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Abstract

We classify the simplest 3-dimensional singularities of regular algebraically separable
integrable systems. Such systems form an important class of Liouville integrable Hamiltonian
systems with two degrees of freedom and occur in many problems of mechanics and geometry.
The techniques elaborated in the paper is based on the analysis of a certain Zs-matrix uniquely
determined by the expressions of the initial phase variables via the separating variables.
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1. Introduction

The theory of topological classification of (Liouville) integrable Hamiltonian systems with two
degrees of freedom created by A.T. Fomenko and his co-authors [1, 2, 3, 4] allows to classify
such systems up to different types of equivalence, first of all Liouville equivalence. Two integrable
Hamiltonian systems are called Liouville equivalent if there exists a diffeomorphism between the
phase spaces invariant with respect to the Liouville foliations of these systems. For a typical
integrable system its Liouville foliation is defined by closures of integral trajectories and is therefore
an important topological characteristics of the system. Within the Fomenko theory, the Liouville
equivalence class of an integrable system (restricted to some invariant submanifold) is defined by
the appropriate invariant (which in most cases has the form of a graph with some numerical marks).
However, explicit calculation of such invariants is not an algorithmic task and, for some concrete
systems, may happen to be quite a complicated problem. In this paper, we discuss a remarkable class
of integrable systems for which the calculation of topological invariants can be done algorithmically.
Following M. P. Kharlamov and his co-authors, we call such systems algebraically separable (see
Definition 6 below). This notion means that the Hamiltonian equations on each leaf of the Liouville
foliation can be reduced to separated equations and, what is crucial for the topological analysis,
the initial phase variables are expressed via the separating ones in a “nice” way. In other words,
the separating variables deliver a good parametrization for integral submanifolds making clear all
interesting topological effects. The systems with such properties occur in many classical problems
of the rigid body dynamics, integrable geodesic flows, integrable billiards.

The systematic approach to the study of the topology of algebraically separable systems was
suggested by M.P. Kharlamov in [5], though some interesting results were known before (it is
worth mentioning the work [6] by O.E. Orel). The M. P. Kharlamov’s ideas and methods were
successfully applied to many integrable systems arising in mechanics and physics (see for example
[7, 8,9, 10, 11, 12, 13, 14, 15, 16, 17]). However, determining the topological type of singularities
within this approach is usually conducted in terms of the phase space and its initial variables and
involves some topological arguments like behavior of certain cycles on integral submanifolds. The
main idea of the present paper is as follows. Expressions of the phase variables via the variables of
separation define a certain Boolean matrix. Once this matrix is written down, there is no need to
address the phase space anymore: all the required topological information is already contained in
this matrix!

The paper has the following structure. In Section 2 we recall some definitions and introduce
necessary notation. In Section 3 we prove some auxiliary statements, which help to discover the
topology of integral submanifolds in terms of the variables of separation. Section 4 is devoted to
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the description of regular Liouville tori in terms of the variables of separation. Section 5 contains
the main results of the paper, namely Theorems 3 and 4 classifying the simplest singularities
of algebraically separable systems. The proofs of these theorems clarify the dependance of the
topological type of singularities on the Boolean matrix mentioned above. Finally, in Conclusion we
give several remarks and outline the directions of further investigations.

2. Necessary definitions ans notations
We start with a brief overview of the main concepts arising in the theory of integrable systems.

DEFINITION 1. A Hamiltonian system is a triple (M>*", w, H), where (M*",w) is a symplectic
(hence orientable) manifold with the symplectic structure w and H is smooth function on M>" called
the Hamiltonian function. The Hamiltonian vector field is defined as v = w™'dH.

DEFINITION 2. A Hamiltonian system is called Liouville integrable if it possesses n smooth first
wntegrals f1,..., fn such that:

o f1,...,fn are functionally independent, i.e., their differentials dfy,...,df, are linearly
independent almost everywhere on M*;

o f1,..., fn commute with respect to the Poisson bracket defined by the symplectic structure;

o the Hamiltonian vector fields v; = w™'df; are complete, i.e., the natural parameter on their
integral trajectories is defined on the whole real axis.

REMARK 1. In the above definition we may always assume fi = H.

DEFINITION 3. The Liouville foliation corresponding to the given integrable system is the
decomposition of the manifold M?" into connected components (leaves) of common level surfaces of
the first integrals f1,..., fn.

Studying the topology of the Liouville foliation (in particular, its singularities) is an important
part of the topological analysis of an integrable system. According to the classical Liouville theorem,
any its compact regular leaf L (regularity means that dfy,...,df, are linearly independent at any
x € L) is diffeomorphic to the n-dimensional torus 7™ (the Liouwille torus) and the Liouville
foliation is trivial in a small neighborhood of L. Hence the bifurcations of the Liouville foliation
may happen ounly in neighborhoods of singular leaves.

