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Аннотация

В статье доказываются оценки зависимостей между средним кластерным коэффициен-
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альной центральностью и проводится подсчет этих центральностей для 3-х бесконечных
серий классических графов.
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1. Введение

Бонакич в статье [1] ввел понятие центральностей, как локальных (по отношению к вер-
шине) или глобальных (по отношению ко всему графу) характеристик графов. Известно мно-
жество различных центральностей: локальная эффективность, радиальная центральность,
максимальная центральность клики, центральность по близости, центральность по посред-
ничеству, центральность напряжения и др. Анализ центральностей в графах используется
для нахождения скрытых характеристик в “реальных” — прикладных задачах [2]–[6]. Одной
из таких важнейших центральностей являтеся кластерный коэффициент, который отличает
сети, встречающиеся в “реальных” задачах (сети малого мира), от случайно сгенерированных
сетей [7].

Известно два определения кластерного коэффициента: средний кластерный коэффициент,
или коэффициент Уоттса –Строгаца [7] и глобальный кластерный коэффициент [8]. На при-
мере графов-мельниц было показано [9], что в пределе средний кластерный коэффициент и
глобальный кластерный имеют разную асимптотику при увеличении числа вершин графа, а
именно, средний кластерный коэффициент стремится к 1, а глобальный кластерный коэф-
фициент — к 0. В данной статье приводится посчет этих коэффициентов также для графов
колес [10]–[12] и вложенных треугольников [13]–[14]. Для этих классических графов и для мно-
гих других оказывается, что средний кластерный коэффициент больше глобального кластер-
ного коэффициента. В данной статье доказывается теорема об обратной оценке и приводится
серия графов, для которых средний кластерный коэффициент меньше глобального кластер-
ного коэффициента. Также доказываются теоремы о зависимости между средним класетрным
коэффициентом и другими центральностями, а также эти центральности считаются для этих
3-х серий классических графов, включая графы-мельницы.

В данной статье уточняется теорема, полученная в [15], о зависимости между средним
кластерным коэффициентом и радиальной центральностью для случая радиальной централь-
ности, определенной на замкнутой окрестности вершины.

2. Основные определения.

Все последующие определения даются для простого неориентированного графа 𝐺 без ви-
сячих вершин. Также их можно расширить для простого графа с висячими вершинами, если
во всех определениях функций, где (степень вершины −1) участвует в знаменателе, доопреде-
лить эти функции равными 0 для случая, когда степень вершины равна 1, но в данной статье
это будет опущено для краткости.

Введем необходимые обозначения. Обозначим через

� 𝑉 (𝐺) множество вершин графа, 𝐸(𝐺) множество ребер графа, 𝐴 = {𝑎𝑖𝑗} матрицу
смежности графа 𝐺,

� 𝑁(𝑣) множество вершин, смежных с вершиной 𝑣,

� 𝑁 ′(𝑣) индуцированный подграф в графе 𝐺 на вершинах 𝑉
(︀
𝑁(𝑣)

)︀⋃︀
{𝑣},

� 𝑓(𝑥1, 𝑥2, ..., 𝑥𝑘), для любой функции 𝑓 : 𝑉 ×𝑉 × ...×𝑉 → R ограничение этой функции на
подграф 𝑁 ′(𝑣) (например 𝐿̄(𝑥, 𝑦) — среднее кратчайшее расстояние между вершинами
𝑥 и 𝑦 в подграфе 𝑁 ′(𝑣)),

� 𝑑𝑖 = deg(𝑣𝑖),

� 𝑛 = ‖𝑉 (𝐺)‖, 𝑚 = ‖𝐸(𝐺)‖,
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� 𝑋(𝑖) = 𝑋(𝑣𝑖) для любого 𝑋 — функции или множества, соответствующего вершине 𝑣𝑖.

Дадим определения центральностей.

(1) Диаметр графа diam(𝐺) = max𝑠,𝑡∈𝑉 (𝐺) dist(𝑠, 𝑡).

(2) Длина среднего кратчайшего пути в графе 𝐿(𝐺) = 1
𝑛(𝑛−1)

∑︀
𝑠,𝑡∈𝑉 (𝐺), 𝑠 ̸=𝑡

dist(𝑠, 𝑡).

(3) Локальный кластерный коэффициент

𝑐𝑖 = 𝑐(𝑖) = число ребер в подграфе 𝑁(𝑖)
максимально возможное число ребер в подграфе 𝑁(𝑖) =

2‖𝐸(𝑁(𝑖)))‖
𝑑𝑖(𝑑𝑖−1) .

(4) Средний кластерный коэффициент графа

𝐶𝑊𝑆(𝐺) =
1
𝑛

∑︀
𝑖∈𝑉 (𝐺)

𝑐𝑖 =
1
𝑛

∑︀
𝑖∈𝑉 (𝐺)

2‖𝐸(𝑁(𝑖)))‖
𝑑𝑖(𝑑𝑖−1) = 1

𝑛

∑︀
𝑖∈𝑉 (𝐺)

∑︀
𝑗,𝑘∈𝑉 (𝐺)

𝑎𝑖𝑗𝑎𝑗𝑘𝑎𝑘𝑖

𝑑𝑖(𝑑𝑖−1) .

(5) Глобальный кластерный коэффициент графа

𝐶(𝐺) = число замкнутых триплетов в графе 𝐺
число всех триплетов в 𝐺 =

∑︀
𝑖,𝑗,𝑘∈𝑉 (𝐺)

𝑎𝑖𝑗𝑎𝑗𝑘𝑎𝑘𝑖∑︀
𝑖∈𝑉 (𝐺)

𝑑𝑖(𝑑𝑖−1) .

