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Abstract

We classify the simplest 3-dimensional singularities of regular algebraically separable
integrable systems. Such systems form an important class of Liouville integrable Hamiltonian
systems with two degrees of freedom and occur in many problems of mechanics and geometry.
The techniques elaborated in the paper is based on the analysis of a certain Z2-matrix uniquely
determined by the expressions of the initial phase variables via the separating variables.
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1. Introduction

The theory of topological classification of (Liouville) integrable Hamiltonian systems with two
degrees of freedom created by A.T. Fomenko and his co-authors [1, 2, 3, 4] allows to classify
such systems up to different types of equivalence, first of all Liouville equivalence. Two integrable
Hamiltonian systems are called Liouville equivalent if there exists a diffeomorphism between the
phase spaces invariant with respect to the Liouville foliations of these systems. For a typical
integrable system its Liouville foliation is defined by closures of integral trajectories and is therefore
an important topological characteristics of the system. Within the Fomenko theory, the Liouville
equivalence class of an integrable system (restricted to some invariant submanifold) is defined by
the appropriate invariant (which in most cases has the form of a graph with some numerical marks).
However, explicit calculation of such invariants is not an algorithmic task and, for some concrete
systems, may happen to be quite a complicated problem. In this paper, we discuss a remarkable class
of integrable systems for which the calculation of topological invariants can be done algorithmically.
Following M.P. Kharlamov and his co-authors, we call such systems algebraically separable (see
Definition 6 below). This notion means that the Hamiltonian equations on each leaf of the Liouville
foliation can be reduced to separated equations and, what is crucial for the topological analysis,
the initial phase variables are expressed via the separating ones in a “nice” way. In other words,
the separating variables deliver a good parametrization for integral submanifolds making clear all
interesting topological effects. The systems with such properties occur in many classical problems
of the rigid body dynamics, integrable geodesic flows, integrable billiards.

The systematic approach to the study of the topology of algebraically separable systems was
suggested by M.P. Kharlamov in [5], though some interesting results were known before (it is
worth mentioning the work [6] by O.E. Orel). The M.P. Kharlamov’s ideas and methods were
successfully applied to many integrable systems arising in mechanics and physics (see for example
[7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17]). However, determining the topological type of singularities
within this approach is usually conducted in terms of the phase space and its initial variables and
involves some topological arguments like behavior of certain cycles on integral submanifolds. The
main idea of the present paper is as follows. Expressions of the phase variables via the variables of
separation define a certain Boolean matrix. Once this matrix is written down, there is no need to
address the phase space anymore: all the required topological information is already contained in
this matrix!

The paper has the following structure. In Section 2 we recall some definitions and introduce
necessary notation. In Section 3 we prove some auxiliary statements, which help to discover the
topology of integral submanifolds in terms of the variables of separation. Section 4 is devoted to
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the description of regular Liouville tori in terms of the variables of separation. Section 5 contains
the main results of the paper, namely Theorems 3 and 4 classifying the simplest singularities
of algebraically separable systems. The proofs of these theorems clarify the dependance of the
topological type of singularities on the Boolean matrix mentioned above. Finally, in Conclusion we
give several remarks and outline the directions of further investigations.

2. Necessary definitions ans notations

We start with a brief overview of the main concepts arising in the theory of integrable systems.

Definition 1. A Hamiltonian system is a triple (𝑀2𝑛, 𝜔,𝐻), where (𝑀2𝑛, 𝜔) is a symplectic
(hence orientable) manifold with the symplectic structure 𝜔 and 𝐻 is smooth function on𝑀2𝑛 called
the Hamiltonian function. The Hamiltonian vector field is defined as 𝑣 = 𝜔−1𝑑𝐻.

Definition 2. A Hamiltonian system is called Liouville integrable if it possesses 𝑛 smooth first
integrals 𝑓1, . . . , 𝑓𝑛 such that:

� 𝑓1, . . . , 𝑓𝑛 are functionally independent, i.e., their differentials 𝑑𝑓1, . . . , 𝑑𝑓𝑛 are linearly
independent almost everywhere on 𝑀4;

� 𝑓1, . . . , 𝑓𝑛 commute with respect to the Poisson bracket defined by the symplectic structure;

� the Hamiltonian vector fields 𝑣𝑖 = 𝜔−1𝑑𝑓𝑖 are complete, i.e., the natural parameter on their
integral trajectories is defined on the whole real axis.

Remark 1. In the above definition we may always assume 𝑓1 = 𝐻.

Definition 3. The Liouville foliation corresponding to the given integrable system is the
decomposition of the manifold 𝑀2𝑛 into connected components (leaves) of common level surfaces of
the first integrals 𝑓1, . . . , 𝑓𝑛.

Studying the topology of the Liouville foliation (in particular, its singularities) is an important
part of the topological analysis of an integrable system. According to the classical Liouville theorem,
any its compact regular leaf 𝐿 (regularity means that 𝑑𝑓1, . . . , 𝑑𝑓𝑛 are linearly independent at any
𝑥 ∈ 𝐿) is diffeomorphic to the 𝑛-dimensional torus 𝑇𝑛 (the Liouville torus) and the Liouville
foliation is trivial in a small neighborhood of 𝐿. Hence the bifurcations of the Liouville foliation
may happen only in neighborhoods of singular leaves.

In the sequel, we assume that 𝑛 = 2, i.e., the system has two degrees of freedom. In this case
integrability means the existence of only one additional first integral 𝐾 of the system functionally
independent of 𝐻.

Definition 4. The mapping ℱ = (𝐻,𝐾) : 𝑀4 → R2 is called the momentum mapping
associated with a Liouville integrable system with two degrees of freedom. The image Σ = {𝑥 ∈𝑀4 |
rank 𝑑ℱ(𝑥) < 2} of all critical points of ℱ is called the bifurcation diagram.

In a typical case the bifurcation diagram is a union of smooth curves (and maybe isolated points)
in R2, which correspond to certain types of bifurcations of the Liouville foliation. More precisely, take
any small enough smooth curve 𝛾 intersecting Σ transversally at a single point. Its pre-image ℱ−1(𝛾)
is a 3-dimensional invariant submanifold in 𝑀4, which “pictures” the corresponding bifurcation.

Definition 5. The submanifold ℱ−1(𝛾) with the structure of the Liouville foliation viewed up
to a fiber diffeomorphism is called a 3-atom.
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All compact 3-atoms turn out to be oriented 𝑆1-fibrations (so called Seifert fibrations) over
2-atoms ([1, Theorems 3.2 and 3.3]). By definition, a 2-atom is a small neighborhood of a critical
level line of a Morse function 𝑓 on a smooth 2-dimensional surface foliated into level lines of 𝑓 and
viewed up to a fiber diffeomorphism. Some examples of 2-atoms are shown in Fig. 1. The 3-atoms
obtained as direct products of these 2-atoms and the circle 𝑆1 are denoted by the same symbols.

Рис. 1: 2-atoms 𝐴,𝐵,𝐷1, 𝑃4, 𝐶2

For more details about topological invariants in the theory of Liouville integrable systems we
address the reader to [1].

Now we define the main notion of this paper (which may be generalized to arbitrary many
degrees of freedom).

Definition 6. We say that a Liouville integrable system with 2 degrees of freedom on a
symplectic manifold𝑀4 (or on its invariant submanifold 𝑁) is algebraically separable if the following
conditions hold.