In the sequel, we assume that n = 2, i.e., the system has two degrees of freedom. In this case
integrability means the existence of only one additional first integral K of the system functionally
independent of H.

DEFINITION 4. The mapping F = (H,K): M* — R? is called the momentum mapping
associated with a Liouville integrable system with two degrees of freedom. The image ¥ = {x € M* |
rank dF (x) < 2} of all critical points of F is called the bifurcation diagram.

In a typical case the bifurcation diagram is a union of smooth curves (and maybe isolated points)
in R?, which correspond to certain types of bifurcations of the Liouville foliation. More precisely, take
any small enough smooth curve v intersecting ¥ transversally at a single point. Its pre-image F ()
is a 3-dimensional invariant submanifold in M*, which “pictures” the corresponding bifurcation.

DEFINITION 5. The submanifold F~1() with the structure of the Liouville foliation viewed up
to a fiber diffeomorphism is called a 3-atom.
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All compact 3-atoms turn out to be oriented S!-fibrations (so called Seifert fibrations) over
2-atoms (|1, Theorems 3.2 and 3.3|). By definition, a 2-atom is a small neighborhood of a critical
level line of a Morse function f on a smooth 2-dimensional surface foliated into level lines of f and
viewed up to a fiber diffeomorphism. Some examples of 2-atoms are shown in Fig. 1. The 3-atoms
obtained as direct products of these 2-atoms and the circle S! are denoted by the same symbols.

Py C,

Puc. 1: 2-atoms A, B, D1, Py, Cy

For more details about topological invariants in the theory of Liouville integrable systems we
address the reader to [1].

Now we define the main notion of this paper (which may be generalized to arbitrary many
degrees of freedom).

DEFINITION 6. We say that a Liouville integrable system with 2 degrees of freedom on a
symplectic manifold M* (or on its invariant submanifold N ) is algebraically separable if the following
conditions hold.

(1)

(2)

There exist real smooth functions uy,uz on M* (on N) called the variables of separation in
which the Hamiltonian equations separate in the form

dl = \/Pl(ul), UQ = \/PQ(UQ) (1)
or in the form of the Abel equations
_ \/P(UQ)

_ VP(wm)

dl ) (2)
U1 — U2 Uy — U2
Here Py and Py are (maybe coinciding) real polynomials of degree 8 or 4, P is a polynomial
of degree 5 or 6. The coefficients of these polynomials depend smoothly on the values h, k of

the first integrals H, K of the system.

The initial phase variables on M* (on N) can be expressed via u1,us as multivalued rational
functions on two-valued radicals of the form \/u; — aj, i = 1,2, where o are the (complex)
roots of Py, Py (or P). The coefficients of these rational functions are smooth functions on
Ui, u2, h, k.

REMARK 2. This definition is given according to [7]. In [5] such systems are called algebraically
solvable.
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REMARK 3. In the classical integrable cases of the rigid body dynamics the phase space M*
appears as a symplectic leaf in RS endowed with an appropriate Poisson structure. In this case the
second condition of the above definition implies that the coordinates in RS are expressed via uy,us
as indicated above.

REMARK 4. The second condition of the above definition is crucial for studying the topology of
the Liouville foliation of the underlying integrable system. It allows one to describe explicitly the
Liouwille tori and their bifurcations in terms of the variables uy,us. This distinguishes algebraically
separable systems from other types of systems with separating variables.

Let Ry,..., R, be the monomials in the rational expressions of the phase variables via wuq, uo:
1 1 2 2
R, — @ul o) —a® -y (=0, 3)
where ag ; are some (maybe complex) roots of the polynomial P (in the case (1) here and further

it is convenient to denote by P the least common multiple of P; and P»). It may happen that

al® = 2 for some triples (i1, mq, 1) # (iz, ma, j2), but ol ae(jz),jg for fixed 4, m and

mi,j1 ma2,j2 ] m,j1

j1 # ja. Moreover, the set of all the numbers ag)’j may be smaller than the set of all the roots of P.
Note that the expressions under the radicals in (3) must be real and non-negative which influences
the range of uq, us.

Denote by 7y, the projection of a certain leaf L C {z € M* | H(z) = h, K(z) = k} of the
Liouville foliation to the plane R?(uq, uz). Then 7y (L) = [au, o] X [, c], where oy, a, i, oy are
real roots of P (the indices stand for left, right, bottom, top).

Following [5], introduce the sign function bsgn: R — Zs:

0, >0,

bsgn(6) = {1 <0

Obviously, bsgn(6162) = bsgn(61) @ bsgn(62) if 61,62 # 0 (@ is the sum modulo 2).