(6) Центральности по посреднечеству BC(𝑖) =
∑︀

𝑠,𝑡∈𝑉 (𝐺), 𝑠 ̸=𝑡̸=𝑖

𝜎𝑠𝑡(𝑖)
𝜎𝑠𝑡

, где 𝜎𝑠𝑡 — число крат-

чайших путей из вершины 𝑠 в 𝑡, и 𝜎𝑠𝑡(𝑖) — число кратчайших путей из 𝑠 в 𝑡 через вершину
𝑖.

(7) Центральность по близости Clo(𝑣) = 𝑛−1∑︀
𝑡∈𝑉 (𝐺)

dist(𝑣,𝑡) .

(8) Радиальная центральность Rad(𝑣) =

∑︀
𝑡∈𝑉 (𝐺),𝑡̸=𝑣

(diam(𝐺)+1−dist(𝑣,𝑡))

𝑛−1 .

(9) Центральность напряжения Str(𝑖) =
∑︀

𝑠,𝑡∈𝑉 (𝐺), 𝑠 ̸=𝑡̸=𝑖
𝜎𝑠𝑡(𝑖), где 𝜎𝑠𝑡(𝑖) — число кратчай-

ших путей из 𝑠 в 𝑡 через вершину 𝑖.

Заметим, что все центральности неотрицательные, а также все кластерные коэффициенты
𝑐𝑖, 𝐶𝑊𝑆 , 𝐶(𝐺) меньше либо равны 1.

Для сравенения среднего кластерного коэффицента и других центральностей, определим
“локальные” средний кратчайший путь, центральность по посредничеству и радиальную цен-
тральность следующим образом. Обозначим через

(1) 𝐿
(︀
𝑁(𝑖)

)︀
= 1

𝑑𝑖(𝑑𝑖−1)

∑︀
𝑣,𝑤∈𝑁(𝑖)

dist(𝑣, 𝑤) — среднее кратчайшее расcтояние для вершин

окрестности 𝑁(𝑖), где кратчайшее расстояние определено в объемлющем графе 𝐺,

(2) 𝐵𝐶(𝑖,𝑁(𝑖)) =
∑︀

𝑠,𝑡∈𝑁(𝑖), 𝑠 ̸=𝑡

𝜎𝑠𝑡(𝑖)
𝜎𝑠𝑡

— центральность по посредничеству для вершин окрест-

ности 𝑁(𝑖), где кратчайшие расстояния рассматриваются по отношению к объемлющему
графу 𝐺,

(3) Rad(𝑣,𝑁(𝑖)) =

∑︀
𝑡∈𝑁(𝑖),𝑡̸=𝑣

(︀
diam(𝑁(𝑖))+1−dist(𝑣,𝑡)

)︀
𝑑𝑖−1 — радиальную центральность для вершин

окрестности 𝑣 ∈ 𝑁(𝑖), где кратчайшее расстояние и диаметр определены в объемлющем
графе 𝐺.
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3. Три серии классических графов.

Посчитаем центральности для 3-х бесконечных серий графов:

(1) Графы-мельницы.
Графом-мельницей 𝑊 (𝑛, 𝑘) называется граф, полученный из 𝑛 копий полного графа 𝐾𝑘

и одной центральной вершины, которая смежна с каждой этих графов (см. рисунок 1).

Рис. 1: Граф-мельница 𝑊 (3, 5).

Для такого графа ввиду симметрии для каждой нецентральной вершины все централь-
ности будут одинаковы. Посчитаем основные из них:

(a) diam(𝑊 (𝑛, 𝑘)) = 2,

(b) Число кратчайших путей, проходящих через центральную вершину, с началом в
любой другой равно (𝑛−1)𝑘, а также между любыми двумя вершинами существует
единственный кратчайший путь, поэтому

𝐵𝐶(𝑖,𝑁(𝑖)) = Str(𝑖) =

{︃
𝑛(𝑛− 1)𝑘2 если 𝑖 центральная вершина,

0 в ост.

(c) 𝑐𝑖 =

{︃
𝑘−1
𝑛𝑘−1 если 𝑖 центральная вершина,

1 в ост.

(d) Расстояние между вершинами внутри одного полного графа равно 1, а между вер-
шинами в разных полных графах равно 2, поэтому для центральной вершины 𝑖 ло-
кальное среднее кратчайшее расcтояние 𝐿(𝑁(𝑖))= 𝑛𝑘(1·(𝑘−1)+2·(𝑛−1)𝑘)

𝑛𝑘(𝑛𝑘−1) = 𝑘−1+2𝑛𝑘−2𝑘
𝑛𝑘−1 =

= 2𝑛𝑘−𝑘−1
𝑛𝑘−1 , поэтому

𝐿(𝑁(𝑖)) =

{︃
2𝑛𝑘−𝑘−1
𝑛𝑘−1 если 𝑖 центральная вершина,

1 в ост.

(e) Clo(𝑖) =

{︃
1 если 𝑖 центральная вершина,

𝑛𝑘
2𝑛𝑘−𝑘−1+1 = 𝑛

2𝑛−1 в ост.

(f) Rad(𝑣) = diam(𝐺) + 1− 1
Clo(𝑣) =

{︃
2 если 𝑣 центральная вершина,

3− 2𝑛−1
𝑛 = 𝑛+1

𝑛 в ост.
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(g) Если 𝑖 центральная вершина, то диаметр𝑁(𝑖) определенный по отношению ко всему
графу равен diam(𝑁 ′(𝑖)) = 2, поэтому

𝑅𝑎𝑑(𝑣,𝑁(𝑖)) =

{︃
3− 2𝑛𝑘−𝑘−1

𝑛𝑘−1 = 1 + 𝑘−1
𝑛𝑘−1 если 𝑖 центральная вершина,

1 в ост.