(1) There exist real smooth functions 𝑢1, 𝑢2 on 𝑀
4 (on 𝑁) called the variables of separation in

which the Hamiltonian equations separate in the form

𝑢1 =
√︀
𝑃1(𝑢1), 𝑢2 =

√︀
𝑃2(𝑢2) (1)

or in the form of the Abel equations

𝑢1 =

√︀
𝑃 (𝑢1)

𝑢1 − 𝑢2
, 𝑢2 =

√︀
𝑃 (𝑢2)

𝑢1 − 𝑢2
. (2)

Here 𝑃1 and 𝑃2 are (maybe coinciding) real polynomials of degree 3 or 4, 𝑃 is a polynomial
of degree 5 or 6. The coefficients of these polynomials depend smoothly on the values ℎ, 𝑘 of
the first integrals 𝐻,𝐾 of the system.

(2) The initial phase variables on 𝑀4 (on 𝑁) can be expressed via 𝑢1, 𝑢2 as multivalued rational
functions on two-valued radicals of the form

√
𝑢𝑖 − 𝛼𝑗, 𝑖 = 1, 2, where 𝛼𝑗 are the (complex)

roots of 𝑃1, 𝑃2 (or 𝑃 ). The coefficients of these rational functions are smooth functions on
𝑢1, 𝑢2, ℎ, 𝑘.

Remark 2. This definition is given according to [7]. In [5] such systems are called algebraically
solvable.
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Remark 3. In the classical integrable cases of the rigid body dynamics the phase space 𝑀4

appears as a symplectic leaf in R6 endowed with an appropriate Poisson structure. In this case the
second condition of the above definition implies that the coordinates in R6 are expressed via 𝑢1, 𝑢2
as indicated above.

Remark 4. The second condition of the above definition is crucial for studying the topology of
the Liouville foliation of the underlying integrable system. It allows one to describe explicitly the
Liouville tori and their bifurcations in terms of the variables 𝑢1, 𝑢2. This distinguishes algebraically
separable systems from other types of systems with separating variables.

Let 𝑅1, . . . , 𝑅𝑛 be the monomials in the rational expressions of the phase variables via 𝑢1, 𝑢2:

𝑅𝑚 =

√︂
±(𝑢1 − 𝛼(1)

𝑚,1) . . . (𝑢1 − 𝛼
(1)
𝑚,𝑝(𝑚))(𝑢2 − 𝛼

(2)
𝑚,1) . . . (𝑢2 − 𝛼

(2)
𝑚,𝑞(𝑚)), (3)

where 𝛼(𝑖)
𝑚,𝑗 are some (maybe complex) roots of the polynomial 𝑃 (in the case (1) here and further

it is convenient to denote by 𝑃 the least common multiple of 𝑃1 and 𝑃2). It may happen that

𝛼
(𝑖1)
𝑚1,𝑗1

= 𝛼
(𝑖2)
𝑚2,𝑗2

for some triples (𝑖1,𝑚1, 𝑗1) ̸= (𝑖2,𝑚2, 𝑗2), but 𝛼
(𝑖)
𝑚,𝑗1

̸= 𝛼
(𝑖)
𝑚,𝑗2

for fixed 𝑖,𝑚 and

𝑗1 ̸= 𝑗2. Moreover, the set of all the numbers 𝛼(𝑖)
𝑚,𝑗 may be smaller than the set of all the roots of 𝑃 .

Note that the expressions under the radicals in (3) must be real and non-negative which influences
the range of 𝑢1, 𝑢2.

Denote by 𝜋ℎ,𝑘 the projection of a certain leaf 𝐿 ⊂ {𝑥 ∈ 𝑀4 | 𝐻(𝑥) = ℎ, 𝐾(𝑥) = 𝑘} of the
Liouville foliation to the plane R2(𝑢1, 𝑢2). Then 𝜋ℎ,𝑘(𝐿) = [𝛼𝑙, 𝛼𝑟]× [𝛼𝑏, 𝛼𝑡], where 𝛼𝑙, 𝛼𝑟, 𝛼𝑏, 𝛼𝑡 are
real roots of 𝑃 (the indices stand for left, right, bottom, top).

Following [5], introduce the sign function bsgn: R→ Z2:

bsgn(𝜃) =

{︃
0, 𝜃 ≥ 0,

1, 𝜃 < 0.

Obviously, bsgn(𝜃1𝜃2) = bsgn(𝜃1)⊕ bsgn(𝜃2) if 𝜃1, 𝜃2 ̸= 0 (⊕ is the sum modulo 2).

Set 𝑆𝑚 = bsgn𝑅𝑚, 𝑠
(𝑖)
𝑗 = bsgn

√︀
±(𝑢𝑖 − 𝛼𝑗) if 𝛼𝑗 ∈ R, and 𝑠

(𝑖)
𝑗 = bsgn

√︀
(𝑢𝑖 − 𝛼𝑗)(𝑢𝑖 − 𝛼𝑗) if

𝛼𝑗 /∈ R (in the latter case the multipliers (𝑢𝑖−𝛼𝑗) and (𝑢𝑖−𝛼𝑗) are both contained or not contained
in each radical 𝑅𝑚). Thus we obtain a Z2-linear mapping 𝒜 : Z2𝜃

2 (𝑠
(1)
1 , . . . , 𝑠

(1)
𝜃 , 𝑠

(2)
1 , . . . , 𝑠

(2)
𝜃 )→

→ Z𝑛2 (𝑆1, . . . , 𝑆𝑛), 𝜃 ≤ deg𝑃 , defined by (3):

𝑆𝑚 = 𝑠
(1)
𝑚,1 ⊕ . . .⊕ 𝑠

(1)
𝑚,𝑝(𝑚) ⊕ 𝑠

(2)
𝑚,1 ⊕ . . .⊕ 𝑠

(2)
𝑚,𝑞(𝑚), 𝑚 = 1, 𝑛. (4)

Definition 7. We shall say that an algebraically separable system is regular if the set
(𝑆1, . . . , 𝑆𝑛) is uniquely determined by a point 𝑥 ∈𝑀4, i. e., different signs of the radicals 𝑅1, . . . , 𝑅𝑛
cannot define (under the same values of 𝑢1, 𝑢2, ℎ, 𝑘) the same point in the phase space.

Let 𝐴 be the matrix of the linear mapping 𝒜. The main idea of the method discussed in this
paper is following: for a regular algebraically separable system the matrix 𝐴 “knows” everything
about its Liouville foliation. Topology and singularities of this foliation can be deduced from the
matrix 𝐴 directly.

For given ℎ, 𝑘 the variables 𝑠(𝑖)𝑗 can be divided into two groups: the first one contains the signs
which do not change on a fixed leaf 𝐿 of the Liouville foliation whereas the second group contains
the signs changing on 𝐿. Accordingly, 𝐴 = (𝐵 𝐶), where the columns of the submatrices 𝐵 and 𝐶
correspond respectively to the variables of the first and the second groups. Roughly speaking, for
given ℎ, 𝑘 the matrix 𝐵 influences the number of connected components in ℱ−1(ℎ, 𝑘) (see [5])
whereas the matrix 𝐶 determines the topological structure of the pre-image 𝜋−1

ℎ,𝑘([𝛼𝑙, 𝛼𝑟]× [𝛼𝑏, 𝛼𝑡])
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for a fixed leaf. It is convenient to consider 𝜋−1
ℎ,𝑘 as a multi-valued mapping of [𝛼𝑙, 𝛼𝑟] × [𝛼𝑏, 𝛼𝑡].