Set Sy, = bsgn R,,, ng) = bsgn \/%(u; — o) if o; € R, and sg-i) = bsgn/(w; — a;j)(w; — @) if
a; ¢ R (in the latter case the multipliers (u; — ;) and (u; —@;j) are both contained or not contained

in each radical R,,). Thus we obtain a Zs-linear mapping A: Z%e(sgl), ce sél), 552), ey 3(92)) —
— Z5(S1,...,5n), 0 < deg P, defined by (3):
Sm = 5%?1 ®... 8 sg?p(m) @ 37(721,)1 S...d sfj?q(m), m=1,n. (4)

DEFINITION 7. We shall say that an algebraically separable system s regular if the set
(S1,...,8n) is uniquely determined by a point x € M*, i. e., different signs of the radicals Ry, ..., Ry
cannot define (under the same values of ui,uz, h,k) the same point in the phase space.

Let A be the matrix of the linear mapping A. The main idea of the method discussed in this
paper is following: for a regular algebraically separable system the matrix A “knows” everything
about its Liouville foliation. Topology and singularities of this foliation can be deduced from the
matrix A directly.

For given h, k the variables s§2) can be divided into two groups: the first one contains the signs
which do not change on a fixed leaf L of the Liouville foliation whereas the second group contains
the signs changing on L. Accordingly, A = (B|C), where the columns of the submatrices B and C
correspond respectively to the variables of the first and the second groups. Roughly speaking, for
given h,k the matrix B influences the number of connected components in F~1(h, k) (see [5])
whereas the matrix C' determines the topological structure of the pre-image ﬂ}:i([al, ay] X [ag, ay))
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for a fixed leaf. It is convenient to consider 7, ; as a multi-valued mapping of [ay, o] X [, a].
We shall call it the lifting mapping. In what follows, we study the matrix C' and its influence
on the topological properties of W;k separately for regular and singular values h, k. Note that
it the polynomial P = Py} has no multiple roots, the variables of the second group are solely

sl(l), 37(~1), 31(72), sl(tQ) and the matrix C has 4 columns. In this case the lifting mapping ﬂ;}c defines the

structure of a square tiled surface [18] on the leaves in 7} 1 ([oy, o] X [, a]).
At the end of this section we give a formal proof of the well-known principle stating that
singularities of the Liouville foliation correspond to multiple roots of the polynomial P.

THEOREM 1. The bifurcation diagram ¥ C R%(h,k) of the momentum mapping F = (H, K)
of an algebraically separable system is contained in the discriminant set A of the polynomial P,
e., the set of all points (h,k) € R? such that P = Py, i, has multiple roots.

JJOKABATEILCTBO. For xg € M* put hg = H(zg), ko = K(xg). We shall prove that, if all the
roots of the polynomial Py, 1, are simple, zo is a regular point of the momentum mapping F,
i. e, rankdF|,, = 2.

Let L be the leaf of the Liouville foliation containing xg, and let mp, 1, (L) = [ag, o] X [, ou].
Since uy € [y, o] and ug € [y, i) on L, we may set

uy = ay cos? @ + - sin? @, Uy = oy cos® ) + g sin? 1, Y € [0,2m).
Then
Vur — o = Vo, — g sing, Vo —up = oy — o cos p, (5)
Vg — ay = Vay — ayp siny, Vg —ug = oy — ay, cos, (6)

where the radicals in the right-hand sides are the non-negative arithmetic square roots. This way,
we can take into account the signs 31( ) 37(~ ), sl(f), g ),

Take any o, 1o such that the equalities (5), (6) are true for ui(xo), u2(zo). Consider the mapping
€: U(hg, ko) — M* obtained by substitung (5), (6) with ¢ = g, 1 = 1) in the expressions of the
phase variables via 1, ug. Here U(hg, ko) is a neighborhood of the point (hg, ko) in R?(h, k). Note
that £ is well defined: the signs of the radicals from the first group (which do not change on the
leaf L) are taken the same as on L, and signs from the second group are uniquely determined by
sin g, €os g, sing, cosg. The neighborhood U (hg, ky) C R? is taken small enough so that for
any (h,k) € U(hg, ko) all the roots of the polynomial P = P}, are simple. It is easy to see that
& is smooth since o are smooth functions on h, k. The latter is true due to the implicit function
theorem since locally «; are simple roots of P and BP #0.