(h) Если 𝑖 центральная вершина, 𝑁 ′(𝑖) =𝑊 (𝑛, 𝑘), поэтому

𝑅𝑎𝑑(𝑣) =

{︃
Rad(𝑣) если 𝑖 центральная вершина,

1 в ост.

(2) Графы колеса.

Графом колеса𝑊 (𝑘) называется граф, полученный из кольца 𝑘 ≥ 5 вершин добавлением
центральной вершины, смежной с каждой из этих вершин (см. рисунок 2).

Рис. 2: Граф колеса 𝑊 (𝑘).

Для такого графа также ввиду симметрии для всех нецентральных вершин все централь-
ности будут одинаковы. Посчитаем их для графа колеса:

(a) diam(𝑊 (𝑘)) = 2,

(b) Число кратчайших путей, проходящих через центральную вершину, с началом в
любой другой равно 𝑘 − 3 (ко всем, кроме соседних). Также между вершинами
кольца через одну существует 1 кратчайший путь в одну сторону и один в обратную,
поэтому

Str(𝑖) =

{︃
𝑘(𝑘 − 3) если 𝑖 центральная вершина,

2 в ост.

(c) 𝑐𝑖 =

{︃
2

𝑘−3 если 𝑖 центральная вершина,
1
3 в ост.

(d) Для центральной вершины 𝑖,𝐵𝐶(𝑖,𝑁(𝑖))=
∑︀

𝑠,𝑡∈𝑁(𝑖),𝑠 ̸=𝑡

𝜎𝑠𝑡(𝑖)
𝜎𝑠𝑡

=
∑︀

𝑡∈𝑁(𝑖)

2·0+2· 12+1·(𝑘−5)=

= 𝑘(𝑘 − 4). Для нецентральной вершины 𝑁(𝑖) является не замкнутым триплетом и
между нецентральными существует 2 кратчайших пути в 𝑊 (𝑘), поэтому

𝐵𝐶(𝑖,𝑁(𝑖)) =

{︃
𝑘(𝑘 − 4) если 𝑖 центральная вершина,

1 в ост.
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(e) Расстояние между нецентральными вершинами равно 1 (для смежных) и 2 для
остальных, среднее кратчайшее расcтояние

𝐿(𝑁(𝑖)) =

{︃
𝑘(1·2+2·(𝑘−3))

𝑘(𝑘−1) = 2𝑘−4
𝑘−1 если 𝑖 центральная вершина,

1
6(2 · 2 + 1 · 4) = 4

3 в ост.

(f) Clo(𝑖) =

{︃
1 если 𝑖 центральная вершина,

𝑘
2𝑘−4+1 = 𝑘

2𝑘−3 в ост.

(g) Rad(𝑣) =

{︃
2 если 𝑣 центральная вершина,

3− 2𝑘−3
𝑘 = 𝑘+3

𝑘 в ост.

(h) Диаметр 𝑁(𝑖) определенный по отношению ко всему графу равен diam(𝑁 ′(𝑖)) = 2
для любой 𝑖, поэтому

𝑅𝑎𝑑(𝑣,𝑁(𝑖)) =

{︃
3− 2𝑘−4

𝑘−1 = 1 + 2
𝑘−1 если 𝑖 центральная вершина,

3
2 либо 2 в ост.

(i) Если 𝑖 центральная вершина, 𝑁 ′(𝑖) =𝑊 (𝑘), поэтому

𝑅𝑎𝑑(𝑣) =

{︃
Rad(𝑣) если 𝑖 центральная вершина,
5
3 либо 2 в ост.

(3) Графы вложенных треугольников.

Графом вложенных треугольников 𝑇 (𝑛) называется граф, полученный из 𝑛 вложенных
треугольников вершины которых соединяются с соответствующими вершинами после-
дующего треугольника (см. рисунок 3).

Рис. 3: Граф вложенных треугольников 𝑇 (𝑛).

Для такого графа также ввиду симметрии для всех вершин одного треугольника все
центральности будут одинаковы. Нам эта серия понадобится для сравения кластерных
коэффициентов, поэтому посчитаем только их

(a) diam(𝑇 (𝑛)) = 𝑛,

(b) 𝑐𝑖 =

{︃
1
3 для вершин 𝑖 1-го и 𝑛-го треугольников,
1
6 в ост.

(c) 𝐶
(︀
𝑇 (𝑛)

)︀
= 6

1
2
(36+36𝑛)

= 1
3(𝑛+1) ,

(d) 𝐶𝑊𝑆

(︀
𝑇 (𝑛)

)︀
= 1

3(𝑛+2)

(︁
6 1

3 + 3𝑛 1
6

)︁
= 𝑛+4

6(𝑛+2) .
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4. Cредний кластерный коэффициент и глобальный кластерный

коэффициент.

Сравним средний кластерный коэффициент и глобальный кластерный коэффициент для
этих 3-х серий.

(1) Для графов-мельниц в статье [9] доказывается, что lim
𝑛→∞

𝐶𝑊𝑆

(︀
𝑊 (𝑛, 𝑘)

)︀
= 1,

lim
𝑛→∞

𝐶
(︀
𝑊 (𝑛, 𝑘)

)︀
= 0. Покажем также, что 𝐶𝑊𝑆

(︀
𝑊 (𝑛, 𝑘)

)︀
> 𝐶

(︀
𝑊 (𝑛, 𝑘)

)︀
. Сравним эти

коэффициенты:

𝐶𝑊𝑆

(︀
𝑊 (𝑛, 𝑘)

)︀
∨ 𝐶

(︀
𝑊 (𝑛, 𝑘)

)︀
3𝑛
(︀𝑘(𝑘−1)

2 + 𝑘(𝑘−1)(𝑘−2)
6

)︀
1
2

(︀
𝑛𝑘2(𝑘 − 1) + 𝑛𝑘(𝑛𝑘 − 1)