We shall call it the lifting mapping. In what follows, we study the matrix 𝐶 and its influence
on the topological properties of 𝜋−1

ℎ,𝑘 separately for regular and singular values ℎ, 𝑘. Note that
if the polynomial 𝑃 = 𝑃ℎ,𝑘 has no multiple roots, the variables of the second group are solely

𝑠
(1)
𝑙 , 𝑠

(1)
𝑟 , 𝑠

(2)
𝑏 , 𝑠

(2)
𝑡 and the matrix 𝐶 has 4 columns. In this case the lifting mapping 𝜋−1

ℎ,𝑘 defines the

structure of a square tiled surface [18] on the leaves in 𝜋−1
ℎ,𝑘([𝛼𝑙, 𝛼𝑟]× [𝛼𝑏, 𝛼𝑡]).

At the end of this section we give a formal proof of the well-known principle stating that
singularities of the Liouville foliation correspond to multiple roots of the polynomial 𝑃 .

Theorem 1. The bifurcation diagram Σ ⊂ R2(ℎ, 𝑘) of the momentum mapping ℱ = (𝐻,𝐾)
of an algebraically separable system is contained in the discriminant set Δ of the polynomial 𝑃 ,
i. e., the set of all points (ℎ, 𝑘) ∈ R2 such that 𝑃 = 𝑃ℎ,𝑘 has multiple roots.

Доказательство. For 𝑥0 ∈ 𝑀4 put ℎ0 = 𝐻(𝑥0), 𝑘0 = 𝐾(𝑥0). We shall prove that, if all the
roots of the polynomial 𝑃ℎ0,𝑘0 are simple, 𝑥0 is a regular point of the momentum mapping ℱ ,
i. e., rank 𝑑ℱ|𝑥0 = 2.

Let 𝐿 be the leaf of the Liouville foliation containing 𝑥0, and let 𝜋ℎ0,𝑘0(𝐿) = [𝛼𝑙, 𝛼𝑟]× [𝛼𝑏, 𝛼𝑡].
Since 𝑢1 ∈ [𝛼𝑙, 𝛼𝑟] and 𝑢2 ∈ [𝛼𝑏, 𝛼𝑡] on 𝐿, we may set

𝑢1 = 𝛼𝑙 cos
2 𝜙+ 𝛼𝑟 sin

2 𝜙, 𝑢2 = 𝛼𝑏 cos
2 𝜓 + 𝛼𝑡 sin

2 𝜓, 𝜙, 𝜓 ∈ [0, 2𝜋).

Then

√
𝑢1 − 𝛼𝑙 =

√
𝛼𝑟 − 𝛼𝑙 sin𝜙,

√
𝛼𝑟 − 𝑢1 =

√
𝛼𝑟 − 𝛼𝑙 cos𝜙, (5)

√
𝑢2 − 𝛼𝑏 =

√
𝛼𝑡 − 𝛼𝑏 sin𝜓,

√
𝛼𝑡 − 𝑢2 =

√
𝛼𝑡 − 𝛼𝑏 cos𝜓, (6)

where the radicals in the right-hand sides are the non-negative arithmetic square roots. This way,
we can take into account the signs 𝑠(1)𝑙 , 𝑠

(1)
𝑟 , 𝑠

(2)
𝑏 , 𝑠

(2)
𝑡 .

Take any 𝜙0, 𝜓0 such that the equalities (5), (6) are true for 𝑢1(𝑥0), 𝑢2(𝑥0). Consider the mapping
𝜉 : 𝑈(ℎ0, 𝑘0) → 𝑀4 obtained by substitung (5), (6) with 𝜙 = 𝜙0, 𝜓 = 𝜓0 in the expressions of the
phase variables via 𝑢1, 𝑢2. Here 𝑈(ℎ0, 𝑘0) is a neighborhood of the point (ℎ0, 𝑘0) in R2(ℎ, 𝑘). Note
that 𝜉 is well defined: the signs of the radicals from the first group (which do not change on the
leaf 𝐿) are taken the same as on 𝐿, and signs from the second group are uniquely determined by
sin𝜙0, cos𝜙0, sin𝜓0, cos𝜓0. The neighborhood 𝑈(ℎ0, 𝑘0) ⊂ R2 is taken small enough so that for
any (ℎ, 𝑘) ∈ 𝑈(ℎ0, 𝑘0) all the roots of the polynomial 𝑃 = 𝑃ℎ,𝑘 are simple. It is easy to see that
𝜉 is smooth since 𝛼𝑗 are smooth functions on ℎ, 𝑘. The latter is true due to the implicit function
theorem since locally 𝛼𝑗 are simple roots of 𝑃 and 𝜕𝑃

𝜕𝛼𝑗
̸= 0.

Now notice that ℱ∘𝜉 = id |𝑈(ℎ0,𝑘0). Taking differentials at (ℎ0, 𝑘0), we obtain 𝑑ℱ|𝑥0∘𝑑𝜉|(ℎ0,𝑘0) =
= id |R2 which yields rank 𝑑ℱ|𝑥0 ≥ rank(𝑑ℱ|𝑥0 ∘ 𝑑𝜉|(ℎ0,𝑘0)) = 2. Hence rank 𝑑ℱ|𝑥0 = 2. 2

3. Topological properties of the lifting mapping 𝜋−1ℎ,𝑘

In this section we prove auxiliary statements which will help us to study the image of the lifting
mapping 𝜋−1

ℎ,𝑘 defined on the rectangle Π = [𝛼𝑙, 𝛼𝑟] × [𝛼𝑏, 𝛼𝑡]. If the signs of the first group (see

previous section) are fixed, 𝜋−1
ℎ,𝑘(Π) is a single leaf of the Liouville foliation, otherwise we can obtain

several leaves. It is easy to see that for each point 𝑦 ∈ intΠ its image 𝜋−1
ℎ,𝑘(𝑦) consists of 2

rank𝐶

points in the first case and 2rank𝐴 in the second one, where 𝐴 and 𝐶 are the Z2-matrices defined
in the previous section.

By 𝐴(𝑖)
𝑗 denote the column of the matrix 𝐴 corresponding to the sign 𝑠(𝑖)𝑗 , 𝑖 = 1, 2, and by 𝐴(𝑖)

𝑗

the matrix obtained from 𝐴 by the following procedure: eliminate all the rows of 𝐴 with entries in
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𝐴
(𝑖)
𝑗 equal to 1 and then eliminate the column 𝐴(𝑖)

𝑗 . By 𝐴(𝑖1𝑖2)
𝑗1𝑗2

denote the matrix obtained from 𝐴

by the same procedure applied twice (with respect to the columns 𝐴(𝑖1)
𝑗1

and 𝐴(𝑖2)
𝑗2

). Obviously, 𝐴(𝑖)
𝑗

is the matrix of the reduced linear mapping 𝒜 (obtained when
√
𝑢𝑖 − 𝛼𝑗 = 0) and 𝐴(𝑖1𝑖2)

𝑗1𝑗2
is the

matrix of the linear mapping obtained from 𝒜 when
√
𝑢𝑖1 − 𝛼𝑗1 =

√
𝑢𝑖2 − 𝛼𝑗2 = 0 (it is natural to

assume that 𝑖1 ̸= 𝑖2). Similar notation will be used for the matrix 𝐶.

