑔𝑖)

(𝑔𝑖, 𝑔𝑖)
𝑦𝑖 (4)

является частным решением системы 𝐴𝑥 = 𝑏.

Вектора 𝑔𝑖 и 𝑦𝑖 строим итеративно. Сначала рассуждения относительно 𝑔𝑖: если известны
вектора 𝑔1, . . . , 𝑔𝑖−1, 𝑖 ⩾ 2, то согласно ГШ

𝑔𝑖 = 𝐴𝑒𝑖 −
𝑖−1∑︁
𝑘=1

(𝐴𝑒𝑖, 𝑔𝑘)

(𝑔𝑘, 𝑔𝑘)
𝑔𝑘. (5)

Начало: 𝑔1 = 𝐴𝑒1. Теперь рассуждения для 𝑦𝑖: если известны вектора 𝑦1, . . . , 𝑦𝑖−1, 𝑖 ⩾ 2, то
с учетом (5)

𝑔𝑖 = 𝐴𝑒𝑖 −
𝑖−1∑︁
𝑘=1

(𝐴𝑒𝑖, 𝑔𝑘)

(𝑔𝑘, 𝑔𝑘)
𝐴𝑦𝑘 = 𝐴

(︃
𝑒𝑖 −

𝑖−1∑︁
𝑘=1

(𝐴𝑒𝑖, 𝑔𝑘)

(𝑔𝑘, 𝑔𝑘)
𝑦𝑘

)︃
.

Таким образом,

𝑦𝑖 = 𝑒𝑖 −
𝑖−1∑︁
𝑘=1

(𝐴𝑒𝑖, 𝑔𝑘)

(𝑔𝑘, 𝑔𝑘)
𝑦𝑘.

Начало: 𝑦1 = 𝑒1.

Подведем итог: эффективная параметризация многообразия решений Φ(𝐴, 𝑏) СЛАУ𝐴𝑥 = 𝑏
с помощью ортогонализации ГШ представляет собой зависимость

𝑥 = 𝑥* +𝐻𝑠, 𝑠 ∈ 𝐸 (6)

где 𝐻 и 𝑥* определяются формулами (3) и (4).
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3. Суждение 𝐸𝑦

Многообразие Φ(𝐴, 𝑏) служит областью определения произвольного суждения об истинном
решении 𝑥и. Обратимся к одному из самых естественных из них, а именно: к суждению 𝐸𝑦

о схожести 𝑥и с известным вектором 𝑦 ∈ 𝐸. В работах [1, 2, 3] разобраны две его трактовки.
Приведем их.

Трактовка первая 𝐸1
𝑦 . Схожесть 𝑥и и 𝑦 понимается метрически, как близость в 𝐸: «𝑥и = 𝑥и1

ближайшая к 𝑦 точка на многообразии Φ(𝐴, 𝑏)». Поиск варианта 𝑥и1 = 𝑥* +𝐻𝑠и1 истинного ре-
шения согласно 𝐸1

𝑦 сводится к безусловной минимизации по 𝑠 на 𝐸 первой версии функционала
𝐹 1
𝑦 :

𝐹 1
𝑦 (𝑠) = ||𝑥* +𝐻𝑠− 𝑦||2, grad𝐹 1

𝑦 (𝑠) = 𝐻⊤𝐻𝑠−𝐻⊤(𝑦 − 𝑥*), (7)

что приводит к СЛАУ на параметр 𝑠и1

𝐻⊤𝐻𝑠и1 = 𝐻⊤(𝑦 − 𝑥*), (7′)

которую можно решить ПМ.

Трактовка вторая 𝐸2
𝑦 . Сходство 𝑥и и 𝑦 более инвариантно относительно 𝑦 и, в известном

смысле, полукорреляционно: «𝑥и2 ближайшая точка на Φ(𝐴, 𝑏) к прямой 𝐿(𝑦) = 𝑦𝑡, порожден-
ной вектором 𝑦». В этом случае поиск 𝑥и2 = 𝑥* + 𝐻𝑠и2 связан с безусловной минимизацией по
𝑠 и 𝑡 на произведении 𝐸(𝑠)× R(𝑡) второй версии функционала 𝐹 2

𝑦 :

𝐹 2
𝑦 (𝑠) = ||𝑥* +𝐻𝑠− 𝑦𝑡||2. (8)

Нужная пара параметров (𝑠*2, 𝑡
*) получается, как решение СЛАУ(︂

𝐻⊤𝐻 −𝐻⊤𝑦
−𝑦⊤𝐻 ||𝑦||2

)︂(︂
𝑠*2
𝑡*

)︂
=

(︂
−𝐻⊤𝑥*

(𝑥*, 𝑦)

)︂
. (8′)

Полиномиальный спуск. В (7′) и (8′) функционалы 𝐹 1
𝑦 и 𝐹 2

𝑦 зависят от 𝑠 квадратично,
поэтому оптимизация для них на пространстве 𝐸(𝑠) сводится к решению СЛАУ (7′) и (8′),
порожденных их градиентами. В оставшихся случаях 𝐸3

𝑦 и 𝐸𝑖
𝜇 (𝑖 = 1, 2) функционалы 𝐹 (𝑠)

алгебраические, но не квадратичные, поэтому для их оптимизации нужны нелинейные мето-
ды.

В работе предлагается глобальный вариант оптимизации по направлениям, который на-
зывается Полиномиальным Спуском (ПС). Опишем общую ситуация для его работы: пусть
𝐹 (𝑥) – функционал на многообразии решений Φ(𝐴, 𝑏) СЛАУ 𝐴𝑥 = 𝑏. Благодаря параметриза-
ции (6), он становится функционалом 𝐹 (𝑠) на всем пространстве параметров 𝐸(𝑠).

Скажем, что к 𝐹 применим ПС, если критические точки ограничения 𝐹𝑠*,𝑑*(𝑡) = 𝐹 (𝑠*+𝑡𝑑*)
на любую прямую 𝑠(𝑡) = 𝑠* + 𝑡𝑑* в 𝐸(𝑠) можно найти с помощью решения полиномиальных
уравнений в радикалах.

Применительно к 𝐹 алгоритм ПС действует итеративно: находясь в точке 𝑠*, он анализи-
рует поведение 𝐹𝑠*,𝑑*(𝑡) вдоль «правильных» направлений 𝑑, выходящих из 𝑠*, и выбирает в
этом множестве 𝐷(𝑠*) направление 𝑑*, вдоль которого минимизация 𝐹𝑠*,𝑑(𝑡) наилучшая. Если
𝑡* ее результат, то следующей за 𝑠* будет точка 𝑠* + 𝑡*𝑑*. Начинается алгоритм ПС в нуле
𝑠 = 0, поскольку в начале на многообразии Φ(𝐴, 𝑏) нам известна только одна точка 𝑥*.

Варианты 𝐷(𝑠*) определяют варианты ПС. Их будет два – Полиномиальный Градиентный
Спуск (ПГС) и Полиномиальный Покоординатный Спуск (ППС):

ПГС↔ 𝐷(𝑠*) = grad𝐹 (𝑠*)

ППС↔ 𝐷(𝑠*) =

{︂
Координатные оси

𝑒𝑘 в 𝐸(𝑠); 𝑘 = 1, . . . , 𝑛

}︂
(9)



22 С. М. Агаян, Ш. Р. Богоутдинов, А. А. Соловьев

С учетом сказанного изложение оставшихся суждений 𝐸 будет носить технический харак-
тер и состоять в вычислении grad𝐹 (𝑠*) и 𝐹 ′

𝑠*,𝑑 для соответствующего 𝐸 функционала 𝐹 .