)︀ =
𝑘 − 1 + 𝑛2𝑘2 − 𝑛𝑘

𝑛2𝑘2 − 1
∨ 1

𝑛𝑘 + 1
(
𝑘 − 1

𝑛𝑘 − 1
+ 𝑛𝑘) =

𝑘2 − 1

𝑘2 − 𝑘 + 𝑛𝑘 − 1

𝑘3𝑛3 − 𝑘3𝑛2 − 𝑘3𝑛− 𝑘2𝑛2 + 2𝑘2𝑛+ 𝑘3 − 𝑘2 ∨ 0

𝑘2(𝑛− 1)2
(︀
𝑘(𝑛− 1)− 1

)︀
∨ 0

Для 𝑛 ≥ 2 и 𝑘 ≥ 2:𝑘2(𝑛−1)2
(︀
𝑘(𝑛−1)−1

)︀
>0. Следовательно, 𝐶𝑊𝑆

(︀
𝑊 (𝑛, 𝑘)

)︀
>𝐶

(︀
𝑊 (𝑛, 𝑘)

)︀
.

(2) Для графов колес глобальный кластерный коэффициент 𝐶
(︀
𝑊 (𝑘)

)︀
= 3𝑘

1
2

(︀
6𝑘+𝑘(𝑘−1)

)︀ = 6
𝑘+5 ,

и средний кластерный коэффициент 𝐶𝑊𝑆

(︀
𝑊 (𝑘)

)︀
= 1

𝑘+1

(︀
2𝑛

𝑘(𝑘−1) +
2
3𝑘
)︀
= 2(𝑘2−𝑘+3)

3(𝑘2−1)
, следо-

вательно lim
𝑘→∞

𝐶𝑊𝑆

(︀
𝑊 (𝑘)

)︀
= 2

3 , lim
𝑘→∞

𝐶
(︀
𝑊 (𝑘)

)︀
= 0. Сравним эти коэффициенты:

𝐶𝑊𝑆

(︀
𝑊 (𝑘)

)︀
∨ 𝐶

(︀
𝑊 (𝑘)

)︀
,

2(𝑘2 − 𝑘 + 3)

3(𝑘2 − 1)
∨ 6

𝑘 + 5
,

𝑘3 − 5𝑘2 − 2𝑘 + 24 ∨ 0

(𝑘2 − 𝑘 + 3)(𝑘 + 5) ∨ 9(𝑘2 − 1)

(𝑘 + 2)(𝑘 − 3)(𝑘 − 4) > 0

Поэтому 𝐶𝑊𝑆

(︀
𝑊 (𝑘)

)︀
> 𝐶

(︀
𝑊 (𝑘)

)︀
.

(3) Для графов вложенных треугольников lim
𝑛→∞

𝐶𝑊𝑆

(︀
𝑇 (𝑛)

)︀
= 1

6 , lim
𝑛→∞

𝐶
(︀
𝑇 (𝑛)

)︀
= 0. Сравним

эти коэффициенты:
𝐶𝑊𝑆

(︀
𝑇 (𝑛)

)︀
∨ 𝐶

(︀
𝑇 (𝑛)

)︀
𝑛2 + 5𝑛+ 4 ∨ 2𝑛+ 4

𝑛(𝑛+ 3) > 0

Поэтому, 𝐶𝑊𝑆

(︀
𝑇 (𝑛)

)︀
> 𝐶

(︀
𝑇 (𝑛)

)︀
.

Мы видим, что для классических графов мельниц, колес, вложенных треугольников и
многих других графов 𝐶𝑊𝑆

(︀
𝐺
)︀
> 𝐶

(︀
𝐺
)︀
. Докажем, теорему о том, когда выполняется обратное

неравенство
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Теорема 1. Если в графе 𝐺 выполнено ∀𝑖 ≤ 𝑗 : 𝑑𝑖 ≤ 𝑑𝑗 ⇒ 𝑐𝑖 ≤ 𝑐𝑗, то

𝐶𝑊𝑆(𝐺) ≤ 𝐶(𝐺).

Доказательство. Перенумеруем вершины в графе так, что ∀𝑖 ≤ 𝑗 : 𝑑𝑖 ≤ 𝑑𝑗 . Заметим, что

𝑐𝑖 =

∑︀
𝑗,𝑘∈𝑉 (𝐺)

𝑎𝑖𝑗𝑎𝑗𝑘𝑎𝑘𝑖

𝑑𝑖(𝑑𝑖 − 1)
, 𝐶(𝐺) =

∑︀
𝑖,𝑗,𝑘∈𝑉 (𝐺)

𝑎𝑖𝑗𝑎𝑗𝑘𝑎𝑘𝑖∑︀
𝑖∈𝑉 (𝐺)

𝑑𝑖(𝑑𝑖 − 1)
.

Действительно,

𝑎𝑖𝑗𝑎𝑗𝑘𝑎𝑘𝑖 =

{︃
1 если между вершинами 𝑗 и 𝑘, смежными с вершиной 𝑖, есть ребро,

0 в ост.

Следовательно,

𝐶𝑊𝑆(𝐺) =
1

𝑛

∑︁
𝑖∈𝑉 (𝐺)

∑︀
𝑗,𝑘∈𝑉 (𝐺)

𝑎𝑖𝑗𝑎𝑗𝑘𝑎𝑘𝑖

𝑑𝑖(𝑑𝑖 − 1)
.