Now notice that Fo& = id [g(,k,)- Taking dlﬁerentlals at (ho, ko), we obtain dF |y, 0d€] g ko)
= id |gz which yields rank d.F |, > rank(df\xo o d&|(ho,ky)) = 2. Hence rank dF|,, = 2. O

3. Topological properties of the lifting mapping 7, }C

In this section we prove auxiliary statements which will help us to study the image of the lifting
mapping F]:i defined on the rectangle IT = [y, o] X [ap, ay]. If the signs of the first group (see

previous section) are fixed, W;k(ﬂ) is a single leaf of the Liouville foliation, otherwise we can obtain

several leaves. It is easy to see that for each point y € intII its image w,:i(y) consists of 2rankC

orank A i) the second one, where A and C' are the Zo-matrices defined

points in the first case and
in the preyious section. ‘ ‘
By Ag-l) denote the column of the matrix A corresponding to the sign ng)’ i =1,2, and by /15-1)

the matrix obtained from A by the following procedure: eliminate all the rows of A with entries in
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Ay) equal to 1 and then eliminate the column Ay). By flﬁljj) denote the matrix obtained from A

by the same procedure applied twice (with respect to the columns Ag-il) and Ay;)). Obviously, fl;i)
is the matrix of the reduced linear mapping A (obtained when /u; —a; = 0) and flxl;;) is the
matrix of the linear mapping obtained from A when \/u;; — o, = \/u;, — aj, = 0 (it is natural to
assume that i1 # i2). Similar notation will be used for the matrix C'.

LeMMA 9. Suppose that for given h,k all the numbers o are pairwise distinct. Then

J
2) rank 1215-12-)

ja > rank A — 2 for (jlij) € {(lvb)7 (l,t), (7”, b)v (Tv t)}

JOKABATENBCTBO. The image W;IIC(H) consists of 22K 4 gheets which are somehow glued together
along their boundaries (when some of the radicals vanish). In view of Theorem 1, the result of this
gluing is a 2-manifold (one or several Liouville tori), hence the sheets must be glued pairwise over
each side of II. Take for instance the side II; = {(a, u2) | ap < u2 < oy }. Its image W,;i(ﬂl) consists

of 2rank AP connected components which must be twice less than 2"*"%4 . This exactly means that
rank fll(l) =rank A — 1.

Now consider Tr}jllC in a neighborhood of a corner of II, say IIj, = {(ay, ap)}. Suppose Al(l) #* Al(f)
and fix the signs of all the radicals except sl(l) and 51(32). Then we obtain four sheets which differ
by the values of sl(l) and sl()z). These sheets are glued together pairwise along their boundaries and
have a common corner point Z (this is similar to the “corner” of a sheet of paper folded in half

twice, Fig. 2). The neighborhood of the point Z in wgllc(l'[) is readily homeomorphic to the 2-disk,
therefore it should not be glued with any other similar point in W;k(ﬂlb). This means that the
2rank[ll(b12))

2rank A

number of different points in W,:i(l_[lb) (which equals is four times smaller than

implying rank Al(;z) =rank A — 2.

Puc. 2: Gluing of sheets in a neighborhood of a corner point

The case Afl) = Al()Q) is treated in a similar way. Here only two sheets are glued along their
boundaries resulting in rank 1211(52) = rank A — 1. However, as we shall see below, this case is actually
impossible. O

COROLLARY 1. Under the conditions of Lemma 9 we also have:

D = rank C' — 1 for (i,5) € {(1,1), (1,7),(2,b),(2,)};
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REMARK 5. Since the matrices A and C are constant, the (in)equalities stated in Lemma 9 and
Corollary 1 remain true when some of the numbers «; coincide.

LemMMmA  10.
1) If o is not a multiple root of the polynomial Py, the equality
rank AV = rank A~ 1, (i,5) € {(L,1), (1,7), (2,0), (2, )},

is sufficient for each point in m, - +(I1;) to have a neighborhood in . » +(TT) homeomorphic to the
2-disk. Here I1; = {(aj,u2) | ap < ug < oy} if j € {l,r} and II; = {(w1,04) | oy < uy < oy}
if 7 € {b,t}.

2) If aj,, o, are not multiple roots of the polynomial Py, 1, the equality
(12 .
rank A\2) = rank A — 2, (j1,j2) € {(1,b), (L, ), (D), ()},

is sufficient for each point in W;i(ﬂjm) where 11,5, = {(o,, aj,)}, to have a neighborhood

in k( ) homeomorphic to the 2-disk.

JTOKABATEJILCTBO. The equality in the first statement means that the sheets in W}:i(ﬂ) are glued
(i)

together pairwise over II;. The sheets in each pair differ by the value of s e
The second statement is readily seen from the proof of Lemma 9. O

Now fix all the signs from the first group. Then W;i(ﬂ) is a single leaf of the Liouville foliation.
Put n = rank C. Let Cj(fl), e ,Cj(.f]”) be Zo-linearly independent columns of C' (thus forming the
basis in the span of the columns of C). Each sheet in w}:,ﬁ(in‘c IT) can be encoded by the values of

sgil), cee sg.i”) if we assign fixed (for instance, zero) values to all the other variables ng’) from the

second group. The following lemma provides the rule indicating which of these sheets must be glued
together over the boundary of II.