Lemma 9. Suppose that for given ℎ, 𝑘 all the numbers 𝛼𝑗 are pairwise distinct. Then

1) rank𝐴
(𝑖)
𝑗 = rank𝐴− 1 for (𝑖, 𝑗) ∈ {(1, 𝑙), (1, 𝑟), (2, 𝑏), (2, 𝑡)};

2) rank𝐴
(12)
𝑗1𝑗2
≥ rank𝐴− 2 for (𝑗1, 𝑗2) ∈ {(𝑙, 𝑏), (𝑙, 𝑡), (𝑟, 𝑏), (𝑟, 𝑡)}.

Доказательство. The image 𝜋−1
ℎ,𝑘(Π) consists of 2

rank𝐴 sheets which are somehow glued together
along their boundaries (when some of the radicals vanish). In view of Theorem 1, the result of this
gluing is a 2-manifold (one or several Liouville tori), hence the sheets must be glued pairwise over
each side of Π. Take for instance the side Π𝑙 = {(𝛼𝑙, 𝑢2) | 𝛼𝑏 < 𝑢2 < 𝛼𝑡}. Its image 𝜋−1

ℎ,𝑘(Π𝑙) consists

of 2rank𝐴
(1)
𝑙 connected components which must be twice less than 2rank𝐴. This exactly means that

rank𝐴
(1)
𝑙 = rank𝐴− 1.

Now consider 𝜋−1
ℎ,𝑘 in a neighborhood of a corner of Π, say Π𝑙𝑏 = {(𝛼𝑙, 𝛼𝑏)}. Suppose 𝐴

(1)
𝑙 ̸= 𝐴

(2)
𝑏

and fix the signs of all the radicals except 𝑠(1)𝑙 and 𝑠(2)𝑏 . Then we obtain four sheets which differ

by the values of 𝑠(1)𝑙 and 𝑠(2)𝑏 . These sheets are glued together pairwise along their boundaries and
have a common corner point 𝑍 (this is similar to the “corner” of a sheet of paper folded in half
twice, Fig. 2). The neighborhood of the point 𝑍 in 𝜋−1

ℎ,𝑘(Π) is readily homeomorphic to the 2-disk,

therefore it should not be glued with any other similar point in 𝜋−1
ℎ,𝑘(Π𝑙𝑏). This means that the

number of different points in 𝜋−1
ℎ,𝑘(Π𝑙𝑏) (which equals 2rank𝐴

(12)
𝑙𝑏 ) is four times smaller than 2rank𝐴

implying rank𝐴
(12)
𝑙𝑏 = rank𝐴− 2.

Рис. 2: Gluing of sheets in a neighborhood of a corner point

The case 𝐴(1)
𝑙 = 𝐴

(2)
𝑏 is treated in a similar way. Here only two sheets are glued along their

boundaries resulting in rank𝐴
(12)
𝑙𝑏 = rank𝐴−1. However, as we shall see below, this case is actually

impossible. 2

Corollary 1. Under the conditions of Lemma 9 we also have:

1) rank𝐶
(𝑖)
𝑗 = rank𝐶 − 1 for (𝑖, 𝑗) ∈ {(1, 𝑙), (1, 𝑟), (2, 𝑏), (2, 𝑡)};

2) rank𝐶
(12)
𝑗1𝑗2
≥ rank𝐶 − 2 for (𝑗1, 𝑗2) ∈ {(𝑙, 𝑏), (𝑙, 𝑡), (𝑟, 𝑏), (𝑟, 𝑡)}.
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Remark 5. Since the matrices 𝐴 and 𝐶 are constant, the (in)equalities stated in Lemma 9 and
Corollary 1 remain true when some of the numbers 𝛼𝑗 coincide.

Lemma 10.

1) If 𝛼𝑗 is not a multiple root of the polynomial 𝑃ℎ,𝑘, the equality

rank𝐴
(𝑖)
𝑗 = rank𝐴− 1, (𝑖, 𝑗) ∈ {(1, 𝑙), (1, 𝑟), (2, 𝑏), (2, 𝑡)},

is sufficient for each point in 𝜋−1
ℎ,𝑘(Π𝑗) to have a neighborhood in 𝜋

−1
ℎ,𝑘(Π) homeomorphic to the

2-disk. Here Π𝑗 = {(𝛼𝑗 , 𝑢2) | 𝛼𝑏 < 𝑢2 < 𝛼𝑡} if 𝑗 ∈ {𝑙, 𝑟} and Π𝑗 = {(𝑢1, 𝛼𝑗) | 𝛼𝑙 < 𝑢1 < 𝛼𝑟}
if 𝑗 ∈ {𝑏, 𝑡}.

2) If 𝛼𝑗1 , 𝛼𝑗2 are not multiple roots of the polynomial 𝑃ℎ,𝑘, the equality

rank𝐴
(12)
𝑗1𝑗2

= rank𝐴− 2, (𝑗1, 𝑗2) ∈ {(𝑙, 𝑏), (𝑙, 𝑡), (𝑟, 𝑏), (𝑟, 𝑡)},

is sufficient for each point in 𝜋−1
ℎ,𝑘(Π𝑗1𝑗2), where Π𝑗1𝑗2 = {(𝛼𝑗1 , 𝛼𝑗2)}, to have a neighborhood

in 𝜋−1
ℎ,𝑘(Π) homeomorphic to the 2-disk.

Доказательство. The equality in the first statement means that the sheets in 𝜋−1
ℎ,𝑘(Π) are glued

together pairwise over Π𝑗 . The sheets in each pair differ by the value of 𝑠
(𝑖)
𝑗 .

The second statement is readily seen from the proof of Lemma 9. 2

Now fix all the signs from the first group. Then 𝜋−1
ℎ,𝑘(Π) is a single leaf of the Liouville foliation.

Put 𝜂 = rank𝐶. Let 𝐶(𝑖1)
𝑗1

, . . . , 𝐶
(𝑖𝜂)
𝑗𝜂

be Z2-linearly independent columns of 𝐶 (thus forming the

basis in the span of the columns of 𝐶). Each sheet in 𝜋−1
ℎ,𝑘(intΠ) can be encoded by the values of

𝑠
(𝑖1)
𝑗1
, . . . , 𝑠

(𝑖𝜂)
𝑗𝜂

if we assign fixed (for instance, zero) values to all the other variables 𝑠(𝑖)𝑗 from the
second group. The following lemma provides the rule indicating which of these sheets must be glued
together over the boundary of Π.

Lemma 11. For (𝑖0, 𝑗0) ∈ {(1, 𝑙), (1, 𝑟), (2, 𝑏), (2, 𝑡)} let 𝐶(𝑖0)
𝑗0

= 𝐶
(𝑖1)
𝑗1
⊕ . . . ⊕ 𝐶

(𝑖𝜈)
𝑗𝜈

(𝜈 ≤ 𝜂)

be the decomposition of the column 𝐶
(𝑖0)
𝑗0

into the sum (modulo 2) of some basic columns. Suppose

rank𝐶
(𝑖0)
𝑗0

= rank𝐶− 1. Then the pairs of sheets that must be glued together over the corresponding

side of Π are defined by the following rule: the signs 𝑠
(𝑖1)
𝑗1
, . . . , 𝑠

(𝑖𝜈)
𝑗𝜈

are different whereas the signs

𝑠
(𝑖𝜈+1)
𝑗𝜈+1

, . . . , 𝑠
(𝑖𝜂)
𝑗𝜂

are the same in each pair.