Трактовка третья 𝐸3
𝑦 . Сходство 𝑥и и 𝑦 состоит в их полной cos-корреляции: «𝑥и3 точка

на Φ(𝐴, 𝑏) с максимальной корреляцией cos(𝑥и3 , 𝑦)». С учетом параметризации (6) поиск 𝑥и3
сводится к безусловной максимизации по 𝑠 функционала 𝐹 3

𝑦

𝐽(𝑠) = 𝐹 3
𝑦 (𝑠) =

(𝑥* +𝐻𝑠, 𝑦)

‖𝑥* +𝐻𝑠‖ ‖𝑦‖
. (10)

Покажем, что ее можно выполнить с помощью ПС. Для этого найдем градиент grad 𝐽(𝑠)
с помощью представления 𝐽(𝑠) как суперпозиции cos(𝑥, 𝑦) и параметризации 𝑥 = 𝑥* +𝐻𝑠:

𝐽 ′(𝑠) = cos(𝑥, 𝑦)𝑥(𝑥* +𝐻𝑠)𝑠.

Прямые вычисления дадут равенства

cos(𝑥, 𝑦)𝑥 =

(︂
‖𝑥‖2𝑦 − (𝑥, 𝑦)𝑥

‖𝑥‖3‖𝑦‖

)︂⊤
,

(𝑥* +𝐻𝑠)𝑠 = 𝐻,

так что

𝐽 ′(𝑠) =

(︂
‖𝑥* +𝐻𝑠‖2𝑦 − (𝑥* +𝐻𝑠, 𝑦)(𝑥* +𝐻𝑠)

‖𝑥* +𝐻𝑠‖3‖𝑦‖

)︂⊤
𝐻

и

grad 𝐽(𝑠) = 𝐻⊤
(︂
‖𝑥* +𝐻𝑠‖2𝑦 − (𝑥* +𝐻𝑠, 𝑦)(𝑥* +𝐻𝑠)

‖𝑥* +𝐻𝑠‖3‖𝑦‖

)︂
. (11)

Для ПС нужно изучить ограничение функции 𝐽(𝑠) на любую прямую 𝑠(𝑡) = 𝑐𝑡 + 𝑑 в
пространстве параметров 𝐸(𝑠). Положим 𝐽(𝑡) = 𝐽𝑐,𝑑(𝑡) = 𝐽(𝑐𝑡+ 𝑑) и найдем 𝐽 ′(𝑡):

𝐽 ′(𝑡) = 𝐽 ′
𝑐,𝑑(𝑡) = (grad𝐽(𝑐𝑡+ 𝑑), 𝑐) =

=

(︂
𝐻⊤ ‖𝑥* +𝐻(𝑐𝑡+ 𝑑)‖2𝑦 − (𝑥* +𝐻(𝑐𝑡+ 𝑑), 𝑦)(𝑥* +𝐻(𝑐𝑡+ 𝑑))

‖𝑥* +𝐻(𝑐𝑡+ 𝑑)‖3‖𝑦‖
, 𝑐

)︂
=

=

(︂
‖𝑥* +𝐻(𝑐𝑡+ 𝑑)‖2𝑦 − (𝑥* +𝐻(𝑐𝑡+ 𝑑), 𝑦)(𝑥* +𝐻(𝑐𝑡+ 𝑑))

‖𝑥* +𝐻(𝑐𝑡+ 𝑑)‖3‖𝑦‖
, 𝐻𝑐

)︂
.

Положим 𝐶 = 𝐻𝑐, 𝐷 = 𝑥* +𝐻𝑑 и запишем в этих обозначениях 𝐽(𝑡) и 𝐽 ′(𝑡):

𝐽(𝑡) =
(𝐶𝑡+𝐷, 𝑦)

‖𝐶𝑡+𝐷‖‖𝑦‖
,

𝐽 ′(𝑠) =
‖𝐶𝑡+𝐷‖2(𝑦, 𝐶)− (𝐶𝑡+𝐷, 𝑦)(𝐶𝑡+𝐷,𝐶)

‖𝐶𝑡+𝐷‖3‖𝑦‖
.

(12)

Проанализируем 𝐽(𝑡). Во-первых, она ограничена: 𝐽(𝑡) ⩽ 1, во-вторых, имеет пределы на
бесконечности

lim
𝑡→±∞

𝐽(𝑡) =
𝑡(𝐶, 𝑦) + (𝐷, 𝑦)

‖𝐶𝑡+𝐷‖‖𝑦‖
=

𝑡

|𝑡|
(𝐶, 𝑦) + 𝑡−1(𝐷, 𝑦)

‖𝐶 + 𝑡−1𝐷‖‖𝑦‖
=

=

{︂
± cos(𝐶, 𝑦), если 𝐶 ̸= 0,
cos(𝐷, 𝑦), если 𝐶 = 0.

(13)

Следствие 1. Если 𝐶 ̸= 0, то 𝐽(−∞) = −𝐽(∞). Если 𝐶 = 0, то 𝐽(𝑡) ≡ cos(𝐷,𝜇).
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Далее: преобразуем производную 𝐽 ′(𝑡) с помощью замены ‖𝐷 + 𝑡𝐶‖2 = (𝐷 + 𝑡𝐶,𝐷 + 𝑡𝐶)

𝐽 ′(𝑡) =
(𝐷 + 𝑡𝐶,𝐷 + 𝑡𝐶)(𝑦, 𝐶)− (𝐷 + 𝑡𝐶, 𝑦)(𝐷 + 𝑡𝐶,𝐶)

‖𝐷 + 𝑡𝐶‖3‖𝑦‖
=

=
𝑡2(𝐶,𝐶)(𝑦, 𝐶) + 2𝑡(𝐷,𝐶)(𝑦, 𝐶) + (𝐷,𝐷)(𝑦, 𝐶)

‖𝐷 + 𝑡𝐶‖3‖𝑦‖
−

− (𝑡(𝑦, 𝐶) + (𝜇,𝐷))(𝑡(𝐶,𝐶) + (𝐷,𝐶))

‖𝐷 + 𝑡𝐶‖3‖𝑦‖
=

=
2𝑡(𝐷,𝐶)(𝑦, 𝐶) + (𝐷,𝐷)(𝑦, 𝐶)− 𝑡(𝐷,𝐶)(𝑦, 𝐶)− 𝑡(𝐶,𝐶)(𝑦,𝐷)− (𝑦,𝐷)(𝐷,𝐶)

‖𝐷 + 𝑡𝐶‖3‖𝑦‖
=

=
−𝑡((𝐷,𝐶)(𝑦, 𝐶)− (𝐶,𝐶)(𝑦,𝐷)) + (𝐷,𝐷)(𝑦, 𝐶)− (𝐷,𝐶)(𝑦,𝐷)

‖𝐷 + 𝑡𝐶‖3‖𝑦‖

Таким образом,

(𝐹 3
𝑦 )′(𝑡) =

𝑃𝑡+𝑄

‖𝐷 + 𝑡𝐶‖3‖𝑦‖
, (14)

где

𝑃 = (𝐷,𝐶)(𝑦, 𝐶)− (𝐶,𝐶)(𝑦,𝐷)

𝑄 = (𝐷,𝐷)(𝑦, 𝐶)− (𝐷,𝐶)(𝑦,𝐷)
.