Обозначим 𝑥𝑖 = 𝑑𝑖(𝑑𝑖−1). Так как ‖𝐸(𝑁(𝑖))‖ = 1
2

∑︀
𝑗,𝑘∈𝑉 (𝐺)

𝑎𝑖𝑗𝑎𝑗𝑘𝑎𝑘𝑖 и максимальное число ребер

в подграфе 𝑁(𝑖) равно 𝑑𝑖(𝑑𝑖−1)
2 , то 𝑥𝑖 ≥ 2, 0 ≤ 𝑐𝑖 ≤ 1. Тогда, используя неравенство Чебышёва

(𝑑𝑖 ≤ 𝑑𝑗 ⇒ 𝑥𝑖 ≤ 𝑥𝑗 и 𝑐𝑖 ≤ 𝑐𝑗):

1

𝑛

∑︁
𝑖∈𝑉 (𝐺)

𝑥𝑖 𝐶𝑊𝑆(𝐺) = (
1

𝑛

∑︁
𝑖∈𝑉 (𝐺)

𝑥𝑖)(
1

𝑛

∑︁
𝑖∈𝑉 (𝐺)

𝑐𝑖) ≤
1

𝑛

∑︁
𝑖∈𝑉 (𝐺)

𝑥𝑖𝑐𝑖 =
1

𝑛

∑︁
𝑖,𝑗,𝑘∈𝑉 (𝐺)

𝑎𝑖𝑗𝑎𝑗𝑘𝑎𝑘𝑖.

Следовательно,

𝐶𝑊𝑆(𝐺) ≤

∑︀
𝑖,𝑗,𝑘∈𝑉 (𝐺)

𝑎𝑖𝑗𝑎𝑗𝑘𝑎𝑘𝑖∑︀
𝑖∈𝑉 (𝐺)

𝑑𝑖(𝑑𝑖 − 1)
= 𝐶(𝐺).

Равенство достигается, когда ∀𝑖, 𝑗 ∈ 𝑉 (𝐺) : 𝑑𝑖 = 𝑑𝑗 , то есть для графа, у которого все степени
вершин равны (регулярного графа). Если же существуют 𝑖, 𝑗 : 𝑑𝑖 < 𝑑𝑗 и 𝑐𝑖 < 𝑐𝑗 , то неравенство
будет строгим. 2

С помощью этой теоремы легко строится пример серий графов, когда для которых
𝐶𝑊𝑆(𝐺) < 𝐶(𝐺). Рассмотрим два таких примера:

(1) возьмем полный граф 𝐾𝑛 и подклеим к 𝑛 его ребрам цикл длины 4,

(2) возьмем полный граф 𝐾𝑛 и подклеим к каждой его вершине цикл длины 4.

Для таких графов выполнено 𝑑𝑖 > 2 и 𝑐𝑖 > 0, если 𝑖 — вершина полного графа, 𝑑𝑖 = 2, 𝑐𝑖 = 0
для остальных вершин. Следовательно, по предыдущей теореме 𝐶𝑊𝑆(𝐺) < 𝐶(𝐺).

Следствие 1. Если в графе 𝐺 выполнено ∀𝑖 ≤ 𝑗 : 𝑑𝑖 ≤ 𝑑𝑗 ⇒ 𝑐𝑖 ≥ 𝑐𝑗, то

𝐶𝑊𝑆(𝐺) ≥ 𝐶(𝐺).

Доказательство такое же, как и в предыдущей теореме.
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5. Зависимости между остальными центральностями.

Докажем теорему о связи среднего кластерного коэффициента и центральности напряже-
ния.

Теорема 2.

𝐶𝑊𝑆(𝐺) ≥
1

𝑛

∑︁
𝑖∈𝑉 (𝐺)

(︁
1− Str(𝑖)

𝑑𝑖(𝑑𝑖 − 1)

)︁
.

Доказательство. Заметим, что ∀𝑗, 𝑘 ∈ 𝑁(𝑖) : (𝑗, 𝑘) /∈ 𝐸(𝑁(𝑖)) кратчайшее расстояние между
𝑗 и 𝑘 — это 𝑗 → 𝑖→ 𝑘. Тогда,

Str(𝑖) ≥ 2
(︁𝑑𝑖(𝑑𝑖 − 1)

2
− ‖𝐸(𝑁(𝑖))‖

)︁
,

1

𝑑𝑖(𝑑𝑖 − 1)
Str(𝑖) ≥ 1− 𝑐𝑖,

Усреднением по 𝑖 получаем:

𝐶𝑊𝑆(𝐺) ≥
1

𝑛

∑︁
𝑖∈𝑉 (𝐺)

(︁
1− Str(𝑖)

𝑑𝑖(𝑑𝑖 − 1)

)︁
.

Заметим, что равенство достигается, если diam(𝐺) = 2. 2

Пример 8. Для графов-мельниц и графов колес diam(𝐺) = 2, поэтому 𝐶𝑊𝑆(𝐺) =

= 1
𝑛

∑︀
𝑖∈𝑉 (𝐺)

(︁
1− Str(𝑖)

𝑑𝑖(𝑑𝑖−1)

)︁
, а также 𝑆𝑡𝑟(𝑖) = 𝑑𝑖(𝑑𝑖 − 1)(1− 𝑐𝑖).

Действительно 1
𝑛𝑘+1

(︁
1 − 𝑛(𝑛−1)𝑘2

𝑛𝑘(𝑛𝑘−1) + 𝑛𝑘
)︁

= 𝑛𝑘−1−(𝑛−1)𝑘+𝑛2𝑘2−𝑛𝑘
𝑛2𝑘2−1

= 𝑘−1+𝑛2𝑘2−𝑛𝑘
𝑛2𝑘2−1

для графов-

мельниц и 1
𝑘+1(1−

𝑘(𝑘−3)
𝑘(𝑘−1) + 𝑘(1− 2

6)) =
3(𝑘−1)−3(𝑘−3)+2𝑘(𝑘−1)

3(𝑘2−1)
= 2(𝑘2−𝑘+3)

3(𝑘2−1)
для графов колес.

Докажем теорему о связи среднего кластерного коэффициента и локальной центральности
по посреднечеству.