Доказательство. Suppose (𝑖0, 𝑗0) = (1, 𝑙). It is sufficient to prove that the signs of all non-zero
radicals (3) are the same in each pair of sheets provided that 𝑢1 = 𝛼𝑙. For each such radical 𝑅𝑚
its sign is given by (4). Denote by 𝑎(𝑖)𝑚𝑗 the element of the matrix 𝐴 (or 𝐶) in the intersection of

the 𝑚’s row and the column 𝐴(𝑖)
𝑗 (or 𝐶(𝑖)

𝑗 ). The variable 𝑠(𝑖)𝑗 is present in the right-hand side of (4)

iff 𝑎
(𝑖)
𝑚𝑗 = 1. Since 𝑅𝑚 ̸= 0, 𝑎(1)𝑚𝑙 = 0 which yields 𝑎(𝑖1)𝑚𝑗1

⊕ . . . ⊕ 𝑎(𝑖𝜈)𝑚𝑗𝜈
= 𝑎

(1)
𝑚𝑙 = 0. This means that

the number of non-zero elements 𝑎
(𝑖𝛽)
𝑚𝑗𝛽

(1 ≤ 𝛽 ≤ 𝜈) and, equivalently, the number of variables 𝑠(𝑖𝛽)𝑗𝛽

present in the right-hand side of (4) are even. Therefore, if we change the values of 𝑠(𝑖1)𝑗1
, . . . , 𝑠

(𝑖𝜈)
𝑗𝜈

,
the sum in (4) remains the same. 2

Remark 6. In Lemma 11 we do not require 𝛼𝑗0 to be a simple root of 𝑃ℎ,𝑘.
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4. Topology of regular leaves in terms of the lifting mapping 𝜋−1ℎ,𝑘

We are now ready to classify regular Liouville tori through the framework of the lifting
mapping 𝜋−1

ℎ,𝑘. Let all the numbers 𝛼𝑗 be different and all the signs from the first group be fixed,

thus 𝜋−1
ℎ,𝑘(Π) = 𝑇 2

ℎ,𝑘 is a Liouville torus.

Fix the value of 𝑢2 together with the signs 𝑠
(2)
𝑏 , 𝑠(2)𝑡 or, equivalently, fix the value of 𝜓 ∈ [0, 2𝜋)

in (6). We obtain a closed curve 𝛾𝜙 in 𝑇 2
ℎ,𝑘 parametrized by 𝜙. The value of 𝜙 changes by 𝜋/2 as 𝑢1

changes from 𝛼𝑙 to 𝛼𝑟. If the columns 𝐶
(1)
𝑙 and 𝐶(1)

𝑟 of the matrix 𝐶 are equal, the radicals
√
𝑢1 − 𝛼𝑙

and
√
𝛼𝑟 − 𝑢1 always appear in (3) in pair, so 𝜙 only appears in (3) as cos𝜙 sin𝜙. Therefore, in

the case 𝐶(1)
𝑙 = 𝐶

(1)
𝑟 the natural range of 𝜙 is [0, 𝜋) and 𝜋ℎ,𝑘 restricted to 𝛾𝜙 is a 2-fold branched

covering of the line segment {(𝑢1, 𝑢2) | 𝛼𝑙 ≤ 𝑢1 ≤ 𝛼𝑟} (Fig. 3). We shall use the notation 𝛾2𝜙 for

such curve 𝛾𝜙. If 𝐶
(1)
𝑙 ̸= 𝐶

(1)
𝑟 , the natural range of 𝜙 is [0, 2𝜋) and 𝜋ℎ,𝑘 restricted to 𝛾𝜙 is a 4-fold

branched covering of the line segment {(𝑢1, 𝑢2) | 𝛼𝑙 ≤ 𝑢1 ≤ 𝛼𝑟} (Fig. 4). In this case we write
𝛾𝜙 = 𝛾4𝜙. The curves 𝛾

2
𝜓, 𝛾

4
𝜓 are defined in a similar way.

Рис. 3: Curve 𝛾2𝜙

Рис. 4: Curve 𝛾4𝜙

Theorem 2. In terms of the curves 𝛾𝜙, 𝛾𝜓, the Liouville torus 𝑇
2
ℎ,𝑘 can be described in one of

the following ways:

1) 𝛾2𝜙 × 𝛾2𝜓 (00-torus);

2) 𝛾2𝜙 × 𝛾4𝜓 (08-torus);
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3) 𝛾4𝜙 × 𝛾2𝜓 (80-torus);

4) 𝛾4𝜙 × 𝛾4𝜓 (88-torus);

5) 𝛾2𝜙 × 𝛾2𝜓/𝜏 , where 𝜏 is the involution taking (𝜙,𝜓) to (𝜙+ 𝜋, 𝜓 + 𝜋) (88/2-torus).

Доказательство. Consider all principally different (up to symmetries of indices 𝑙 ↔ 𝑟, 𝑏 ↔ 𝑡)

cases depending on the rank of the matrix 𝐶 = (𝐶
(1)
𝑙 𝐶

(1)
𝑟 𝐶

(2)
𝑏 𝐶

(2)
𝑡 ), which obviously does not

exceed 4 (the number of columns of 𝐶). In each case we have 2, 4, 8, or 16 sheets, which are somehow
glued together along their boundaries to form a torus. The rules for the gluing are determined
by Lemma 11. If the result of a gluing is not a torus, this means that the corresponding case is
impossible. In most figures below we supply each sheet with the values of variables 𝑠(𝑖)𝑗 corresponding

to basic columns in ⟨𝐶(1)
𝑙 , 𝐶

(1)
𝑟 , 𝐶

(2)
𝑏 , 𝐶

(2)
𝑡 ⟩.

1) rank𝐶 = 1. We have two sheets, which are glued together along their boundaries forming the
2-sphere 𝑆2 (Fig. 5).

Рис. 5: Gluing of sheets: rank𝐶 = 1

2) rank𝐶 = 2.

2.1) 𝐶
(1)
𝑙 = 𝐶

(1)
𝑟 , 𝐶(2)

𝑏 = 𝐶
(2)
𝑡 . We obtain the 00-torus (Fig. 6).

Рис. 6: Gluing of sheets: rank𝐶 = 2, 𝐶(1)
𝑙 = 𝐶

(1)
𝑟 , 𝐶(2)

𝑏 = 𝐶
(2)
𝑡

2.2) 𝐶
(1)
𝑙 ̸= 𝐶

(1)
𝑟 , 𝐶(2)

𝑏 = 𝐶
(2)
𝑡 . We may choose the columns 𝐶(1)

𝑙 , 𝐶
(1)
𝑟 as basic.

2.2.1) 𝐶
(2)
𝑏 = 𝐶

(2)
𝑡 = 𝐶

(1)
𝑙 . We obtain the sphere 𝑆2 (Fig. 7).

2.2.2) 𝐶
(2)
𝑏 = 𝐶

(2)
𝑡 = 𝐶

(1)
𝑙 ⊕ 𝐶

(1)
𝑟 . We obtain the Klein bottle 𝐾𝐿 (Fig. 8).