Приведенные вычисления вместе с классическим одномерным математическим анализом
дают возможность полностью понять устройство ограничения функционала 𝐹 3

𝑦 на прямые в
𝐸(𝑠) и, как следствие, обосновать ПС для оптимизации 𝐹 3

𝑦 : попадая в точку с направлением,
можно сделать нужный шаг вдоль всей прямой, через неё проходящую.

Устройство 𝐹 3
𝑦 (𝑡) через 𝐶,𝐷, 𝑃,𝑄, 𝑦:

� Если 𝑃 = 0 и 𝐶 ̸= 0, то ограничение 𝐹 3
𝑦 (𝑡) монотонно, причем 𝐹 3

𝑦 (𝑡) строго возрастает
(убывает), если cos(𝐶, 𝑦) > 0 (cos(𝐶, 𝑦) < 0).

Доказательство. Монотонность следует из (14), а ее характер определяется поведением
на бесконечности (13).

� Если 𝑃 = 0 и 𝐶 = 0, то 𝐹 3
𝑦 (𝑡) ≡ cos(𝐷,𝜇).

� Если 𝑃 ̸= 0, то у 𝐹 3
𝑦 (𝑡) есть одна критическая точка 𝑡* = −𝑄/𝑃 (14), причем

𝑡* = −𝑄
𝑃
− максимум, если 𝑃 < 0

минимум, если 𝑃 > 0
. (15)

Доказательство. Знак производной (𝐹 3
𝑦 )′(𝑡) совпадает со знаком ее числителя 𝑃𝑡+𝑄 (14):

при 𝑃 < 0 переход через ноль в 𝑡* будет сверху вниз (максимум), при 𝑃 > 0 – наоборот,
снизу вверх (минимум).

Помощь в оптимизации 𝐹 3
𝑦 . Аналитическое выражение (11) для grad𝐹 3

𝑦 нелинейно в от-
личие от выражений (7′) и (8′) для grad𝐹 1

𝑦 и grad𝐹 2
𝑦 . Поэтому прямое определение экстре-

мумов 𝐹 3
𝑦 , подобно 𝐹

1
𝑦 и 𝐹 2

𝑦 , невозможно: необходима итеративная численная оптимизация.
Если в ее процессе в какой-то момент мы находимся в точке 𝑑 пространства параметров 𝐸(𝑠),
и алгоритм оптимизации принимает решение о направлении движения по вектору 𝑐, то такое
движение, благодаря проделанному выше анализу, возможно глобальное, а следующая точка
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в такой оптимизации будет глобальным максимумом 𝐹 3
𝑦 на 𝑠(𝑡) = 𝑐𝑡+𝑑 или порогом движения

к бесконечности в «правильном направлении».
Графическая иллюстрация сказанного поможет сформулировать окончательную версию

поиска. Двумерного случая для этого будет достаточно: положим 𝐶 = (𝑎, 1), 𝐷 = (1, 0),
𝑦 = (𝑦1, 𝑦2) и за счет выбора 𝑎, 𝑦1, 𝑦2 добьемся нужного результата

� Если 𝑃 = 0, 𝐶 ̸= 0 и 𝐹 3
𝑦 (∞) = cos(𝐶, 𝑦) ≷ 0, то движение к 𝐹 3

𝑦 (∞) (𝐹 3
𝑦 (−∞)), то есть к

модулю | cos(𝐶, 𝑦)|. В параметрах примера 𝑃 = 0←→ 𝑎𝑦2 = 𝑦1, cos(𝐶, 𝑦) = 𝑎𝑦1 + 𝑦2 =
= (𝑎2 + 1)𝑦2. Нужные примеры получаются при 𝑎 = 1; 𝑦2 = ±1. Ими будут функции на
рисунках 1 и 2

Рис. 1: 𝐹 3
𝑦 (𝑡) = (2𝑡+1)√

(𝑡+1)2+𝑡2
√
2

Рис. 2: 𝐹 3
𝑦 (𝑡) = −(2𝑡+1)√

(𝑡+1)2+𝑡2
√
2

� Если 𝑃 = 0, 𝐶 = 0 и 𝐹 3
𝑦 ≡ cos(𝐷, 𝑦) и никакого движения нет

� Если 𝑃 > 0, то существенно все также, как при 𝑃 = 0: движение к модулю |cos(𝐶, 𝑦)|.
Сказанное иллюстрируют функции на рисунках 3 и 4
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Рис. 3: 𝐹 3
𝑦 (𝑡) = 5𝑡+1√

(2𝑡+1)2+𝑡2
√
2

Рис. 4: 𝐹 3
𝑦 (𝑡) = −5𝑡+1√

(−2𝑡+1)2+𝑡2
√
2

� Если 𝑃 < 0, то движение к модулю 𝐹𝑦(−𝑄/𝑃 ). Сказанное иллюстрируют функции на
рисунках 5 и 6

Рис. 5: 𝐹 3
𝑦 (𝑡) = − 5𝑡+1√

(2𝑡+1)2+𝑡2
√
2
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Рис. 6: 𝐹 3
𝑦 (𝑡) = − −5𝑡+1√

(−2𝑡+1)2+𝑡2
√
2

Следующая точка в оптимизации 𝐹 3
𝑦 . Мы находимся в точке 𝑑 пространства параметров

𝐸(𝑠) и двигаемся в нем вдоль прямой 𝑠(𝑡) = 𝑑 + 𝑐𝑡, оптимизируя ограничение 𝐹 3
𝑦 (𝑠(𝑡)). Оно

полностью описывается параметрами 𝐶, 𝐷, 𝑃 , 𝑄 и 𝑦. Следующая за 𝑑 точка 𝑑+ ясна только в
случае 𝑃 < 0: 𝑑+ = −𝑄/𝑃 . В остальных случаях при формировании 𝑑+ участвует «правильная
бесконечность», в которой функционал 𝐹 3

𝑦 равен |cos(𝐶, 𝑦)|. Поступаем следующим образом:
обозначим через 𝛾 полусумму 𝐹 3

𝑦 (𝑑) и |cos(𝐶, 𝑦)|. Точкой 𝑑+ будем считать прообраз 𝛾 на
прямой 𝑠(𝑡): 𝑑+ = 𝑑+ 𝑡+𝑐, где 𝑡+ – правильное решение квадратного уравнения

(𝐶𝑡+ +𝐷, 𝑦)2 = 𝛾2 ‖𝑦‖2
⃦⃦
𝐶𝑡+ +𝐷

⃦⃦2
.

Проделанный выше анализ точно определит 𝑡+ из двух корней этого уравнения.
Подведем итог: относительная простота нелинейности в конструкции 𝐸3

𝑦 (первая степень
по 𝑡 в числителе производной (14)) позволила подробно разобрать оптимизацию алгоритма
ПС соответствующего функционала 𝐹 3

𝑦 . В изложенных ниже конструкциях 𝐸𝜇 такая степень
по 𝑡 будет уже четвертой.

4. Нечеткие СЛАУ

Мотивация дальнейших исследований связана со следующей трактовкой СЛАУ: система
𝐴𝑥 = 𝑏 выражает одно из свойств объекта изучения 𝑂. Нужное решение 𝑥и = {𝑥и𝑗 , 𝑗 ∈ 𝐽}
представляет собой распределение проявлений свойства 𝐴 на 𝑂 через «внутреннем» узлы 𝑗,
образующие «внутренний» для 𝑂 остов 𝐽 . Вектор 𝑥и неизвестен, его нужно определить по
измерениям 𝑏 = {𝑏𝑗 , 𝑖 ∈ 𝐼} проявления 𝐴 на 𝑂 во «внешних» узлах 𝑖, образующих «внешний»
для 𝑂 остов 𝐼.