LeMMA 11, For (io, jo) € {(1,0),(1,7),(2,b),(2,0)} let O = CiV @ .. 0 O (v < n)
(f0)

be the decomposition of the column Cjo into the sum (modulo 2) of some basic columns. Suppose

rank C'(io) =rank C' — 1. Then the pairs of sheets that must be glued together over the corresponding
(1) (i)

s; "’ are different whereas the signs

side of 11 are defined by the following rule: the signs sj1 yoees S5

7 7
s ”*1), ... ,s(. ") are the same in each pair.
Jv+1 In

JOKABATEJIBCTBO. Suppose (ig,jo) = (1,1). It is sufficient to prove that the signs of all non-zero
radicals (3) are the same in each pair of sheets provided that u; = «;. For each such radical Ry,
(4)

its sign is given by (4). Denote by a,,; the element of the matrix A (or C) in the intersection of

the m’s row and the column A(i) (or C(i)) The variable ng’) is present in the right-hand side of (4)

iff a&)j = 1. Since R, # 0, a,, ) = 0 which yields Vo, e a(z”) = a( ) = 0. This means that

mj1
the number of non-zero elements a'’ ‘;) (1 < 8 <v) and, equivalently, the number of variables s§ﬁﬂ )

(i1) S(iu)

present in the right-hand side of (4) are even. Therefore, if we change the values of s HRCTRRRY >y

the sum in (4) remains the same. O

REMARK 6. In Lemma 11 we do not require o, to be a simple root of P .
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4. Topology of regular leaves in terms of the lifting mapping W;i

We are now ready to classify regular Liouville tori through the framework of the lifting
mapping wgi Let all the numbers «; be different and all the signs from the first group be fixed,
thus 7, , (II) = T2, is a Liouville torus.

Fix the value of ug together with the signs sf), s§2) or, equivalently, fix the value of ¢ € [0, 27)

in (6). We obtain a closed curve 7, in Tﬁ , barametrized by ¢. The value of ¢ changes by 7/2 as u;
changes from o; to a,.. If the columns Cl(l) and C,gl) of the matrix C are equal, the radicals /u; — o
and /o, — uy always appear in (3) in pair, so ¢ only appears in (3) as cos ¢ sin¢. Therefore, in
the case Cl(l) = Cﬁl) the natural range of ¢ is [0, 7) and 7, ) restricted to v, is a 2-fold branched
covering of the line segment {(u1,u2) | oy < w3 < -} (Fig. 3). We shall use the notation 73 for

such curve v,,. If C’l(l) # C’,gl), the natural range of ¢ is [0,27) and 7y, restricted to v, is a 4-fold
branched covering of the line segment {(u1,u2) | oy < w1 < .} (Fig. 4). In this case we write
Yo = ’yé. The curves Vi, ’yfz‘) are defined in a similar way.

i

Puc. 3: Curve 737

iy

Puc. 4: Curve fyé

THEOREM 2. In terms of the curves 7y,, Yy, the Liouville torus T}%k can be described in one of
the following ways:

1) ’yi X ’yi (00-torus);

2) fyi X fy;j (08-torus);
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3) fy;l, X 7@21; (80-torus);
4) ’yfé X ’yi (88-torus);
5) 72 X ’)/i/’i', where T is the involution taking (¢, ) to (¢ +m, ¢ + ) (88/2-torus).

JTOKABATENILCTBO. Consider all principally different (up to symmetries of indices [ <> 7, b > t)

cases depending on the rank of the matrix C' = (Cl(l) Cﬁl) C,SQ) Ct@)), which obviously does not
exceed 4 (the number of columns of C). In each case we have 2, 4, 8, or 16 sheets, which are somehow
glued together along their boundaries to form a torus. The rules for the gluing are determined
by Lemma 11. If the result of a gluing is not a torus, this means that the corresponding case is
impossible. In most figures below we supply each sheet with the values of variables sg-z) corresponding
to basic columns in (Cl(l), 07(1), 0152), C§2)>.

1) rank C' = 1. We have two sheets, which are glued together along their boundaries forming the

2-sphere S? (Fig. 5).

' / /
j ....... / ...... )

Puc. 5: Gluing of sheets: rank C =1

2) rank C' = 2.

2.1) Cl(l) = ngl), Clgz) = Ct(2). We obtain the 00-torus (Fig. 6).

7 (01) /

il an f i 5
2 (10 (sp%sy)
(0.0)

e
<

2

=

Puc. 6: Gluing of sheets: rank C' = 2, C’l(l) = C,gl), C’b(z) = C’t(2)

2.2) 01(1) #* Cr(l), CIEQ) = Ct@). We may choose the columns C’l(l), Cﬁl) as basic.