2.3) 𝐶
(1)
𝑙 ̸= 𝐶

(1)
𝑟 , 𝐶(2)

𝑏 ̸= 𝐶
(2)
𝑡 . Again, the columns 𝐶(1)

𝑙 , 𝐶
(1)
𝑟 are basic.
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Рис. 7: Gluing of sheets: rank𝐶 = 2, 𝐶(1)
𝑙 ̸= 𝐶

(1)
𝑟 , 𝐶(2)

𝑏 = 𝐶
(2)
𝑡 = 𝐶

(1)
𝑙

Рис. 8: Gluing of sheets: rank𝐶 = 2, 𝐶(1)
𝑙 ̸= 𝐶

(1)
𝑟 , 𝐶(2)

𝑏 = 𝐶
(2)
𝑡 = 𝐶

(1)
𝑙 ⊕ 𝐶

(1)
𝑟

Рис. 9: Gluing of sheets: rank𝐶 = 2, 𝐶(1)
𝑙 ̸= 𝐶

(1)
𝑟 , 𝐶(2)

𝑏 = 𝐶
(1)
𝑙 , 𝐶(2)

𝑡 = 𝐶
(1)
𝑟

2.3.1) 𝐶
(2)
𝑏 = 𝐶

(1)
𝑙 , 𝐶(2)

𝑡 = 𝐶
(1)
𝑟 . We have the sphere 𝑆2 (Fig. 9).

2.3.2) 𝐶
(2)
𝑏 = 𝐶

(1)
𝑙 , 𝐶(2)

𝑡 = 𝐶
(1)
𝑙 ⊕ 𝐶

(1)
𝑟 . We have the projective plane R𝑃 2 (Fig. 10).

3) rank𝐶 = 3. Assume that the columns 𝐶(1)
𝑙 , 𝐶

(1)
𝑟 , 𝐶

(2)
𝑏 are linearly independent.

3.1) 𝐶
(2)
𝑡 = 𝐶

(2)
𝑏 . Similarly to the case 2.1), we have the 80-torus (Fig. 11). The 08-torus

is obtained in the symmetric case 𝐶
(1)
𝑙 = 𝐶

(1)
𝑟 with linearly independent columns

𝐶
(1)
𝑙 , 𝐶

(2)
𝑏 , 𝐶

(2)
𝑡 .

3.2) 𝐶
(2)
𝑡 = 𝐶

(1)
𝑙 . We obtain the sphere 𝑆2 (Fig. 12).
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Рис. 10: Gluing of sheets: rank𝐶 = 2, 𝐶(1)
𝑙 ̸= 𝐶

(1)
𝑟 , 𝐶(2)

𝑏 = 𝐶
(1)
𝑙 , 𝐶(2)

𝑡 = 𝐶
(1)
𝑙 ⊕ 𝐶

(1)
𝑟

Рис. 11: Gluing of sheets: rank𝐶 = 3, 𝐶(2)
𝑡 = 𝐶

(2)
𝑏

Рис. 12: Gluing of sheets: rank𝐶 = 3, 𝐶(2)
𝑡 = 𝐶

(1)
𝑙

3.3) 𝐶
(2)
𝑡 = 𝐶

(1)
𝑙 ⊕ 𝐶

(1)
𝑟 . We have the Klein bottle 𝐾𝐿 (Fig. 13).

3.4) 𝐶
(2)
𝑡 = 𝐶

(1)
𝑟 ⊕ 𝐶(2)

𝑏 . Again the Klein bottle (Fig. 14).
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Рис. 13: Gluing of sheets: rank𝐶 = 3, 𝐶(2)
𝑡 = 𝐶

(1)
𝑙 ⊕ 𝐶

(1)
𝑟

Рис. 14: Gluing of sheets: rank𝐶 = 3, 𝐶(2)
𝑡 = 𝐶

(1)
𝑟 ⊕ 𝐶(2)

𝑏

3.5) 𝐶
(2)
𝑡 = 𝐶

(1)
𝑙 ⊕ 𝐶

(1)
𝑟 ⊕ 𝐶(2)

𝑏 . In this case we obtain the 88/2-torus (Fig. 15).

4) rank𝐶 = 4. Similarly to the cases 2.1) and 3.1), we obtain a 88-torus.

2

Corollary 2. If 𝜋−1
ℎ,𝑘(Π) is a Liouville torus, the matrix 𝐶 = (𝐶

(1)
𝑙 𝐶

(1)
𝑟 𝐶

(2)
𝑏 𝐶

(2)
𝑡 ) satisfies one

of the following conditions:

1) rank𝐶 = 2, 𝐶
(1)
𝑙 = 𝐶

(1)
𝑟 , 𝐶

(2)
𝑏 = 𝐶

(2)
𝑡 (00-torus);

2) rank𝐶 = 3, 𝐶
(2)
𝑏 = 𝐶

(2)
𝑡 (80-torus);

3) rank𝐶 = 3, 𝐶
(1)
𝑙 = 𝐶

(1)
𝑟 (08-torus);

4) rank𝐶 = 3, 𝐶
(1)
𝑙 ⊕ 𝐶

(1)
𝑟 ⊕ 𝐶(2)

𝑏 ⊕ 𝐶
(2)
𝑡 = 0̄ (88/2-torus);

5) rank𝐶 = 4 (88-torus).
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Рис. 15: Gluing of sheets: rank𝐶 = 3, 𝐶(2)
𝑡 = 𝐶

(1)
𝑙 ⊕ 𝐶

(1)
𝑟 ⊕ 𝐶(2)

𝑏

5. Classification of bifurcations

Our following aim is to classify the most simple 3-dimensional bifurcations which happen with
the Liouville foliations of regular algebraically separable systems.

Consider the isoenergy surface 𝑄3
ℎ0

= {𝑥 ∈𝑀4 | 𝐻(𝑥) = ℎ0}. Suppose (ℎ0, 𝑘0) ∈ Σ is a critical
value of the momentum mapping ℱ = (𝐻,𝐾) and 𝐿0 ⊂ ℱ−1(ℎ0, 𝑘0) is the corresponding singular
leaf of the Liouville foliation. Let 𝑈𝜀(𝐿0) be a small invariant 3-dimensional neighborhood of 𝐿0

in 𝑄3
ℎ0

defined by the inequalities 𝑘0 − 𝜀 ≤ 𝐾 ≤ 𝑘0 + 𝜀. Here we assume that (ℎ0, 𝑘0) is a unique
intersection point of the bifurcation diagram Σ with the curve {(ℎ0, 𝑘) | 𝑘0− 𝜀 ≤ 𝑘 ≤ 𝑘0+ 𝜀}. Then
we may treat 𝑈𝜀(𝐿0) as a 3-dimensional bifurcation of the Liouville foliation (3-atom).

As follows from Theorem 1, the polynomial 𝑃ℎ0,𝑘0 has multiple roots.

Definition 8. We shall call the bifurcation defined by 𝑈𝜀(𝐿0) simple if it corresponds to a
unique multiple root 𝛼𝑗 of 𝑃ℎ0,𝑘0, which has multiplicity 2, and (𝛼𝑗 , 𝛼𝑗) /∈ 𝜋ℎ0,𝑘0(𝐿0), where 𝜋ℎ0,𝑘0
is the projection defined in Section 2.