Теорема 3.

𝐶𝑊𝑆(𝐺) ≤
1

𝑛

∑︁
𝑖∈𝑉 (𝐺)

(︁
1− BC(𝑖,𝑁(𝑖))

𝑑𝑖(𝑑𝑖 − 1)

)︁
.

Доказательство. Заметим, что

BC(𝑖,𝑁(𝑖)) =
∑︁

𝑗,𝑘∈𝑁(𝑖), (𝑗,𝑘)/∈𝐸(𝑁(𝑖))

1

𝜎𝑗𝑘
≤

∑︁
𝑗,𝑘∈𝑁(𝑖), (𝑗,𝑘)/∈𝐸(𝑁(𝑖))

1 = 𝑑𝑖(𝑑𝑖 − 1)− 2‖𝐸(𝑁(𝑖))‖,

BC(𝑖,𝑁(𝑖))

𝑑𝑖(𝑑𝑖 − 1)
≤ 1− 𝑐𝑖.

Усреднением по 𝑖 получаем:

𝐶𝑊𝑆(𝐺) ≤
1

𝑛

∑︁
𝑖∈𝑉 (𝐺)

(︁
1− BC(𝑖,𝑁(𝑖))

𝑑𝑖(𝑑𝑖 − 1)

)︁
.

Заметим, что равенство достигается, если между любыми двумя вершинами в 𝑁(𝑖) существует
единственный кратчайший путь, это значит что не существует кратчайших путей длины 2 в
графе 𝑁(𝑖), следовательно 𝑁(𝑖) — объединение полных графов для любой вершины 𝑖. 2
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Пример 9. Для графов мельниц 𝑁(𝑖) — объединение полных графов для любой вершины 𝑖,

поэтому 𝐶𝑊𝑆

(︀
𝑊 (𝑛, 𝑘)

)︀
= 1

‖𝑊 (𝑛,𝑘)‖
∑︀

𝑖∈𝑉 (𝑊 (𝑛,𝑘))

(︁
1− BC(𝑖,𝑁(𝑖))

𝑑𝑖(𝑑𝑖−1)

)︁
. Действительно, 𝐵𝐶(𝑖,𝑁(𝑖)) =

= Str(𝑖) = 𝑑𝑖(𝑑𝑖 − 1)(1− 𝑐𝑖). Для графов колес 1
‖𝑊 (𝑘)‖

∑︀
𝑖∈𝑉 (𝑊 (𝑘))

(︁
1− BC(𝑖,𝑁(𝑖))

𝑑𝑖(𝑑𝑖−1)

)︁
=

= 1
𝑘+1

(︁
1− 𝑘(𝑘−4)

𝑘(𝑘−1) + 𝑘
(︀
1− 1

6

)︀)︁
= 6(𝑘−1)−6(𝑘−4)+5(𝑘2−𝑘)

6(𝑘2−1)
= 5(𝑘2−𝑘+18)

6(𝑘2−1)
> 2(𝑘2−𝑘+3)

3(𝑘2−1)
= 𝐶𝑊𝑆

(︀
𝑊 (𝑘)

)︀
.

Из этих двух теорем получаем оценку для среднего кратчайшего расстояния в окрестости
вершины 𝑖.

Следствие 2.
BC(𝑖,𝑁(𝑖))

𝑑𝑖(𝑑𝑖 − 1)
≤ 𝐿(𝑁(𝑖))− 1 ≤ Str(𝑖)

𝑑𝑖(𝑑𝑖 − 1)
.

Пример 10. Для графов мельниц 𝐿(𝑁(𝑖))− 1 =

{︃
𝑘(𝑛−1)
𝑛𝑘−1 если 𝑖 центральная,

0 в ост.
= Str(𝑖)

𝑑𝑖(𝑑𝑖−1) .

Для графов колес получаем верное неравенство{︃
𝑘−4
𝑘−1 <

2𝑘−4
𝑘−1 − 1 = 𝑘−3

𝑘−1 если 𝑖 центральная,
1
6 <

4
3 − 1 = 1

3 в ост.

Докажем лемму о связи средней центральности по близости и среднего кратчайшего рас-
стояния в графе.

Утверждение 1.
1

𝑛

∑︁
𝑣∈𝑉 (𝐺)

Clo(𝑣) ≥ 1

𝐿(𝐺)
.

Доказательство. Воспользуемся неравенством о среднем гармоническом и арифметиче-
ском:

1

𝑛

∑︁
𝑣∈𝑉 (𝐺)

Clo(𝑣) =
1

𝑛

∑︁
𝑣∈𝑉 (𝐺)

𝑛− 1∑︀
𝑡∈𝑉 (𝐺)

dist(𝑣, 𝑡)
≥ 𝑛(𝑛− 1)∑︀

𝑣,𝑡∈𝑉 (𝐺)

dist(𝑣, 𝑡)
=

1

𝐿(𝐺)
.

Заметим, что равенство выполнено, когда все средние кратчайшие расстояния от каждой
вершины до всех других равны. 2

Пример 11. Для графов мельниц получаем 𝐿
(︀
𝑊 (𝑛, 𝑘)

)︀
= 1·𝑛𝑘+𝑛𝑘(2𝑛𝑘−𝑘−1+1)

(𝑛𝑘+1)𝑛𝑘 = 2𝑛𝑘−𝑘+1
𝑛𝑘+1 .