Проекционный метод (ПМ) конструктивно описывает многообразие Φ(𝐴, 𝑏) всех возмож-
ных проявлений 𝑥 свойства 𝐴 на объекте 𝑂 (кандидатов на роль 𝑥и). Вобщем случае для
определения 𝑥и среди Φ(𝐴, 𝑏) нужна дополнительная информация об 𝑥и, в частности, в виде
экспертных суждений. В рамках ДМА разработаны методы ее формализации. Они активно
используют нечеткую логику, так что окончательным результатом будет нечеткая структура
𝜇 = {𝜇𝑗 , 𝑗 ∈ 𝐽} на «внутреннем» остове 𝐽 для 𝑂.

Возникает нечеткая СЛАУ (𝐴𝑥 = 𝑏, 𝜇) и задача ее решить, т.е. сформировать внутри
Φ(𝐴, 𝑏) подмножество решений Φ(𝐴, 𝑏, 𝜇), согласованных с 𝜇. В настоящей работе такая со-
гласованность 𝐸𝜇 понимается как корреляция модуля |𝑥и| решения 𝑥и: |𝑥и| = {|𝑥𝑗 |, 𝑗 ∈ 𝐽} с
𝜇 и приводит к двум вариантам 𝐸𝜇, из соображения гладкости выражающих согласованность
квадратов |𝑥и|2 = {|𝑥𝑗 |2, 𝑗 ∈ 𝐽} с 𝜇2 = {𝜇2𝑗 , 𝑗 ∈ 𝐽}.
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Необходимые технические вещи для вычислений:

проекционный оператор 𝐻 = (ℎ𝑗𝑘)

зависимость 𝑥𝑗(𝑠) = 𝑥*𝑗 +
∑︁

ℎ𝑗𝑘𝑠𝑘 = 𝑥*𝑗 +𝐻𝑗(𝑠)

𝜕𝑥𝑗
𝜕𝑠𝑘

= ℎ𝑗𝑘;
𝜕𝑥2𝑗
𝜕𝑠𝑘

= 2𝑥𝑗(𝑠)ℎ𝑗𝑘

(16)

Трактовка первая 𝐸1
𝜇 аналогична 𝐸3

𝑦 . Согласованность 𝑥и и 𝜇 состоит в полной cos-
корреляции: «𝑥и – точка на Φ(𝐴, 𝑏) с максимальной корреляцией cos

(︀
|𝑥и|2, 𝜇2

)︀
». С учетом

параметризации (6) и соотношений (16) поиск 𝑥и сводится к безусловной максимизации по 𝑠
функционала 𝐹 1

𝜇

𝐽(𝑠) = 𝐹 1
𝜇(𝑠) =

∑︀
𝑥2𝑗 (𝑠)𝜇

2
𝑗√︁∑︀

𝑥4𝑗 (𝑠)
√︁∑︀

𝜇4𝑗

. (17)

Частная производная 𝜕𝐽
𝜕𝑠𝑘
. Выразим ее через 𝑥2𝑗 (𝑠) и

𝜕𝑥2
𝑗

𝜕𝑠𝑘
. Учитывая (16), этого будет до-

статочно. Ввиду сложности производной сделаем ее вычисление поэтапным с «умным» опус-
канием двоек:
первое слагаемое числителя 𝜕𝐽

𝜕𝑠𝑘(︁∑︁
𝑥2𝑗𝜇

2
𝑗

)︁⃒⃒⃒′
𝑠𝑘

√︁∑︁
𝑥4
𝑗̄

=

(︃∑︁
𝜇2𝑗
𝜕𝑥2𝑗
𝜕𝑠𝑘

)︃√︁∑︁
𝑥4
𝑗̄

второе слагаемое числителя 𝜕𝐽
𝜕𝑠𝑘(︁∑︁

𝑥2𝑗𝜇
2
𝑗

)︁ (︂√︁∑︁
𝑥4
𝑗̄

)︂⃒⃒⃒⃒′
𝑠𝑘

=
(︁∑︁

𝑥2𝑗𝜇
2
𝑗

)︁ (︂√︁∑︁
(𝑥2

𝑗̄
)2
)︂⃒⃒⃒⃒′

𝑠𝑘

=

=
(︁∑︁

𝑥2𝑗𝜇
2
𝑗

)︁ 2
∑︀
𝑥2
𝑗̄

𝜕𝑥2
𝑗̄

𝜕𝑠𝑘

2
√︁∑︀

𝑥4
𝑗̄

=

(︁∑︀
𝑥2𝑗𝜇

2
𝑗

)︁∑︀
𝑥2
𝑗̄

𝜕𝑥2
𝑗̄

𝜕𝑠𝑘√︁∑︀
𝑥4
𝑗̄

числитель их разности(︃∑︁
𝜇2𝑗
𝜕𝑥2𝑗
𝜕𝑠𝑘

)︃(︁∑︁
𝑥4𝑗̄

)︁
−
(︁∑︁

𝑥2𝑗𝜇
2
𝑗

)︁(︃∑︁
𝑥2𝑗̄

𝜕𝑥2
𝑗̄

𝜕𝑠𝑘

)︃
отдельно члены (𝑗, 𝑗̄) + (𝑗̄, 𝑗)

𝜇2𝑗
𝜕𝑥2𝑗
𝜕𝑠𝑘

𝑥4𝑗̄ − 𝑥
2
𝑗𝜇

2
𝑗𝑥

2
𝑗̄

𝜕𝑥2
𝑗̄

𝜕𝑠𝑘
+ 𝜇2𝑗̄

𝜕𝑥2
𝑗̄

𝜕𝑠𝑘
𝑥4𝑗 − 𝑥2𝑗̄𝜇

2
𝑗̄𝑥

2
𝑗

𝜕𝑥2𝑗
𝜕𝑠𝑘

=

𝜇2𝑗𝑥
2
𝑗̄

(︃
𝑥2𝑗̄
𝜕𝑥2𝑗
𝜕𝑠𝑘
− 𝑥2𝑗

𝜕𝑥2
𝑗̄

𝜕𝑠𝑘

)︃
− 𝜇2𝑗̄𝑥

2
𝑗

(︃
𝑥2𝑗̄
𝜕𝑥2𝑗
𝜕𝑠𝑘
− 𝑥2𝑗

𝜕𝑥2
𝑗̄

𝜕𝑠𝑘

)︃
=

=
(︁
𝜇2𝑗𝑥

2
𝑗̄ − 𝜇

2
𝑗̄𝑥

2
𝑗

)︁(︃
𝑥2𝑗̄
𝜕𝑥2𝑗
𝜕𝑠𝑘
− 𝑥2𝑗

𝜕𝑥2
𝑗̄

𝜕𝑠𝑘

)︃
Окончательная формула для производной

𝜕𝐽

𝜕𝑠𝑘
=

∑︁
(𝑗,𝑗̄):𝑗 ̸=𝑗̄

(︁
𝜇2𝑗𝑥

2
𝑗̄
− 𝜇2

𝑗̄
𝑥2𝑗

)︁(︂
𝑥2
𝑗̄

𝜕𝑥2
𝑗

𝜕𝑠𝑘
− 𝑥2𝑗

𝜕𝑥2
𝑗̄

𝜕𝑠𝑘

)︂
√︁∑︀

𝜇4𝑗

(︁∑︀
𝑥4𝑗

)︁3/2 . (18)
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Ограничение 𝐽(𝑠) на прямую. Понимание устройства 𝐽(𝑡) = 𝐽𝑐,𝑑(𝑡) = 𝐽(𝑠(𝑡)) на прямой
𝑠(𝑡) = 𝑐𝑡 + 𝑑 в пространстве параметров 𝐸(𝑠) позволит использовать полиномиальный спуск
(ПС) во всем объеме. Положим с учетом (16)

𝑥𝑗(𝑡) = 𝑥𝑗(𝑠(𝑡)) = 𝑥*𝑗 +𝐻𝑗(𝑠(𝑡)) = 𝑥*𝑗 +𝐻𝑗(𝑑) + 𝑡𝐻𝑗(𝑐).