The last requirement in this definition means that the bifurcation happens with only one of the
cycles 𝛾𝜙, 𝛾𝜓. In what follows, we assume that it happens with 𝛾𝜙, i.e., the line 𝑢1 = 𝛼𝑗 intersects
the rectangle 𝜋ℎ0,𝑘0(𝐿0) and the line 𝑢2 = 𝛼𝑗 does not.

Remark 7. The given definition of a simple bifurcation has nothing in common with that of a
simple atom given in [1] (Definition 2.4).

Let 𝛼𝑗1 = 𝛼𝑗1(ℎ, 𝑘) and 𝛼𝑗2 = 𝛼𝑗2(ℎ, 𝑘) be two roots of the polynomial 𝑃ℎ,𝑘 coinciding at
(ℎ0, 𝑘0): 𝛼𝑗1(ℎ0, 𝑘0) = 𝛼𝑗2(ℎ0, 𝑘0). There exist two possibilities:

1) 𝛼𝑗1(ℎ0, 𝑘) = 𝛼𝑗2(ℎ0, 𝑘) ∈ C∖R for 𝑘 ∈ [𝑘0−𝜀, 𝑘0) and 𝛼𝑗1(ℎ0, 𝑘), 𝛼𝑗2(ℎ0, 𝑘) ∈ R for 𝑘 ∈ (𝑘0, 𝑘0+𝜀]
or vice versa;

2) 𝛼𝑗1(ℎ0, 𝑘), 𝛼𝑗2(ℎ0, 𝑘) ∈ R for 𝑘 ∈ [𝑘0 − 𝜀, 𝑘0 + 𝜀].

Definition 9. We shall say that a simple bifurcation is of the first type in the first case and of
the second type in the second one.

The rest of the paper is devoted to the classification of simple bifurcations of the first type that
occur in regular algebraically separable systems. Here we list all the required assumptions for this.
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(1) The given algebraically separable integrable system is regular.

(2) The isoenergy surface 𝑄3
ℎ0

is regular (i.e., 𝑑𝐻(𝑥) ̸= 0 for any 𝑥 ∈ 𝑄3
ℎ0
).

(3) The surface 𝑈𝜀(𝐿0) is connected and compact (hence all the leaves 𝐿 ⊂ 𝑈𝜀(𝐿0) are compact).

(4) The set K of critical points of ℱ in 𝐿 is diffeomorphic to a disjoint union of circles and 𝐾
is a Bott function on 𝑈𝜀(𝐿0), i.e., 𝐾 is a Morse function on small 2-disks intersecting K
transversally at each point of K.

(5) The bifurcation defined by 𝑈𝜀(𝐿0) is simple.

For simple bifurcations of the first type we have again two possibilities.

(1) (Dis)appearance case. For any leaf 𝐿 ⊂ {𝑥 ∈ 𝑈𝜀(𝐿0) | 𝐾(𝑥) = 𝑘} its projection 𝜋ℎ0,𝑘(𝐿) lies
between the lines {𝑢1 = 𝛼𝑗1(ℎ0, 𝑘)} and {𝑢1 = 𝛼𝑗2(ℎ0, 𝑘)} (Fig. 16).

(2) Splitting case. For any leaf 𝐿 ⊂ {𝑥 ∈ 𝑈𝜀(𝐿0) | 𝐾(𝑥) = 𝑘} its projection 𝜋ℎ0,𝑘(𝐿) lies on the
left and on the right of the lines {𝑢1 = 𝛼𝑗1(ℎ0, 𝑘)} and {𝑢1 = 𝛼𝑗2(ℎ0, 𝑘)} (Fig. 17).

Рис. 16: (Dis)appearance case

Рис. 17: Splitting case

Consider each of these possibilities separately.

5.1. (Dis)appearance case

Theorem 3. In the (dis)appearance case, any bifurcation satisfying the above five conditions
has the type of the atom 𝐴 (Fig. 1).
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Доказательство. Since for some values of 𝑘 𝛼𝑙 is the complex conjugate of 𝛼𝑟, the radicals√
𝑢1 − 𝛼𝑙 and

√
𝛼𝑟 − 𝑢1 always appear in the expressions (3) in pair. Hence the columns 𝐶(1)

𝑙 and

𝐶
(1)
𝑟 of the matrix 𝐶 coincide and 𝜋−1

ℎ0,𝑘
(Π) is the 00- or 08-torus when 𝛼𝑙, 𝛼𝑟 ∈ R and 𝛼𝑙 < 𝛼𝑟 (here

Π = [𝛼𝑙, 𝛼𝑟]× [𝛼𝑏, 𝛼𝑡] as above). It follows that the type of bifurcation is totally determined by the
evolution of the cycle 𝛾𝜙 (Fig. 18) and we obviously obtain the atom 𝐴.

Рис. 18: Evolution of the cycle 𝛾𝜙: (dis)appearance case

2

5.2. Splitting case

Theorem 4. In the splitting case, any bifurcation satisfying the above five conditions has the
type of one of the atoms 𝐵, 𝐶2, 𝐷1, 𝑃4 (Fig. 1).

Доказательство. Put Π1 = [𝛼𝑙, 𝛼
′
𝑟]× [𝛼𝑏, 𝛼𝑡] and Π2 = [𝛼′

𝑙, 𝛼𝑟]× [𝛼𝑏, 𝛼𝑡] as in Fig. 17. Suppose
𝛼′
𝑟 = 𝛼′

𝑙 ∈ C∖R for 𝑘 ∈ [𝑘0 − 𝜀, 𝑘0) and 𝛼′
𝑟, 𝛼

′
𝑙 ∈ R for 𝑘 ∈ (𝑘0, 𝑘0 + 𝜀]. For simplicity, from now on

we shall omit the upper indices (1), (2), which stand for the order number of a separation variable,
as they are clear from the lower ones. Thus 𝑠′𝑟 = bsgn(𝛼′

𝑟 − 𝑢1), 𝐴′
𝑟 is the column of the matrix 𝐴

corresponding to 𝑠′𝑟 etc.
Put 𝐶 = (𝐶𝑙 𝐶𝑟 𝐶𝑏𝐶𝑡), 𝐶 ′ = (𝐶𝑙 𝐶

′
𝑟 𝐶

′
𝑙 𝐶𝑟 𝐶𝑏𝐶𝑡), 𝐶1 = (𝐶𝑙 𝐶

′
𝑟 𝐶𝑏𝐶𝑡), 𝐶2 = (𝐶 ′

𝑙 𝐶𝑟 𝐶𝑏𝐶𝑡).
Note that the variables 𝑠′𝑙 = bsgn

√︀
𝑢1 − 𝛼′

𝑙, 𝑠
′
𝑟 = bsgn

√︀
𝑢1 − 𝛼′

𝑟 and hence the columns 𝐶 ′
𝑙 , 𝐶

′
𝑟

are only well-defined for 𝑘 ∈ [𝑘0, 𝑘0 + 𝜀]. As in the previous theorem, we have 𝐶 ′
𝑙 = 𝐶 ′

𝑟. So instead
of 𝑠′𝑟 and 𝑠′𝑙 it is convenient to introduce the variable 𝑠′𝑟𝑙 = bsgn

√︀
(𝑢1 − 𝛼′

𝑟)(𝑢1 − 𝛼′
𝑙) which is

well-defined for any 𝑘 ∈ [𝑘0 − 𝜀, 𝑘0 + 𝜀].
Similar to the proof of Theorem 2, we consider all principally different cases depending on the

ranks of the matrices 𝐶 and 𝐶 ′ (the columns 𝐶 ′
𝑙 = 𝐶 ′

𝑟 of 𝐶
′ may be treated as corresponding to the

variable 𝑠′𝑟𝑙). Note that the matrices 𝐶, 𝐶1, and 𝐶2 corresponding to the rectangles Π, Π1, and Π2

satisfy Corollary 2.