Тогда 1
‖𝑊 (𝑛,𝑘)‖

∑︀
𝑣∈𝑊 (𝑛,𝑘)

Clo(𝑣) =
1+ 𝑛𝑘2

2𝑛−1

𝑛𝑘+1 = 𝑛2𝑘+2𝑛−1
(𝑛𝑘+1)(2𝑛−1) ∨

𝑛𝑘+1
2𝑛𝑘−𝑘+1 . После приведения слагаемых

получаем 𝑘(𝑛− 1)2 > 0 при 𝑛 > 1. Для графов колес 𝐿
(︀
𝑊 (𝑘)

)︀
= 1·𝑘+𝑘(2𝑘−4+1)

(𝑘+1)𝑘 = 2(𝑘−1)
𝑘+1 . Тогда,

1
‖𝑊 (𝑘)‖

∑︀
𝑣∈𝑊 (𝑘)

Clo(𝑣) =
1+ 𝑘2

2𝑘−3

𝑘+1 = (𝑘−1)(𝑘+3)
(𝑘+1)(2𝑘−3) ∨

𝑘+1
2(𝑘−1) . После приведения слагаемых получаем

(𝑘 − 3)2 > 0 при 𝑘 > 3.

Теорема 4.

𝐶𝑊𝑆(𝐺) =
1

𝑛

∑︁
𝑖∈𝑉 (𝐺)

(︀ 1
𝑑𝑖

∑︁
𝑣∈𝑁(𝑖)

Rad(𝑣,𝑁(𝑖))− 1
)︀
+

#{𝑁(𝑖) явл. полными графами}
𝑛

.

Доказательство. В статье [15] доказывалась лемма о связи среднего кратчайшего рассто-
яния с средней радиальной центральностью.
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Лемма 1.
1

𝑛

∑︁
𝑣∈𝑉 (𝐺)

Rad(𝑣) = diam(𝐺) + 1− 𝐿(𝐺).

Воспользуемся этой леммой.

1

𝑑𝑖

∑︁
𝑣∈𝑁(𝑖)

Rad(𝑣,𝑁(𝑖)) = diam(𝑁(𝑖)) + 1− 𝐿(𝑁(𝑖)) = diam(𝑁(𝑖))− 1 + 𝑐𝑖 = 𝑐𝑖 + 1− 𝜒𝐾𝑑𝑖
(𝑁(𝑖)),

где 𝜒𝐾𝑑𝑖
(𝑁(𝑖)) =

{︃
1 если 𝑁(𝑖) = 𝐾𝑑𝑖 ,

0 в ост.
. Усреднением этого равенства по 𝑖 заканчиваем дока-

зателсьтво. 2

Докажем теорему о среднем кратчайшем расстоянии в объемлющем графе.

Теорема 5. Пусть связный простой граф 𝐺′ получен из графа 𝐺 добавлением одной
вершины и ‖𝑉 (𝐺)‖ = 𝑛. Тогда

𝐿(𝐺′) ≥ 𝑛

𝑛+ 1
𝐿(𝐺),

где 𝐿(𝐺) считается по отношению к объемлющему графу 𝐺′, если 𝐺 не связен.

Доказательство. Обозначим добавленную вершину за 𝑣. Тогда по неравенсту треугольника
∀𝑠, 𝑡 ∈ 𝑉 (𝐺) : dist(𝑠, 𝑣) + dist(𝑣, 𝑡) ≥ dist(𝑠, 𝑡), где равенство достигается, когда между 𝑠 и 𝑡 не
существует пути в 𝐺. Следовательно,∑︁

𝑠,𝑡∈𝑉 (𝐺),𝑠 ̸=𝑡

(︀
dist(𝑠, 𝑣) + dist(𝑣, 𝑡)

)︀
≥

∑︁
𝑠,𝑡∈𝑉 (𝐺),𝑠 ̸=𝑡

dist(𝑠, 𝑡)

2(𝑛− 1)

𝑛(𝑛− 1)

∑︁
𝑡∈𝑉 (𝐺)

dist(𝑣, 𝑡) ≥ 1

𝑛(𝑛− 1)

∑︁
𝑠,𝑡∈𝑉 (𝐺),𝑠 ̸=𝑡

dist(𝑠, 𝑡)

2

𝑛

∑︁
𝑡∈𝑉 (𝐺)

dist(𝑣, 𝑡) ≥ 𝐿(𝐺)

Тогда,

𝐿(𝐺′) =
1

(𝑛+ 1)𝑛

∑︁
𝑠,𝑡∈𝑉 (𝐺′),𝑠 ̸=𝑡

dist(𝑠, 𝑡) =
1

(𝑛+ 1)𝑛

(︁
2
∑︁

𝑡∈𝑉 (𝐺)

dist(𝑣, 𝑡) +
∑︁

𝑠,𝑡∈𝑉 (𝐺),𝑠 ̸=𝑡

dist(𝑠, 𝑡)
)︁
=

=
1

𝑛+ 1

2

𝑛

∑︁
𝑡∈𝑉 (𝐺)

dist(𝑣, 𝑡) +
𝑛− 1

𝑛+ 1
𝐿(𝐺) ≥ 𝑛

𝑛+ 1
𝐿(𝐺)

Заметим, что равенство достигается, когда 𝐺 состоит из 𝑛 изолированных вершин. 2

Следствие 3. Пусть связный простой граф 𝐺′ получен из графа 𝐺 добавлением 𝑘 вершин
и ‖𝑉 (𝐺)‖ = 𝑛. Тогда

𝐿(𝐺′) ≥ 𝑛

𝑛+ 𝑘
𝐿(𝐺),

где 𝐿(𝐺) считается по отношению к объемлющему графу 𝐺′, если 𝐺 не связен.