Тогда

𝑥2𝑗 (𝑡) = (𝑥*𝑗 +𝐻𝑗(𝑑))2 + 2(𝑥*𝑗 +𝐻𝑗(𝑑))𝐻𝑗(𝑐)𝑡+ (𝐻𝑗(𝑐))
2𝑡2 =

= 𝐴𝑗𝑡
2 + 2𝐵𝑗𝑡+ 𝐶𝑗 ,

(19)

где
𝐴𝑗 = (𝐻𝑗(𝑐))

2; 𝐵𝑗 = (𝑥*𝑗 +𝐻𝑗(𝑑))𝐻𝑗(𝑐); 𝐶𝑗 = (𝑥*𝑗 +𝐻𝑗(𝑑))2.

Без двойки
𝜕𝑥2

𝑗

𝜕𝑡 = 𝐴𝑗𝑡+𝐵𝑗 . Формула для
𝜕𝐽
𝜕𝑡 аналогична (18):

𝜕𝐽

𝜕𝑡
=

∑︁
(𝑗,𝑗̄):𝑗 ̸=𝑗̄

(︁
𝜇2𝑗𝑥

2
𝑗̄
− 𝜇2

𝑗̄
𝑥2𝑗

)︁(︂
𝜕𝑥2

𝑗

𝜕𝑡 𝑥
2
𝑗̄
−

𝜕𝑥2
𝑗̄

𝜕𝑡 𝑥
2
𝑗

)︂
√︁∑︀

𝜇4𝑗

(︁∑︀
𝑥4𝑗

)︁3/2 . (20)

Первый член числителя в множителе (𝑗, 𝑗̄):

𝜇2𝑗𝑥
2
𝑗̄ = 𝜇2𝑗 (𝐴𝑗̄𝑡

2 + 2𝐵𝑗̄𝑡+ 𝐶𝑗̄) = 𝜇2𝑗𝐴𝑗̄𝑡
2 + 2𝜇2𝑗𝐵𝑗̄𝑡+ 𝜇2𝑗𝐶𝑗̄

𝜇2𝑗̄𝑥
2
𝑗 = 𝜇2𝑗̄ (𝐴𝑗𝑡

2 + 2𝐵𝑗𝑡+ 𝐶𝑗) = 𝜇2𝑗̄𝐴𝑗𝑡
2 + 2𝜇2𝑗̄𝐵𝑗𝑡+ 𝜇2𝑗̄𝐶𝑗

разность
(𝜇2𝑗𝐴𝑗̄ − 𝜇2𝑗̄𝐴𝑗)⏟  ⏞  

𝐷𝑗𝑗̄

𝑡2 + 2 (𝜇2𝑗𝐵𝑗̄ − 𝜇2𝑗̄𝐵𝑗)⏟  ⏞  
𝐸𝑗𝑗̄

𝑡+ (𝜇2𝑗𝐶𝑗̄ − 𝜇2𝑗̄𝐶𝑗)⏟  ⏞  
𝐹𝑗𝑗̄

𝑡2.

Таким образом, первый член в числителе (20) есть квадратный трехчлен

𝜇2𝑗𝑥
2
𝑗̄ − 𝜇

2
𝑗̄𝑥

2
𝑗 = 𝐷𝑗𝑗̄𝑡

2 + 𝐸𝑗𝑗̄𝑡+ 𝐹𝑗𝑗̄ .

Второй член числителя в множителе (𝑗, 𝑗̄):

𝜕𝑥2𝑗
𝜕𝑡

𝑥2𝑗̄ = (𝐴𝑗𝑡+𝐵𝑗)(𝐴𝑗̄𝑡
2 + 2𝐵𝑗̄𝑡+ 𝐶𝑗̄) =

= 𝐴𝑗𝐴𝑗̄𝑡
3 + (2𝐴𝑗𝐵𝑗̄ +𝐵𝑗𝐴𝑗̄)𝑡

2 + (𝐴𝑗𝐶𝑗̄ + 2𝐶𝑗𝐴𝑗̄)𝑡+𝐵𝑗𝐶𝑗̄

𝜕𝑥2
𝑗̄

𝜕𝑡
𝑥2𝑗 = (𝐴𝑗̄𝑡+𝐵𝑗̄)(𝐴𝑗𝑡

2 + 2𝐵𝑗𝑡+ 𝐶𝑗) =

= 𝐴𝑗̄𝐴𝑗𝑡
3 + (2𝐴𝑗̄𝐵𝑗 +𝐵𝑗̄𝐴𝑗)𝑡

2 + (𝐴𝑗̄𝐶𝑗 + 2𝐶𝑗̄𝐴𝑗)𝑡+𝐵𝑗̄𝐶𝑗 ,

разность

𝜕𝑥2𝑗
𝜕𝑡

𝑥2𝑗̄ −
𝜕𝑥2

𝑗̄

𝜕𝑡
𝑥2𝑗 = (𝐴𝑗𝐵𝑗̄ −𝐵𝑗𝐴𝑗̄)⏟  ⏞  

𝐾𝑗𝑗̄

𝑡2 + (𝐴𝑗𝐶𝑗̄ − 𝐶𝑗𝐴𝑗̄)⏟  ⏞  
𝐿𝑗𝑗̄

𝑡+ (𝐵𝑗𝐶𝑗̄ − 𝐶𝑗𝐵𝑗̄)⏟  ⏞  
𝑀𝑗𝑗̄

.

Таким образом, и второй член в числителе (20) квадратичен:

𝜕𝑥2𝑗
𝜕𝑡

𝑥2𝑗̄ −
𝜕𝑥2

𝑗̄

𝜕𝑡
𝑥2𝑗 = 𝐾𝑗𝑗̄𝑡

2 + 𝐿𝑗𝑗̄𝑡+𝑀𝑗𝑗̄ .
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Окончательная формула для числителя производной 𝜕𝐽
𝜕𝑡 :∑︁

(𝑗,𝑗̄):𝑗 ̸=𝑗̄

(︁
𝜇2𝑗𝑥

2
𝑗̄ − 𝜇

2
𝑗̄𝑥

2
𝑗

)︁(︃𝜕𝑥2𝑗
𝜕𝑡

𝑥2𝑗̄ −
𝜕𝑥2

𝑗̄

𝜕𝑡
𝑥2𝑗

)︃
=

=
∑︁

(𝑗,𝑗̄):𝑗 ̸=𝑗̄

(︀
𝐷𝑗𝑗̄𝑡

2 + 2𝐸𝑗𝑗̄𝑡+ 𝐹𝑗𝑗̄

)︀ (︀
𝐾𝑗𝑗̄𝑡

2 + 𝐿𝑗𝑗̄𝑡+𝑀𝑗𝑗̄

)︀
=

= 𝑡4
(︁∑︁

𝐷𝑗𝑗̄𝐾𝑗𝑗̄

)︁
+ 𝑡3

(︁
2
∑︁

𝐸𝑗𝑗̄𝐾𝑗𝑗̄ +
∑︁

𝐷𝑗𝑗̄𝐿𝑗𝑗̄

)︁
+

+ 𝑡2
(︁∑︁

𝐷𝑗𝑗̄𝑀𝑗𝑗̄ + 2
∑︁

𝐸𝑗𝑗̄𝐿𝑗𝑗̄ +
∑︁

𝐹𝑗𝑗̄𝐾𝑗𝑗̄

)︁
+

+ 𝑡
(︁

2
∑︁

𝐸𝑗𝑗̄𝑀𝑗𝑗̄ +
∑︁

𝐹𝑗𝑗̄𝐿𝑗𝑗̄

)︁
+
(︁∑︁

𝐹𝑗𝑗̄𝑀𝑗𝑗̄

)︁
.