2.2.1) CIEZ) = C’t@) = Cl(l). We obtain the sphere S? (Fig. 7).
2.2.2) ClEQ) = C’t(Q) = C’l(l) @ M. We obtain the Klein bottle KL (Fig. 8).

2.3) Cl(l) #* Cﬁl), CISQ) # Ct(z). Again, the columns Cl(l), ¢V are basic.
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Puc. 7: Gluing of sheets: rank C' = 2, Cl(l) % C’,gl), C,SZ) = C’t@) = Cl(l)
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Puc. 8: Gluing of sheets: rank C' = 2, Cl(l) + C;l), CIEQ) = C’t(g) = Cl(l) & C;l)
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g E
S A N
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Puc. 9: Gluing of sheets: rank C = 2, ¢V £ ¢V ¢t = ¢, ¢® = ¢V

2.3.1) C C'(l) C( ) = ™. We have the sphere S? (Fig. 9).
2.3.2) C C’(l) C( ) = C'(l) @ Y. We have the projective plane RP? (Fig. 10).

3) rank C' = 3. Assume that the columns Cl(l), Cﬁl), 0152) are linearly independent.

3.1) Ct@) = 0152). Similarly to the case 2.1), we have the 80-torus (Fig. 11). The 08-torus
is obtained in the symmetric case C’l(l) = Cﬁl) with linearly independent columns
Cl(l)7 0152)7 015(2)~

3.2) Ct@) = Cl(l). We obtain the sphere S? (Fig. 12).
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Puc. 11: Gluing of sheets: rank C' = 3, Ct(Q) = C’IEQ)
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Puc. 12: Gluing of sheets: rank C = 3, 015(2) = C’l(l)

3.3) ¢? =V @ V. We have the Klein bottle KL (Fig. 13).

3.4) Ct(Q) =cVeo C'ISQ). Again the Klein bottle (Fig. 14).
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Puc. 14: Gluing of sheets: rank C' = 3, Ct(z) = C’,gl) ® CIEQ)

3.5) C’t(g) = Cl(l) act o CIEQ). In this case we obtain the 88/2-torus (Fig. 15).

4) rank C' = 4. Similarly to the cases 2.1) and 3.1), we obtain a 88-torus.
O

COROLLARY 2. If 7} (I1) is a Liouville torus, the matriz C = (Cl(l) M 0152) 025(2)) satisfies one
of the following conditions:

1) rankC =2, ¢V =V, ¢ = c® (00-torus);

2) rankC = 3, CZEQ) = C’t(g) (80-torus);

3) rankC' =3, C’l(l) =c¥ (08-torus);

4) rank C' = 3, Cl(l) ac o CIEQ) @ Ct(Q) =0 (88/2-torus);

5) rank C = 4 (88-torus).
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Puc. 15: Gluing of sheets: rank C = 3, Ct(z) = C'l(l) @ Cﬁl) & C'ISQ)

5. Classification of bifurcations

Our following aim is to classify the most simple 3-dimensional bifurcations which happen with
the Liouville foliations of regular algebraically separable systems.

Consider the isoenergy surface Qf’m = {x € M* | H(z) = ho}. Suppose (ho, ko) € ¥ is a critical
value of the momentum mapping F = (H, K) and Ly C F~!(hg, ko) is the corresponding singular
leaf of the Liouville foliation. Let U.(Lg) be a small invariant 3-dimensional neighborhood of Lg
in Q?LO defined by the inequalities kg — e < K < kg + €. Here we assume that (ho, ko) is a unique
intersection point of the bifurcation diagram 3 with the curve {(ho, k) | ko —e < k < kg+¢}. Then
we may treat U.(Lo) as a 3-dimensional bifurcation of the Liouville foliation (3-atom).

As follows from Theorem 1, the polynomial Py, x, has multiple roots.

DEFINITION 8. We shall call the bifurcation defined by U.(Lg) simple if it corresponds to a
unique multiple root aj of Ppy ,, which has multiplicity 2, and (o, 05) & Thg ko (Lo), where T ko
1s the projection defined in Section 2.

The last requirement in this definition means that the bifurcation happens with only one of the
cycles 7,,vy. In what follows, we assume that it happens with ~,, i.e., the line u; = «; intersects
the rectangle mp, 1, (Lo) and the line us = o; does not.

REMARK 7. The given definition of a simple bifurcation has nothing in common with that of a
simple atom given in [1] (Definition 2.4).

Let aj, = «j (h,k) and o, = aj,(h,k) be two roots of the polynomial P coinciding at
(ho, ko): aj, (ho, ko) = aj,(ho, ko). There exist two possibilities:
)

1) oy (h(),k = Ozjz(ho,k) € (C\]R for k € [ko—é‘, ko) and Qi (h(), k:),an(ho,k:) e Rfork e (ko,ko-l—e’:‘]

or vice versa;
2) Qj, (ho, k‘), Odh(h(), k‘) e Rfor k e U{/‘o — &, ko + E].