Доказательство. Будум добавлять последовательно вершины к графу 𝐺. Обозначим граф,
получившийся на 𝑖-ом шаге за 𝐺𝑖, тогда по предыдущей теореме

𝐿(𝐺′) ≥ 𝑛+ 𝑘 − 1

𝑛+ 𝑘
𝐿(𝐺𝑘−1) ≥

𝑛+ 𝑘 − 1

𝑛+ 𝑘

𝑛− 𝑘 − 2

𝑛− 𝑘 − 1
𝐿(𝐺𝑘−2) =

𝑛− 𝑘 − 2

𝑛+ 𝑘
𝐿(𝐺𝑘−2) ≥ · · · ≥

𝑛

𝑛+ 𝑘
𝐿(𝐺)

2

Уточним теорему о связи среднего кластерного коэффициента и средней радиальной цен-
тральностью из статьи [15].
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Теорема 6.

𝐶𝑊𝑆(𝐺) ≤
1

𝑛

∑︁
𝑖∈𝑉 (𝐺)

(︁ 1

𝑑𝑖

∑︁
𝑣∈𝑁(𝑖)

Rad(𝑣)
)︁
+

#{𝑁(𝑖) явл. полными графами}
𝑛

Доказательство. Как в теореме 4, используя предыдущую теорему, получаем

1

𝑑𝑖

∑︁
𝑣∈𝑁(𝑖)

Rad(𝑣) = diam
(︀
𝑁 ′(𝑖)

)︀
+ 1− 1

𝑑2𝑖

∑︁
𝑣∈𝑁(𝑖)

∑︁
𝑡∈𝑁(𝑖),𝑡̸=𝑣

dist(𝑠, 𝑡)− 1

𝑑𝑖

∑︁
𝑡∈𝑁(𝑖)

dist(𝑖, 𝑡) =

= 3− 𝜒𝐾𝑑𝑖

(︀
𝑁(𝑖)

)︀
− 𝑑𝑖 − 1

𝑑𝑖
𝐿
(︀
𝑁(𝑖)

)︀
− 1 ≥ 2− 𝐿

(︀
𝑁(𝑖)

)︀
− 𝜒𝐾𝑑𝑖

(︀
𝑁(𝑖)

)︀
.

По лемме из статьи [15]: 2− 𝐿
(︀
𝑁(𝑖)

)︀
= 𝑐𝑖, и усредениением по 𝑖 заканчиваем доказательство.

2

Пример 12. Для графов-мельниц

1

‖𝑊 (𝑛, 𝑘)‖
∑︁

𝑖∈𝑉 (𝐺)

(︁ 1

𝑑𝑖

∑︁
𝑣∈𝑁(𝑖)

Rad(𝑣,𝑁(𝑖))− 1
)︁
+

#{𝑁(𝑖) явл. полными графами}
‖𝑊 (𝑛, 𝑘)‖

=

=
1

𝑛𝑘 + 1

(︃
𝑛𝑘
(︀
1 + 𝑘−1

𝑛𝑘−1

)︀
𝑛𝑘

− 1 + 𝑛𝑘
(︁𝑘
𝑘
− 1
)︁)︃

+
𝑛𝑘

𝑛𝑘 + 1
=
𝑘 − 1 + 𝑛2𝑘2 − 𝑛𝑘

𝑛2𝑘2 − 1
= 𝐶𝑊𝑆

(︀
𝑊 (𝑛, 𝑘)

)︀
,

1

‖𝑊 (𝑛, 𝑘)‖
∑︁

𝑖∈𝑉 (𝐺)

(︁ 1

𝑑𝑖

∑︁
𝑣∈𝑁(𝑖)

Rad(𝑣)
)︁
+

#{𝑁(𝑖) явл. полными графами}
‖𝑊 (𝑛, 𝑘)‖

=

=
1

𝑛𝑘 + 1

(︂
𝑛𝑘

𝑛𝑘

𝑛+ 1

𝑛
+
𝑛𝑘2

𝑘

)︂
+

𝑛𝑘

𝑛𝑘 + 1
=
𝑛+ 1 + 𝑛2𝑘

𝑛(𝑛𝑘 + 1)
∨ 𝑘 − 1 + 𝑛2𝑘2 − 𝑛𝑘

𝑛2𝑘2 − 1

𝑛3𝑘2 + 𝑛𝑘 − 𝑛− 1 ∨ 𝑛3𝑘2 − 𝑛2𝑘 + 𝑛𝑘 − 𝑛

Учитывая, что 𝑛2𝑘 > 1 получаем верное неравенство.

Для графов колес

1

‖𝑊 (𝑘)‖
∑︁

𝑖∈𝑉 (𝐺)

(︁ 1

𝑑𝑖

∑︁
𝑣∈𝑁(𝑖)

Rad(𝑣,𝑁(𝑖))− 1
)︁
+

#{𝑁(𝑖) явл. полными графами}
‖𝑊 (𝑘)‖

=

=
1

𝑘 + 1

(︃
𝑘(1 + 2

𝑘−1)

𝑘
− 1 + 𝑘

(︁5
3
− 1
)︁)︃

+ 0 =
2(𝑘2 − 𝑘 + 3)

3(𝑘2 − 1)
= 𝐶𝑊𝑆

(︀
𝑊 (𝑘)

)︀
,

1

‖𝑊 (𝑘)‖
∑︁

𝑖∈𝑉 (𝐺)

(︁ 1

𝑑𝑖

∑︁
𝑣∈𝑁(𝑖)

Rad(𝑣)
)︁
+

#{𝑁(𝑖) явл. полными графами}
‖𝑊 (𝑘)‖

=

=
1

𝑘 + 1

(︂
𝑘

𝑘

𝑘 + 3

𝑘
+

16𝑘

9

)︂
=

16𝑘2 + 9𝑘 + 27

𝑘(𝑘 + 1)
∨ 2(𝑘2 − 𝑘 + 3)

3(𝑘2 − 1)

После приведения слагаемых получем 46𝑘3−19𝑘2+48𝑘−81 = 27𝑘3+19𝑘(𝑘−1)+48(𝑘−2)+15 > 0,
при 𝑘 ≥ 2.
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