Трактовка вторая 𝐸2
𝜇 состоит в квадратичной близости 𝑙1-нормирований векторов |𝑥и|2 и

|𝜇|2 и сводится к минимизации по 𝑠 функционала 𝐹 2
𝜇(𝑠):

𝐽(𝑠) = 𝐹 2
𝜇(𝑠) =

∑︁(︃
𝑥2𝑗 (𝑠)∑︀
𝑥2
𝑗̄
(𝑠)
−

𝜇2𝑗 (𝑠)∑︀
𝜇2
𝑗̄
(𝑠)

)︃2

−→ min . (21)

Положим

𝜈𝑗 = 𝜇𝑗

(︁∑︁
𝜇2𝑗̄

)︁−1

𝜙(𝑠) =
∑︁

𝑥2𝑗̄ (𝑠)

𝜙𝑗(𝑠) = 𝑥2𝑗 (𝑠)− 𝜈𝑗𝜙(𝑠)

так что 𝐽(𝑠) =
∑︁(︂

𝜙𝐽(𝑠)

𝜙(𝑠)

)︂2

.

(22)

Воспользуемся этим представлением 𝐽(𝑠) для нахождения его частных производных, опус-
кая двойки:

𝜕𝐽

𝜕𝑠𝑘
=
∑︁ 𝜕

𝜕𝑠𝑘

(︂
𝜙𝑗

𝜙

)︂2

𝜕

𝜕𝑠𝑘

(︂
𝜙𝑗

𝜙

)︂2

=
𝜙𝑗

𝜙

𝜕

𝜕𝑠𝑘

(︂
𝜙𝑗

𝜙

)︂
𝜕

𝜕𝑠𝑘

(︂
𝜙𝑗

𝜙

)︂
=
𝜙

𝜕𝜙𝑗

𝜕𝑠𝑘
− 𝜙𝑗

𝜕𝜙
𝜕𝑠𝑘

𝜙2
.

Преобразуем числитель:

𝜙

(︂
𝜕

𝜕𝑠𝑘
𝜙𝑗

)︂
− 𝜙𝑗

(︂
𝜕

𝜕𝑠𝑘
𝜙

)︂
= 𝜙

(︂
𝜕

𝜕𝑠𝑘
(𝑥2𝑗 − 𝜈𝑗𝜙)

)︂
− (𝑥2𝑗 − 𝜈𝑗𝜙)

(︂
𝜕𝜙

𝜕𝑠𝑘

)︂
=

= 𝜙
𝜕𝑥2𝑗
𝜕𝑠𝑘
− 𝜈𝑗

𝜕𝜙

𝜕𝑠𝑘
𝜙− 𝑥2𝑗

𝜕𝜙

𝜕𝑠𝑘
+ 𝜈𝑗𝜙

𝜕𝜙

𝜕𝑠𝑘
= 𝜙

𝜕𝑥2𝑗
𝜕𝑠𝑘
− 𝑥2𝑗

𝜕𝜙

𝜕𝑠𝑘
.

Окончательная формула для 𝜕𝐽
𝜕𝑠𝑘

через 𝜙𝑗 и 𝜙:

𝜕𝐽

𝜕𝑠𝑘
=

∑︀
𝜙𝑗

(︂
𝜙

𝜕𝑥2
𝑗

𝜕𝑠𝑘
− 𝑥2𝑗

𝜕𝜙
𝜕𝑠𝑘

)︂
𝜙3

. (23)

От этой формулы с учетом (22) недалеко и до аналога (А) для 𝜕𝐽
𝜕𝑠𝑘

в конструкции 𝐸2
𝜇.
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Ограничение 𝐽(𝑠) на прямую. В обозначениях разговора об этом в рамках конструкции
𝐸1

𝜇 (19) и с дополнительными обозначениями

𝐴 =
∑︁

𝐴𝑗̄ ; 𝐵 =
∑︁

𝐵𝑗̄ ; 𝐶 =
∑︁

𝐶𝑗̄

имеем (без двойки):

𝜙𝑗(𝑡) = (𝐴𝑗 − 𝜈𝑗𝐴)𝑡2 + (𝐵𝑗 − 𝜈𝑗𝐵)𝑡+ (𝐶𝑗 − 𝜈𝑗𝐶)

𝜙(𝑡)
𝜕

𝜕𝑡
𝑥2𝑗 − 𝑥2𝑗 (𝑡)

𝜕𝜙

𝜕𝑡
= (𝐴𝑡2 + 2𝐵𝑡+ 𝐶)(𝐴𝑗𝑡+𝐵𝑗)− (𝐴𝑗𝑡

2 + 2𝐵𝑗𝑡+ 𝐶𝑗)(𝐴𝑡+𝐵) =

= (𝐴𝑗𝐵 −𝐴𝐵𝑗)𝑡
2 + (𝐴𝑗𝐶 −𝐴𝐶𝑗)𝑡+ (𝐵𝑗𝐶 −𝐵𝐶𝑗)

Окончательно производная 𝜕𝐽
𝜕𝑡 аналогична (23)

𝜕𝐽

𝜕𝑡
=

∑︀
𝜙𝑗

(︂
𝜙

𝜕𝑥2
𝑗

𝜕𝑡 − 𝑥
2
𝑗
𝜕𝜙
𝜕𝑡

)︂
𝜙3

, (24)

а потому ее числитель, подобно конструкции 𝐸1
𝜇, имеет четвертую степень по 𝑡.

5. Примеры работы

Теоретические исследования, представленные в работе, выполнены в рамках проекта РНФ,
связанного с магнитометрией, поэтому их прикладную часть мы предваряем магнитным дай-
джестом.
Магнитный дайджест. Встанем на дипольную точку зрения, считая, что истинное распреде-

ление магнитных диполей 𝐷и
𝐽 =

{︁
𝐷и

𝑗 , 𝑗 ∈ 𝐽
}︁
сосредоточено в узлах 𝑗 некоторой трехмер-

ной сетки 𝐽 , состоящей из 𝑛 узлов, где 𝐷и
𝑗 – магнитный диполь с центром в 𝑗, а выход

𝑈(𝐼) = {𝑈(𝑖), 𝑖 ∈ 𝐼} распределения 𝐷и
𝐽 на поверхность измерен в узлах 𝑖 двумерной сетки

𝐼, состоящей из 𝑚 узлов.
Потенциал диполя 𝐷и

𝑗 в узле 𝑖 определяется его магнитным вектором (𝑥и𝑗 , 𝑦
и
𝑗 , 𝑧

и
𝑗 ) и обозна-

чается через 𝐷и
𝑗 (𝑖). Потенциал распределения 𝐷и

𝐽(𝑖) складывается из потенциалов 𝐷и
𝑗 (𝑖)

𝐷и
𝑗 (𝑖) =

(𝐷и
𝑗 , 𝑖− 𝑗)
‖𝑖− 𝑗‖3

и 𝐷и
𝐽(𝑖) =

∑︁
𝑗
𝐷и

𝑗 (𝑖).