DEFINITION 9. We shall say that a simple bifurcation is of the first type in the first case and of
the second type in the second one.

The rest of the paper is devoted to the classification of simple bifurcations of the first type that
occur in regular algebraically separable systems. Here we list all the required assumptions for this.
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(5)

The given algebraically separable integrable system is regular.
The isoenergy surface Q?LO is regular (i.e., dH(z) # 0 for any z € Q%O).
The surface U (Lg) is connected and compact (hence all the leaves L C U.(Lg) are compact).

The set R of critical points of F in L is diffeomorphic to a disjoint union of circles and K
is a Bott function on U.(Ly), i.e., K is a Morse function on small 2-disks intersecting K
transversally at each point of K.

The bifurcation defined by U (L) is simple.

For simple bifurcations of the first type we have again two possibilities.

(1)

(2)

(Dis)appearance case. For any leaf L C {x € U.(Ly) | K(x) = k} its projection mp, (L) lies
between the lines {u; = a;, (ho, k)} and {u; = aj,(ho, k)} (Fig. 16).

Splitting case. For any leaf L C {x € U.(Lo) | K(x) = k} its projection mp, (L) lies on the
left and on the right of the lines {u1 = a;, (ho, k)} and {u1 = a;,(ho, k)} (Fig. 17).

25 Uy 155
A A A
ay by fommmmmmmm- @y prmmm---
(D e —_—
ap ok e &p ===
up ur u
Q’;:Q_fﬁR ap=a; @ [+
Puc. 16: (Dis)appearance case
Ly 5] 5]
Qyf---- Qg f---- Q& fp----
—_— —_—
@pf---- @pr---- | @pr---- Mk
] - — [] ] 1 '
D =ajeR O wg : uy | i iy
@; a, @ a =qa @ ¥ e o o

Puc. 17: Splitting case

Consider each of these possibilities separately.

5.1. (Dis)appearance case

THEOREM 3. In the (dis)appearance case, any bifurcation satisfying the above five conditions
has the type of the atom A (Fig. 1).
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JIOKA3ATEJILCTBO. Since for some values of k& o is the complex conjugate of a,., the radicals

Vui — g and /o, — ug always appear in the expressions (3) in pair. Hence the columns C’l(l) and

C,(,l) of the matrix C coincide and W,jolk(H) is the 00- or 08-torus when oy, o, € R and oy < «, (here
IT = [ay, ] X [, o] as above). It follows that the type of bifurcation is totally determined by the
evolution of the cycle v, (Fig. 18) and we obviously obtain the atom A.

- O

(l’lr (1’;-

0) S—

g iy iy

L
| g ®
R

aj=a, ¢ R
Puc. 18: Evolution of the cycle v,: (dis)appearance case

a

5.2. Splitting case

THEOREM 4. In the splitting case, any bifurcation satisfying the above five conditions has the
type of one of the atoms B, Co, Dy, Py (Fig. 1).

JOKABATEILCTBO. Put Iy = [oy, o] X [ap, o] and IIy = [o], o] X [ow, 0] as in Fig. 17. Suppose
ol =a) € C\R for k € [ko — &, ko) and o, ) € R for k € (ko, ko + €]. For simplicity, from now on
we shall omit the upper indices (1), (2), which stand for the order number of a separation variable,
as they are clear from the lower ones. Thus s, = bsgn(a/. — uy), A} is the column of the matrix A
corresponding to s etc.

Put C = (C;C, C, Cy), C' = (C1C.CC.C,Cy), C1=(C,CLCC), Co=(C/C,CyCy).
Note that the variables s; = bsgn\/u1 — «j, s, = bsgn\/u; — a}. and hence the columns C},C,
are only well-defined for k € [ko, ko + €]. As in the previous theorem, we have C] = Cj.. So instead
of s, and s it is convenient to introduce the variable s/, = bsgn/(u1 — al.)(u; — ) which is
well-defined for any k € [ko — ¢, ko + ¢].

Similar to the proof of Theorem 2, we consider all principally different cases depending on the
ranks of the matrices C' and C” (the columns C] = C;. of C’ may be treated as corresponding to the
variable s/,). Note that the matrices C, C1, and C5 corresponding to the rectangles II, II;, and Iy
satisfy Corollary 2.

1) rank ¢’ = rank C + 1.

1.1) rankC = 2, rank ¢’ = 3. Two 00-tori differing by the value of s/, transform into two
80-tori. This corresponds to the atom Cs.

1.2) rank C = 3, rank C' = 4.

1.2.1) C; = C,.. This case is similar to the case 1.1): two 08-tori differing by the value
of s/, transform into two 88-tori. Again the atom Co.