1) rank𝐶 ′ = rank𝐶 + 1.

1.1) rank𝐶 = 2, rank𝐶 ′ = 3. Two 00-tori differing by the value of 𝑠′𝑟𝑙 transform into two
80-tori. This corresponds to the atom 𝐶2.

1.2) rank𝐶 = 3, rank𝐶 ′ = 4.

1.2.1) 𝐶𝑙 = 𝐶𝑟. This case is similar to the case 1.1): two 08-tori differing by the value
of 𝑠′𝑟𝑙 transform into two 88-tori. Again the atom 𝐶2.

1.2.2) 𝐶𝑏 = 𝐶𝑡. Two 80-tori differing by value of 𝑠′𝑟𝑙 transform into four 80-tori. This
corresponds to the atom 𝑃4.

1.2.3) 𝐶𝑙 ⊕ 𝐶𝑟 ⊕ 𝐶𝑏 ⊕ 𝐶𝑡 = 0̄. A 88/2-torus transforms into two 88-tori. The correspon-
ding atom is the result of the factorization of the atom 𝑃4 from the case 1.3) by the
involution acting by central symmetry on the 2-atom 𝑃4 and on the circle 𝑆1. We
obtain the atom 𝐶2.
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1.3) rank𝐶 = 4, rank𝐶 ′ = 5. This case is similar to the case 1.2.2): two 88-tori differing by
the value of 𝑠′𝑟𝑙 transform into four 88-tori. We obtain the atom 𝑃4.

2) rank𝐶 ′ = rank𝐶.

2.1) rank𝐶 ′ = rank𝐶 = 2. We have 𝐶𝑙 = 𝐴′
𝑟 = 𝐴′

𝑙 = 𝐶𝑟 and 𝐶𝑏 = 𝐶𝑡, hence a 00-torus
transforms into two 00-tori. This corresponds to the atom 𝐵.

2.2) rank𝐶 ′ = rank𝐶 = 3.

2.2.1) 𝐶𝑙 = 𝐶𝑟.

2.2.1.1) 𝐴′
𝑙 = 𝐶𝑟. This case is similar to the case 2.1): a 08-torus transforms into

two 08-tori. Again the atom 𝐵.

2.2.1.2) 𝐴′
𝑙 = 𝐶𝑟 ⊕ 𝐶𝑏 ⊕ 𝐶𝑡. A 08-torus transforms into two 88/2-tori. This corres-

ponds to the atom 𝐵.

2.2.2) 𝐶𝑏 = 𝐶𝑡.

2.2.2.1) 𝐴′
𝑙 = 𝐶𝑟. A 80-torus transforms into two 00-tori and a 80-torus. This

corresponds to the atom 𝐷1. In the symmetric case 𝐴′
𝑙 = 𝐶𝑙 we also have the

atom 𝐷1.

2.2.2.2) 𝐴′
𝑙 = 𝐶𝑙 ⊕ 𝐶𝑟. The resulting 3-surface is a direct product of a non-

orientable 2-atom and the circle. Hence it is non-orientable and does not
correspond to a 3-atom. So this case is impossible under our assumptions.

2.2.2.3) 𝐴′
𝑙 = 𝐶𝑙 ⊕ 𝐶𝑟 ⊕ 𝐶𝑏. It is easy to see that the critical trajectories on the

singular leaf cannot be oriented in the same way. This contradicts the existence
of the oriented 𝑆1-fibration in a neighborhood of the singular leaf ([1, Theorems
3.2 and 3.3]). Hence this case is also impossible.

2.2.3) 𝐶𝑙 ⊕ 𝐶𝑟 ⊕ 𝐶𝑏 ⊕ 𝐶𝑡 = 0̄. A 88/2-torus transforms into a 08-torus and a 88-torus.
This corresponds to the atom 𝐵.

2.3) rank𝐶 ′ = rank𝐶 = 4.

2.3.1) 𝐴′
𝑙 = 𝐶𝑟. This case is similar to the case 2.2.2.1): a 88-torus transforms into two

08-tori and a 88-torus. We obtain the atom 𝐷1. In the symmetric case 𝐴′
𝑙 = 𝐶𝑙 we

also have the atom 𝐷1.

2.3.2) 𝐴′
𝑙 = 𝐶𝑙 ⊕ 𝐶𝑟. This case is similar to the case 2.2.2.2) and is therefore impossible.

2.3.3) 𝐴′
𝑙 = 𝐶𝑙 ⊕ 𝐶𝑟 ⊕ 𝐶𝑏. This case is similar to the case 2.2.2.3) and is also impossible.

2.3.4) 𝐴′
𝑙 = 𝐶𝑙 ⊕ 𝐶𝑟 ⊕ 𝐶𝑏 ⊕ 𝐶𝑡. This case is similar to the cases 2.2.2.2) and 2.3.2).

Hence it is impossible.

2.3.5) 𝐴′
𝑙 = 𝐶𝑟 ⊕ 𝐶𝑏 ⊕ 𝐶𝑡. A 88-torus transforms into two 88/2-tori and a 88-torus. We

obtain the atom 𝐷1.

2

6. Conclusion

As follows from Theorems 3 and 4, the only simple bifurcations of the first type that may occur
(and actually do) in regular algebraically separable integrable systems under the five conditions
listed above have the type of the 3-atoms 𝐴, 𝐵, 𝐶2, 𝐷1, and 𝑃4. For instance, all these atoms occur
in elliptical billiards with a polynomial potential [14].

Our result was obtained by the direct analysis of the gluing of sheets over the boundaries of the
rectangles in the plane R2(𝑢1, 𝑢2), so the techniques demonstrated here can be easily applied for
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the simple 3-atoms of the second type (which will be the subject of the next paper). Moreover, we
may generalize these results to the non-compact case or non-simple 3-atoms.

What is remarkable, for the topological analysis of a concrete regular algebraically separable
system, there is no need to parametrize the leaves of the Liouville foliation in terms of the initial
phase variables. Given the formulae for the expressions of these variables via the variables of
separation, one can write down the corresponding Z2-matrix and just analyze this matrix for
different domains in ℱ(𝑀4) ∖Δ, where ℱ is the momentum mapping and Δ is the discriminant set
of the polynomial 𝑃 .

It should be emphasized that singularities of algebraically separable systems often occur not due
to the coincidence of roots of the polynomial 𝑃 , but because of degeneration of the Hamiltonian
equations written down in the separating variables. In (2) this happens whenever 𝑢1 = 𝑢2.
The corresponding singularities are much more complicated than those described above. Their
topological classification is the subject for future studies.

The author is grateful to his teacher Prof. A.T. Fomenko for constant support and attention
to this work; to all the participants of the Seminar “Modern geometry methods”, especially
Prof. E. A.Kudryavtseva,for fruitful discussions and valuable comments; to Profs. M.P.Kharlamov
and P.E. Ryabov for encouraging to develop the Boolean functions method; to the reviewer of this
paper for carefully reading the text and pointing out the connection of the problems discussed here
with the theory of square tiled surfaces.
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