Поиск распределения 𝐷и
𝑗 приводит к СЛАУ 𝐷и

𝐽(𝐼) = 𝑈(𝐼) из 𝑚 уравнений с 3𝑛 неизвест-
ными ∑︁

𝑗

𝑥𝑗(𝑖− 𝑗)𝑥 + 𝑦𝑗(𝑖− 𝑗)𝑦 + 𝑧𝑗(𝑖− 𝑗)𝑧
‖𝑖− 𝑗‖3

= 𝑈(𝑖),

𝑗 = 1, . . . , 𝑛; 𝑖 = 1, . . . ,𝑚.

(25)

Все примеры связаны с такой системой и иллюстрируют последовательно проекционный
метод, конструкции 𝐸1

𝑦 , 𝐸
3
𝑦 и 𝐸1

𝜇, а также алгоритмов полиномиальный градиентный спуск
(ПГС) и полиномиальный покоординатный спуск (ППС) на них.

Для этого мы задали аномалеобразующее тело, состоящее из 7×9 диполей, расположенных
равномерно в прямоугольнике размером 450× 900 м. При этом только в центральном прямо-
угольнике заданы магнитные диполи (рис. 7). Вне этого прямоугольника значения магнитных
диполей равны 0. В дальнейшем это распределение диполей (рис. 7) будем считать истинным
и обозначать через 𝑥и, а произвольное распределение через 𝑥.
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На рисунке 8 показан отклик от этого тела на профиле, представляющего собой 25 точек,
расположенных в интервале от -450 до 450 м на высоте 100 м.

Рис. 7: Истинное распределение 𝑥и

Рис. 8: Отклик на поверхности. Черными точками отмечены координаты профиля, на
котором задан отклик аномалеобразующего тела. Красными точками обозначена

горизонтальная составляющая, синими – вертикальная

Пример 2 посвящен ПМ и показывает, как выглядит параметризация 𝑥 = 𝑥* + 𝐻𝑠 при
разных 𝑠.

Примеры 3 и 4 посвящены конструкции 𝐸1
𝑦 : в первом случае 𝑦 = 0, а результат – решение,

минимальное по норме; во втором случае 𝑦 = 𝑥и и интерес представляет переход от частного
решения 𝑥* к истинному 𝑥и с помощью последовательной оптимизации 𝐹 3

𝑦 .
У каждого диполя 𝐷𝑗 = (𝑥𝑗 , 𝑦𝑗 , 𝑧𝑗) есть две характеристики: масса 𝑚(𝐷𝑗) = ‖𝐷𝑗‖ =

=
√︁
𝑥2𝑗 + 𝑦2𝑗 + 𝑧2𝑗 и ориентация 𝑒(𝐷𝑗) =

𝐷𝑗

‖𝐷𝑗‖ . С ними связаны примеры 5 и 6, в которых с

помощью конструкций 𝐸3
𝑦 и 𝐸1

𝜇 мы пытаемся восстановить решение 𝑥и по его ориентации
𝑒(𝑥и) = (𝑒(𝐷и

𝑗 ), 𝑗 ∈ 𝐽) и массе 𝑚(𝑥и) = (𝑚(𝐷и
𝑗 ), 𝑗 ∈ 𝐽).

Пример 2 (Проекционный метод). В этом примере показано, что множество
𝑥 = 𝑥*+𝐻𝑠 описывает многообразие решений системы (25). На рисунке 9 – частное решение,
полученное методом наименьших квадратов. На рисунках 10-12 – решения при различных 𝑠.
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Рис. 9: Частное решение 𝑥*, полученное, методом наименьших квадратов. Вектор 𝑠 равен 0.
‖𝐴𝑥* − 𝑏‖ = 5.734342𝑒−13

Рис. 10: Решение, полученное при помощи вектора 𝑠 равному нулю везде, кроме 45-ой
координаты. ‖𝐴𝑥− 𝑏‖ = 9.265617𝑒−13

Видно, что все решения на рисунках 9-12 имеют точность одного порядка.
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Рис. 11: Решение, полученное при помощи вектора 𝑠 равному нулю везде, кроме 60-ой
координаты. ‖𝐴𝑥− 𝑏‖ = 5.900362𝑒−13

Рис. 12: Решение, полученное при помощи вектора 𝑠 равному нулю везде, кроме 75-ой
координаты. ‖𝐴𝑥− 𝑏‖ = 6.359316𝑒−13

Пример 3 (𝐹 1
𝑦 ). Поиск решения с наименьшей нормой. На рисунке 13 показано частное

решение 𝑥* (4).
Для получения решения задачи в данной постановке использовался алгоритм ПГС, по-

требовалось 82 итерации. На рисунке 14 показано итоговое решение данного примера
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Рис. 13: Частное решение. ‖𝑥*‖ = 7.414610𝑒4

Рис. 14: Итоговое решение. ‖𝑥‖ = 1.5763745𝑒3

Пример 4 (𝐹 1
𝑦 ). Поиск решения, наиболее похожего на 𝑥и. На рисунке 15 показано част-

ное решение 𝑥* (4).
Для получения решения задачи в данной постановке использовался алгоритм ПГС, по-

требовалось 126 итераций. На рисунке 16 показано итоговое решение данного примера
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Рис. 15: Частное решение. ‖𝑥* − 𝑥и‖ = 7.363328𝑒4

Рис. 16: Итоговое решение. ‖𝑥− 𝑥и‖ = 1.978827𝑒−5

Пример 5 (𝐹 3
𝑦 ). В данном примере в качестве вектора 𝑦 будем использовать вектор{︁

|𝐷𝑗 |
‖𝐷𝑗‖ , 𝑗 = 1, . . . , 𝑛

}︁
(рис. 17)

Для получения решения использовался алгоритм ПГС, потребовалось 12 итераций. На
рисунке 19 показано итоговое решение данного примера. Голубые вектора имеют очень ма-
ленькую норму.
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Рис. 17: Целевой вектор 𝑦 данного примера

Рис. 18: Частное решение исходной задачи

Пример 6 (𝐹 1
𝜇). В данном примере показано применение трактовки 𝐸1

𝜇 к исходной задаче
(рис. 7 и 8). Поскольку в данной постановке ищется корреляция модулей на рисунке 20 пока-
зано целевые значения. В качестве вектора 𝑦 используем нормированное к единице исходное

распределение масс
{︁

𝑚𝐷𝑗∑︀
𝑚𝐷𝑗

, 𝑗 = 1, . . . , 𝑛
}︁
(рис. 21). Частное решение показано на рис. 22.
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Рис. 19: Итоговое решение

Рис. 20: Распределение модулей исходного магнитного поля (рис. 7)

Для получения решения использовался алгоритм ППС, потребовалось 64 итерации. На
рисунке 23 показано итоговое решение данного примера
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Рис. 21: Вектор 𝑦, с которым мы будем искать корреляцию целевого решения

Рис. 22: Распределение модулей частного решения (рис. 18)

6. Заключение

Проекционный метод (ПМ) и его параметризация (6) Открывают совершенно новые воз-
можности в использовании СЛАУ. В разговоре об этом воспользуемся аналогией с космосом.