1.2.2) Cj = C;. Two 80-tori differing by value of s/, transform into four 80-tori. This
corresponds to the atom Pj.

1.2.3) C;® C, & C, ® C; = 0. A 88/2-torus transforms into two 88-tori. The correspon-
ding atom is the result of the factorization of the atom Py from the case 1.3) by the

involution acting by central symmetry on the 2-atom P, and on the circle S1. We
obtain the atom Cs.
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1.3) rank C = 4, rank C’ = 5. This case is similar to the case 1.2.2): two 88-tori differing by
the value of s;l transform into four 88-tori. We obtain the atom Pj.

2) rank C’ = rank C.

2.1) rank ¢’ =rank C' = 2. We have C; = A, = A} = C, and C}, = Cy, hence a 00-torus
transforms into two 00-tori. This corresponds to the atom B.
2.2) rank C’ = rank C = 3.
2.2.1) C, = C,.
2.2.1.1) Aj = C,. This case is similar to the case 2.1): a 08-torus transforms into
two 08-tori. Again the atom B.
2.2.1.2) A} =C, @ Cp @ Cy. A 08-torus transforms into two 88/2-tori. This corres-
ponds to the atom B.
2.2.2) C, = C,.
2.2.2.1) A]=C,. A 80-torus transforms into two 00-tori and a 80-torus. This
corresponds to the atom D;. In the symmetric case A; = C; we also have the
atom D;y.
2.2.2.2) A} =C;®C,. The resulting 3-surface is a direct product of a non-
orientable 2-atom and the circle. Hence it is non-orientable and does not
correspond to a 3-atom. So this case is impossible under our assumptions.
2.2.2.3) A)=C;® C, & Cy. It is easy to see that the critical trajectories on the
singular leaf cannot be oriented in the same way. This contradicts the existence
of the oriented S!-fibration in a neighborhood of the singular leaf ([1, Theorems
3.2 and 3.3]). Hence this case is also impossible.
2.2.3) ;6 C, ®C,® Cy =0. A 88/2-torus transforms into a 08-torus and a 88-torus.
This corresponds to the atom B.

2.3) rank ¢’ = rank C = 4.

2.3.1) A} = C,. This case is similar to the case 2.2.2.1): a 88-torus transforms into two

08-tori and a 88-torus. We obtain the atom D;. In the symmetric case 4] = C; we
also have the atom D;.

2.3.2) A} = C; @ C,. This case is similar to the case 2.2.2.2) and is therefore impossible.

2.3.3) A) = C; @ C, & Cp. This case is similar to the case 2.2.2.3) and is also impossible.

2.3.4) A)=C;®C, & C, @ Cy. This case is similar to the cases 2.2.2.2) and 2.3.2).
Hence it is impossible.

2.3.5) A] =C, & Cy, ® Cy. A 88-torus transforms into two 88/2-tori and a 88-torus. We
obtain the atom D;.

6. Conclusion

As follows from Theorems 3 and 4, the only simple bifurcations of the first type that may occur
(and actually do) in regular algebraically separable integrable systems under the five conditions
listed above have the type of the 3-atoms A, B, Cs, D1, and Py. For instance, all these atoms occur
in elliptical billiards with a polynomial potential [14].

Our result was obtained by the direct analysis of the gluing of sheets over the boundaries of the
rectangles in the plane R?(uy,us), so the techniques demonstrated here can be easily applied for
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the simple 3-atoms of the second type (which will be the subject of the next paper). Moreover, we
may generalize these results to the non-compact case or non-simple 3-atoms.

What is remarkable, for the topological analysis of a concrete regular algebraically separable
system, there is no need to parametrize the leaves of the Liouville foliation in terms of the initial
phase variables. Given the formulae for the expressions of these variables via the variables of
separation, one can write down the corresponding Zs-matrix and just analyze this matrix for
different domains in (M%) \ A, where F is the momentum mapping and A is the discriminant set
of the polynomial P.

It should be emphasized that singularities of algebraically separable systems often occur not due
to the coincidence of roots of the polynomial P, but because of degeneration of the Hamiltonian
equations written down in the separating variables. In (2) this happens whenever u; = us.
The corresponding singularities are much more complicated than those described above. Their
topological classification is the subject for future studies.

The author is grateful to his teacher Prof. A.T. Fomenko for constant support and attention
to this work; to all the participants of the Seminar “Modern geometry methods”, especially
Prof. E. A.Kudryavtseva,for fruitful discussions and valuable comments; to Profs. ’ M. P. Kharlamov ‘
and P. E. Ryabov for encouraging to develop the Boolean functions method; to the reviewer of this
paper for carefully reading the text and pointing out the connection of the problems discussed here
with the theory of square tiled surfaces.
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