ПМ выполняет три функции:

� телескопа ≡ крупно, но конструктивно, описывая многообразие (планету) Φ(𝐴, 𝑏) реше-
ний СЛАУ 𝐴𝑥 = 𝑏;

� космического корабля ≡ доставляя исследователя в точку частного решения 𝑥* на
Φ(𝐴, 𝑏);

� планетохода ≡ средства передвижения по Φ(𝐴, 𝑏) из 𝑥*, благодаря конструктивности (6),
согласно той или иной стратегии на параметр параметризации 𝑠.



Нечеткие линейные системы 39

Рис. 23: Итоговое решение

Рис. 24: Итоговое решение

Последняя зависит от цели путешествия. В нашем случае это конструкции 𝐸𝑦 и 𝐸𝜇, а их
техническое выражение – Полиномиальный Спуск (ПС) в виде алгоритмов ПГС и ППС.

Приведенные в работе сценарии изучения Φ(𝐴, 𝑏) фундаментальны, но просты. Из них
должны складываться путешествия с более сложными целями. Технически они должны пред-
ставлять собой соединение функционалов 𝐹𝑦 и 𝐹𝜇 с помощью тех или иных операций (разного
рода усреднений, операторов нечеткой логики и так далее [5]). Это представляется авторам
первым направлением дальнейших исследований.

Второе направление связано с решением важных, но более проблемно ориентированных
задач. Так, в магнитном случае значительный интерес представляют обратные задачи с из-
мерениями на поверхности 𝐼 не самого поля 𝑈 , а его модуля |𝑈(𝐼)|. Исследования авторов
показывают, что эта задача может быть решена полиномиальным спуском 3-ей степени.

Третье направление возможных исследований связано с предположением о наличии топо-
логической структуры на множестве индексов 𝐽 переменной 𝑥 = (𝑥𝑗 , 𝑗 ∈ 𝐽) СЛАУ Φ(𝐴, 𝑏). В
этом случае исследование ДМА по дискретным функциям [6, 8, 7, 9, 10] позволяет построить
новые суждения 𝐸(𝑥и) относительно истинного решения 𝑥и.
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Работа выполнена в рамках гранта РНФ 24-17-00346 «Определение пространственно-
временной структуры магнитного поля Земли в окрестностях геомагнитных обсерваторий РФ
с применением БПЛА».

СПИСОК ЦИТИРОВАННОЙ ЛИТЕРАТУРЫ

1. Агаян С.М., Богоутдинов Ш.Р., Булычев А.А., Соловьев А.А., Фирсов И.А. Проекци-
онный метод решения систем линейных уравнений и его применение в гравиметрии //
Доклады Российской Академии Наук. Науки о Земле. 2020. Vol. 493, №1. P. 58–62.

2. Agayan S., Bogoutdinov Sh., Firsov I. Solving Inverse Magnetometry Problems Using Fuzzy
Logic // Russian Journal of Earth Sciences. 2024. Vol. 24, №4.

3. С.М. Агаян, Ш.Р. Богоутдинов, А.А. Соловьев, Б.А. Дзебоев, Б.В. Дзеранов, М.Н. Доб-
ровольский. Методы нечеткой математики для комплексного анализа геофизических дан-
ных // Физика Земли. 2025. №5. P. 3–26.

4. Колмогоров А.Н., Фомин С.В. Элементы теории функций и функционального анализа //
Физматлит. 2009. P. 572. 2025. №5. P. 3–26.

5. Аверкин А.Н., Батыршин И. З., Блишун А.Ф., Силов В.Б., Тарасов В.Б. Нечеткие мно-
жества в моделях управления и искусственного интеллекта // Наука, Москва. 1986. P.
312.

6. Агаян С.М., Камаев Д.А., Богоутдинов Ш.Р., Павельев А.С. Гравитационное сглажи-
вание временных рядов (спектральные свойства) // Чебышевcкий сборник. 2018. Vol. 19,
№4. P. 11–25.

7. Гвишиани А.Д., Агаян С.М., Богоутдинов Ш.Р. Исследование систем действительных
функций на двумерных сетках с использованием нечетких множеств // Чебышевcкий
сборник. 2019. Vol. 20, №1. P. 94–111.

8. Агаян С.М., Богоутдинов Ш.Р., Камаев Д.А., Добровольский М.Н. Стохастические трен-
ды на основе нечеткой математики // Чебышевcкий сборник. 2019. Vol. 20, №3. P. 92–106.

9. Агаян С.М., Богоутдинов Ш.Р., Добровольский М.Н., Иванченко О.В., Камаев Д.А. Ре-
грессионное дифференцирование и регрессионное интегрирование конечных рядов // Че-
бышевcкий сборник. 2021. Vol. 22, №2. P. 27–47.

10. Агаян С.М., Богоутдинов Ш.Р., Камаев Д.А., Дзебоев Б.А., Добровольский М.Н. Рас-
познавание аномалий на записях с помощью нечеткой логики // Чебышевcкий сборник.
2025. Vol. 26, №3. P. 6–43.

REFERENCES

1. Agayan S.M., Bogoutdinov Sh.R., Bulychev A.A., Soloviev A.A., Firsov I. A. 2020, “Projection
Method for Solving Systems of Linear Equations and its Application in Gravimetry”, Reports
of the Russian Academy of Sciences. Earth Sciences, vol. 493, no. 1, pp. 58–62.

2. Agayan S., Bogoutdinov Sh., Firsov I. 2024, “Solving Inverse Magnetometry Problems Using
Fuzzy Logic”, Russian Journal of Earth Sciences, vol. 24, no. 4.



Нечеткие линейные системы 41

3. Agayan, S.M., Bogoutdinov, Sh.R., Soloviev, A.A., Dzeboev, B.A., Dzeranov, B.V.,
Dobrovolsky, M.N. 2025, “Fuzzy Mathematics Methods for Comprehensive Analysis of Geo-
physical Data”, Physics of the Earth, vol. 493, no. 5, pp. 3–26.

4. Kolmogorov A.N., Fomin S.V. 2009, “Elements of the theory of functions and functional
analysis”, Fizmatlit, 572 p.

5. Averkin A.N., Batyrshin I. Z., Blishun A. F., Silov V.B., Tarasov V.B. 1986, “Fuzzy sets in
control models and artificial intelligence”, Nauka, Moscow, 312 p.

6. Agayan S.M., Kamaev D.A., Bogoutdinov Sh.R., Pavel’ev A. S. 2018, “Gravity smoothing of
time series (spectral properties)”, Chebyshevsky sbornik, vol. 19, no. 4, pp. 11–25.

7. Gvishiani A.D., Agayan S.M., Bogoutdinov Sh.R. 2019, “Study of systems of real functions on
two-dimensional grids using fuzzy sets”, Chebyshevsky sbornik, vol. 20, no. 1, pp. 94–111.

8. Agayan S.M., Bogoutdinov Sh.R., Kamaev D.A., Dobrovolsky M.N. 2019, “Stochastic trends
based on fuzzy mathematics”, Chebyshevsky sbornik, vol. 20, no. 3, pp. 92–106.

9. Agayan S.M., Bogoutdinov Sh.R., Dobrovolsky M.N., Ivanchenko O.V., Kamaev D.A. 2021,
“Regression differentiation and regression integration of finite series”, Chebyshevsky sbornik, vol.
22, no. 3, pp. 27–47.

10. Agayan S.M., Bogoutdinov Sh.R., Kamaev D.A., Dzeboev B.A., Dobrovolsky M.N. 2025,
“Recognition of anomalies in recordings using fuzzy logic”, Chebyshevsky sbornik, vol. 26, no. 3,
pp. 6–43.

Получено: 18.07.2025
Принято в печать: 08.12.2025


